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Abstract

This draft is to be presented at the 14th International Conference on p−adic Analysis,
in Aurillac, France, July 2016. The final version of this draft is to be submitted soon
afterwards. The motivation for this work, as well as a basic 1D version, can be found in:

Henri Alex Esbelin and Remy Malgouyres. Sparse convolution-based digital deriva-
tives, fast estimation for noisy signals and approximation results, in Theoretical Computer
Science 624: 2-24 (2016).
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1 Analyzable Spaces

1.1 Dedekind-Complete Archimedean Totally Ordered Abelian Ring

This sub-section is devoted to present the rings which have enough properties to develop the
following theory. Such rings turn out to be Z and R. An axiomatic presentation offers however
the possibility of some generalization of the theory.

Definition 1.1 Let (A,+, .,⪯) an abelian ring on which is defined a total order ⪯, such that

1. for a, b, c ∈ A with b ⪯ c then a+ b ⪯ a+ c (translation invariance).

2. for a, b, c ∈ A with 0A ⪯ a and b ⪯ c then a.b ⪯ a.c (compatibility with the product).

Such a ring is Dedekind-complete when any subset of A with an upper bound has a suppre-
mum and any subset of A with a lower bound has in infemum.

It is archimedean when for any nonzero l ∈ A, then A =
∪

n∈Z{a ∈ A / a ⪯ n.l} and
A =

∪
n∈Z{a ∈ A / n.l ⪯ a}

Proposition 1.1 A UNITARY Dedekind-complete archimedean totally ordered abelian ring is
isomorphic (as an ordered ring) to Z or R.

Proof. Thanks to a classical result on ordered rings, it is is isomorphic (as an ordered ring) to
a sub-ring of the natural ordered field R. Up to this isomorphism, we may suppose now that
A is a sub ordered ring of R. The order is then the natural order of the real numbers.

We consider two cases.
Suppose first that Inf(A∗

+) = 1A. Let a in A greater than 1. Let n0 be Inf{n ∈ N;n > a}.
Then 0 ≤ a− (n0 − 1) < 1 hence 0 = a− (n0 − 1).
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1.2 Complete Archimedean totally Ordered Algebra R. Malgouyres and H.A. Esbelin

Suppose now that A∩(0; 1) ̸= ∅. Then there exist in A some element b such that 0 < b < 1
2
.

Let x be a positive real number. Consider now X = {a ∈ A; 0 ≤ a ≤ x}. It is obviously
bounded in A hence has a suppremum a0 in A. We prove now that x = a0.

If x > a0 then for 2n > 1
a0−x

we have a0 < a0 + bn < a0 +
1
2n

< x a contradiction.
If x < a0 then for 2n > 1

x−a0
we have x < a0 − 1

2n
< a0 − bn < a0 a contradiction.

2

1.2 Complete Archimedean totally Ordered Algebra

In all this paper, A, B are Dedekind-complete archimedean totally ordered abelian rings.

Definition 1.2 An ordered algebra on A is a tuple (E,A,⪯E), where A is a Dedekind-complete
archimedean totally ordered abelian ring, E is an A−algebra (with operations also denoted by
+ and .) and ⪯ is a complete order, compatible with the order in A, that is:
if a ∈ A and x, y ∈ E with x ⪯E y, if 0A ⪯ a then ax ⪯E ay, and if a ⪯A 0A, then ay ⪯E ax.

Definition 1.3 A complete ordered algebra on A is an ordered algebra (E,A,⪯), where ⪯ is
a Dedekind-complete order.

Definition 1.4 An archimedean ordered algebra on A is an ordered algebra (E,A,⪯), where
for any nonzero l ∈ A, then A =

∪
n∈Z{a ∈ A / a ⪯ n.l} and A =

∪
n∈Z{a ∈ A / n.l ⪯ a}

The lexicographic order, which is of frequent use in computer sciences, does not define
complete algebra on the product of complete algebras. Exemple given, let us order the cartesian
product R×R using the lexicographic order. Let us consider the set

{
(1− 1

n
, n);n ∈ N

}
. It is

majorized by (1, b) where b ∈ R, but none of this pairs are upper bounds. But also none (a, b)
with a ∈ R, a < 1 and b ∈ R is an upper bound. Hence it has non upper bound. It is no more
archimedean since R× R is different to

∪
n∈Z{(u, v) ∈ R× R / (u, v) ⪯lex n(0, 1)} = R− × R.

Example 1.1 Let E1,⪯1 and E2,⪯2 be totally ordered Dedekind complete sets. If E2 has a
least element, E1 × E2 is totally ordered Dedekind complete set for the lexicographic order.

Indeed, let X ⊆ E1 × E2 be a non empty subset of E1 × E2, bm be the least element of E2

and (a, b) a mojorant of X.
Let us denote am the upper bound of {u1 ∈ E1; ∃u2 ∈ E2 : (u1, u2) ∈ X} in E1.
• if aM ∈ {u1 ∈ E1; ∃u2 ∈ E2 : (u1, u2) ∈ X}, then let us denote bM the upper bound of

{u2 ∈ A1; (aM , u2) ∈ X}; in this case (aM , bM) is the upper bound of X.
• if aM /∈ {u1 ∈ E1; ∃u2 ∈ E2 : (u1, u2) ∈ X}; in this case (aM , bm) is the upper bound of

X.
In order to enlarge the category of considered algebras, we introduce multi archimedean

partial orders.
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1.3 Complete Multi Archimedean partially Ordered Algebra

Definition 1.5 A partially ordered algebra on A is a tuple (E,A,⪯E), where A is a Dedekind-
complete archimedean totally ordered abelian ring, E is an A−algebra (with operations also
denoted by + and .) and ⪯ is a partial order, compatible with the order in A, that is:
if a ∈ A and x, y ∈ E with x ⪯E y, if 0A ⪯ a then ax ⪯E ay, and if a ⪯A 0A, then ay ⪯E ax.

The following definitions only need ⪯ to be a partial order on a set E.

Definition 1.6 Let x ∈ E.

1. An element y ∈ E is called a close minorant of x if and only if the order induced by ⪯
on the set [y, x] = {z ∈ E / y ⪯ z ⪯ x} is a total order.

2. We say that y is a close strict minorant of x if, in addition, we have x ̸= y.

3. We say that y is a [strict] close majorant of x if x is a [strict] close minorant of y.

4. We say that x and y are called closely comparable if y is either a close majorant of x or
a close minorant of x.

Example 1.2 On a cartesian product of copies of totally ordered sets, define x ⪯ y if and only
if each coordinate xa of x is less than the corresponding coordinate ya of y. This order is called
coordinatewise order. Then, a close strict minorant of x is a minorant of x all coordinates of
which BUT ONE are equal to these of x.

Definition 1.7 Let x and y be elements of E. An element z in E is said to be closely between
x en y if and only if: 

either x ≤ z ≤ y or y ≤ z ≤ x
and
z is closely comparable to both x and y

Remark 1.1 As usual y ≺E x is defined by y ⪯E x and y ̸= x. It is not equivalent to x is
closely strictly greater than y.

Proof. In Z2 provided with the coordinatewise order, (1, 0) is not closely strictly greater than
(0, 0) but (0, 0) ≺ (1, 1). 2

Definition 1.8 An element x a partially ordered algebra (E,A,⪯E) is said to be closely
strictly positive if and only if for any close strict minorant y of x, there exists an element in
z ∈ E, with 0E ≺ x, which is closely between y and x (hence z is a strict close minorant of x).

x is closely strictly greater than y iff x− y is closely strictly greater than 0E.

Definition 1.9 A multi-Archimedean partially ordered unitary algebra is a partially ordered
unitary algebra such that,

1. for any closely strictly positive element l, we have

E =
∪
n∈Z

{e ∈ E / e ⪯ n ∗ l}

4
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2. Any subset of E with an upper-bound admits a unique suppremum, and any subset of
E with a lower-bound admits a unique infemum.

Definition 1.10 A complete multi-Archimedean partially ordered unitary algebra is a multi-
Archimedean partially ordered unitary algebra such that, any subset of E with an upper-bound
admits a unique suppremum, and any subset of E with a lower-bound admits a unique infemum.

Furthermore, as the order ⪯ is translation-invariant in E, we can define the absolute value
of a non zero element as follows.

Definition 1.11 Let (E,A,⪯E) be a multi-Archimedean partially ordered unitary algebra.
Let x ∈ E.

1. If x is closely comparable to 0E, then |x| is equal to x if 0E ⪯ x, and |x| is equal to −x
if x ⪯ 0E.

2. Given an element y which is closely comparable to x, the element y − x is closely com-
parable to x− x = 0E. We define

|x| = sup({|y − x| / y is closely between 0E en x })

Example 1.3 Let X be any set and A be a Dedekind-complete archimedean totally ordered
abelian rings; then AX the set of functions with domain X and codomain A is an ordered
algebra for the order f ⪯ g iff for all x in X, we have f(x) ⪯A g(x). It is complete. In general
it is not multi-archimedean, but it is multi-archimedean in the case A = Z.

Proof. ⋆ Let Y be a bouunded subset of E = AX . Then there is f0 in E such that for all f in
Y and x in X, we have f(x) ≺A f0(x). Hence the sets {f(x); f ∈ Y } are all bounded, hence
have an suppremum g(x).
Let us prove that g is a suppremum for Y :

• for all f in Y and for all x in X, we have f(x) ⪯A g(x)

• if g′ ⪯E g, there is some x0 in X such that g′(x0) ≺A g(x0) then as the order is linear in
A, there is som f in Y such that g′(x0) ≺A f(x0) a contradiction with the definition of
g(x0).

⋆ Let f and g be elements of E = AX . Then they are comparable iff there is some x0 in X
and α in A such that f − g = α1x0(x). Then f is closely strictly greater than 0E iff for all x
in X, we have f(x) ≺A 0A. Then in the case where A = Z, for all x in X, we have f(x) ≺A 1A
and hence E = ZX is multiarchimedean.2

1.4 Definition of an Analyzable Space

Definition 1.12 An analysable space on A is a tuple, (E,A,Ω, µ,⪯), where (E,A,⪯) is a
complete multi-Archimedean partially ordered unitary algebra, Ω is a σ−algebra (or an algebra)
of subsets of E, and µ is a translation-invariant A−valued measure on Ω, for which intervals
are measurable (i.e. belongs to Ω).

5



1.5 Integrals R. Malgouyres and H.A. Esbelin

Example 1.4 In the following examples, the partial orders on the cartesian products are co-
ordinatewise. H : A −→ A are functions, called convolution mask, with 0A ⪯ H(a) for all
a ∈ A. In the three following cases, (E,A,Ω, µ,⪯) is an analyzable space.

• Let A = Z and E = Zd for some d ∈ N∗, with any subset of E measurable (Ω = P(E)).
Let us suppose that

∑
s∈AH(s) is finite.

We set µH(X) =
∑
x∈E

∑
s∈A

H(s)1X(x− s) =
∑
x∈E

1X ∗H(x), where 1X is the characteristic

function of X.

• Let A = Z and E = Rd for some d ∈ N∗, with Ω the Borel σ−algebra. Let us suppose
that

∑
s∈AH(s) is finite.

We set µH(X) =

∫
E

∑
s∈A

H(s)1X(x− s)dx =

∫
E

1X ∗H(x)dx.

• Let A = R and E = Rd for some d ∈ N∗, with Ω the Borel σ−algebra. Let us suppose

that
∫
A

H(s)ds is finite.

We set µH(X) =

∫
E

∫
A

H(s)1X(x − s)dsdx =

∫
E

1X ∗H(x)dx, where integrals represent

usual Lebesgues integral, with respect to the usual Lebesgues measure.

1.5 Integrals

Definition 1.13 Let (E,A,ΩE, µ,⪯E) be an analysable space and (F,A,⪯F ) be a multi-
Archimedean partially ordered unitary algebra on the same Dedekind-complete archimedean
totally ordered abelian ring A. Let f be a function with domain E and codomain F+ = {y ∈
F ; 0 ⪯F y}.
When the set{∑

i∈I

yiµ(Ei); I finite, {Ei; i ∈ I} partition of E,Ei ∈ ΩE, yi ∈ F, ∀x ∈ Ei, yi ⪯F f(x)

}

is bounded, f integrable. Let us denote
∫
E
f(x)dµ(x) the upper bound in A of this set.

Let f be a function with domain E and codomain F . Let f+ be define by f+(x) = f(x) if
0F ⪯F f(x) and f+(x) = 0F otherwise and f− = f+ − f .
f is integrable iff f+ and f− are integrable and in this case∫

E

f(x)dµ(x) =

∫
E

f+(x)dµ(x)−
∫
E

f−(x)dµ(x)

Proposition 1.2 If f is integrable and a ∈ A, then a.f is integrable and
∫
E
a.f(x)dµ(x) =

a
∫
E
f(x)dµ(x).

Proof. If a ∈ A and 0A ⪯A a, then {x;x ∈ X} and {a.x;x ∈ X} are simultaneously bounded
or unbouded and if bounded, a.Sup{x;x ∈ X} = Sup{a.x; x ∈ X}, etc. 2
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Proposition 1.3 If µ ({x ∈ E; f(x) ̸= 0F}) = 0A, and f is integrable, then
∫
E
f(x)dµ(x) =

0F .
If µ ({x ∈ E; f1(x) ̸= f2(x)}) = 0A, and f1 and f2 are integrable, then

∫
E
f1(x)dµ(x) =

∫
E
f2(x)dµ(x).

Proof. 2

Proposition 1.4 If f is A+valued and integrable, and for all x in E, we have 0A ⪯ f(x) and∫
E
f(x)dµ(x) = 0A, then µ ({x ∈ E; f(x) ̸= 0A}) = 0A.

Proof. This is the case because A = R or A = Z. In the first case {x ∈ A; 0A ≺ f(x)} = {x ∈
A; 1 ⪯ f(x)}and in the second case {x ∈ A; 0A ≺ f(x)} = ∪i∈N{x ∈ A; 1

n
⪯ f(x)}. 2

Proposition 1.5 Let (f1, ..., fd) be a function with domain (E,A,ΩE, µ,⪯E) an analysable

space and with codomain
i=d∏
i=1

(Fi, Ai,⪯Fi
) a multi-Archimedean partially ordered unitary algebra

defined form the multi-Archimedean partially ordered unitary algebras Fi by the composante-
wise order and the composantewise multiplication on the same Dedekind-complete archimedean
totally ordered abelian ring A.

Then (f1, ..., fd) is integrable iff every fi are integrable.

Proof. 2

Proposition 1.6 (Affine change of variable in a double integral) Let (E,A,ΩE, µ,⪯E) be an
analysable space and (F,A,⪯F ) be a multi-Archimedean partially ordered unitary algebra on
the same Dedekind-complete archimedean totally ordered abelian ring A. Let f be a function
with domain E and codomain F .
cartesian product E×E, seen as an analyzable space for the product measure and coordinatewise
order and operations. Let T : E × E 7−→ E × E be an affine transformation of the form:

T (x, y) = (a0,0x+ a0,1y, a1,0x+ a1,1y)

with a0,0, a0,1, a1,0, a1,1 ∈ A. We denote Det(T ) = a0,0.a1,1 − a1,0.a0,1, which we assume to be
inversible in A. Then for X ∈ E × E :∫

X

f(x)dx =

∫
T−1(X)

Det(T ).f ◦ T (u)du

Proof. 2

Proposition 1.7 (Fubini-Tonelli theorem) Let (E1, A,ΩE1 , µ1,⪯1) and (E2, A,ΩE2 , µ2,⪯2) be
analysable spaces and (F,A,⪯F ) be a multi-Archimedean partially ordered unitary algebra on
the same ring A.
Let f : E1 × E2 7−→ F+ be an integrable function over the cartesian product E1 × E2, seen as
an analyzable space for the product measure and composantewise order.
Then x →

∫
E2

f(x, y)dµ2(y) is mesurable sur E1, and we have∫
E1×E2

f(x, y)d(µ1 ⊗ µ2) =

∫
E1

(∫
E2

f(x, y)dµ2(y)

)
dµ1(x)

7
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Proof. ⋆ First case: f = χE avec E ∈ ΩE1⊗ΩE2 . Then for a fixed x ∈ E1, we have χE(x, y) = 1
iff y ∈ {y ∈ E2, (x, y) ∈ E} (which we denote Ex) is mesurable. Then

∫
E2

χE(x, y)dµ2(y) =∫
Ex

dµ2(y) = µ2(Ex) and
∫
E1×E2

χE(x, y)d(µ1 ⊗ µ2) = µ1 ⊗ µ2(E) =
∫
E2

µ1(Ey)dµ2(y) from the
definition.

⋆ By linearity, this remains true for positive fonctions
∑

i∈I yi1Ei
, where I is finite,{Ei; i ∈

I} is a partition of E1 × E2 and Ei ∈ ΩE1 ⊗ ΩE2 .
⋆ It remains true for mesurable positive functions on (E1 × E2,ΩE1 ⊗ ΩE2). 2

1.6 Convolutions In Analyzable Spaces

Definition 1.14 Let (E,A,Ω, µ,⪯) be an analyzable space over an ring A. Let l1, l2 ∈ E ∪
{−∞,+∞}. The Interval of E between l1 and l2, denoted by [l1, l2]E (or simply [l1, l2] for short
if no confusion can arise), is defined by

[l1, l2]E = {x ∈ E / l1 ⪯ x ⪯ l2}

We define similarly open or semi-open bounded or unbounded intervals using the classical strict
order.

Remark 1.2 In Z2 we have ](0, 0), (1, 1)] = {(1, 0), (0, 1), (1, 1)}, however (1, 0) and (0, 1) are
not closely strictly greater than (0, 0).

Lemma 1.1 Let (E,A,ΩE, µ,⪯E) be an analysable space.
Let l ∈ E such that l is closely strictly greater than (0, 0). Then we have the following partition
of E:

E =
∪
s∈Z

[sl, (s+ 1)l[E

Proof. 2

Notation 1.1 Let (E,A,ΩE, µ,⪯E) be an analysable space and (F,A,⪯F ) be a multi-Archimedean
partially ordered unitary algebra on the same Dedekind-complete archimedean totally ordered
abelian ring A. Let f be a function with domain E and codomain F .
Let I = [l1, l2[ be a (possibly unbounded) interval in E. We denote∫ l2

l1

f(x)dx =

∫
[l1,l2[

f(x)dx

Definition 1.15 Let (E,Ω, µ,⪯) and (F,ΩF , µF ,⪯) be analyzable spaces over an ordered
abelian ring A. Let K : E −→ F (or K : E −→ A, which can be identied to the F−valued
function a 7−→ K(a).1F ) be an integrable function, and f : E −→ F be an analyzable function.
We define the convolution product K ∗ f : E 7−→ F of f by K by setting for x ∈ E:

K ∗ f(x) =
∫
E

f(u)K(x− u)du

In the following definition, we consider a mesured space similar to Example 1.4, in a general
setting.

8
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Definition 1.16 Let (E,Ω, µ,⪯) be an analyzable space over an ordered abelian ring A. Let

H : A −→ A be a map such that 0A ⪯ H(a) for all a ∈ A and the integral
∫
A

H(a)da is finite.

We consider a new measure on E defined by

For X ∈ Ω, µH(X) =

∫
X

∫
E

H(u)1X(x− u)dudx =

∫
X

1X ∗H(x)dx

where 1X is the characteristic function of X, which to x ∈ E associates 1A if x ∈ X and 0A if
x ̸∈ X.

Then (E,Ω, µH ,⪯) is an analyzable space. This analyzable space (E,Ω, µH ,⪯) is called
the convolved analyzable space associated to (E,Ω, µ,⪯) with convolution kernel H.

Remark 1.3 Let (E,Ω, µH ,⪯) be the convolved analyzable space associated to (E,Ω, µ,⪯)
with a convolution kernel H. Then, for any (F,A,⪯F ) multi-Archimedean partially ordered
unitary algebra on A and any µ−integrable function f : E −→ F ,∫

X

fdµH =

∫
X

(H ∗ f)dµ

1.7 Normed Analyzable Spaces and Functional Norms

Definition 1.17 We call a Norm over an analyzable space M over a ring A a function N :
M −→ A with the following properties:

1. N(x) ⪰ 0A for any x ∈ M ;

2. N(x+ y) ⪯ N(x) +N(y) for all x, y ∈ M ;

3. N(a.x) = abs(a)N(x)

4. If N(x) = 0, then x = 0M .

We often denote by ||x|| the norm of an element x ∈ M , instead of a notation of the form
N(x), in which case the norm itself is denoted by ||.||.

Definition 1.18 We call an Analyzable Space Norm over an analyzable space (E,A,Ω, µ,⪯E)
over an ordered abelian ring A a norm ||.|| which is compatible with the order on E, that is, a
norm for which if 0E ⪯E x ⪯E y in E then 0A ⪯A ||x|| ⪯A ||y|| in A.

Remark 1.4 If a subset of E is bounded for the order, then by definition it is bounded for the
norm. The converse is true.

Proof. Let us suppose that a in A is such that for all x in X, we have a ⪯A ||x||. From
archimedean property in A, there exist n such that ||a|| ≺A n.||1E||. Let us suppose that
X is not bounded for the order. Then it exists in X some x such that n.1E ⪯ x, hence
||a|| ≺A n.||(1E)|| ⪯ ||x|| a contradiction. 2

9
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Definition 1.19 Let (E,A,Ω, µ,⪯) and (F,A,ΩF , µF ,⪯) be analyzable spaces over a A. Let
||.|| be a norm on F . Let f : E −→ F be a measurable function. We say that f has finite
1−norm on a measurable subset X ⊂ E if the following integral exists and is finite:

||f ||1 =
∫
X

||f(x)||dx

This integral is then called the 1−norm of f on X, or simply the 1−norm of f if X = E.

Definition 1.20 Let (E,A,Ω, µ,⪯) and (F,A,ΩF , µF ,⪯) be analyzable spaces over a ring A.
Let ||.|| be a norm on F . Let f : E −→ F be a measurable function. We say that f has finite
∞−norm on a measurable subset X ⊂ E if x 7−→ ||f(x)|| has an upper bound on X. We then
denote ||f ||∞ = supX ||f(x)||.

Notation 1.2 Let (E,Ω, µ,⪯) and (F,A,ΩF , µF ,⪯) be analyzable spaces over a ring A. Let
||.|| be a norm on F . Let α ∈ N∗ ∪{∞}. We denote by Fα(E,F, µ) the space of all measurable
functions from E to F with finite α−norm. This space is naturally provided with the norm
||.||α. For convenience, we denote F0(E,F, µ) the space of all measurable functions from E to
F , which is not naturally a normed algebra.

1.8 Differentiation and Averaging Operators on Analyzable Spaces

In this section, we consider (E,A,Ω, µ,⪯) and (F,ΩF , µF ,⪯) two analyzable spaces over the
same ordered abelian ring A.

Definition 1.21 (Integral Based Primitive Operator) Let f ∈ F1(E,F, µ). We define the
integral based primitive of f Iµ(f) : E 7→ F , by

(Iµ(f)) (x) =

∫ x

0

f(u)du

Definition 1.22 Let Φ : F1(E,F, µ) −→ F1(E,F, µ) be a linear operator. We say that Φ
commutes with the integral based primitive operator if for any f ∈ F1(E,F, µ), we have

Iµ (Φ(f)) = Φ (Iµ(f))

.

Example 1.5 Due to Lemma 1.3 a convolution operator, of the form f 7−→ H ∗ f for some
convolution kernel H ∈ F1(E,F, µ), commutes with the primitive operator.

Definition 1.23 (Differentiation Operator) Let ∆ : F1(E,F, µ) 7−→ F1(E,F, µ) be a linear
operator. We say that ∆ is a differentation operator if the two following conditions are satisfied:

1. ∆(f) commutes with the integral based primitive operator.

2. for any f ∈ F1(E,F, µ) the function ∆(Iµ(f)) exists and is equal to f .

Proposition 1.8 Let ∆ : F1(E,F, µ) 7−→ F1(E,F, µ) be a differentiation operator. Then
∆(f) is the zero function if f is constant on E.

10
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Proof. For f ∈ F1(E,F, µ), we have Iµ(∆(f)) = ∆(Iµ(f)) = f . So, if f is constant, Iµ(∆(f))
is constant, which implies that ||∆(f)||1 = 0 and ∆(f) is zero almost anywhere. 2

Lemma 1.2 Let Φ1,Φ2 : F1(E,F, µ) 7−→ F1(E,F, µ) be two linear operators which commute
with the integral based primitive operator and coincide on functions for the form Iµ(f) for
x ∈ E. Then Φ1 and Φ2 are equal on F1(E,F, µ).

Proof. Let us consider the linear operator N(f) = Φ1(f) − Φ2(f). Then, for any function of
the form F = Iµ(f), we have N(f) = 0 allmost anywhere. Let I = [l1, l2[ be an interval in E.
Suppose that N is non zero. Then there exists a function F ∈ F1(E,F, µ) such that N(F ) ̸= 0
on a non zero measure set.

Since N(F ) is not almost anywhere zero, we have 0F ̸= Iµ(N(F )) = N(Iµ(F )), which
contradicts the definition of N , together with hypothesis on Φ1 and Φ2. 2

As a direct application of Lemma 1.2, we obtain:

Proposition 1.9 (Uniqueness of The Differentiation Operator) If ∆1 and ∆2 are two differ-
entiation operators on F1(E,F, µ), then they are equal.

Proposition 1.10 (Translation Invariance The Differentiation Operator) If ∆ is a dif-
ferentiation operators on F1(E,F, µ), then they ∆ is translation invariant, that is: if g(x) =
f(x+ x0) for all x ∈ E and for some x0 ∈ E, then (∆(g)) (x) = (∆(f)) (x+ x0) for all x ∈ E.

Proof. Due to Lemma 1.2, is is sufficient to prove that the linear operator ∆(Iµ(f))(x) −
∆(Iµ(f)(x+ x0)) = 0F for any x ∈ E. for any f ∈ F1(E,F, µ). But

∆(Iµ(f))(x)−∆(Iµ(f))(x+ x0) = ∆(K) = 0

where K is the constant function with K(x) =

∫ x0

0

f(u)du. 2

Lemma 1.3 Let f,H ∈ F1(E,F, µ). Then Iµ(H ∗ f) = H ∗ Iµ(f)

Proof.

Iµ(H ∗ f) =
∫ x

0

H ∗ f(u)du =

∫ x

0

∫
E

H(v)f(u− v)dvdu =

∫
E

H(v)

∫ x

0

f(u− v)dudv

=

∫
E

H(v)

∫ x−v

−v

f(u)dudv =

∫
E

H(v)((Iµ(f))(x− v)− (Iµ(f))(−v))dv

= H ∗ (Iµ(f))(x)−H ∗ (Iµ(f))(0) = H ∗ (Iµ(f))(x)

2

Lemma 1.4 Let f,H ∈ F1(E,F, µ) and let ∆ be a differentiation operator on F1(E,F, µ).
Then,

∆(H ∗ f) = H ∗∆(f) = ∆(H) ∗ f

Proof. By applying Lemma 1.2 with Φ1(f) = ∆(H ∗f) and Φ2(f) = H ∗δ(f), using Lemma 1.3
to establish the hypothesis of Lemma 1.2, we obtain that ∆(H ∗ f) = H ∗∆(f). By changing
the roles of H and f , we obtain similarly that ∆(H ∗ f) = ∆(H) ∗ f . 2

11
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Definition 1.24 (Averaging Operator) Let Λ : F1(E,F, µ) −→ F1(E,F, µ) be a linear oper-
ator which commutes with the primitive operator. We say that Λ is an averaging operator if
Λ(1E,F ) = 1E,F .

Example 1.6 Due to Lemma 1.3 a convolution operator, of the form f 7−→ H ∗ f for some

convolution kernel H ∈ F1(E,F, µ), with
∫
E

H(u)du = 1F , is an averaging operator.

Definition 1.25 (Averaged Differentiation Operator) Let ∆ : F1(E,F, µ) −→ F1(E,F, µ) be
a linear operator. We say that ∆ is an averaged differentiation operator if and only if both
following conditions are satisfied:

1. ∆ is zero on any constant function.

2. We consider the linear operator Λ∆F1(E,F, µ) −→ F1(E,F, µ) defined by Λ∆(f) =
∆(Iµ(f)). Then the operator Λ∆ is an averaging operator (Namely, ∆(Iµ(1E,F )) = 1E,F ).

Example 1.7 Let ∆ be a differentiation operator, or an averaged differentation operator on
F1(E,F, µ). For f ∈ F1(E,F, µ), let us set ∆H(f) = ∆(H ∗ f). Then the operator ∆H is an
averaged differentiation operator on F1(E,F, µH).

More generally, the composition of an averaging operator with a differentiation operator is
an averaged differentation operator, and conversely.

Example 1.8 Let Λ be an averaging operator on F1(E,F, µ). For f ∈ F1(E,F, µ) and l ∈ E
with l ≻ 0E, let us set (∆(f))(x) = (Λ(f))(x + 1E) − (Λ(f))(x). Then the operator ∆ is an
averaged differentiation operator on F1(E,F, µH).

Proposition 1.11 (Translation Invariance an Averaged Differentiation Operator) If ∆ is an
averaging differentiation operators on F1(E,F, µ), then they ∆ is translation invariant, that
is: if g(x) = f(x + x0) for all x ∈ E and for some x0 ∈ E, then (∆(g)) (x) = (∆(f)) (x + x0)
for all x ∈ E.

Proof. Due to Lemma 1.2, is is sufficient to prove that the linear operator ∆(Iµ(f))(x) −
∆(Iµ(f)(x+ x0)) = 0F for any x ∈ E. for any f ∈ F1(E,F, µ). But

∆(Iµ(f))(x)−∆(Iµ(f))(x+ x0) = ∆(K) = 0

where K is the constant function with K(x) =

∫ x0

0

f(u)du. 2

1.9 Fixed Denominator Rational Analyzable Space

In this section, we consider (E,Ω, µ,⪯) an analyzable space over a ring A.
Let l ∈ A, with l ≻ 0E. For convenience, we also denote l = l∗1E the element of E multiple

of the unit element in E. For X ⊂ E, we consider the set

X/l = {x
l
/ x ∈ X}

Conversely, for Y ⊂ E/l, we define lY = {x ∈ E / x
l
∈ Y }. The set E/l is naturally in one to

one correspondance with E through the map x 7−→ x
l
. The inverse map is the map which to

some y = x
l
∈ E/l associates ly

def
= x.

We can be naturally provide E/l with an analyzable space structure (E/l,Ωl, µl,⪯l), which
is isomrophic to (E,Ω, µ,⪯), by setting:

12
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1. For Y ⊂ E/l, the set Y is in Ωl if and only if Y = X/l for some X ∈ Ω. In other words,
lY ∈ Omega.

2. We set µl(Y ) = µ(lY ) for Y ∈ Ωl.

3. y1 ⪯ y2 if and only if ly1 ⪯ ly2.

Note that in the case when A is a field and E = A (for examle A = E = R), the E/l can be
seen as E itself, and the natural isomorphism from E to E/l can be seen as an automorphism.

2 Digital Differentiation
In the sequel of this section, we consider the following structures. Let R be either the ring Z
or the ring R. Let d ∈ N and, for a = 1, . . . , d, let Aa be an analyzable space over R. Let
d′ ∈ N, and for a = 1, . . . , d′, let A′

a be an analyzable space over R. We denote

M =
d∏

a=1

Aa and M′ =
d′∏

a=1

A′
a

For a ∈ {1, . . . , d}, we consider ea the element of M, the ith coordinate of which is 1Ai
if

i = a, and 0Ai
otherwise. We denote by Zd the sub-algebra of M generated by the ea’s, for

a = 1, . . . , d. Similarly, for a ∈ {1, . . . , d′}, we consider fa the element of M′, the ith coordinate
of which is 1A′

a if i = a, and 0A′
a otherwise. We denote by Z ′

d′ the sub-algebra of M′ generated
by the fa’s, for a = 1, . . . , d′.

2.1 Rapidely Decreasing and Moderately Increasing Multi-sequences

Definition 2.1 Let u be a multi-sequence in M′Zd . We say that u is rapidly decreasing if
and only if for any polynomial function π on Zd, the function I 7−→ π(I)u(I) is bounded. We
denote by D[Zd,M′] the set of rapidly decreasing multi-sequences in M′Zd .

Remark 2.1 The space D[Zd,M′] of rapidly decreasing multi-sequences is stable under inner
addition, inner multiplication, and stable under multiplication by a polynomial function.

Lemma 2.1 Let u a rapidly decreasing multi-sequence and let π be an M′−valued polynomial
function on M. For I ∈ Zd−1 and i ∈ Ad, let us denote by u(I, i) [resp. π(I, i)] the image
under u [resp. under π] of the concatenation of I and (i). Then the multi-sequence defined on
Zd−1 by

sd(I) =
∑
i∈Ad

|u(I, i)||π(I, i)|

is well defined and bounded on Zd−1.

Proof. It is sufficient to prove this property when π is a monomial and, due to Remark 2.1, it
is sufficient to prove it for polynomials of degree 0. In other words, we just need to show that
the sum of the values of the multi-sequence u itself is absolutely convergent.

First we prove that for d ≥ 1, the sum:

sd(I) =
∑
i∈Ad

u(I, i)

13
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is well defined for I ∈ Zd−1, and that the multi-sequence sd itself is rapidly decreasing on Zd−1.
Since u is rapidly decreasing, we can find K > 0M′ such that for I ∈ Zd−1 and i ∈ Ad, we have
u(I, i) ≤ K and i2u(I, i) ≤ K. For N ∈ N∗, we have

(N !)2
∑N

i=1 |u(I, i)| ≤ (N !)2|u(I, 1)|+
∑N

i=2 i
2|u(I, i)| ∗ (N !)21M′

i2

≤ (N !) (K +K ∗ 2)

Note that the expression N !
i2
1M′ denotes a well defined element of the algebra M′ over the ring

R. Indeed, by expanding the expression of (N !)2 and simplifying by i2 to get an integer value,
which is then multiplied by 1M′ in the algebra M′.

Hence, we get
∑

i∈N∗ |u(I, i)| is well defined and bounded by 3K. By a similar argument
for i < 0, we get that

∑
i∈Ad

|u(I, i)| is well defined and bounded on Zd−1. 2

Lemma 2.2 Let us consider the multi-sequence v defined on Zd−1 by v(I) =
∑

i∈Ad
u(I, i),

which is well-defined due to from Lemma 2.1, Then, v is a rapidly decreasing multi-sequence.

Proof. Let π be a polynomial function on Zd−1. Then, by considering π as a function
on Zd (which does not depend on the dth coordinate), we get by Remark 2.1 that the multi-
sequence I 7−→ π(I)u(I) is rapidly decreasing. From Lemma 2.1, we get that the multi-sequence
I 7−→ π(I)v(I) on Zd−1 is bounded, which proves that v is rapidly decreasing. 2

Lemma 2.3 For any rapidly decreasing multi-sequence u and any polynomial π on Zd, the
following series is absolutely convergent:∑

I∈Zd

π(I)u(I)

In particular, the multi-sequence uπ is bounded.

The proof follows immediately by induction using Lemma 2.1 and Lemma 2.2.

Proposition 2.1 For any rapidly decreasing multi-sequence u and any polynomial π on Zd,
the multi-sequence uπ is rapidly decreasing.

Definition 2.2 Let I be a sub-algebra of M containing Zd (typically, I = Zd or I = M).
Let u be a function in M′I . We say that u is moderately increasing if and only if there
exist a bounded subset B of I and a polynomial π on I such that for any I ∈ I\B we have
|u(I)| ≤ |π(I)|. We denote by P [I,M′] the set of moderately increasing multi-sequences in
M′I .

Remark 2.2 The product of a rapidly decreasing multi-sequence by a moderately increasing
multi-sequence is rapidly decreasing.

Remark 2.3 The space P [I,M′] of M′−valued moderately increasing multi-sequences over a
sub-algebra I of M is stable under inner addition, inner multiplication, and multiplication by
a polynomial.

14
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2.2 Digital Differentiation, Tensor Products

First, we introduce a few notations about multi-indices.

Notation 2.1 Let P =
∏d

a=1 Ba be a Cartesian product of d analyzable spaces (e.g. the Carte-
sian product P can be Zd or Zd over the ring Z, or possibly M or an ideal I over the ring R).
Let (I(a))a=1,...,d ∈ P be a multi-index. We shall use the following notations:

1. For a ∈ {1, . . . , d} and for j ∈ Z or j ∈ R or j ∈ Ba, we denote by L(a, j) the element
in P, all coordinates of which are zero, except the a’s coordinate which is equal to j.1Ba.

2. For v ∈ P, for a ∈ {1, . . . , d} and j ∈ Z or j ∈ R or j ∈ Ba, we denote v(a,j) = v+L(a, j)
the element obtained from v by adding j.1Ba to the a’s coordinate.

3. For ua ∈ Ba, we denote by ua1P the product of the unit element 1P of P with the element
of P, identified with ua, all coordinates of which are the unit element, except for the a’s
coordinate which is equal to ua. If no ambiguity can occur, we shall omit the unit 1P and
simply denote by ua this element of P.

4. We denote |I| =
∑

i=1,...,i |I(a)| (with |I(a)| = I(a) if I(a) ≥ 0 and |I(a)| = −I(a) if
I(a) < 0), which is called the order of I.

5. Given α ∈ Zd, we denote Iα =
∏d

a=1 ((I(a))
αa1P), which is called the α’s power of I

(possibly in a sub-ring of the product of the fields of fractions over the ring Ba).

6. Given α ∈ Rd, we denote by I [α], which is called the coordinate by coordinate α’s power
of I the vector, the coordinates of which (possibly in a sub-ring of the product of the fields
of fractions over the ring Ba) are given by I [α] =

∏d
a=1 ((I(a))

αa).

7. we denote I! =
∏d

a=1 (I(a)!), where I(a)! =
∏

i∈N,i.1Aa≤I(a)
(i.1P) The element I! ∈ P is

called the factorial of I.

8. If (J(a))a=1,...,d is another multi-index, we denote by ((IJ)(a))a=1,...,d the multi-sequence
with (IJ)(a) = I(a)J(a), which is called the product of I and J .

9. If, for a = 1, . . . , d, the algebra Ba is provided with an analyzable space structure and
⪯a is the order underlying this analyzable space structure, and if (J(a))a=1,...,d is another
multi-index, we denote by ≤ the binary relation, which is a partial order, such that I ≤ J
if and only if for a = 1 . . . , d we have I(a) ⪯a J(a).

10. If (J(a))a=1,...,d is another multi-index, we denote by ≺ the binary relation such that I ≺ J
if and only if for I ≤ J and I ̸= J .

11. If (J(a))a=1,...,d is another multi-index, we denote by < the binary relation such that I < J
if and only if for for a = 1 . . . , d we have I(a) < J(a).

12. We denote by 0 the multi-sequence with d coordinates equal to 0, and by 1 the multi-
sequence with d coordinates equal to d. Note that the dimension d of these vectors can be
omitted as, due to the context, no ambiguity will arise in practice.
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13. If (J(a))a=1,...,d is another multi-index with J ≤ I, we denote by
(
I
J

)
the element of the

ring R defined by: (
I

J

)
=

d∏
a=1

(
I(a)

J(a)

)
where

(
I(a)
J(a)

)
is the binomial coefficient defined as usual using the Pascal induction formula:(

I(a)

J(a)

)
= 1 if (I(a) = J(a) or J(a) = 0Ba),(

I(a)

J(a)

)
= 0 if (I(a) < J(a) or J(a) < 0Ba),

and
(
I(a)

J(a)

)
=

(
I(a)− 1Ba

J(a)− 1Ba

)
+

(
I(a)− 1Ba

J(a)

)
otherwise

The element
(
I
J

)
is called the multi-dimensional binomial coefficient of J from I.

Remark 2.4 (Multidimensional Pascal Formula) Using Notation 2.1, we get for a =
1, . . . , d the following multi-dimensional version of the Pascal Formula:(

I

J

)
=

(
I(a,−1)

J (a,−1)

)
+

(
I(a,−1)

J

)
2.2.1 Digital Differentiation Masks and their Tensor Products

We now introduce a notion of digital differentiations.

Definition 2.3 [Digital differentiation Mask] Let ω ∈ Nd. A (d−dimensional) digital ω−differentiation
mask is a multi-sequence u = (u(I))I∈Zd

∈ M′Zd with finite support, satisfying the following
properties:

1. For all k ∈ Nd with 0 ≤ ka ≤ ωa and k ̸= ω, we have:

∑
I∈Zd

(
d∏

a=1

(I(a))ka

)
u(I) = 0M′ (1)

2. ∑
I∈Zd

(
d∏

a=1

(I(a))ωa

)
u(I) =

d∏
a=1

((−1M′)ωaωa!) (2)

Remark 2.5 Using Notation 2.1, we can rewrite Definition 2.3 above saying that u is a
(d−dimensional) digital ω−differentiation mask if and only if we have:∑

I∈Zd

Iku(I) = 0M′ for 0 ≤ k ≺ ω (3)

and ∑
I∈Zd

Iωu(I) = (−1M′)ωω! (4)
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Definition 2.4 [Extended Digital differentiation Mask] Let ω ∈ Nd. An extended
(d−dimensional) digital ω−differentiation mask is a rapidly decreasing multi-sequence u =
(u(I))I∈Zd

∈ M′Zd with finite support, satisfying Formula (3) and Formula (4).

In the sequel, unless otherwise specified, we shall say an ω−differentiation mask as a shorthand
for an extended (d−dimensional) digital ω−differentiation mask.

Definition 2.5 [Tensor Product of Masks or Functions] For a ∈ {1, . . . , d}, let Ia be a sub-
algebra of Ma which contains 1AaAa (typically Ia = 1AaAa or Ia = Aa), and let ua =
(ua(I))I∈Ia ∈ M′Ia be a sequence with a one-dimensional domain Ia. We denote I =

∏d
a=1 Ia

and u = (u(I))I∈I ∈ M′I the multi-sequence defined by

u(I) =
d∏

a=1

ua(I(a))

The function u is called the tensor product of the function ua for a = 1, . . . , d. We denote by
d⊗

a=1

ua ∈ M′I the tensor product u.

Definition 2.6 [Isotropic Multi-Sequence] Let us consider a multi-sequence u = (u(I))I∈Zd
∈

M′Zd . Let a1 ∈ {1 . . . , d}. For I ∈ Zd and i1 ∈ Aa1 , we consider

(τa1(I, i1)) (a) =

{
I(a) if a ̸= a1
i1 if a = a1

thus defining an element τa1(I, i1) in M′Zd . The multi-sequence u is called isotropic if and
only if for any I ∈ Zd, any a1 ∈ {1 . . . , d}, any i1 ∈ Aa1 , we have:

u (τa1(I, J(a1)))u (τa1(J, I(a1))) = u (I)u (J)

Proposition 2.2 Let u = (u(I))I∈Zd
∈ M′Zd be a multi-sequence. If u is a tensor product of

one-dimensional sequences, that is, there exist ua = (ua(I))I∈Aa ∈ M′Aa such that u =
d⊗

a=1

ua.

Then, it is isotropic.

Proof. Assume that u =
d⊗

a=1

ua and consider I ∈ Zd and a1 ∈ {1 . . . , d}.

u (τa1(I, J(a1)))u (τa1(J, I(a1)))

=
(∏d

a=1 ua (τa1(I, J(a1))(a))
)(∏d

a=1 ua (τa1(J, I(a1))(a))
)

= ua1(J(a1))
(∏

a ̸=a1
ua(I(a))

)
ua1(I(a1))

(∏
a ̸=a1

ua(J(a)))
)

=
(∏d

a=1 ua(I(a))
)(∏d

a=1 ua(J(a))
)

= u(I)u(J)

2
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Theorem 2.1 A multi-sequence u = (u(I))I∈Zd
∈ M′Zd is an isotropic digital ω−differentiation

mask if and only if, for a = 1, . . . , d, there exist one-dimensional ωa−differentiation masks

ua = (ua(I))I∈Z1 ∈ M′Z1 such that u =
d⊗

a=1

ua.

Proof. Let us first prove by induction that a tensor product of d one-dimensional ωa−differentiation
masks is an isotropic differentiation mask. We already know from Proposition 2.2 that a tensor
product of d one-dimensional masks is isotropic. We prove the result by induction on d. For
d = 1, there is nothing to prove. Let us assume the result true for d − 1 one-dimensional
ωa−differentiation masks, and consider, for a = 1, . . . , d, a one-dimensional ωa−differentiation
mask ua = (ua(I))I∈Z1 ∈ M′Z1 . Let k ∈ Nd with 0 ≤ ka ≤ ωa and k ̸= ω. We have:∑

I∈Zd

(∏d
a=1(I(a))

ka
)
u(I) =

∑
I∈Zd

(∏d
a=1(I(a))

ka
)(∏d

a=1 ua(I(a))
)

=
∑

i∈Ad

∑
I∈Zd−1

(
ikd
∏d−1

a=1(I(a))
ka
)(

ud(i)
∏d−1

a=1 ua(I(a))
)

=
(∑

i∈Ad
(ikdud(i))

) (∑
I∈Zd−1

(∏d−1
a=1(I(a))

ka
(⊗d−1

a=1 ua

)
(I)
))

= 0M′

The last equality follows from our induction hypothesis, either applied to the one-dimensional
ωd−differentiation mask ud, either to the (d − 1)−dimensional differentiation mask

⊗d−1
a=1 ua,

depending on which of the coordinates of k differs form the corresponding coordinate of ω.
Similarly,∑

I∈Zd

(∏d
a=1(I(a))

ωa

)
u(I) =

∑
I∈Zd

(∏d
a=1(I(a))

ωa

)(∏d
a=1 ua(I(a))

)
=

(∑
i∈Ad

(iωdud(i))
) (∑

I∈Zd−1

(∏d−1
a=1(I(a))

ωa

(⊗d−1
a=1 ua

)
(I)
))

=
∏d−1

a=1 ((−1M′)ωaωa!) ((−1M′)ωdωd!) =
∏d−1

a=1 ((−1M′)ωaωa!)

Conversely, let us consider an isotropic digital ω−differentiation mask u = (u(I))I∈Zd
. Again,

we prove the result by induction. If d = 1 there is nothing to prove. Assume the result true
for a (d− 1)−dimensional isotropic mask. For I ∈ Zd−1 and i ∈ Ad, we set u(I, i) the value of
the d−dimensional multi-sequence u evaluated on (I(1), . . . , I(d− 1), i). For i ∈ Ad, we set:

ud(i) =
∑

I∈Zd−1

( ∏d−1
a=1(I(a))

ωa∏d−1
a=1(−1)ωaωa!

u(I, i)

)
and, for I ∈ Zd−1,

u(d−1)(I) =
∑
i∈Ad

(
iωdu(I, i)

(−1)ωdωd!

)
Both multi-sequences ud and u(d−1) are clearly isotropic. We show that u = u(d−1) ⊗ ud, that
is: u(d−1)(J)ud(j) = u(J, j). Indeed,

u(d−1)(J)ud(j) =
(∑

i∈Ad

(
iωdu(J,i)
(−1)ωdωd!

))(∑
I∈Zd−1

( ∏d−1
a=1(I(a))

ωa∏d−1
a=1(−1)ωaωa!

u(I, j)
))

=
∑

i∈Ad

∑
I∈Zd−1

( ∏d
a=1(I(a))

ωa∏d
a=1(−1)ωaωa!

u(J, i)u(I, j)
)

=
∑

i∈Ad

∑
I∈Zd−1

( ∏d
a=1(I(a))

ωa∏d
a=1(−1)ωaωa!

(u(J, j)u(I, i))
)

= u(J, j)
∑

i∈Ad

∑
I∈Zd−1

( ∏d
a=1(I(a))

ωa∏d
a=1(−1)ωaωa!

u(I, i)
)

= u(J, j)
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Let us now prove that, ud is a one-dimensional differentiation mask. Let us set ka = ωa for
a = 1, . . . , d− 1. Let 0 ≤ kd < ωd, we have:∑

i∈Ad
ikdud(i) =

∑
i∈Ad

ikd
(∑

I∈Zd−1

( ∏d−1
a=1(I(a))

ωa∏d−1
a=1(−1)ωaωa!

)
u(I, i)

)
= 1∏d−1

a=1(−1)ωaωa!

∑
I∈Zd

(∏d
a=1(I(a))

ka
)
u(I)

= 0M ′

Similarly, ∑
i∈Ad

iωdud(i) =
∑

i∈Ad
iωd

(∑
I∈Zd−1

( ∏d−1
a=1(I(a))

ωa∏d−1
a=1(−1)ωaωa!

)
u(I, i)

)
= 1∏d−1

a=1(−1)ωaωa!

∑
I∈Zd

(∏d
a=1(I(a))

ωa

)
u(I)

= (−1)ωdωd!

Now we prove that that, if we set ω(d−1) = (ω1, . . . , ωd−1), u(d−1) is a (d − 1)−dimensionnal
ω(d−1)−differentiation mask. The result then follows from our induction hypothesis. Let k ∈
Nd−1 with 0 ≤ ka ≤ ω

(d−1)
a for a = 1, . . . , d− 1 and k ̸= ω(d−1). We have∑

I∈Zd−1

(∏d−1
a=1(I(a))

ka
)
u(d−1)(I) =

∑
I∈Zd−1

(∏d−1
a=1(I(a))

ka
)∑

i∈Ad

(
iωdu(I,i)
(−1)ωdωd!

)
=

∑
I∈Zd

(∏d
a=1(I(a))

ka
)
u(I)

= 0M′

Similarly,∑
I∈Zd−1

(∏d−1
a=1(I(a))

ωa

)
u(d−1)(I) =

∑
I∈Zd−1

(∏d−1
a=1(I(a))

ωa

)∑
i∈Ad

(
iωdu(I,i)
(−1)ωdωd!

)
= 1

(−1)ωdωd!

∑
I∈Zd

(∏d
a=1(I(a))

ωa

)
=

∏d−1
a=1 ((−1M′)ωaωa!)

2

In the sequel of this paper, all the considered differentiation masks are assumed to be
isotropic.

2.2.2 Convolution and Differentiation Operators

Definition 2.7 [Convolution Product] Let u be a multi-sequence in M′Zd . Let I be a sub-
algebra of M which contains Zd (typically, I = Zd or I = M) and v : I −→ M′ be a
function. We say that u and v are convolvable if the following sum is absolutely convergent
for any N ∈ I:

(u ⋆ v)(N) =
∑
I∈Zd

u(I)v(N − I)

The multi-sequence u ⋆ v thus defined is then called the convolution product of u and v.

Proposition 2.3 For i = 1 . . . ,m, let ui and vi be two multi-sequences on a network Z(m) in
a Cartesian product of analyzable spaces M(m), with values in M′. Then, we have(

m⊗
i=1

ui

)
⋆

(
m⊗
i=1

vi

)
=

m⊗
i=1

(ui ⋆ vi)
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Proof. We prove the result for m = 2 and, by associativity of the tensor product and of the
convolution product, the result follows by an immediate induction.

((u1 ⊗ u2) ⋆ (v1 ⊗ v2))(n1, n2) =
∑

(i1,i2)∈Z(m1)×Z(m2)(u1 ⊗ u2)(i1, i2)(v1 ⊗ v2)((n1, n2)− (i1, i2))

=
∑

(i1,i2)∈Z(m1)×Z(m2)(u1(i1)u2(i2)v1(n1 − i1)v2(n2 − i2))

=
∑

(i1,i2)∈Z(m1)×Z(m2)(u1(i1)v1(n1 − i1))(u2(i2)v2(n2 − i2))

=
∑

i1∈Z(m1)(u1(i1)v1(n1 − i1))
∑

i2∈Z(m2)(u2(i2)v2(n2 − i2))
= ((u1 ⋆ v1)⊗ (u2 ⋆ v2))(n1, n2)

2

Proposition 2.4 For i = 1 . . . ,m, let ui be a multi-sequence on a network Z(i) in a Cartesian
product of analyzable spaces M(i), with values in M′. Then,

1. Suppose that for i = 1, . . . ,m, the multi-sequence is an ω(i)−differentiation mask. Then,
the tensor product

⊗m
i=1 ui is an ω−differentiation mask, where ω is the concatenation

of the vectors ωi for i = 1 . . . ,m.

2. Conversely, if we assume that u =
⊗m

i=1 ui is an ω−differentiation mask on Z =∏m
i=1Z(i) , where ω is the concatenation of the vectors ωi for i = 1 . . . ,m. then ui

is an ω(i)−differentiation mask for each i ∈ {1, . . . ,m}.

Proof. 1) We prove the first part of the result for m = 2 and, by associativity of the
tensor product and vector concatenation, the result follows by an immediate induction. Let
ω(1) = (ω

(1)
1 , . . . , ω

(1)
d1
) and ω(2) = (ω

(2)
1 , . . . , ω

(2)
d2
). Let k1 ∈ Nd1 and k2 ∈ Nd2 Let k be the

concatenation of k1 and k2.∑
I∈Zd

(∏d1+d2
a=1 (I(a))ka

)
(u1 ⊗ u2)(I)

=
∑

I∈Zd1
×Zd2

(∏d1+d2
a=1 (I(a))ka

)
u1(I1)u2(I2)(I)

=
(∑

I1∈Zd1

(∏d1
a=1(I1(a))

ka
)
u1(I1)

)(∑
I2∈Zd2

(∏d2
a=1(I2(a))

ka
)
u2(I2)(I)

)
Then, depending on whether k = ω or not, we get Equation (1) or Equation (2).

2) To prove the converse, observe that u is not identically zero. Let I ∈ Z be such that
u(I) ̸= 0M′ and let i ∈ {1, . . . ,m}. By restricting u(I) to the elements I ∈ Z of the product Z
in which only the ith coordinate varies, we obtain a multi-sequence on Z(i) which is proportional
to ui. Then, Definition 2.4 applied to this restriction of u immediately yields Equation 1 and
Equation 2 for ui. 2

Definition 2.8 [Differentiation Operator] Let u be a differentiation mask with finite support.
Let I be a sub-algebra of M with contains Zd. The ω-differentiation operator associated to u
over MI is the function ∆u with domain M′I and co-domain RI defined by

∆u :

{
M′I −→ M′I

v 7−→ ∆u(v) = u ⋆ v
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Definition 2.9 [Extended Differentiation Operator] Let u be a rapidly decreasing differenti-
ation mask. Let I be a sub-algebra of M with contains Zd. The (extended) ω-differentiation
operator associated to u over the space of moderately increasing functions P [I,M′], with co-
domain P [I,M′], is defined by

∆u :

{
P [I,M′] −→ P [I,M′]

v 7−→ ∆u(v) = u ⋆ v

Remark 2.6 Note that the fact that the image ∆u(v) with a rapidly decreasing sequence u
and a moderately increasing function v lies in P [I,M′] requires a justification, which is given
in Proposition 2.7 shown below.

In the sequel, if no ambiguity can arise, we shall assume without mentioning this hypothesis,
either that differentiation masks have finite support, or the differentiation masks are rapidly
decreasing and the corresponding differentiation operators are applied only to moderately in-
creasing functions.

Proposition 2.5 Let u = (u(I))i∈Zd
be an ω-derivative mask and v = (v(I))i∈Zd

be an ω′-
derivative mask. Then u ⋆ v is an ω + ω′-derivative mask.

Proof. We prove the one-dimensional case. The general case follows from Theorem 2.1 and
Proposition 2.4.

Let 0 ≤ k ≤ ω. Then∑
n∈Z

nk(u ⋆ v)(n) =
∑

n∈Z(i+ (n− i))k
∑

i∈Z u(i)v(n− i)

=
∑

n∈Z
∑

i∈Z
∑k

p=0

(
k
p

)
ip(n− i)k−pu(i)v(n− i)

=
∑k

p=0

(
k
p

) (∑
n∈Z
∑

i∈Z i
pu(i)(n− i)k−pv(n− i)

)
=

∑k
p=0

(
k
p

)∑
j∈Z
∑

i∈Z i
pu(i)jk−pv(j)

=
∑k

p=0

(
k
p

) (∑
j∈Z j

k−pv(j)
) (∑

i∈Z i
pu(i)

)
This is zero except if k = ω+ ω′ and in this case all the terms are zero except if p = ω and

in this case the sum is
(
ω+ω′

ω′

)
(−1)ωω!(−1)ω

′
ω′! = (−1)ω+ω′

(ω + ω′)! 2

2.3 Differential Operators and Polynomials

Definition 2.10 [Canonical Morphisms Xa from Aa to M′] For a ∈ {1, . . . , d}, we consider
Xa the unique morphism of algebra from Aa to M′ such that the image of the unit element
1Aa in Aa is the unit element 1M′ in M′. The map Xa is called the Canonical Morphisms Xa

from Aa to M′.
The maps pk, for k ∈ Nd with

∑d
a=1 ka ≤ δ, defined by:

pk(X1, . . . , Xd) =
d∏

a=1

Xka
a (5)

are called monomials from Aa to M′.
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Definition 2.11 The M′−valued polynomial functions with degree δ ∈ N over M are the
linear combinations of the monomials pk introduced in Definition 2.10.

In other words, using Notation 2.1, any M′−valued polynomial p with degree δ function over
M is of the form

p(X) =
∑

k∈Nd,|k|≤δ

λkX
k where X = (Xa)a=1,...,d (6)

where λk ∈ M′. The λk’s, for |k| ≤ δ are called the coefficients of the polynomial p for the
basis of the pk.

Remark 2.7 Let πa(pk) be the M′−valued polynomial function over M defined by

πa(pk)(X1, . . . , Xd) = Xka
a

Then we have pk =
⊗d

a=1 πa(pk).

Proposition 2.6 Let p M′−valued polynomial function over M as defined in Equation (5).
Let u =

⊗m
a=1 ua be an ω−differentiation operator, with ω ∈ Nd. Then, we have

(∆u(p)) =
δ∑

i=0

∑
k∈Nd

k1+...+kd=i

(
λk

d∏
a=1

(
ka

ka − ωa

)) d∏
a=1

Xka−ωa
a (7)

In other words, differentiation operators act on polynomial functions like usual partial
derivative operators on (say) usual polynomials over Rd.

Remark 2.8 Equation 7 can be rewritten using Notation 2.1 to obtain:

(∆u(p)) (n) =
∑

k∈Nd,|k|≤δ

λk

(
k

k − ω

)
Xk−ω (8)

Moreover, in the latter sum, only the multi-indices k such that ω ≤ k contribute with a non-zero
term.

Proof. Due to Proposition 2.3, remark 2.7 and Proposition 2.4, it is sufficient to prove the
result for d = 1. By linearity, it is also sufficient to prove it for a monomial p = nk Then,

(∆u(p)) (n) =
∑

i∈Aa
u(i)(n− i)k

=
∑

i∈Aa
u(i)

∑k
l=0

(
k
l

)
nl(−i)k−l

=
∑k

l=0

(
k
l

) (∑
i∈Aa

u(i)(−i)k−l
)
nl

Now, from Definition 2.4, the sum
∑

i∈Aa
u(i)(−i)k−l is equal to 0M′ if k − l < ω1, and equal

to ((−1)ω1ω1!) if k − l = ω1. Hence, for k ≤ ω1, (∆u(p)) (n) =
(

k
k−ω1

)
((−1)ω1ω1!)n

k−ω1 .
At last, we prove the result for any k > ω1 by induction. Suppose it is true for k − 1, and

set v = (v(n))n∈Z1 , with v(n) =
∑

s≤n u(s). Then we have u = ∆− ∗ v, where ∆− is a finite
difference (1)−differentiation mask (specifically: ∆− ∗ v(n) = v(n)− v(n− 1) = u(n)). It can
be seen that the mask v is a k − 1 differentiation mask. Furthermore, the differential ∆u(p),
which is a (1)−differential differentiation mask applied to the (k−1)−differential ∆v(p) which
is constant (equal either to ((−1)ω1ω1!)n

0 if k− 1 = ω1 or, by induction hypothesis, identically
zero otherwise), is also zero. 2
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Lemma 2.4 Let u be a rapidly decreasing function in M′Aa, with a ∈ {1, . . . , d}. Let p be
a polynomial with degree k on a sub-algebra Ia of Aa containing 1AaAa. Then, there exists a
polynomial function π over Ia with degree k such that:

u ∗ p = π

Proof. It is sufficient to prove the result for the monomial with degree k in p. Hence we may
assume w.l.o.g. that p(i) = ik. We have: u ∗ p(n) =

∑
i∈Aa

u(i)(n− i)k. Now,∑
i∈Aa

u(i)(n− i)k =
∑

i∈Aa
u(i)

∑k
l=0

(
k
l

)
nl(−i)k−l

=
∑k

l=0

(
k
l

) (∑
i∈Aa

(−i)k−lu(i)
)
nl

Due to Lemma 2.3, if we set π(n) =
∑k

l=0

(
k
l

) (∑
i∈Aa

(−i)k−lu(i)
)
nl, the value π(n) is well

defined. The function π thus defined is a polynomial function of n, and we have u ∗ p ≤ π. 2

Lemma 2.5 Let u =
⊗d

a=1 ui be a rapidly decreasing function in M′Zd, with a ∈ {1, . . . , d}.
Let p be a polynomial with degree δ ∈ N over a sub-algebra I of M containing Zd. Then, there
exists a polynomial function π over I with degree δ over Zd such that:

u ∗ p = π

Proof. Follows directly from Proposition 2.3, Remark 2.9, and Lemma 2.4. 2

Remark 2.9 Let u =
⊗d

a=1 ua ∈ M′Zd be a tensor product of non identically zero sequences.
Then, u is rapidly decreasing if and only if ua’s is rapidly decreasing for each a ∈ {1, . . . , d}.

Proof. The “if part" is an immediate consequence of Lemma 2.5. The “only if" part is easily
proved by distinguishing between the case when u is identically zero, in which case the result
is obvious, and the case when u is not identically zero, in which case a restriction of u to a
subset of Zd where only one coordinate varies, which is proportional to ua, is seen to be rapidly
decreasing. 2

Similarly, we see:

Remark 2.10 Let u =
⊗d

a=1 ua ∈ M′Zd be a tensor product of non identically zero sequences.
Then, u is moderately increasing if and only if ua’s is moderately increasing for each a ∈
{1, . . . , d}.

Hence we have the following:

Proposition 2.7 Let u =
⊗d

a=1 ua be a rapidly decreasing multi-sequence in M′Zd, with a ∈
{1, . . . , d}. The convolution product u with a moderately increasing function over a sub-algebra
I of M containing Zd is always defined and is moderately increasing on I.
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3 Multigrid Convergence for Differentials
The purpose of this section is to provide upper bounds for the difference between a digital
derivative of a sampled (and quantized) signal, with possible errors on the values. We shall
need a specific form of the Taylor Formula, in which we have an explicit form for the remainder,
as in the integral form for the remainder. However, the formula we prove and use does not
require that all partial derivatives of a given order be available or bounded. Instead, we assume
that partial derivatives exist at different orders on the different variables, as, for example, in
the tensor product of a C2 function by a C1 function, for which the differential of order (2, 1)
exists and is continuous, but neither the differential of order (1, 2), nor the differential of order
(2, 2) exist in general.

3.1 Taylor Formula with Multiple Integral Remainder

Definition 3.1 Let x(1) ≤ x(2) be two element of M. We denote by [x(1), x(2)[ the interval,
set of all T ∈ M such that x(1) ≤ T ≤ x(2). Let X ∈ {1, . . . , d} be a set of indices. We denote
X = {1, . . . , d}\X the complement of X. We consider the following subsets of M:

MX =
∏
a∈X

Aa and MX =
∏
a∈X

Aa

CX(x(1), x(2)) =
∏
a∈X

[x(1)
a , x(2)

a [ and CX(x(1), x(2)) =
∏
a∈X

[x(1)
a , x(2)

a [

We have a clear identification through a natural isomorphism: IdX : MX ×MX −→ M. We
denote by TX and [respectively TX ] the projections of an element T ∈ M onto MX [respectively
MX ]. In that way, a function f : [x(1), x(2)[7−→ M′ can also be identified to a function

fX :

{
CX(x(1), x(2))× CX(x(1), x(2)) 7−→ M′

(T, U) −→ f(IdX(T, U)) = f(T + U)

The sets CX(x(1), x(2)) [respectively CX(x(1), x(2))] is called the X−slice of the cube [x(1), x(2)[
[respectively the X−slice of the cube [x(1), x(2)[].

For each a ∈ {1, . . . , d}, we consider dta the measure on Aa underlying the analyzable space
structure. We consider dTX =

∏
a∈X dta the product measure on MX . At last, we consider

the operator

IntX :

{
L1([x

(1)
a , x

(2)
a ],M′) 7−→ L1(CX ,M′)

f 7−→ IntX(f)

with, for f ∈ L1([x
(1), x(2)],M′) and U ∈ CX ,

(IntX(f)) (U) =

∫
CX(x(1),x(2))

f(TX + U)dTX

The function IntX(f) is called the partial integral of f over the X−slices of the cube [x(1), x(2)[.
By convention, if X = ∅, the integral

∫
CX(x(1),x(2))

fX(TX , U)dTX is defined equal to f(U), so
that Int∅(f) = f .

Notation 3.1 Let X ⊂ {1, . . . , d}. We denote 1X ∈ Nd the vector such that for a = 1, . . . , d,
the coordinate (1X)a is equal to 1 if a ∈ X, and is equal to 0 otherwise.
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Theorem 3.1 (Taylor Formula with Multiple Integral Remainder) Let f : M −→ M′

be a map and let ω ∈ Nd. We assume that the partial differentials f (J) of the map f exist and
are continuous for all J ∈ Nd with 0 ≤ J ≤ ω + 1. Then, using Notation 2.1, we have the
following identity, for x and x(0) in M:

f(x) =
∑

X⊂{1,...,d}

∑
J∈{ωX}×[0,ωX ]

∫
CX(x(0),x)

f (J+1X)
(
TX + x

(0)

X

) (x− x
(0)

X
− TX)

)J
J !

dTX (9)

where, in accordance with Definition 3.1, the set {ωX} × [0, ωX ] denotes the set of all J ∈ Nd

such that 0 ≤ J ≤ ω and such that Ja = ωa for all a ∈ X. This identity is called the generalized
Taylor formula with integral form for the remainder.

Proof. We prove the result by induction on d. For d = 1, there are two possible subsets
X ⊂ {1, . . . , d}: X = ∅ and X = {1}.

The term for X = ∅ yields

∑
J∈[0,(ω1)]

f (J+1∅)
(
x
(0)
{1}

) (x− x
(0)
{1}

)J
J !

=

ω1∑
j=0

f (j)(x(0))
(x− x(0))j

j!

The term for X = {1} yields

∑
J∈{ω1}

∫
C{1}(x(0),x)

f (J+1{1})
(
T{1}

) (x− T{1})
)J

J !
dT{1} =

∫ x

x(0)

f (ω1+1)(T )
(x− T )ω1

ω1!
dT

Hence Equation 9 corresponds for d = 1 to the usual Taylor Theorem with Integral Remainder
in 1D

f(x) =

ω1∑
j=0

f (j)(x(0))
(x− x(0))j

j!
+

∫ x

x(0)

f (ω1+1)(T )
(x− T )ω1

ω1!
dT

which is proved as usual.

Now, assume that the result is true in dimension d − 1, with d ≥ 2. We consider the
element x{1,...,d−1} + x

(0)
{d} of M, all coordinates of which are equal to those of x, except the dth

coordinate which is equal to x
(0)
d

From the 1D case, dealt with above, applied to the value of f(x) = f
(
x{1,...,d−1} + x{d}

)
expressed through the Taylor development of f at the point x{1,...,d−1} + x

(0)
{d}, we get:

f
(
x{1,...,d−1} + x{d}

)
=

ωd∑
j=0

f (j1{d})
(
x{1,...,d−1} + x

(0)
{d}

) (x{1,...,d−1} + x{d} − x
(0)
{d}

)j1{d}

j!

+

∫ x{d}

x
(0)
{d}

f ((ωd+1)1{d})(x{1,...,d−1} + T{d})

(
x{1,...,d−1} + x{d} − T{d}

)ωd1{d}

ωd!
dT{d}

From our induction hypothesis applied, for j = 1, . . . , ωd + 1, to the function

gj :

{
M{1,...,d} −→ M′

y 7−→ f (j1{d})
(
y + x

(0)
{d}

)
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we have:

f (j1{d})
(
x{1,...,d−1} + x

(0)
{d}

)
=

∑
X⊂{1,...,d−1}

∑
J∈{ωX}×[0,ωX ]

∫
CX

(
x
(0)
{1,...,d−1},x{1,...,d−1}

)

f (J+1X+j1{d})
(
TX + x

(0)

X
+ x

(0)
{d}

) (x{1,...,d−1} − x
(0)

X
− TX)

)J
J !

dTX

Note that, as opposed to our statement in Equation 9, in the latest formula, X denotes the
complement of X in {1, . . . , d − 1}, as it is an application of our induction hypothesis in
dimension d−1. By substituting the last expression for f (j1{d})

(
x{1,...,d−1} + x

(0)
{d}

)
(substitution

which is also valid, by changing x
(0)
{d} for T{d}, for f ((ωd+1)1{d})

(
x{1,...,d−1} + T{d}

)
), into the

expression of f(x) = f
(
x{1,...,d−1} + x{d}

)
above, we obtain:

f(x) =

ωd∑
j=0

∑
X⊂{1,...,d−1}

∑
J∈{ωX}×[0,ωX ]

∫
CX

(
x
(0)
{1,...,d−1},x{1,...,d−1}

)f (J+1X)
(
TX + x

(0)

X
+ x

(0)
{d}

)
(
x{1,...,d−1} − x

(0)

X
− TX

)J
J !

(
x{1,...,d−1} + x{d} − x

(0)
{d}

)j1{d}

j!
dTX

+
∑

X⊂{1,...,d},d∈X

∑
J∈{ωX}×[0,ωX ]

∫
CX(x(0),x{1,...,d−1}+x

(0)
{d})

∫ xd

x
(0)
d

f (J+1X+(ωd+1)1{d})
(
T{d} + TX + x

(0)

X
+ x

(0)
{d}

) (x{1,...,d−1} − x
(0)

X
− TX)

)J
J !(

x{1,...,d−1} + x{d} − T{d}
)j1{d}

j!
dT{d}dTX

=
∑

X⊂{1,...,d}

∑
J∈{ωX}×[0,ωX ]

∫
CX(x(0),x)

f (J+1X)
(
TX + x

(0)

X

) (x− x
(0)

X
− TX)

)J
J !

dTX

2

In the latest expression, X now denotes the complement of X in {1, . . . , d}.

3.2 Digitization, Quantization, Noise Models

In the sequel of this section, we consider a map f : M 7−→ M′, and a map Γ : Zd 7−→ M′

on the discrete network Zd. We shall make extensive use of Notation 2.1 for exponentiation
notations, as well as orders in M and M′.

Let h = (ha)a∈{1,...,d} ∈ M, with 0Aa < ha, be a strictly positive vector representing some
digitization step in the domain of f . For K = (ka)a=1,...,d ∈ Rd, we consider the element
h[K] ∈ M. As in the definition of monomials (Definition 2.10) let (h′)

[K]
a ∈ M′ the image of

h
[K]
a by the unique morphism of algebra sending 1Aa to 1M′ . Since ha > 0Aa , we also have

(h′)
[K]
a > 0M′ . At last, we denote h′ = (h′)[1], corresponding to the case when ka = 1 for all

a ∈ {1, . . . , d}.
By abuse, we shall write h instead of h′ in some formulas, having in mind that, when

considered as an element of M′, a monomial function has been applied to the element h ∈ M.
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Definition 3.2 We say that the map Γ is a digitization of f with error εh,h′ : Zd −→ M′ if
for any N ∈ Zd, setting as usual (N.h)(a) = N(a)ha, and considering the element (h′Γ(N)) =(∏d

a=1 h
′
a

)
(Γ(N)) of M′, we have:

h′Γ(N) = f(N.h) + εh,h′(N) (10)

Definition 3.3 [Vector Valued Infinite Norm for Functions] Let X ⊂ M and let g : X −→ M′

be a bounded function. The infinte norm of g, denoted by ∥g∥∞ the vector in M′ is defined as
follows. For a′ ∈ {1, . . . , d′}, we denote Na′ = supx∈X (|(g(x))a′|) the upper bound of the (a′)th

coordinate of g(x) in M′. Now, we set

∥g∥∞ = (Na′)a′=1,...,d′

We consider the following particular models for the errors εh,h′ on the values:

• Exact Values: In this model, the values are known exactly:

εh,h′ ≡ 0M ′

Note that, although this model has been the most widely used in approximation theory,
this value error model is not very realistic from an Information Sciences point of view.

• Uniform Noise (or Uniform Bias) on Values: In this model, the error εh,h′ on the values
is uniformly bounded by some constant which depends on the quantization step h′. In our
model, however, this bound can be asymptotically greater that h′. Namely we assume
here that (see Notation 2.1 for the coordinates by coordinates exponentiation, denoted
with brackets notation)

0 ≤ |εh,h′(I)| ≤ K(h′)[α]

where α ∈ Rd with 0 < αa ≤ 1 for all a ∈ {1, . . . , d}, and K is a positive constant.
Note that this error can also have some bias, in the sense that the average noise value
(or expected value) could be non-zero.

• Quantization of Values: In this model, the errors εh,h′ on the values is uniformly bounded
by 1

2
h′. This is a particular case of uniform noise with α = 1, and corresponds to

the case when some basic quantization has been obtained by rounding-off the exactly
known values of the function, for example for digital storage. This case is equivalent to
Γ(I) =

[
f(Ih)
h′

]
. A variant is when quantization has been obtained by an integer part

(floor case): 0 ≤ εh,h′(I) < h′ , which is equivalent to Γ(I) = ⌊f(Ih)
h′ ⌋.

• Stochastic Noise on Values: In this model, the errors εh,h′(I) on the different values for
I ∈ Zd are independent random variables with expected value 0 and standard deviation
σ(h′), converging to 0 along with h′. In that case, Equation 10 implies that the values
Γ(I), for I ∈ Zd also are defined as independent random variables.
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3.3 Basic Error Decomposition and Upper Bounds

3.3.1 Errors Related to Sampling and to Input Values

In order to show that the digital ω−differentiation of a digitization Γ of a real function f
provides an estimate for the continuous derivative f (ω) of f , we would like to evaluate, at each

sample point N ∈ Zd, the difference between the digital differentiation
1

(h′)[ω−1]
(∆ω

u ⋆ Γ)(N)

(where, as usual in this context, the product [resp. exponentiation] between two d−dimensional
vectors is a coordinate by coordinate product [resp. exponentiation]) of the digitized signal
and the value of the usual ωth partial derivative f (ω)(Nh) of f . This difference may easily be
decomposed from Equation (10) and Definition 2.4 into the sum

1

(h′)[ω−1]
(∆ω

u ⋆ Γ)(N)− f (ω)(Nh) = ESω(f, h, h
′,Γ,u, N) + EVω(f, h, h

′,Γ,u, N) (11)

where

ESω(f, h, h
′,Γ,u, N) =

(
1

(h′)[ω]

∑
I∈Zd

u(I)f ((N − I)h)

)
− f (ω)(Nh) (12)

is called the sampling error, and

EVω(f, h, h
′,Γ,u, N) =

1

(h′)[ω]

∑
I∈Zd

u(I)εh,h′(N − I) (13)

is called the (input) values error. As their names imply, the sampling error is due to the fact
that we only know about the values of f at some grid points, and the values error is due to
the fact that we do not know the exact values of f at sample points.

The sampling error is a real values sequence. Under the uniform bias hypothesis, the values
error is also a real valued sequence, but under the stochastic hypothesis, the values error is a
sequence of random variable.

3.3.2 Upper Bound for the Sampling Error

In the following lemma, we show that the sampling error can be bounded independently from
the error on input values, using the mask values, the norm of the partial derivatives of f with
order higher than ωth, and a the digitization step. The immediate consequences are some
convergence results in the case when exact values of the function at sample points are known.

Lemma 3.1 Let us assume that the partial derivative f (K) exists and is continuous on M,
for every K = (ka)a=1,...,d ∈ Nd with ka ≥ 1 + ωa for a = 1, . . . , d. Let u be a digital
ω−differentiation mask with convergence order ρ. Let S = (s1, . . . , sd) with sa = max{ωa, 1 +
ρa} for a = 1, . . . , d. Let Γ be a digitization of f with error εh,h′ : Zd −→ M′. Suppose that
f (s) is bounded on R. Then for all N ∈ Zd,

ESω(f, h, h
′,Γ,u, N) ≤

∑
X⊂{1,...,d},X ̸=∅

||f (ω+1X)||∞
∑

I∈(Zd)X

|IωX+1X u(IX)|
h1X

ωX !
(14)

Moreover, if we consider a lowest order approximation when all coordinates of h tend to
zero at the same speed (e.g. constant ratio), the error can be approximated by the sum for X
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with cardinality 1, which yields:

ESω(f, h, h
′,Γ,u, N) = O

(
d∑

a=1

ha ||f (ω+1{a})||∞
∑
I∈Aa

|Iωa+1 u(IX)|

)
(15)

Proof. From the Taylor formula with Integral Remainder (see Theorem 3.1, the sum involved
in Equation (12) can be written

∑
I∈Zd

u(I)f ((N − I)h) =
∑

I∈Zd
u(I)

[∑
X⊂{1,...,d}

∑
J∈{ωX}×[0,ωX ]

∫
CX(Nh,(N−I)h)

f (J+1X) (TX + (Nh)X)
((N−I)h−(Nh)X−TX))

J

J !
dTX

]
Now, for X ⊂ {1, . . . , d} and J ∈ {ωX} × [0, ωX , we have

((N−I)h−(Nh)X−TX))
J

J !
= (((N−I)h)X−TX))JX

JX !

(((N−I)h)X−(Nh)X))
J
X

JX !

= (((N−I)h)X−TX))JX

JX !

(−IX)
J
X h

J
X

X

JX !

Hence∑
I∈Zd

u(I)f ((N − I)h) =
∑

X⊂{1,...,d}
∑

J∈{ωX}×[0,ωX ] h
JX
X

[∑
I∈Zd

u(I)
(−IX)

J
X

JX !∫
CX(Nh,(N−I)h)

f (J+1X) (TX + (Nh)X)
(((N−I)h)X−TX)JX

JX !
dTX

]
Yet, since u is a tensor product due to Theorem 2.1, for X ⊂ {1, . . . , d}, we have u(I) =
u(IX)u(IX), where IX(a) = I(a) if a ∈ X and IX(a) = 1Aa otherwise (and similarly for
IX). Furthermore, due to IX 7→ u(IX) is an ωX−differentiation mask, and IX 7→ u(IX) is an
ωX−differentiation mask. Therefore,

∑
I∈Zd

u(I)f ((N − I)h) =
∑

X⊂{1,...,d}
∑

J∈{ωX}×[0,ωX ] h
JX
X

[∑
I∈Zd

u(IX)u(IX)
(−IX)

J
X

JX !∫
CX(Nh,(N−I)h)

f (J+1X) (TX + (Nh)X)
(((N−I)h)X−TX)JX

JX !
dTX

]
=

∑
X⊂{1,...,d}

∑
J∈{ωX}×[0,ωX ] h

JX
X

[∑
I∈(Zd)X

u(IX)
(−IX)

J
X

JX !

]
[∑

I∈(Zd)X
u(IX)

∫
CX(Nh,(N−I)h)

f (J+1X) (TX + (Nh)X)

(((N−I)h)X−TX)JX

JX !
dTX

]
=

∑
X⊂{1,...,d} hX

ωX
∑

I∈(Zd)X
u(IX)∫

CX(Nh,(N−I)h)
f (ω+1X) (TX + (Nh)X)

(((N−I)h)X−TX)ωX

ωX !
dTX

The last equality comes from the fact that, due to the fact that IX 7→ u(IX) is an ωX−differentiation
mask (hence satisfies Equation (3) and Equation (4), all terms of the sums over I ∈ (Zd)X
between brackets are zero except for the term with JX = ωX , form which Equation (4) holds.
Finally,
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Now, using the expression for the sampling error (Equation 12), the term of the latest sum
corresponding to X = ∅ cancels out with −f (ω)(Nh), and we provide an upper bound for the
remaining sum for X ̸= ∅:

ESω(f, h, h
′,Γ,u, N) ≤

∑
X⊂{1,...,d},X ̸=∅

||f (ω+1X)||∞
∑

I∈(Zd)X

|IωX+1X u(IX)|
hωX+1X
X h

(h′)ωωX

X

ωX !

from which the result follows by simplification by (h′)ω. 2

Remark 3.1 Lemma 3.1 shows that the sampling error tends to zero along with h for a fixed
function and a fixed differentiation mask.

3.3.3 Upper Bound for the Input Values Error

The following lemma gives an upper bound for the error related to uniform noise or uniform
bias on the values at sample points (see Section 3.2).

Lemma 3.2 Let u be a digital ω−differentiation mask with convergence order ρ. Let us assume
that Γ is a digitization of f with errors on input values εh,h′ such that ∥εh,h′∥∞ ≤ K(h′)[α] with
0 < αa ≤ 1 for a = 1, . . . , d, which satisfies the uniform noise/bias error model. Then, for all
N ∈ Zd,

|EVω(f, h, h
′,Γ,u, N)| ≤ K

(h′)[ω−α]

(∑
I∈Zd

|u(I)|

)

Proof. We derive an upper bound for the values error from its expression in Equation (13):

|EVω(f, h, h
′,Γ,u, N)| ≤ ∥εh,h′∥∞

(h′)[ω]

∑
I∈Zd

|u(I)| ≤ K

(h′)[ω−α]

(∑
I∈Zd

|u(I)|

)
2

The following lemma gives an upper bound for the error related to statistic noise with
expected values 0 on the values at sample points.

Lemma 3.3 Let u be a digital ω−differentiation mask. Assume that Γ is a digitization of
f with error on input values εh,h′ following the stochastic noise model. In other words, the
εh,h′(N)’s for all N ∈ Zd are independent random variable with expected value 0 and standard
deviation σ(h, h′).

Then for all N ∈ Zd, the random variable
1

(h′)[ω−1]
(∆ω

u ⋆ Γ)(N) − f (ω)(Nh), defined after

the independent random variables Γ(N), has expected value ESω(f, h, h
′,Γ,u, n) and standard

deviation σ(h,h′)

(h′)[ω]

(∑
I∈Zd

(u(I))2
) 1

2 .

In other words, and roughly speaking, the global error is in this case statistically close to
the sampling error.
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Proof. From Equation (11) and Equation (13), for a fixed N ∈ Zd, the random vari-

able
1

(h′)[ω−1]
(∆ω

u ⋆ Γ)(N) − f (ω)(Nh) is equal to the sum of the constant random variable

ESω(f, h, h
′,Γ,u, N) and the random variable defined by

EVω(f, h, h
′,Γ,u, N) =

1

(h′)[ω]

∑
I∈Zd

uIεh,h′(N − I).

By linearity of expected values, its expected value is ESω(f, h, h
′,Γ,u, N), which shows the

first part of the statement.
Since the random variables εh,h′(N − I) are assumed to be independent, and the series∑

I∈Zd
ui is assumed to be absolutely convergent, the variance of EVω(f, h, h

′,Γ,u, N) is equal
to the sum for I ∈ Zd of the variances of u(I)

(h′)[ω] εh,h′(N − I) which, for standard the deviation,

yields
(

|u(I)|
(h′)[ω]σ(h, h

′)
)2

. 2

Remark 3.2 Note that for a fixed mask, the values error (or its standard deviation) generally
does not converge to zero when h′ converges to 0. We shall propose below a way to make it
tend to zero by adapting the mask to the digitization step (see Theorem 3.2 and Theorem 3.3
below).

3.4 Skipping Masks: Cheap Multigrid Convergence

The idea is to adapt the mask to the step of digitization, in order to get 1
(h′)[ω−α]

(∑
I∈Zd

|u(I)|
)

converging to zero along with h. For limiting the complexity of computation, we set the number
of non zero coefficients of the mask fixed.

Definition 3.4 Let L = (la)a=1,...,d ∈
(
R∗

+

)d be a vector with d coordinates which are strictly
positive elements of the base ring. We consider the following map:{

M −→ M/L =
∏d

a=1 (Aa/la)

(ta)a=1,...,d 7−→ (ta/la)a=1,...,d

Then, this map is an of analyzable spaces isomorphism, and is called called the division by L
operation.

In the sequel of this section, L = (la)a=1,...,d ∈ (Zd)
d with each coordinate la > 0M and la

multiple of 1M. We call the vector L the skipping step for our masks.

Definition 3.5 [Skipping Masks] Let u be an ω−differentiation mask. The corresponding
ω−differentiation L−skipping mask uL is defined by ul(I) =

1
L[ω]u(

I
L
) if for all a ∈ {1, . . . , d}

the coordinate la divides I(a), and equal to 0 in all other cases.

Remark 3.3 For K ∈ Nd, we have∑
I∈Zd

IKuL(I) = L[K−ω]
∑
I∈Zd

IKu(I).

Therefore, the mask uL is an ω−differentiation mask as well as u.
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We also have ∑
I∈Zd

|uL(I)| =
1

L[ω]

∑
I∈Zd

|u(I)|.

This allows a convenient choice of L, depending on h, which yields a values error which
converges to zero, either using Lemma 3.2 or Lemma 3.3. This is formalized in the following
theorems, which specify the skipping step L(h) to use as a function of the sampling step.

3.4.1 Uniform Multigrid Convergence with Uniform Noise or Bias

Theorem 3.2 Let u be an ω−differentiation mask with and uL the corresponding ω−differentiation
L−skipping mask with skips of length L. Suppose that f : M −→ M′ is a Cω+1 (we remind the
reader that (ω + 1)a = ωa + 1 for all a) function. This means that the partial derivatives f (J)

exist and are continuous for all 0 ≤ J ≤ ω+1, and f (ω+1X) is bounded for any X ∈ {1, . . . , d}.
Let α ∈]0, 1]d, K ∈ R∗

+ and let h and h′ be defined as at the beginning of Section 3.2.
Suppose Γ : Zd −→ Zd is such that |h′Γ(I)− f(hI)| ≤ Kh[α] for all I ∈ Zd (which corresponds
to our uniform noise/bias input values errors model).

Then, using the skipping steps L(h) =
⌊
h[−1+ ωα

ω+1
]
⌋
, we have:∣∣∣∣( 1

(h′)[ω−1]
∆uL(h)

⋆ Γ

)
(N)− f (ω)(Nh)

∣∣∣∣ ∈ O(h[ α
ω+1

])

Proof. First, we give an upper bound for the values error. From Lemma 3.2 and definitions,
we have

∣∣EV (f, h, h′,Γ,uL(h), n)
∣∣ ≤ K

(L(h))[ω](h′)[ω−α]

∑
I∈Zd

|u(I)|. If L(h) =
⌊
h[−1+ α

ω+1
]
⌋
, it is

easy to check that
1

(L(h))[ω](h′)[ω−α]
≤ h[α− ωα

ω+1
]

1− h[ω− ωα
ω+1

]
, which is O(h[ α

ω+1
]).

We now turn to the sampling error. Let us consider the upper bounds provided by Lemma 3.1.
We could use Equation (14) for a more explicit bound for the error, but we chose for the sake
of simplicity to use Equation (15) instead. Also using Remark 3.3 we get:

ES(f, h, h′,Γ,ul(h), n) = O

(
d∑

a=1

ha (L(h))
(ωa+1)−ω
a

)

Now, with L(h) =
⌊
h[−1+ ωα

ω+1
]
⌋
, we obtain ES(f, h, h′,Γ,ul(h), n) = O

(
h[ α

ω+1
]
)
2

3.4.2 Stochastic Multigrid Convergence with Stochastic Noise

Theorem 3.3 Let u be a ω-differentiation mask and let uL be the corresponding ω−differentiation
L−skipping mask. Suppose that f : M −→ M′ is a Cω+1 function, and f (ω+1X) is bounded for
all X ⊂ {1, . . . , d} Let α ∈]0, 1]d, let K ∈ M′, with K > 0M′, and let h and h′ be defined as
at the beginning of Section 3.2. Let Γ be a digitization of f with step h and a stochastic noise
εh,h′ with expected value 0M′, and standard deviation σ(h, h′) ≤ Kh[α].

Then for skipping steps L(h) =
⌊
h[1− α

ω+1

⌋
, and for N ∈ Zd, the random variable(

1

(h′)[ω−1]
∆uL(h)

⋆ Γ

)
(N)− f (ω)(Nh)

has an expected value and a standard deviation which are O(h[ α
ω+1

]).
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The proof is similar to that of Theorem 3.2, but using Lemma 3.3 instead of Lemma 3.2.

4 Locally Analytical Functions
All along this section, we consider again the notations R, Aa, M and M′ defined in Section 2.
Moreover, I denotes a sub-algebra of M containing Zd (typically I = Zd or I = M). At last
∆ is a differentiation operator on functions from I to M′.

We shall also use the following notions and notations concerning shift in vectors and func-
tions, as well as division by positive vectors:

Definition 4.1 Let Φ : I −→ M′ be a function. Given L = (la)a=1,...,d ∈ Rd a vector with
d coordinates which are elements of the base ring. We identify the vector L with the element
(la.1Aa)a=1,...,d of M. We thus define τL(Φ) the L−shift of Φ which to T ∈ I associates(

τL(Φ)
)
(T ) = Φ(T + L)

We remind the reader of Definition 3.4, in which the definition of the (coordinate by co-
ordinate) division by a vector L = (la)a=1,...,d ∈

(
R∗

+

)d is presented. In the sequel of this
section, L = (la)a=1,...,d ∈

(
R∗

+

)d denotes a vector with d coordinates which are strictly positive
elements of the base ring.

Definition 4.2 For a ∈ 1, . . . , d, let ∆a be a differentiation operator over the analyzable space
Aa, with values in M′. For any function f : M −→ M′, if for T = (ta)a=1,...,d the function
fa,T : Aa −→ M′ which to t ∈ Aa associates f(T (a,t−ta) is differentiable relatively to ∆a, we
denote

∂

∂ta
(T ) = (∆a (fa,T )) (T )

Moreover, this value is called the partial derivative of f with respect to (the ath coordinate) ta
at the point T .

4.1 Definition of Differential B−Splines Families

Definition 4.3 Let us consider a family D = (DI,S,P,R,L) of functions from I/L to M′/LR,
where, roughly speaking,

• S = (sa)a=1,...,d ∈ Zd is a shift factor, through which the parameter T = (ta)a=1,...,d of
functions is translated.

• L = (la)a=1,...,d ∈
(
R∗

+

)d denotes a vector with d coordinates which are strictly positive
elements of the base ring, and determines a partition of I into intervals [S.L, (S + 1)L[.

• R = (ra)a=1,...,d ∈ Nd is a blunder order, or smoothing order, which determines the
regularity of elements of D, as functions on I.

• P = (pa)a=1,...,d ∈ Nd denotes the primitive order, which represents the number of times
the primitive operator was applied, in the respective dimensions, relative to the differen-
tiation operator ∆, on the corresponding function with P = 0.
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• δR = (δR,a)a=1,...,d denotes the dimension of the space D = (DI,0,0,R,L)0≤I≤δR , of the
functions in the family D for a fixed L. The index L is omitted in the notation δR
because, in the families we present in this paper, the dimension δR does not depend on
L.

Now defining precisely, using Notation 2.1, we say that the family D is a Differential B−spline
Family of functions with respect to ∆ if and only if it satisfies the four following properties,
valid for all S ∈ Zd, P ∈ Nd, R ∈ Nd and any vector L ∈

(
R∗

+

)d with d coordinates which are
strictly positive:

1. Differential Property: for T = (ta)a=1,...,d, we have

∂

∂ta
(DI,S,P (a,1),R,L)(T ) = (pa + 1)DI,S,P,R,L(T )

2. Commutation with Finite Differences Property:

DI,S,P,R(a,1),L =
1

la(pa + 1)(ra + 1)
(DI,S,P (a,1),R,L −DI,S(a,1),P (a,1),R,L)

3. Shift Property:
DI,S(a,−1),P,R,L = τL(a,la) (DI,S,P,R,L)

4. Partition of Unity Property: For all T ∈ I and for P = 0,∑
S∈Zd

∑
0≤I≤δR

DI,S,0,R,L(T ) =
1M′

L[R]

4.2 Generic Construction from Partitions of Unity

Definition 4.4 A function F : I −→ M′ is said to be eventually zero when the coordinates
tend to −∞ if there exists U ∈ I such that F (T ) = 0M′ for T ≤ U .

Let us consider a family D = (DI,0,0,0,1) of functions from I to M′ such that: For all T ∈ I,
we have the partition of unity property :∑

S∈Zd

∑
0≤I≤δO

DI,0,0,0,1(T ) = 1M′

We extend the family D to a complete family (also denoted by D = (DI,S,P,R,L)) as follows.

1. For L = (la)a=1,...,d ∈
(
R∗

+

)d a vector with d coordinates which are strictly positive
elements of the base ring, we set:

DI,S,0,0,L(T ) =
1

L[R]
DI,0,0,0,1(

T

L
− S)

2. We define by induction on P = (pa)a=1,...,d ∈ Nd the function DI,S,P,0,L, by setting for
T = (ta)a=1,...,d:

DI,S,P (a,1),0,L(T ) =

∫ ta

−∞
DI,S,P,0,L

(
T (a,u−ta)

)
du

Note that the integral is well defined for a function which is eventually zero when the
coordinates tend to −∞. Furthermore, if DI,S,0,0,L is eventually zero when the coordinates
tend to −∞, then so is DI,S,P,0,L for any P ∈ Nd.
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3. At last we define by induction on R = (ra)a=1,...,d ∈ Nd the function DI,S,P,R,L, by setting:

DI,S,P,R(a,1),L =
1

la(pa + 1)(ra + 1)
(DI,S,P (a,1),R,L −DI,S(a,1),P (a,1),R,L)

Then, we have the following result, which follows from the definition by a straightforward
induction:

Proposition 4.1 The family D = (DI,S,P,R,L) is a Differential B−spline family.

4.3 Generalized Cox-de-Boor Formula

Theorem 4.1 (Generalized Cox-de-Boor Relation) Let D = (DI,S,P,R,L)) is be a differ-
ential B−spline family. For all S ∈ Zd, R ∈ Nd, for any vector L ∈

(
R∗

+

)d with d coordinates
which are strictly positive, for any a ∈ {1, . . . , d} and for any T ∈ I, we have:

DI,S,0,R(a,1),L(T ) =
ta − sa

la(ra + 1)
DI,S,0,R,L (T ) +

sa + ra − ta
la(ra + 1)

DI,S(a,1),0,R,L (T )

Proof. We prove the result by induction on R. For R = 0 and any PNd, we have

DI,S,P,R(a,1),L(T ) = 1
la(pa+1)(ra+1)

(
DI,S,P (a,1),R,L (T )−DI,S(a,1),P (a,1),R,L (T )

)
= 1

la(ra+1)

(∫ ta
−∞DI,S,P,R,L

(
T (a,ua−ta)

)
dua −

∫ ta
−∞ DI,S(a,1),P,R,L

(
T (a,ua−ta)

)
dua

)
= 1

la(ra+1)

([
(ua − sa)DI,S,P,R,L(T

(a,ua−ta))
]ua=ta

ua=−∞

−
[
(ua − ra − sa)DI,S(a,1),P,R,L(T

(a,ua−ta))
]ua=ta

ua=−∞

)
− 1

la(ra+1)

(∫ ta
−∞(ua − sa)

∂
∂ua

(DI,S,P,R,L)
(
T (a,ua−ta)

)
dua

−
∫ ta
−∞(ua − ra − sa)

∂
∂ua

(
DI,S(a,1),P,R,L

(
T (a,ua−ta)

))
dua

)
= ta−sa

la(ra+1)
DI,S,P,R,L (T ) +

sa−ra−ta
la(ra+1)

DI,S(a,1),P,R,L (T )

+ 1
la(ra+1)

∫ ta
−∞

(
(ua − sa)DI,S,P (a,−1),R,L(T

(a,ua−ta))

+ (sa + ra − ua)DI,S(a,1),P (a,−1),R,L(T
(a,ua−ta))

)
dua

Now, for P = 0 as in our statement, we have DI,S,P (a,−1),R,L ≡ 0M′ and DI,S(a,1),P (a,−1),R,L ≡ 0M′

due to the differential property in Definition 4.3, which completes the proof. 2

4.4 Generalized Power Series and Analytical Functions

Note on the draft version. The remainder of this section is somewhat sketch for lack of
time. The final version of this draft ought to contain more about generalized power series,
especially as solutions to linear partial differential equations.

Let D = (DI,S,P,R,L) be a differential B−spline family with respect to a differentiation
operator ∆ over M, which is obtained by tensor product of differentiation operators ∆a for
a = 1, . . . , d. For ω = (ωa)a=1,...,d ∈ Nd, we denote by ∆(ω) the partial derivative of order ωa

using ∆a on Aa.
For the sake of simplicity, we assume that the functions DI,0,0,R,L have bounded support,

namely that supp(DI,0,0,R,L) ⊂ [−m(R),m(R)] for some positive element m(R) ∈ I. We also
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assume that DI,0,0,R,L(T ) > 0M′ for all T ∈ I, which implies, from the partition of unity
property, that ||DI,0,0,R,L||∞ ≤ 1

L[R] .
Note, however, that the content of this paper regarding analytical functions and their

applications might work also for such functions families of functions with rapidly decreasing
derivatives of all orders, such as constructed as in Section 4.2 using partitions of unity, as well
as for some families of non positive functions.

Lemma 4.1 For P ∈ Nd and b > 0I, the suppremum M of ||DI,S,P,R,L(T )||∞ for x element of
an interval [−b, b] ⊂ I is less that or equal to

(|S|+ 2m(R))[P ]

Proof. Let T be an element of an interval [A,B] ⊂ I. Since ||DI,0,0,R,L||∞ ≤ 1, the result is
true for P = 0. We then show the result by induction on P . Assuming it is true for P , we

see that ||DI,S,P (a,+1),R,L(T )||∞ = ||
∫ T

S

DI,S,P,R,L(U)||∞dU ≤
∫ |S|+2m(R)

0

(|S| + 2m(R))[P ]dU =

(|s|+ 2m(R))[P
(a,+1)]. 2

Lemma 4.2 Let c = (cI,S,P ), for 0 ≤ I ≤ δR, S ∈ Zd, and P ∈ Nd be a family of elements of
R such that ∑

S∈Zd

∑
0≤P≤N

∑
0≤I≤δR

||cI,S,P ||A(|S|+ 2m(R))P (16)

is absolutely convergent when all coordinates of N ∈ Nd tend +∞. Then for any R ∈ N and
S ∈ Zd, the sum

Sc,D,N(T ) =
∑
S∈Zd

∑
0 ≤P≤N

∑
0≤I≤δR

cI,S,PDI,S,P,R,L(T ) (17)

also converges when all coordinated of N → +∞.

Definition 4.5 Under the assumptions of Lemma 4.2, the coefficients c = (cI,S,P ) are said
to define a convergent generalized power series relative to ∆ and D Moreover, the limit for
n → +∞ for the sums considered in Equation (17) is called the sum of the generalized power
series relative to ∆ and D with coefficients (cI,S,P ), with scaling factor L, with blending order
R

Sc,D(T ) =
∑
S∈Zd

∑
0≤P

∑
0≤I≤δR

cI,S,PDI,S,P,R,L(T ) (18)

Definition 4.6 A function f from I to M′ is called a generalized analytical function relative
to ∆ and D if is can be expressed as a generalized power series relative to ∆ and D for some
coefficients (cI,S,P ), with scaling factor L, with blending order R

Proposition 4.2 (Differentiation of Generalized Analytical Functions) Let R ≥ 1dN,
let c = (cI,S,P ), for 0 ≤ I ≤ δR, S ∈ Zd, and P ∈ Nd be a family of elements of R which
define a convergent generalized power series relative to ∆ and D. Then the function Sc,D is
differentiable for ∆ (i.e. ∆(Sc,D) exists) and we have:

∆a (Sc,D) (T ) =
∑
S∈Zd

∑
0≤P=0

∑
0≤I≤δR

cI,S,P (a,+1)DI,S,P,R,L(T ) (19)
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Proof. From the differential property of the differential B−spline family D, we get for N ∈ Nd

that the sum Sc,D,N(T ) defined in Equation (17), as a function of T ∈ I, is derivable for ∆
and its derivative is

∆a (Sc,D,N) (T ) =
∑
S∈Zd

∑
0≤P≤N

∑
0≤I≤δR

ci,s,p+1DI,S,P,R,L(T )

Furthermore, we see that the coefficients a′ = (ci,s,p+1) for 0 ≤ I ≤ δR, S ∈ Zd, and
P ∈ Nd defines a convergent generalized power series relative to ∆ and D, that is, the series∑
D∈Zd

∑
0≤P≤N

∑
0≤I≤δR

||cI,S,P (a,1) ||∞(|s|+ 2m(R))[P ] converges. Hence the series of Equation (19)

above converges when all coordinates of N tend to → +∞, and, using the continuity of the
operator ∆, by taking the limit when N → +∞ we get our result. 2

By an immediate induction on Proposition 4.2, we get the following

Theorem 4.2 Let R ≥ 1dN, Let c = (cI,S,P ), for 0 ≤ I ≤ δR, S ∈ Zd, and P ∈ Nd be a
family of elements of R which define a convergent generalized power series relative to ∆ and
D. Then, for any ω ∈ N d, the function Sc,D is ω−differentiable for ∆ (i.e. ∆ω(Sc,D) exists)
and we have:

∆ω(Sc,D)(T ) =
∑
s∈Z

+∞∑
p=0

∑
0≤I≤δR

cI,S,P+ωDI,S,P,R,L(T ) (20)

4.5 Solutions of Linear Differential Equations

Le us consider a linear partial differential equation of the form:∑
0≤J≤K

αJ(T )
(
∆(J)(f)

)
(T ) = 0 (21)

where K ∈ Nd. Let us look for generalized analytical functions which are solutions.
So, as in Section 4.4, let D = (DI,S,P,R,L) be a differential B−spline family with respect

to a differentiation operator ∆ over M. We assume, as has been proven for some differential
B−spline families in section 4.4, that Definition 4.5 holds, as well as Theorem 4.2.

Let c = (cI,S,P ), for some R ≥ 1Nd , let 0 ≤ I ≤ δR, S ∈ Zd, and P ∈ Nd be a family of
elements of R which define a convergent generalized power series relative to ∆ and D. From
Theorem 4.2, it is sufficient that the coefficients (cI,S,P ) satisfy the following linear equations,
for every T = (ta)a=1,...,d: ∑

0≤J≤K

αj(T )cI,S,P+JDI,S,P,R,L(T ) = 0 (22)

Example 4.1 In the one dimensional case (d = 1) real case R = M = M′ = R. Let us
consider the equation ∆(f) = f (which is classically solved to get the exponential function
T → eT ). Equation (22) yields:

cI,S,P+1 = cI,S,P

We therefore get the following family of solutions, for any given P ∈ N and L > 0:

expN(T )
def
=
∑
S∈Z

+∞∑
P=0

c0,S,0N0,S,P,R,L(T )
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Where (c0,S,0)S∈Z is an arbitrary sequence. This example was implemented, to get the results
presented on Figure 1.

Figure 1: The results of a partial sum (for a finite N) of B−splines obtained as in Example 4.1.
The graph superimposes perfectly with the usual exponential ex.

The final version of the paper ought to provide more about linear partial differential equa-
tions, as how to choose solutions of the linear equations in Equation (22) to obtain an integer
only and drift-free solution.

5 Bernstein-Based Differential B−Splines

5.1 Bézier Functions and Bernstein polynomials Basics

Note that the following definition uses multidimensional binomial coefficients and exponents
following Notation 2.1, as well as polynomial functions introduced in Section 2.3.

Definition 5.1 Let R ∈ Nd. For I ∈ Nd with 0 ≤ I ≤ R, we consider the M′−valued
polynomial with degree R which defines for T ∈ I the element

BI,R(T ) =

(
R

I

)
(T I1M′) (1M′ − T1M′)R−I

These (in the framework of R−vector spaces well-known) polynomials are called the Bernstein
polynomials with degree R from I to M′.

In the sequel, unless otherwise specified, we shall say Bernstein polynomials or Bernstein
functions as a shorthand for Bernstein polynomials from I to M′. The Bernstein polynomials
with degree R constitute, as formal polynomials, a basis of the vector space of polynomials
with degree less than or equal to R. We shall often omit the 1M′ factors if no ambiguity can
arise, thus writing:

BI,R(T ) =

(
R

I

)
T I (1M′ − T )R−I
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Remark 5.1 (Partition of Unity Property) By developing (T+(1−T ))R we obtain
∑

0≤I≤R BI,R(T ) =
1 for all T ∈∈ I

From the Pascal formula (remark 2.4) for binomial coefficients, we derive a similar formula
about Bernstein polynomials:

Proposition 5.1

BI,R(T ) = (1M′ − ta1M′)BI,R(a,−1)(T ) + (ta1M′)BI(a,−1),R(a,−1)(T ) (23)

By omitting the unit 1M′ , we can equivalently write:

BI,R(T ) = (1Aa − ta)BI,R(a,−1)(T ) + taBI(a,−1),R(a,−1)(T ) (24)

Proof.

BI,R(T ) =
(
R
I

)
T I (1M′ − T )R−I

=
[(

R(a,−1)

I(a,−1)

)
+
(
R(a,−1)

I

)]
T I (1M′ − T )R−I

= ta
(
R(a,−1)

I(a,−1)

)
T I(a,−1)

(1M′ − T )R
(a,−1)−I(a,−1)

+ (1M′ − ta)
(
R(a,−1)

I

)
T I (1M′ − T )R

(a,−1)−I

= (1M′ − ta1M′)BI,R(a,−1)(T ) + (ta1M′)BI(a,−1),R(a,−1)(T )

2

Definition 5.2 Let R ∈ Nd. Let P = (PI)0≤I≤R be a multi-sequence of points in M′. We
define, for T = (ta)a=1,...,d ∈ I, the image of T under the Bézier function BP : I −→ M′ with
control points P by

BP(T ) =
∑

0≤I≤R

PIBI,R(T )

Now, if we wan to compute partial differentials for Bernstein polynomials, we consider the
(in Rd classical) formula for Bernstein polynomials are concerned. For T = (ta)a=1,...,d, we have:

∂

∂ta
BI,R(T ) = ra(BI(a,−1),R(a,−1)(T )−BI,R(a,−1)(T )) (25)

Proposition 5.2 As in the usual case of Bézier functions over R, the partial derivative of a
Bézier function from I to M′ BP : I −→ M′ with control points (PI)0≤I≤R can be expressed
as follows, denoting T = (ta)a=1,...,d:

∂

∂ta
BP(T ) = ra

∑
0≤I≤R(a,−1)

(PI(a,1) − PI)BI,R(a,−1)(T )

which is the Bézier function with control points (P ′
I)0≤I≤R(a,−1), where P ′

I = ra(PI(a,1) − PI).

Proof.

∂
∂ta

BP(T ) = ra
∑

0≤I≤R PI

(
BI(a,−1),R(a,−1)(T )−BI,R(a,−1)(T )

)
= ra

(∑
0≤I≤R PI BI(a,−1),R(a,−1)(T )−

∑
0≤I≤R PI BI,R(a,−1)(T )

)
= ra

∑
0≤I≤R(a,−1)(PI(a,1) − PI)BI,R(a,−1)(T )

2
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5.2 Scaled Bézier Function Associated to a Sequence

Notation 5.1 Let u be an element of M/L (see Definition 3.4). We consider the floor of u,
denoted by ⌊u⌋, which is the greatest element (considering the coordinate by coordinate partial
order on M) of Zd such that L

(
⌊u⌋
L

)
is less than or equal to L

(
u
L

)
in M/L (considering the

coordinate by coordinate partial order on M/L).

Definition 5.3 Let L ∈
(
R∗

+

)d be a vector with d coordinates which are strictly positive
elements of the base ring. Let S ∈ Zd. For R ∈ Nd and I ∈ Nd with 0 ≤ I ≤ R, we introduce
the S−shifted L−scaled Bernstein polynomials with degree R, with values in M′/LR, by:

BI,S,R,L(T ) =

{
BI,R

(
T
L
− S

)
if T

L
∈ [S, S + 1M[

0 otherwise.

In other words, the value BI,S,R,L(T ) can be non-zero only for S =
⌊
T
L

⌋
. Using the caracteristics

function of an interval, we can also write BI,S,R,L(T ) = BI,R

(
T
L
− S

)
1[s, s+1 M [.

Remark 5.2 (Shift Property)(
τL(a,la) (BI,S,R,L)

)
(T ) = BI,S,R,L(T

(a,la)) = BI,S(a,−1),R,L(T )

In the remainder of this section (Γ(S))S∈Zd
is a multi-sequence with values in M′, and

L = (la)a=1,...,d is an element of
(
R∗

+

)d.
Definition 5.4 For R ∈ Nd, the L−scaled (piecewise) Bézier function with degree R associated
to Γ is defined for T ∈ M by:(

B(0)
L,R(Γ)

)
(T ) =

∑
S∈Zd

∑
0≤I≤R

Γ (L(I − S))BI,S,R,L(T )

Note that in the previous definition, due to the definition of BI,S,R,L, for a given value of I,
only one value of S (namely S =

⌊
T
L

⌋
) contributes to the double sum

(
B(0)
L,R(Γ)

)
(T ), so that,

in fact, at most (|R|+ d) terms are non-zero for a given T .

Proposition 5.3 (Commutation with the Shift) For R ∈ Nd and I ∈ Nd with 0 ≤ I ≤ R,
for T = (ta)a=1,...,d ∈ M, we have:(

B(0)
L,R(Γ)

)
(τL(a,la)(T )) =

(
B(0)
L,R(τ

−L(a,la)(Γ))
)
(T )

Proof. (
B(0)
L,R(Γ)

)
(τL(a,l)(T )) =

∑
S∈Zd

∑
0≤I≤R Γ (L(I − S))BI,S,R,L(T

(a,la))

=
∑

S∈Zd

∑
0≤I≤R Γ (L(I − S))BI,S(a,−1),R,L(T )

=
∑

S∈Zd

∑
0≤I≤R Γ

(
L(I − S(a,1))

)
BI,S,R,L(T )

=
∑

S∈Zd

∑
0≤I≤R Γ

(
L(S − I)− 0(a,la))

)
BI,S,R,L(T )

=
(
B(0)
L,R(τ

−L(a,la)(Γ))
)
(T )

2

40



5.2 Scaled Bézier Function Associated to a Sequence R. Malgouyres and H.A. Esbelin

Proposition 5.4 (De Casteljau Property on Sequences) Using the elements L(a, j) for
a = 1, . . . , d and j ∈ Aa, as well as R(a,−1) ∈ Nd, defined in Notation 2.1, we have for
T = (ta)a=1,...,d:(
B(0)
L,R(Γ)

)
(T ) =

(
1−

(
ta
la

−
⌊
ta
la

⌋))(
B(0)

L,R(a,−1)(Γ)
)
(T )+

(
ta
la

−
⌊
ta
la

⌋)(
B(0)

L,R(a,−1)(τ
L(a,la)(Γ))

)
(T )

In the equation, we omitted 1M′ when multiplying M′−valued polynomials by
(

ta
la
−
⌊
ta
la

⌋)
1M

or
(
1Aa −

(
ta
la
−
⌊
ta
la

⌋)
)
)
1M, seen as degree zero monomials (Definition 2.10). This notation

is also valid for R = 0 if we use the convention that B(0)

L,R(a,j) = 0 if ra + j < 0.

Proof.(
B(0)
L,R(Γ)

)
(T ) =

∑
S∈Zd

∑
0≤I≤R Γ (L(I − S))BI,R(

T
L
− S)1[S,S+1M[

(
T
L

)
=

∑
S∈Zd

∑
0≤I≤R Γ (L(I − S))

.
[(

1Aa −
(

ta
la
− sa

))
BI,R(a,−1)(TL − S)

+
(

ta
la
− sa

)
BI(a,−1),R(a,−1)(TL − S)

]
.1[S,S+1[

(
T
L

)
The last equality follows from Equation 24. Now, taking into account that the only value of
S for which T

L
∈ [S, S + 1[, which implies that ta

la
− sa = ta

la
−
⌊
ta
la

⌋
, and then by changing the

index I to I(a,−1) in the sum, we get:(
B(0)
L,R(Γ)

)
(T ) =

(
1Aa − ta

la
+
⌊
ta
la

⌋
)
)∑

S∈Zd

∑
0≤I≤R Γ (L(I − S))BI,S,R(a,−1),L(T )

+
(

ta
la
−
⌊
ta
la

⌋)∑
S∈Zd

∑
0(a,−1)≤I≤R(a,−1) Γ

(
L(I(a,1) − S)

)
BI,S,R(a,−1),L(T )

=
(
1Aa − ta

la
+
⌊
ta
la

⌋
)
)(

B(0)

L,R(a,−1)(Γ)
)
(T ) +

(
ta
la
−
⌊
ta
la

⌋)(
B(0)

L,R(a,−1)(τ
(a,la)(Γ))

)
(T )

The indices I = 0(a,−1) and I = R yielding a zero term because out of range for the Bernstein
polynomials. 2

Now, we derive the following from Proposition 5.3 and Proposition 5.4:

Proposition 5.5 (De Casteljau Property on Functions) We have for T = (ta)a=1,...,d:(
B(0)
L,R(Γ)

)
(T ) =

(
1−

(
ta
la

−
⌊
ta
la

⌋)
)

)(
B(0)

L,R(a,−1)(Γ)
)
(T )+

(
ta
la

−
⌊
ta
la

⌋)(
τ−L(a,la)(B(0)

L,R(a,−1)(Γ))
)
(T )

5.2.1 Derivative of the Scaled Bézier Function

As far as Bernstein polynomials are concerned, we get the partial differential form Euqation 25.
We derive from this that, for s = ⌊t⌋, we have

∂

∂ta
BI,S,R,L(T ) =

1

la

∂

∂ta
BI,R(

T

L
− S) =

ra
la

(
BI(a,−1),S,R(a,−1),L(T )−BI,S,R(a,−1),L(T )

)
(26)

so that
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Proposition 5.6 (Differentiation and Finite Differences of Sequences) For 0 ≤ R =

(ra)a=1,...,d, the function B(0)
L,R(Γ) is CR−1 on M and we have:

∂

∂ta

(
B(0)
l,r (Γ)

)
(T ) =

ra
la

[(
B(0)

L,R(a,−1)(τ
(a,−la)(Γ))

)
(T )−

(
B(0)

L,R(a,−1)(Γ)
)
(T )
]

Proof. First we prove the result for all t ∈ M\Zd, on which the curve B(0)
l,r (Γ) is easily seen to

be polynomial, hence infinitely differentiable.

∂
∂ta

(
B(0)
L,R(Γ)

)
(T ) =

∑
S∈Zd

∑
0≤I≤R Γ (L(S − I)) ∂

∂ta
BI,S,L,R(T )

=
∑

S∈Zd

∑
0≤I≤R Γ (L(S − I)) ra

la

(
BI(a,−1),S,R(a,−1),L(T )−BI,S,R(a,−1),L(T )

)
=

∑
S∈Zd

∑
0(a,−1)≤I≤R(a,−1) Γ

(
L(S − I(a,1))

)
ra
la

(
BI,S,R(a,−1),L(T )

)
−
∑

S∈Zd

∑
0≤I≤R Γ (L(S − I)) ra

la

(
BI,S,R(a,−1),L(T )

)
=

∑
S∈Zd

∑
0≤I≤R(a,−1) Γ

(
L(S − I)− 0(a,la)

)
ra
la

(
BI,S,R(a,−1),L(T )

)
−
∑

S∈Zd

∑
0≤I≤R Γ (L(S − I)) ra

la

(
BI,S,R(a,−1),L(T )

)
= ra

la

[(
B(0)

L,R(a,−1)(τ
(a,−la)(Γ))

)
(T )−

(
B(0)

L,R(a,−1)(Γ)
)
(T )
]

Now, for R = 0, we have B
(0)
L,R(T ) =

∑
s∈Zd

Γ(−LS)1[SL,(SL+L)[(T ). Consequently, B(0)
L,1(Γ) is

C0 (we remind the reader that the vector 1 is here considered as having all its coordinates
equal to 1. The result follows by induction on 1 ≤ R. 2

Proposition 5.7 (Differentiation and Finite Differences of Functions) For 0 ≤ R =

(ra)a=1,...,d, the curve B(0)
L,R(Γ) is CR on M and we have:

∂

∂ta

(
B(0)
L,R(Γ)

)
(T ) =

ra
la

[(
τ (a,la)

(
B(0)

L,R(a,−1)(Γ)
))

(T )−
(
B(0)

L,R(a,−1)(Γ)
)
(T )
]

Definition 5.5 Let Φ : Z −→ E be a sequence, or Φ : R −→ E be a function. We define the
finite difference masks :

•
(
∆

(a,l)
− (Φ)

)
(S) = 1

l
(Φ(S)− Φ(S(a,−l)));

•
(
∆

(a,l)
+ (Φ)

)
(S) = 1

l
(Φ(S(a,l))− Φ(S)).

Notation 5.2 For ω ∈ N with 0 ≤ ω ≤ R, we denote by B(ω)
L,R(Γ) the function on M defined

as the differential of order ω of B(0)
L,R(Γ):

B(ω)
L,R(Γ) =

(
B(0)
l,r−ω(Γ)

)(ω)
Therefore, Proposition 5.6 and Proposition 5.7 can be restated as:

Proposition 5.8 The first order partial derivatives of Bl,r(Γ) can be computed in two ways
through finite differences:

• On the sequence by ∂
∂ta

(BL,R(Γ)) (T ) = −ra

(
B(0)

L,R(a,−1)(∆
(a,la)
− (Γ)

)
(T );
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• On the function by ∂
∂ta

(BL,R(Γ)) (T ) = ra∆
(a,la)
+

(
B(0)

L,R(a,−1)(Γ)
)
(T )

The following immediately follows by induction:

Proposition 5.9 for R ≥ 0 and ω ∈ Nd with ω ≤ R, we can compute the differential with
order ω of BL,R(Γ), by applying an ω−differentiation mask either to the sequence Γ by(

B(ω)
L,R(Γ)

)
=

R!

(R− ω)!
B(0)
L,Rω

(
(−1M′)|ω| ∆ω

−(Γ)
)

or to the function BL,R(Γ) itself by(
B(ω)
L,R(Γ)

)
=

R!

(R− ω)!

(
∆ω

+

) (
B(0)
L,R−ω(Γ)

)
5.3 Bernstein Based Differential B−Splines Family

Definition 5.6 We consider, for P ∈ Nd, for I ∈ Zd, for S ∈ Zd, for R ∈ Nd, a function
BI,S,P,R,L ∈ M′M, based on the function BI,S,R,L defined in Definition 5.3, by the following
inductive definition:

• BI,S,0,R,L = 1
L[R]BI,S,R,L

• For P ≥ 0 and T = (ta)a=1,...,d, we set:

DI,S,P (a,1),R,L(T ) = (pa + 1)

∫ ta

∞
DI,S,P,R,L(T

(a,u−ta))du

The family of piecewise polynomial functions thus defined is called the Bernstein-based differ-
ential B−spline family.

Theorem 5.1 Bernstein-based differential B−spline family is a differential B−spline family
as defined through Definition 4.3.

The proof follows directly

• from Definition 5.6 which yields the differential property;

• from Equation (26), which can be integrated, and generalized for all P ∈ Nd gives us the
commutation with the finite differences property;

• from Remark 5.2 which gives us the shift property;

• and from Remark 5.1 which gives us the partition of unity property.
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6 Questions
Some questions remain to be addressed before final submission. Here is a non exhaustive, not
always very specific list of short term questions we could think of. Some of them are required
to fully justify significant results present in the draft to their target level of generality.

6.1 Questions relating to integrals and differentials

Question 6.1 (Product of Analyzable spaces) The finite product M =
∏d

a=1Aa of ana-
lyzable spaces over the same ring is an analyzable space for the product algebra structure, the
product measure, and the lexicographic order.

Question 6.2 (Fubini Property) For x1, x2 ∈ A and y1, y2 ∈ B, for some analyzable spaces
A and B. Let M′ be another analyzable space. Assume a function f : A × B −→ M′ is
integrable for the product measure on A× B. The the following integrals exit and are equal:∫ x2

x1

(∫ y2

y1

f(x, y)dy

)
dx =

∫ y2

y1

(∫ x2

x1

f(x, y)dx

)
dy

Moreover, both integrals are equal to the integral of f over the interval [(x1, y1); (x2, y2)] in the
product analyzable space A and B.

Question 6.3 (Differentiation of an Integral with Parameter) For Ω a measurable set
in an analyzable space A × B and f : A × B −→ M′ a continuous function such that for all
x ∈ A the partial function y 7−→ f(x, y) is differentiable on B, and its differentiation ∂

∂y
f(x, y)

is continuous with respect to (x, y). Then the function y 7−→
∫
Ω

f(x, y)dx is differentiable and

we have:
∂

∂y

(∫
Ω

f(x, y)dx

)
=

∫
Ω

(
∂

∂y
f(x, y)

)
dx

Question 6.4 Show that the derivative of a polynomial function in an analyzable space is the
usual formula.

Question 6.5 The primitive of a characterisics function of an interval in an analyzable space
is continuous.

6.2 Questions on rapidly decreasing functions

Question 6.6 (see also Theorem 2.1) A multi-sequence u = (u(I))I∈Zd
∈ M′Zd is isotropic

and rapidly decrasing if and only if, for a = 1, . . . , d, there exist one-dimensional rapidly de-

creasing functions ua = (ua(I))I∈Z1 ∈ M′Z1 such that u =
d⊗

a=1

ua.

Question 6.7 Generalize to the general Cartesian product of arbitrary analyzable spaces the
result (see Lemma 2.1 and Lemma 2.2).
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Lemma 6.1 Let u a rapidly decreasing multi-sequence and let π be an M′−valued polynomial
function on M. For I ∈ Zd−1 and i ∈ Ad, let us denote by u(I, i) [resp. π(I, i)] the image
under u [resp. under π] of the concatenation of I and (i). Then the multi-sequence defined on
Zd−1 by

sd(I) =
∑
i∈Ad

|u(I, i)||π(I, i)|

is well defined and bounded on Zd−1.

Proof. It is sufficient to prove this property when π is a monomial and, due to Remark 2.1, it
is sufficient to prove it for polynomials of degree 0. In other words, we just need to show that
the sum of the values of the multi-sequence u itself is absolutely convergent.

First we prove that for d ≥ 1, the sum:

sd(I) =
∑
i∈Ad

u(I, i)

is well defined for I ∈ Zd−1, and that the multi-sequence sd itself is rapidly decreasing on Zd−1.
Since u is rapidly decreasing, we can find K > 0M′ such that for I ∈ Zd−1 and i ∈ Ad, we have
u(I, i) ≤ K and i2u(I, i) ≤ K. For N ∈ N∗, we have

(N !)2
∑N

i=1 |u(I, i)| ≤ (N !)2|u(I, 1)|+
∑N

i=2 i
2|u(I, i)| ∗ (N !)21M′

i2

≤ (N !) (K +K ∗ 2)

Note that the expression N !
i2
1M′ denotes a well defined element of the algebra M′ over the ring

R. Indeed, by expanding the expression of (N !)2 and simplifying by i2 to get an integer value,
which is then multiplied by 1M′ in the algebra M′.

Hence, we get
∑

i∈N∗ |u(I, i)| is well defined and bounded by 3K. By a similar argument
for i < 0, we get that

∑
i∈Ad

|u(I, i)| is well defined and bounded on Zd−1. 2

Lemma 6.2 Let us consider the multi-sequence v defined on Zd−1 by v(I) =
∑

i∈Ad
u(I, i),

which is well-defined due to from Lemma 2.1, Then, v is a rapidly decreasing multi-sequence.

Proof. Let π be a polynomial function on Zd−1. Then, by considering π as a function
on Zd (which does not depend on the dth coordinate), we get by Remark 2.1 that the multi-
sequence I 7−→ π(I)u(I) is rapidly decreasing. From Lemma 2.1, we get that the multi-sequence
I 7−→ π(I)v(I) on Zd−1 is bounded, which proves that v is rapidly decreasing. 2

6.3 differentiation of a product

Question 6.8 Let u = (u(I))i∈Zd
be an ω-differentiation mask with

∑d
i=1 ωa = 1. and

v(1) = (v(1)(I))i∈Zd
be a polynomial function and v(2) = (v(2)(I))i∈Zd

be a moderately increasing
multi-sequence in M′Zd. We denote as usual (v(1)v(2))(I) = v(1)(I)v(2)(I). Then, v(1)v(2) is
moderately increasing, and we have:

∆u(v
(1)v(2)) = v(1)∆u(v

(2)) + v(2)∆u(v
(1))
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Proposition 6.1 Let ∆a be a differentiation operator over Aa. We consider the partial differ-
entials as defined in Definition 4.2 using ∆a. Let v(1) = (v(1)(I))i∈Zd

be a polynomial function
and v(2) = (v(2)(I))i∈Zd

be a moderately increasing multi-sequence in M′Zd. We denote as usual
(v(1)v(2))(I) = v(1)(I)v(2)(I). Also denoting T = (ta)a=1,...,d, for s1 and s2 in Aa, also denoting
dt the measure underlying the analyzable space Aa, we have:∫ s2

s1

v(1)(T (a,t−ta)
∂

∂ta
(v(2))(T (a,t−ta)dt =

[
v(1)(T (a,t−ta)v(2)(T (a,t−ta)

]t=s2

t=s1

−
∫ s2

s1

v(2)(T (a,t−ta)
∂

∂ta
(v(1))(T (a,t−ta)dt

Corollary 6.1 Under the assumptions and notations of Proposition 6.1, Then, v(1)v(2) is
moderately increasing, and we have:

∂

∂ta
(v(1)v(2)) = v(1) ∂

∂ta
(v(2)) + v(2) ∂

∂ta
(v(1))

6.4 Questions for error models and analysis

Question 6.9 Define hα for h in an analyzable space (or cartesian product) of a analyzable
spaces (e.g. through power series) and α ∈ R∗

+.

Question 6.10 Define random variables with values in analyzable spaces and their standard
deviations.

6.5 Questions Relative to Convergence and Estimation

Definition 6.1 [Convergence Order of a Differentiation Mask] Let u be an ω−differentiation
mask (Definition 2.4). The convergence order of u is the greatest integer ρ ∈ Nd with ρ ≥
maxa=1,...,d(ωa) such that for all integer vector k ̸= ω such that ωa ≤ ka ≤ ρ for a = 1, . . . , d,
we have ∑

I∈Zd

(
d∏

a=1

(I(a)ka)

)
u(I) = 0 (27)

We shall use the convention that the convergence order is zero if there is no integer ρ satisfying
Equation (27) for all integer vector k ̸= ω such that ωa ≤ ka ≤ ρ for a = 1, . . . , d.

For the sake of clarity, we shall denote by ∆ω
u the associated digital differentiation operator

associated to u when u is a digital ω-derivative mask. Intuitively, and as appears in the proofs
below, the order ρ of an ω−differentiation operator is the maximal order of the coefficients of the
Taylor development of the function 1

h′ω−1∆
ω
u(f)− f (ω) (strictly) below which all the coefficients

vanish. As shown below, the convergence order ρ will determine the speed of convergence of
1

hω−1∆
ω
u(f) to f (ω), which is to distinguish from the differentiation order ω.

Question 6.11 Can we improve the convergence results in Lemma 3.1, and consequently in
Theorem 3.2 and Theorem 3.3, in case the convergence order in Definition 6.1 is greater than
ω + 1.
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Question 6.12 Add the following to Theorem 3.2, possibly also improved by Question 6.11: if

f is only Cω and L is such that lim
h→0

h.L(h) = 0 and lim
h→0

hα

((h.L(h))ω
= 0, then we have:

lim
h→0

((
1

(h′)[ω−1]
∆uL(h)

⋆ Γ

)
(N)− f (ω)(Nh)

)
= 0M′
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