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Abstract

We present an explicit scheme for a two-dimensional multilayer shallow water model with density strat-
i�cation, for general meshes and collocated variables. The proposed strategy is based on a regularized
model where the transport velocity in the advective �uxes is shifted proportionally to the pressure poten-
tial gradient. Using a similar strategy for the potential forces, we show the stability of the method, in the
sense of a discrete dissipation of the mechanical energy, in the general multilayer and non-linear frame.
Based on a linear analysis, and with the objective of minimizing the di�usive losses in realistic contexts,
su�cient conditions are exhibited on the regularizing terms to ensure linear stability. These results are
subsequently validated by numerical investigations. The other main result stands in the consistency with
respect to the asymptotics reached at small and large time scales in low-Froude regimes, which governs
large scale oceanic circulation. Additionally, robustness and well balanced results for motionless steady
states are also ensured. These stability properties tend to provide a very robust and e�cient approach,
easy to implement and particularly well suited for large scale simulations. Two numerical experiments are
proposed to highlight the scheme e�ciency: a �rst experiment of fast gravitational modes and a second
of slow Rossby modes simulating the displacement of a baroclinic vortex subject to the Coriolis force.

Keywords: multilayer shallow water, asymptotic preserving scheme, non linear stability, energy
dissipation.

1. Introduction

Mathematical modelling of geophysical phenomena involves three-dimensional and turbulent free sur-
face �ows with complex geometries. The capability to perform such simulations in a direct way is still
unachievable for supercomputers, even with a maximized parallel computing e�ciency, especially since
most simulation platforms devoted to prevision need to be oriented toward real time resolutions. Based
on this assessment, many models have been derived during the past decades to reduce the complexity
of the original primitive equations by integrating/averaging the vertical dimension, notably under the
classical hydrostatic and shallow water assumptions. Moreover, the density strati�cation, mainly related
to the temperature and salinity variations, can profoundly a�ect the water �ow dynamics and must be
taken into account in many cases such for example oceanic or estuary �ows. Taking these aspects un-
der consideration, the inviscid multilayer shallow water model, which involves an arbitrary number of
superposed immiscible layers, o�ers a simple way to integrate the vertical density distribution with a
satisfactory time computation request.

The model presented in this work corresponds to a vertical discretization of the primitive equations
based on a piecewize constant density distribution along the layer interfaces, as detailed in [40], and shown
in Fig. 1. Nevertheless, it has to be mentioned that the advection model on which is based our numerical
approach involves a more general formulation of potential forces, allowing to extend the applicability
range of the resulting scheme to other physical contexts, possibly decorrelated from large scale oceanic
circulation. Let us mention the issue associated with the simple case of a single layer, with speci�c one or
two dimensional applications to hydraulic or coastal engineering for instance, notably with the support
of natural positivity and well-balanced properties. Of course, many other physical contexts sharing the
same general structure can be considered, such as the Euler equations for gas dynamics.
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From a numerical point of view, a large range of approaches devoted to the single layer case are
available in the literature, with the handling of complex geometries and rugged topography using un-
structured environments, robust treatment of friction forces with wetting and drying, and allowing high
order resolutions. However, the quantity of advances concerning the multilayer system is far less plentiful.
This may be due to the complex nature of the model, that brings a greater di�culty level. Indeed, in
addition of non linearities, it is a known fact that the multilayer shallow water equations exhibit par-
ticular structural properties, making the system theoretically and numerically more demanding than in
the single layer case. The �rst point concerns hyperbolicity, which can be violated if the velocity shear
between two layers is too high in relation to the respective heights and densities, possibly leading to
Kelvin-Helmotz instabilities. Preventing the apparition of complex eigenvalues is a quite complicated
task, and this possible local hyberbolicity loss can signi�cantly reduce the application range of the nu-
merical schemes. These stability conditions are rigorously characterized in [29], where a general criterion
of hyperbolicity and local well-posedness is given, under a particular asymptotic regime and weak strat-
i�cation assumptions of the densities and the velocities. A similar study has been realized in [19] in the
limit of small density contrast. It is shown that, under reasonable conditions on the �ow, the system is
well-posed on a large time interval. The second di�culty arises from the potential forces resulting from
the hydrostatic pressure assumption, introducing a non conservative coupling between the layers.

As a consequence, classical �nite volume methods based on approximate Riemann solvers cannot be
directly applied to the multilayer shallow water equations. Nevertheless, when the number of layers is
restricted to two, several techniques have been proposed on the basis of classical non-linear stability
criteria, generally borrowed from the advances made on the single layer system. Thus, as concerns the
two layers approximations, one can note for instance the Q-scheme proposed in [13], the recent relaxation
approach [4] able to guarantee the preservation of motionless steady states, or the so called central-upwind
scheme in [23]. Other splitting and upwind schemes can be found, with for instance [18] (see also its
extension to three layers proposed in [14] with a study of the hyperbolicity range), the f-wave propagation
�nite volume method in [28] handling dry states or the well-balancing and positivity-preserving results
established in [8] within a splitting approach. That being so, and although a �rst relevant approximation
for ocean modelling may be provided by a bi-�uid strati�cation, the number of layers involved in most of
current oceanic �ow simulations with modern operational softwares is much more important in practise,
in the order of several tens. Unfortunately, it turns out that exporting the single layer approaches to the
multilayer general case is quite di�cult to achieve, and most of them are not specially conceived to preserve
the asymptotics observed in low Froude number regimes, a speci�city of oceanic �ows where the velocities
magnitude are very moderate compared to the gravity wave speed far from the coast. Considering the
integration time of realistic simulations, this limitation is also due to the paramount importance of the
dissipation of the mechanical energy, which has to be guaranteed in all situations in order to produce
physically acceptable solutions. At last, numerical methods for one-dimensional multilayer shallow water
models with mass exchange are also proposed without density strati�cation in [5] and with in [6]. The
approach is quite di�erent since the layer depths are not independent variables and only the free surface
is treated, and also because a part of the coupling terms are treated as a source term.

Adapting the choices made to express the distribution of the pressure law, which is also generally
formulated, in some sense, by mean of staggered discretizations of the vertical direction, the multi-
layer equations formulated in this work are closely connected to those used in the majority of operational
oceanic simulation softwares like HYCOM [9], ROMS [35] or NEMO [27], in isopycnal coordinates. These
codes have been developed on staggered grids, sharing an Arakawa C-grid type as a general basis with
orthogonal curvilinear coordinates to take into account irregular lateral boundaries. This kind of hor-
izontal space discretization allows to prevent from well known spurious computational modes observed
in low Froude number regimes. The barotropic and baroclinic modes are resolved with a time splitting
technique allowing to use di�erent time steps, as the barotropic wave speed is much higher than the larger
baroclinic one, and this allows to save time computation. The barotropic continuity equation is often
resolved with a FCT (Flux Corrected Transport) scheme and the momentum equations discretized with
centered schemes of order two or four. As concerns time integration, Leapfrog-type schemes are usually
employed, coupled with stabilization procedures using a Robert-Asselin �lter in order to minimize the
dissipation. A detailed report outlining the stability aspects related to oceanic modelling is available in
[24]. If this kind of staggered numerical approaches has been largely successfully applied, it can exhibit
some weaknesses for some practical implications. The global stability of the numerical methods is not al-
ways guaranteed, with one special consequence of a tricky wetting and drying treatment and the di�culty
to handle boundary conditions.

The constant willingness to increase the quality and the versatility of numerical resolutions brought
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progressively many interests for unstructured geometries during the past decade. The use of such environ-
ments may appear of major interest for many practical applications, and notably for oceanic circulation,
for which geometrical �exibility allows to describe complex shaped shoreline coastlines and many di�erent
scales. Thus, other projects started to make the choice of unstructured meshes, despite numerical and
implementation issues that have not been overcomed yet, and still subject of ongoing research. In this
connexion, a quite complete review of the most recent results oriented toward ocean modelling can be
found in [16]. The SLIM [3] and FVCOM [2] projects can be cited as examples. Among the available
works, mention can be made of [34] with the study of Finite Element methods stability applied to the
rotating shallow water equations. It is concluded that all the numerical schemes considered are, at some
point, concerned with spurious solutions. Some pioneering works devoted to the derivation of numerical
schemes for the single layer rotating shallow water equations using unstructured meshes can be cited [7],
[15], [21], [33], [36], [38] and [39].

The numerical approach proposed in the present work is a collocated Finite Volume like method ap-
plicable for general meshes. Let us recall that this kind of method allows to naturally ensure conservation
properties like the water volume conservation. Based on the numerical constraints discussed above, sev-
eral guidelines are to be followed, principally based on two particular stability criterions. The �rst one is
related to the dissipation of the mechanical energy. This point appears as fully relevant in the frame of
geophysical �ows, since an inappropriate discretization of the system may bring non physical terms in the
energy production and break the stability of the system in large times. Such considerations of physically
admissible solutions are studied in the numerical approach [11] for the one-dimensional model, where a
semi-discrete entropy inequality is established in addition to the well-balancing property, treating the
non-conservative coupling part as a source term. A stronger result is obtained in the two layers case with
a fully discrete version [10]. The second essential point, that has so far not been rigorously addressed
in the general multilayer case, concerns the capability to capture the low Froude asymptotics. In these
regimes, most Godunov-type schemes bring too much dissipation and totally miss the problem physics,
and some consistency results are unavoidable to describe properly the �ow dynamics. As stated in [17]
in the context of Euler equations, these asymptotic behaviours are principally governed by the gradient
pressure treatment, for which centred approaches should be favoured. Regarding the available numerical
strategies employed to control the discrete mechanical energy, some techniques can be found in [22], in
the context of a compressible multi�uid model. Inspired from the ideas of the AUSM methods for gas
dynamics, see [26] and[25], the formalism implies a modi�ed velocity transport, shifted proportionally to
the potential gradient, whose goal is to provide a control on the energy budget at the continuous level.
On this basis, a simple and e�cient Finite Volume like scheme is derived, designed to provide a discrete
mimetism of this result. More recently, a general extension has been proposed with the semi-implicit
CPR scheme for the two-dimensional multilayer shallow water model with density strati�cation [30, 31].
Note that in addition, the mentioned approaches have the common feature of being asymptotic-preserving
with respect to low Froude number regimes, notably thanks to a centred discretization of the potential
gradient, as discussed above. Following these lines, we propose an extension of the semi-implicit scheme
introduced in [31], formulating a totally explicit version. In this environement, the use of a shifted veloc-
ity transport is not su�cient to ensure a mechanical energy control, and a correction term is also needed
on the potential forces. It may also be shown that this adjustment, expressed in terms of discharge
divergence, has also regularizing virtues on the energy budget at the continuous level. From a practical
point of view, the advantages of an explicit formulation stand in the exemption of resolving the non-
linear system arising from for the continuity equation, an easier implementation of boundary conditions
and high order extensions in space and time can be more easily derived. The price to pay is the time
step restriction, subject to a classical explicit CFL condition based on the barotropic gravitational wave
speed. It is however expected that this drawback should be compensated by the computational savings
induced by a rapid resolution of the continuity equation and the performances of fully explicit high order
resolutions.

The outline of this paper is organized as follows. In �2, we �rst recall the multilayer shallow water
equations with density strati�cation numerically resolved in this work. We subsequently propose a regu-
larization of the model that allows a better control of the mechanical energy production. We �nally give
the formulation of the explicit scheme, designed to provide a discrete mimetism to this formalism, i.e.
that allows the decrease of the mechanical energy. The �3 is devoted to stability issues. Well balanced and
robustness properties are addressed �rst. We then show a control on the mechanical energy production,
and put it in correlation with our investigations in the linear case. Asymptotic preserving properties are
established in a semi-continuous context in �4. A last step of numerical validation is �nally proposed to
assess the scheme abilities for large scale simulations, with a �rst experiment of fast gravity modes and

3



a second one implying slow Rossby modes.

2. Preliminaries

2.1. Physical model

The present work describes a numerical strategy devoted to approximate the solutions of the two-
dimensional multilayer shallow water system with a density strati�cation. Denoting L the number of
layers involved in the description of the �ow, t and x = (x, y) the time and space variables, the dynamics
is governed by a general conservation law which consists of a set of 3 × L equations linking the mass in
each layer Hi(t,x) ≥ 0 to the velocity ui(t,x). The system is submitted to gravitational forces through
the scalar potential Φi(H,x), where H = t (H1, · · · , HL):{

∂tHi + div (Hiui) = 0
∂t(Hiui) + div (Hiui ⊗ ui) = −Hi∇Φi/ε

2 . (Mt,ε)

In the above equations the parameter ε is introduced to account for the scale factor between inertial
and potential forces. The potential and kinetic energies attached to the general system are de�ned by

∂HiE = Φi and Ki =
1

2
Hi ‖ui‖2. We recall the conservation law satis�ed by the mechanical energy

E = E/ε2 +

L∑
i=1

Ki for regular solutions:

∂tE +

L∑
i=1

div
( (
HiΦi/ε

2 +Ki
)
ui

)
= 0 . (1)

In the spirit of the semi-implicit schemes proposed in [22, 30, 31], the stability of the numerical approach is
based on advective �uxes where the transport velocity is shifted proportionally to the potential gradient.
To get a better picture of the formalism, it's worthwhile to recall that the strategy can be interpreted at
the continuous level as a discrete form of the following regularized model:{

∂tHi + div (Hi (ui − δui)) = 0
∂t(Hiui) + div (Hiui ⊗ (ui − δui)) = −Hi∇Φi/ε

2 , (Mr
t,ε)

δui standing for a generic perturbation on the velocity. This modi�cation has the following impact on
the energy conservation (1):

∂tE +

L∑
i=1

div
( (
HiΦi/ε

2 +Ki
)

(ui − δui)
)

= −
L∑
i=1

δui.∇Φi/ε
2 , (2)

which formally justi�es a calibration of δui in terms of the potential forces gradient, to ensure a global
decrease of the mechanical energy. In this work, we aim at proposing a discrete equivalent of (2), in a
fully explicit context. From a general point of view, it is important to recall here that the conservation
law (Mt,ε) enjoys a large range of applicability and the present approach is not only limited to large
scale oceanic circulation. Indeed many other physical systems fall within the present formalism, provided
several regularity hypothesis on the potential forces:

2.1. Regularity assumptions on the potential forces

� The potential E is a regular and convex function of the mass, which means that the Hessian H given
by Hij = ∂2

HiHj
E = ∂HjΦi is positive-de�nite.

� The potential is a symmetric and linear function of the mass, that is Φ = H.H and H symmetric.

� also assume that the L2 norm of H is uniformly bounded with respect to space and time, more
precisely:

|||H(H,x)|||L2 ≤ CH . (3)

In the case of the multilayer shallow water system, and assuming a constant density ρi for each layer
i, the e�ective mass corresponds to Hi = ρihi, hi standing for the layer thickness. Then, denoting by
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Figure 1: Multilayer shallow water model with density strati�cation sketch (ηi =

L∑
k=i

hk). All the model variables are

collocated along the z coordinate.

zb the bottom topography, the potential pressure is given by Φi = g

zb +

L∑
j=1

ρj
ρmax(i,j)

hj

 (see Fig. 1).

The Hessian H(H,x) associated with the system is thus constant in space and time:

Hi,j = g/ρmax(i,j) ,

and the requirements listed in Hypothesis 2.1 are trivially satis�ed. Note also that this independence
automatically brings the conservation of the total momentum, as shown in [31]. However, this is not
su�cient to guarantee the well-posedness of the problem: some conditions can be found in [29], regarding
H as a natural symmetrizer of the system. These conditions are based on smallness assumptions on the
velocity shear and are su�cient to ensure that the system is hyperbolic.

2.2. Notations, numerical approach

We consider in this work a tesselation T of the computational domain Ω ⊂ R2. We will denote mK

the area and m∂K the perimeter of a cell K ∈ T. The boundary of K will be denoted ∂K , and for any
edge e ∈ ∂K, me the length of the corresponding boundary interface and ne,K the outward normal to e
pointing to the neighbour Ke (see Fig. 2).

Figure 2: Geometric settings - Focus on the interface e ∈ ∂K ∩ ∂Ke.

Let's now introduce some useful notations. For a scalar piecewize constant function w we de�ne:

we =
1

2
(wKe + wK) , δwe =

1

2
(wKe − wK)ne,K ,

and similary, for a piecewize constant vectorial function w:

we =
1

2
(wKe + wK) , δwe =

1

2
(wKe −wK) .ne,K .
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We also set: w± =
1

2
(w ± |w|) the positive and negative parts of a scalar function w.

The numerical scheme we consider is the following:



Hn+1
K,i = Hn

K,i − ∆t

mK

∑
e∈∂K

Fne,i.ne,Kme

Hn+1
K,i u

n+1
K,i = Hn

K,iu
n
K,i −

∆t

mK
Hn
K,i

∑
e∈∂K

Φn,∗e,i
ε2

ne,Kme

− ∆t

mK

∑
e∈∂K

(
unK,i

(
Fne,i.ne,K

)+
+ unKe,i

(
Fne,i.ne,K

)−)
me

, (4)

where we have set:

Φn,∗e,i = Φ
n

e,i − Λne,i =

(
ΦnK,i + ΦnKe,i

2

)
− Λne,i , (5)

Fne,i = Hu
n

e,i −Πn
e,i =

(
Hn
K,iu

n
K,i +Hn

Ke,i
unKe,i

2

)
−Πn

e,i . (6)

The quantities Λne,i and Πn
e,i introduced above stand for the perturbations respectively assigned to the

potential forces and numerical �uxes, designed to ensure the stability of the method. They are de�ned
as follows:

Λne,i = α∆tCHµeδ(Hu)ne,i , α > 0 , (7)

Πn
e,i = γ∆t(Hµ)

n+1/2
e,i

δΦne,i
ε2

, γ > 0 , (8)

with the geometric constant:

µe =
1

2
(µK + µKe) =

1

2

(
m∂K

mK
+
m∂Ke

mKe

)
,

and the weighted average:

(Hµ)
n+1/2
e,i =

1

2

(
(Hµ)

n+1/2
K,i + (Hµ)

n+1/2
Ke,i

)
=

1

2

(
(Hn

K,i)
2

Hn+1
K,i

m∂K

mK
+

(Hn
Ke,i

)2

Hn+1
Ke,i

m∂Ke

mKe

)
. (9)

We refer to Theorem (3.1) and subsequent Remarks (3.4,3.5) for the calibration of the stabilization
constants α and γ. Let us �nally remark that the numerical scheme satis�ed by the velocity is:

un+1
K,i = unK,i −

∆t

mK

∑
e∈∂K

unKe,i − u
n
K,i

Hn+1
K,i

(
Fne,i.ne,K

)−
me −

∆t

mK

Hn
K,i

Hn+1
K,i

∑
e∈∂K

Φn,∗e,i
ε2

ne,Kme , (10)

and note that: ∑
e∈∂K

Φn,∗e,i ne,Kme =
∑
e∈∂K

δΦne,ime −
∑
e∈∂K

Λne,ine,Kme , (11)

since the main term of (5) involves a centred discretization of the potential. We �nally recall the explicit
CFL condition on which are usually based Godunov-type schemes:(

|une,i.ne,K |+
cne,i
ε

)
∆tmax

(
me

mK
,
me

mKe

)
≤ τCFL , (12)

where cne,i stands for an estimation of the potential wave celerity at the interface e for the i− th layer.

3. Stability issues

In this section we focus on crucial non-linear stability criterion that are the preservation of motionless
steady states, preservation of the water height positivity, and mechanical energy dissipation. These are
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essential points in the description of realistic situations and hence they need absolutely to be integrated in
the construction of numerical schemes expected to respond to applicative issues. Traditionally, providing
a numerical approach able to account simultaneously for all these aspects remains a quite complicated
task, especially in the context of general geometries and strati�ed multiscale models. Nevertheless, the
formalism employed here allows a quite simple treatment of well balancing and robustness properties.
This allows to channel our e�orts on the control of the energy production, which may also seem quite
natural, since the strategy can be interpreted as a discrete derivation of the stability results previously
exhibited at the continuous level.

3.1. Well Balancing

As a �rst stability criterion we study the problem of steady states preservation. From a general point
of view, regarding the di�culty to explicitly describe and handle numerically the full set of steady states
observed in most of realistic evolution processes, it is classical to consider the case of rest states only,
that is implying zero velocity. In our formalism, this leads to the following equilibriums for (Mt,ε):

uK,i = 0 , ΦK,i = Φi ,

for all volume control K and layer i. In the present context, the interest for such con�gurations is not only
due to their simple derivation and formulation, to the extent that they appear as fundamental for many
practical applications. The previous con�guration is nothing but the generalization to the multilayer case
of the classical lake at rest solution in the L = 1 case:

u = 0 , h+ zb = 0 ,

which has indeed to be exactly preserved to avoid the apparition of non physical perturbations in the
vicinity of �at free surface con�gurations. That being so, the capability to preserve these particular steady
states already stands for a discriminating property, even in the one layer case, notably with the increasing
interest of unstructured meshes and high order resolutions in the modern approaches. In spite of these
di�culties, the proposed discretization allows their exact preservation in a very simple way, even at high
order in space, and without the need of any correction term. The following approach is thus intrinsically
adapted to the preservation of such equilibriums, allowing to avoid the traditional reconstructions that
usually tend to alterate the scheme's accuracy.

3.1. Well Balancing
The scheme (4) equipped with the numerical �uxes (6) and discrete potential (5) preserves the steady
states at rest de�ned by unK,i = 0 and ΦnK,i = Φi.

Proof. Since the perturbation Πn
e,i (8) is expressed in terms of δΦne,i, we immediately have Fne,i = 0 and

Hn+1
K,i = Hn

K,i. Then, since Λne,i = 0, the momentum equation reduces to:

Hn+1
K,i u

n+1
K,i = − ∆t

mK
Hn
K,i

∑
e∈∂K

Φi
ε2
ne,Kme = 0 , (13)

which allows to conclude.

3.2. Robustness

We investigate here the problem of robustness by proposing a CFL condition allowing to obtain the
preservation of the water height positivity. The problem is addressed with the explicit version of the

numerical �uxes, that is where Hn
K,i is substituted to

(
Hn
K,i

)2
/Hn+1

K,i in (9). From a practical point of
view (and this is the solution adopted in our operational contexts), if the stability of the scheme is ensured

with (8) in terms of dissipation of the mechanical energy, replacing
(
Hn
K,i

)2
/Hn+1

K,i by Hn
K,i is also widely

su�cient to preserve stability, especially in the Low-Froude regimes where the variation of potential is
very low. This simpli�ed choice appears as the most relevant to guarantee the stability of the numerical
method while remaining in a totally explicit environment. In this connexion, the explicit alternative of
the perturbed �uxes discussed in Remark (3.5), possibly more di�usive, can also be considered, leading
to very similar results.

3.2. We consider the explicit version of the advective �uxes in the mass scheme (4), that is:

Fne,i = Hu
n

e,i −Πn
e,i = Hu

n

e,i − γ∆t(Hµ)ne,i
δΦne,i
ε2

, (14)

7



where (Hµ)ne,i =
1

2

(
(Hµ)nK,i + (Hµ)nKe,i

)
=

1

2

(
Hn
K,i

(
m∂K

mK

)
+Hn

Ke,i

(
m∂Ke

mKe

))
. Assume a CFL con-

dition of the type:

∆tmax

(
m∂K

mK
,
m∂Ke

mKe

)|une,i.ne,K |+√γ
√
|δΦne,i|
ε2

 ≤ ( β

β + 1

)
min

(
Hn
K,i, H

n
Ke,i

)
max

(
Hn
K,i, H

n
Ke,i

) , (15)

where 0 < β ≤ 1. Then:

Hn+1
K,i ≥

1

β

∆t

mK

∑
e∈∂K

−
(
Fne,i.ne,K

)−
me ≥ 0 . (16)

Proof. Gathering
∆t

mK

∑
e∈∂K

−
(
Fne,i.ne,K

)−
me ≤

∆t

mK

∑
e∈∂K

|Fne,i.ne,K |me ,

and

Hn+1
K,i ≥ H

n
K,i −

∆t

mK

∑
e∈∂K

|Fne,i.ne,K |me ,

we get:

βHn+1
K,i −

∆t

mK

∑
e∈∂K

−
(
Fne,i.ne,K

)−
me ≥ βHn

K,i − (1 + β)
∆t

mK

∑
e∈∂K

|Hune,i.ne,K |me

− (1 + β)
∆t

mK
γ∆t

∑
e∈∂K

(Hµ)ne,i
|δΦne,i.ne,K |

ε2
me .

From this, a su�cient condition to obtain (16) can be expressed locally as:

(1 + β)
∆t

mK
|Hune,i.ne,K |+ (1 + β)γ∆t

∆t

mK
(Hµ)ne,i

|δΦne,i.ne,K |
ε2

≤ β
Hn
K,i

m∂K
,

This leads to:

µ|une,i.ne,K |+ µ2γ
|δΦne,i.ne,K |

ε2
≤
(

β

1 + β

)
min

(
Hn
K,i, H

n
Ke,i

)
max

(
Hn
K,i, H

n
Ke,i

) , (17)

where µ = ∆tmax

(
m∂K

mK
,
m∂Ke

mKe

)
. Since the right member of the previous inequality is lower than 1,

we conclude that (17) is ensured under (15).

3.1. The CFL condition expressed above can be interpreted as the one based on the original �uxes (8)
subject to a O(∆t) perturbation.

3.2. The quantity δΦne,i being in the order of the mesh size, the CFL condition (15) is far less restrictive
than a time step restriction of the form (12) in practise. From now, taking these aspects under consid-
eration, we will assume that for all β > 0 the following positivity result holds under the CFL constraint
(12):

∆t

mK

∑
e∈∂K

−
(
Fne,i.ne,K

)−
me ≤ βHn+1

K,i . (18)

3.3. Energy dissipation

The main result of the current section concerns the dissipation of the mechanical energy at the discrete
level. More precisely, we have the following result:

3.1. Control of the mechanical energy
We consider the numerical scheme (4), together with the corrected potential (5):

Φn,∗e,i = Φ
n

e,i − Λne,i , Λne,i = α∆tCHµeδ(Hu)ne,i ,

8



and numerical �uxes (6):

Fne,i = Hu
n

e,i −Πn
e,i , Πn

e,i = γ∆t(Hµ)
n+1/2
e,i

δΦne,i
ε2

,

Assume that the time step is governed by an explicit CFL condition (12). Then, with the following
calibration of the stabilization constants:

α = β = 2 ,

we have the following control on the production of mechanical energy:

En+1 − En ≤ 0 . (19)

To establish the announced result, we �rst give an estimate for the kinetic and potential energy
productions, and �nally show that the choice α = β = 2 in (7) and (8) allows a global control of these
contributions. The proof is organized around the following steps:

# A Estimation of the kinetic energy production (Proposition 3.3).

# B Estimation of the potential energy production (Proposition 3.4).

# C Control of the mechanical energy: we gather the two inequalities resulting from #A and #B to
deduce a su�cient condition on the stabilization constants γ, α present in the correction terms (8,
7) (Proof of Theorem 3.1).

3.3.1. Kinetic energy

We begin by the kinetic energy, and set:

KnK,i =
1

2
Hn
K,i

∥∥unK,i∥∥2
.

We have the following result:

3.3. Estimation of the kinetic energy production

Kn+1
K,i −K

n
K,i +

∆t

mK

∑
e∈∂K

(
GnK,e,i.ne,K

)
me +QK,K,i ≤ RK,K,i +HK,K,i −AK,K,i + ÃK,K,i ,

with

GnK,e,i.ne,K =
1

2

∥∥unK,i∥∥2 (Fne,i.ne,K)+ +
1

2

∥∥unKe,i∥∥2 (Fne,i.ne,K)− ,
QK,K,i =

∆t

mK
Hn
K,iu

n
K,i.

∑
e∈∂K

δΦne,i
ε2

me , (20)

HK,K,i =
∆t

mK

∑
e∈∂K

Hu
n

e,i.
Λne,i
ε2

ne,Kme ,

AK,K,i =
∆t

mK

∑
e∈∂K

Λne,i
ε2

1

2
(Hn

Ke,iu
n
Ke,i −H

n
K,iu

n
K,i).ne,Kme , (21)

ÃK,K,i = 2

(
∆t

mK

)2 (Hn
K,i)

2

Hn+1
K,i

m∂K

∑
e∈∂K

(
Λne,i
ε2

)2

me , (22)

RK,K,i =

(
∆t

mK

)2 (Hn
K,i)

2

Hn+1
K,i

m∂K

∑
e∈∂K

∥∥∥∥δΦne,i
ε2

∥∥∥∥2

me . (23)

9



Proof. We �rst use the equation on u (10):

Hn+1
K,i (un+1

K,i − u
n
K,i).u

n
K,i =− ∆t

mK

∑
e∈∂K

(unKe,i − u
n
K,i).u

n
K,i

(
Fne,i.ne,K

)−
me

− ∆t

mK
Hn
K,iu

n
K,i.

∑
e∈∂K

Φn,∗e,i
ε2

ne,Kme .

Then, using the relation (a− b).b =
1

2
‖a‖2 − 1

2
‖b‖2 − 1

2
‖a− b‖2 :

Hn+1
K,i

(1

2

∥∥∥un+1
K,i

∥∥∥2

− 1

2

∥∥unK,i∥∥2 − 1

2

∥∥∥un+1
K,i − u

n
K,i

∥∥∥2 )
=− ∆t

mK

∑
e∈∂K

(1

2

∥∥unKe,i∥∥2 − 1

2

∥∥unK,i∥∥2 − 1

2

∥∥unKe,i − unK,i∥∥2
)(
Fne,i.ne,K

)−
me

− ∆t

mK
Hn
K,iu

n
K,i.

∑
e∈∂K

Φn,∗e,i
ε2

ne,Kme .

the previous equality and invoking the mass equation (4), we have:

K̃n+1
K,i − K̃

n
K,i =− ∆t

mK

∑
e∈∂K

(1

2

∥∥unK,i∥∥2 (Fne,i.ne,K)+ +
1

2

∥∥unKe,i∥∥2 (Fne,i.ne,K)−)me

+
1

2
Hn+1
K,i

∥∥∥un+1
K,i − u

n
K,i

∥∥∥2

+
∆t

mK

∑
e∈∂K

1

2

∥∥unKe,i − unK,i∥∥2 (Fne,i.ne,K)−me

− ∆t

mK
Hn
K,iu

n
K,i.

∑
e∈∂K

Φn,∗e,i
ε2

ne,Kme .

(24)

We now denote:

SK,i =
1

2
Hn+1
K,i

∥∥∥un+1
K,i − u

n
K,i

∥∥∥2

+
∆t

mK

∑
e∈∂K

1

2

∥∥unKe,i − unK,i∥∥2 (Fne,i.ne,K)−me ,

focus on the �rst term of SK,i. We �rst use Jensen's inequality with the weights 1/4, 1/2, 1/4 to obtain
a control of the form:

1

2
Hn+1
K,i

∥∥∥un+1
K,i − u

n
K,i

∥∥∥2

≤
(
Hn
K,i

)2
Hn+1
K,i

(
∆t

mK

)2
∥∥∥∥∥ ∑
e∈∂K

δΦne,i
ε2

ne,Kme

∥∥∥∥∥
2

+ 2

(
Hn
K,i

)2
Hn+1
K,i

(
∆t

mK

)2
∥∥∥∥∥ ∑
e∈∂K

Λne,i
ε2

ne,Kme

∥∥∥∥∥
2

+
2

Hn+1
K,i

(
∆t

mK

)2
∥∥∥∥∥ ∑
e∈∂K

(
unKe,i − u

n
K,i

) (
Fne,i.ne,K

)−
me

∥∥∥∥∥
2

.

We now carry on a separate analysis of each of the resulting terms. Using again Jensen's inequality:∥∥∥∥∥ ∑
e∈∂K

Φ
n

e,i

ε2
ne,Kme

∥∥∥∥∥
2

≤ m∂K

(∑
e∈∂K

∥∥∥∥δΦne,i
ε2

∥∥∥∥2

me

)
,

∥∥∥∥∥ ∑
e∈∂K

Λne,i
ε2

ne,Kme

∥∥∥∥∥
2

≤ m∂K

(∑
e∈∂K

(
Λne,i
ε2

)2

me

)
.

(25)

On the other hand, the Cauchy-Schwarz inequality gives:∥∥∥∥∥ ∑
e∈∂K

(unKe,i − u
n
K,i)

(
Fne,i.ne,K

)−
me

∥∥∥∥∥
2

≤
( ∑
e∈∂K

∥∥unKe,i − unK,i∥∥2 (Fne,i.ne,K)−me

)( ∑
e∈∂K

(
Fne,i.ne,K

)−
me

)
.
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Thus:

SK,i ≤
(

∆t

mK

)2 (Hn
K,i)

2

Hn+1
K,i

m∂K

(∑
e∈∂K

∥∥∥∥δΦne,i
ε2

∥∥∥∥2

me

)
+ 2

(
∆t

mK

)2 (Hn
K,i)

2

Hn+1
K,i

m∂K

(∑
e∈∂K

(
Λne,i
ε2

)2

me

)

+
1

2

∆t

mK

∑
e∈∂K

∥∥unKe,i − unK,i∥∥2 (Fne,i.ne,K)−me ×
[
1− 4

∆t

mK

∑
e∈∂K

−
(
Fne,i.ne,K

)−
Hn+1
K,i

me

]
.

The third term being assumed negative according to Remark 3.2 (condition (18) with β = 1/4), this
yields the remainder RK,K,i (23) and the contribution ÃK,K,i (22). Finally, using again (11) the term
involving the potential forces in (24) is rewritten as:

∆t

mK
Hn
K,iu

n
K,i.

∑
e∈∂K

Φn,∗e,i
ε2

ne,Kme =
∆t

mK
Hn
K,iu

n
K,i.

∑
e∈∂K

δΦne,i
ε2

me −
∆t

mK
Hn
K,iu

n
K,i.

∑
e∈∂K

Λne,i
ε2

ne,Kme .

We use the relation Hn
K,iu

n
K,i = Hu

n

e,i +
1

2
(Hn

K,iu
n
K,i − Hn

Ke,i
unKe,i) on the second member of the right

hand side in the previous equality, to �nally obtain QK,K,i, HK,K,i and AK,K,i.

3.3.2. Potential energy

We now turn to the potential part, and denote EnK the potential energy on the cell K at time n. We
have the following result:

3.4. Estimation of the potential energy production:

En+1
K − EnK +

∆t

mK

L∑
i=1

∑
e∈∂K

(
GnE,e,i.ne,K

)
me −QE,K ≤ −RE,K +HE,K +AE,K + R̃E,K ,

with

GnE,e,i.ne,K = Φ
n

e,iFne,i.ne,K ,

QE,K =
∆t

mK

L∑
i=1

Hn
K,iu

n
K,i.

∑
e∈∂K

δΦne,ime , (26)

RE,K =
∆t

mK

L∑
i=1

∑
e∈∂K

Πn
e,i.δΦne,ime , (27)

HE,K =
∆t

mK

L∑
i=1

∑
e∈∂K

(
Hn
Ke,i

u
n
Ke,i
−Hn

K,iu
n
K,i

2

)
.δΦne,ime ,

and the Taylor's residuals:

R̃E,K = CH

(
∆t

mK

)2

m∂K

L∑
i=1

∑
e∈∂K

(Πn
e,i.ne,K)2me , (28)

AE,K = CH

(
∆t

mK

)2

m∂K

L∑
i=1

∑
e∈∂K

(δ(Hu)ne,i)
2me . (29)

Proof. Using Taylor's formula between time steps n and n+ 1, we have for a certain s ∈ [0, 1]:

En+1
K − EnK = − ∆t

mK

L∑
i=1

∑
e∈∂K

ΦnK,iFne,i.ne,Kme +
1

2

L∑
i=1

L∑
j=1

(
Hn+1
K,i −H

n
K,i

)
Hn+s
ij,K

(
Hn+1
K,j −H

n
K,j

)
,

where Hn+s
ij,K = Hij

(
sHn+1

K + (1− s)Hn
K ,xK

)
, where we recall that Hn

K =
t (
Hn
K,1, · · · , Hn

K,L

)
. Then

we call the following decomposition:

ΦnK,iFne,i.ne,Kme

11



Expanding Hu
n

e,i = Hn
K,iu

n
K,i +

(
Hn
Ke,i

unKe,i −H
n
K,iu

n
K,i

2

)
we recover the symmetric �uxes GnE,e,i.ne,K

and the residuals QE,K , RE,K , HE,K . Concerning now the Taylor's residual, we have, according to (3):

WE,K :=
1

2

L∑
i=1

L∑
j=1

(
Hn+1
K,i −H

n
K,i

)
Hn+s
ij,K

(
Hn+1
K,j −H

n
K,j

)
≤ 1

2
CH

L∑
i=1

(
Hn+1
K,i −H

n
K,i

)2

. (30)

We reformulate the mass scheme:

Hn+1
K,i −H

n
K,i = − ∆t

mK

∑
e∈∂K

Fne,i.ne,Kme = − ∆t

mK

∑
e∈∂K

Hu
n

e,i.ne,Kme +
∆t

mK

∑
e∈∂K

Πn
e,i.ne,Kme ,

= − ∆t

mK

∑
e∈∂K

δ(Hu)ne,ime +
∆t

mK

∑
e∈∂K

Πn
e,i.ne,Kme ,

where we recall that δ(Hu)ne,i =
1

2
(Hn

Ke,i
unKe,i −H

n
K,iu

n
K,i).ne,K . Injecting this in (30), we use Jensen's

inequality to obtain:

WE,K ≤CH

L∑
i=1

(
∆t

mK

∑
e∈∂K

δ(Hu)ne,ime

)2

+ CH

L∑
i=1

(
∆t

mK

∑
e∈∂K

Πn
e,i.ne,Kme

)2

≤CH

(
∆t

mK

)2

m∂K

L∑
i=1

∑
e∈∂K

(δ(Hu)ne,i)
2me + CH

(
∆t

mK

)2

m∂K

L∑
i=1

∑
e∈∂K

(Πn
e,i.ne,K)2me ,

(31)

and fall on the two remaining terms of the estimation.

3.3.3. Mechanical Energy (Proof of Theorem 3.1)

Let's now denote En =
∑
K∈T

mK

(
EnK/ε2 +

L∑
i=1

KnK,i

)
the discrete mechanical energy, and focus on

the non-antisymmetric terms. We �rst observe an exact balance between the terms (20) and (26) arising
from the kinetic and potential parts. In consequence the e�ort is put on a simultaneous control of the
terms R and A appearing in the kinetic and potential energy budgets.

Terms in R :

We gather the contributions issuing from the estimations on the kinetic and potential discrete energies,
i.e. (23) and (27,28) respectively:

mK

L∑
i=1

RK,K,i = (∆t)
2

L∑
i=1

(
(Hn

K,i)
2

Hn+1
K,i

m∂K

mK

) ∑
e∈∂K

∥∥∥∥δΦne,i
ε2

∥∥∥∥2

me ,

−mKRE,K/ε2 = −∆t

L∑
i=1

∑
e∈∂K

Πn
e,i.
δΦne,i
ε2

me ,

mKR̃E,K/ε2 = (∆t)
2
CH

(
m∂K

mK

) L∑
i=1

∑
e∈∂K

(
Πn
e,i.ne,K

ε

)2

me .

As a preliminary step we split the �rst contribution mK

∑L
i=1RK,K,i in a sum of symmetric and antisym-

metric parts:

mK

L∑
i=1

RK,K,i = (∆t)
2

L∑
i=1

(
(Hµ)

n+1/2
K,i + (Hµ)

n+1/2
Ke,i

2

) ∑
e∈∂K

∥∥∥∥δΦne,i
ε2

∥∥∥∥2

me

+ (∆t)
2

L∑
i=1

(
(Hµ)

n+1/2
K,i − (Hµ)

n+1/2
Ke,i

2

) ∑
e∈∂K

∥∥∥∥δΦne,i
ε2

∥∥∥∥2

me .
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where we have introduced the notation (Hµ)
n+1/2
K,i =

(
(Hn

K,i)
2

Hn+1
K,i

m∂K

mK

)
.

In a similar way, with µK =
m∂K

mK
, the term mKR̃E,K/ε2 reads:

mKR̃E,K/ε2 = (∆t)
2
CH

(
µK + µKe

2

) L∑
i=1

∑
e∈∂K

(
Πn
e,i.ne,K

ε

)2

me

+ (∆t)
2
CH

(
µK − µKe

2

) L∑
i=1

∑
e∈∂K

(
Πn
e,i.ne,K

ε

)2

me .

Dropping the antisymmetric terms, which vanish after global summation, we use (8):

Πn
e,i = γ∆t(Hµ)

n+1/2
e,i

δΦne,i
ε2

= γ∆t

(
(Hµ)

n+1/2
K,i + (Hµ)

n+1/2
Ke,i

2

)
δΦne,i
ε2

, γ > 0 ,

to write the total contribution as:

∑
K∈T

mK

(
L∑
i=1

RK,K,iR̃E,K/ε2 −RE,K/ε2 + R̃E,K/ε2

)

= (∆t)
2
∑
K∈T

L∑
i=1

∑
e∈∂K

[
1 + γ2

(
(∆t)

2

ε2
CH(Hµ)

n+1/2
e,i

(
µK + µKe

2

))
− γ

]
(Hµ)

n+1/2
e,i

∥∥∥∥δΦne,i
ε2

∥∥∥∥2

me .

(32)

De�ning the quantity ρε such that:

ρ2
ε = CH

(∆t)
2

ε2
(Hµ)

n+1/2
e,i

(
µK + µKe

2

)
, (33)

the negativity of (32) reduces to:
p(γ) = ρ2

εγ
2 − γ + 1 ≤ 0 . (34)

Based on the positivity of the discriminant (that is ρε ≤
1

2
) and the roots of p: γ± =

1±
√

1− 4ρ2
ε

2ρ2
ε

, one

can establish that the value γ = 2 allows to ensure the negativity of p.

Terms in A :

We consider the three remaining terms involved in the energy budget (21, 22 and 29):

−mK

L∑
i=1

AK,K,i = −∆t

L∑
i=1

∑
e∈∂K

Λne,i
ε2

δ(Hu)ne,ime ,

mK

L∑
i=1

ÃK,K,i = 2 (∆t)
2

L∑
i=1

(
(Hn

K,i)
2

Hn+1
K,i

m∂K

mK

) ∑
e∈∂K

(
Λne,i
ε2

)2

me ,

mKAE,K/ε2 = (∆t)
2
CH

(
m∂K

mK

) L∑
i=1

∑
e∈∂K

(δ(Hu)ne,i/ε)
2me .
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In the spirit of the previous analysis we decompose mK

∑L
i=1ÃK,K,i and mK

∑L
i=1AE,K :

mK

L∑
i=1

ÃK,K,i = 2 (∆t)
2

L∑
i=1

(
(Hµ)

n+1/2
K,i + (Hµ)

n+1/2
Ke,i

2

) ∑
e∈∂K

(
Λne,i
ε2

)2

me

+ 2 (∆t)
2

L∑
i=1

(
(Hµ)

n+1/2
K,i − (Hµ)

n+1/2
Ke,i

2

) ∑
e∈∂K

(
Λne,i
ε2

)2

me

mKAE,K/ε2 = (∆t)
2
CH

(
µK + µKe

2

) L∑
i=1

∑
e∈∂K

(δ(Hu)ne,i/ε)
2me

+ (∆t)
2
CH

(
µK − µKe

2

) L∑
i=1

∑
e∈∂K

(δ(Hu)ne,i/ε)
2me .

Again we neglect the antisymmetric terms, and consider (7):

Λne,i = αCH∆tµeδ(Hu)ne,i , µe =
1

2
(µK + µKe) =

1

2

(
m∂K

mK
+
m∂Ke

mKe

)
, α > 0 .

The total contribution attached to these terms becomes:

∑
K∈T

∑
e∈∂K

mK

(
−

L∑
i=1

ÃK,K,i +
L∑
i=1

ÃK,K,i +AE,K/ε2

)

= (∆t)
2
∑
K∈T

L∑
i=1

∑
e∈∂K

[
−α+ α2

(
2

(∆t)
2

ε2
CH(Hµ)

n+1/2
e,i

)
+ 1

]
CHµe

(
δ(Hu)ne,i

ε

)2

me .

(35)

Using the same notations as previously, we are this time left with the study of the second order polynomial:

q(α) = 2ρ2
εα

2 − α+ 1 ≤ 0 . (36)

Supposing that ρε ≤
1

2
√

2
, the real roots are α± =

1±
√

1− 8ρ2
ε

4ρ2
ε

, from which we extract the value α = 2

again.

3.3. In one dimension and in the single layer case, the quantity ρε simply reduces to 2
∆t

∆x

c

ε
so that the

smallness assumptions made on ρε are satis�ed under a classical explicit CFL condition. This is also the
case for the general L layers case in 2d, where the conditions required on ρε are always satis�ed with a
time constraint of the form (12) in practise.

3.4. Although they ensure a global decrease of the mechanical energy, numerical experiments also shown
that the values α = β = 2 brought too many di�usion in practise, especially in the Low-Froude regimes.
As a matter of fact the optimality of the current approach has been lost within the Jensen's inequalities
used during the estimations of the kinetic and potential energies (formulas (25) and (31) respectively).
If a natural choice has been made on the weights for the sake of clarity, a more general result can be
established introducing a general set of constants in these two inequalities. Playing with these parameters
one can signi�cantly relax the conditions on the stabilization constants. In the single layer case and one
dimensional context for instance, the condition on γ becomes:

γ ∈
[
γ−, γ+

]
, with γ± =

1±
√

1− ρ2
ε

ρ2
ε

, (37)

where we recall that ρε = 2
∆t

∆x

c

ε
. Similar results can be obtained for α. Thus, when ρε (or equivalently

the CFL) decreases, it o�ers a more important latitude regarding the choice of γ and α, as illustrated in

Fig. 3. When ρε tends to zero, one recovers the critical value γ = α =
1

2
, which also appears as a strict

threshold both in the linear case and in our one dimensional numerical experiments with a �rst order
time scheme.
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Figure 3: Non linear discrete analysis : (γ, α)-cartography at �rst order in the single layer case for decreasing CFL (
∆t

∆x
=

0.45,0.40, 0.35 and 0.01 respectively). Stability regions appear in black.

It results that in practise, and at �rst order in space and time, one can get stability taking α and β
in the vicinity of 1/2, even in the general case of arbitrary strati�cations. As it will be discussed later,
less restrictive conditions will be extracted from the linear stability analysis (see �3.4), where second order
in space and time is also considered. The stabilizing e�ects of the second order time scheme allow to
considerably relax the stabilization constants, and are in conformity with our numerical observations.
Nevertheless, we have to point out here that the �rst order stability conditions that have been established
here, based on a strict dissipation of the mechanical energy, are always included in those arising from the
linear analysis, even when increasing the time and space order.

3.5. It also has to be noticed that the formulation of Πn
e,i (8) is not totally explicit, since (Hµ)

n+1/2
e,i

depends on
(
Hn+1
K,i , H

n+1
Ke,i

)
, and therefore on the set of perturbations

{
Πn
e,i

}
e∈∂K∪∂Ke

computed on the

surrounding edges of K and Ke. As it this has been discussed in Remark 3.1, replacing (Hn
K,i)

2/Hn+1
K,i

by Hn
K,i only introduces a O(∆t) perturbation with respect to the original choice. As a consequence,

from a practical point of view (and this is the solution adopted in our numerical experiments), replacing
(Hn

K,i)
2/Hn+1

K,i by Hn
K,i is quite su�cient to guarantee stability, especially in the Low-Froude regimes

where the variation of potential is very low. However, at the price of being slightly more restrictive,
a fully explicit condition can be exhibited. The strategy implies a global calibration of the stabilization
parameters, to reduce to the study of a polynomial of order 3 at the level of each element.

3.6. As it has been discussed above, the domain of negativity of the polynomials p and q de�ned in (34)
and (36) respectively can be enlarged by diminishing the CFL. One of the consequences is that the control
(19) announced in the main result can be extended to a more general estimation. More precisely, let
consider a small parameter δ > 0, and a combination of values (∆t, α, γ) satisfying (34) and (36). Going
back to the de�nition of the main coe�cient of p and q, one easily obtains p(γ) < −δ and q(α) < −δ with
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a space step ∆t subject to a O(δ) perturbation. Then, gathering (32) and (35), we obtain:

En+1 − En ≤ − δ (∆t)
2
∑
K

L∑
i=1

∑
e∈∂K

(Hµ)
n+1/2
e,i

∥∥∥∥δΦne,i
ε2

∥∥∥∥2

me

− δ (∆t)
2
∑
K

L∑
i=1

∑
e∈∂K

CHµe

(
δ(Hu)ne,i

ε

)2

me .

These estimates give a control of L1(0, T,H1
w(Ω))(u) with some adhoc weighted semi-norm on H1

w. They
insure validity of Lax Wendro� type theorem for weak consistency of conservative terms (in divergence
form) in mass, momentum and energy equations. We refer to [20] and also [41] for further details
concerning the use of such estimates to study consistency and convergence of the methods.

3.4. Discussion on linear stability

In this part we aim at assessing the relevance of the previous energetic considerations through linear
stability arguments. For the sake of clarity the results of the current section are given in one dimension
for the L = 1 case. The elements will be indexed by k and we denote Fnk+1/2 the numerical �ux interface
between the elements k and k + 1. Let us take the example of negative �uxes. Using the de�nition

φ± =
φ± |φ|

2
we have: (

Fnk+1/2

)−
= Fnk+1/2 and

(
Fnk+1/2

)+

= 0 .

In that context the mass (4) and velocity (10) schemes degenerate as follows:

Hn+1
k = Hn

k −
∆t

∆x

[
Fnk+1/2 −F

n
k−1/2

]
,

un+1
k = unk −

∆t

∆x

(
Φn,∗k+1/2 − Φn,∗k−1/2

)
− ∆t

∆x

[
unk+1 − unk

Hn
k

Fnk+1/2

]
.

(38)

with the following numerical �uxes:

Fnk+1/2 =
Hn
k u

n
k +Hn

k+1u
n
k+1

2
− 2γ

∆t

∆x

(
Hn
k +Hn

k+1

2

)(
Φnk+1 − Φnk

2

)
,

and a corrected potential of the form:

Φn,∗k+1/2 =

(
Φnk+1 + Φnk

2

)
− 2α

∆t

∆x
CH

(
Hn
k+1u

n
k+1 −Hn

k u
n
k

2

)
.

The scheme (38) is linearized around the constant state w̄ =
(
H̄, ū

)
. Introducing a generic perturbation

w̃nk =
(
H̃n
k , ũ

n
k

)
on the �ow, we write:

Hn
k = H̄ + H̃n

k unk = ū+ ũnk ,

to obtain the following linearized system:

H̃n+1
k = H̃n

k −
∆t

∆x

[
H̄δn[ũk] + ūδn[H̃k]− 2γΦ̄H

∆t

∆x
H̄∆n[H̃k]

]
,

ũn+1
k = ũnk −

∆t

∆x

[
Φ̄Hδ

n[H̃k] + ūdn+[ũnk ]− 2αCH
∆t

∆x

(
H̄∆n[ũk] + ū∆n[H̃k]

)]
,

(39)

where we have set Φ̄H = ∂HΦ|H̄ , and with the following discrete operators:

δn[f ] =
fnk+1 − fnk−1

2
, ∆n[f ] =

fnk+1 + fnk−1 − 2fnk
2

, dn+[f ] = fnk+1 − fnk .
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classically for solutions of the form wnk = ŵnexp (ik∆x) to the system (39), we obtain the following
ampli�cation matrix:

ŵn+1 =

(
1− τ ūisin(∆x) + 2γτ2Φ̄HH̄ (cos(∆x)− 1)) −τH̄isin(∆x)
−τ Φ̄H isin(∆x) + 2ατ2CHū (cos(∆x)− 1) 1− τ ū

(
ei∆x − 1

)
+ 2ατ2CHH̄ (cos(∆x)− 1)

)
ŵn ,

where we have set τ =
∆t

∆x
. The ampli�cation factor issuing from the previous system induces a relation

between the CFL (i.e. τ) and the stabilization parameters (γ, α). To illustrate these dependencies, we
propose several series of analysis in the one dimensional shallow water case (corresponding to Φ̄H =
CH = g), allowing to draw up a cartography of the stability domain.

Concerning the in�uence of γ on the time step, Fig. 4 (right) proposes a pattern of the stability

criteria attached to the linear system, developed around c̄ =
(
gH̄
)1/2

= 1 and ū = 0, for α = 0.5. The
admissible areas are �lled in black. Using the same colour code, the results are put in balance with the
optimized stability criteria issuing from the non-linear study (Fig. 4 (left)), that is the one dimensional
relaxed condition (37) discussed in Remark 3.4. As expected, the study conducted in �3.3, based on a
strict energy dissipation criteria, is more restrictive and fully embedded in the linear analysis.
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Figure 4: (γ, CFL)-cartography at �rst order in space in time. Energy dissipation (left) - Linear analysis (right).
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Figure 5: (γ, α)-cartography at �rst order in space and RK2 in time. Linear analysis (left) - Numerical experience (right).
The CFL is equal to 0.5 in both tests.

As concerns the increase of time and space accuracy, if it is di�cult to exhibit conclusions based on
the fully discrete model, some interesting results can be established in the linear case. Other series of tests
were made integrating a second order MUSCL reconstruction in space, together with a Heun time scheme
(see Appendix 7.1.1 for implementations issues). From a general point of view, the improvement of time
order comes with signi�cant enhancements. In particular, the CFL can be increased while reducing the
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required values for γ and α (see Fig. 5 (left) and 6 (left)). These results are also in accordance with those
provided by our simulations in linear regimes (see Fig. 5 (right) and Fig. 6 (right)). These conclusions
are of major interest from the extent that minimizing the di�usive losses is essential in our applicative
contexts. Note �nally that when α and γ are small, the ampli�cation factor tends to a function of 2α+γ
only. Naturally, this has repercussions on the (γ, α)-cartography, even when using high order schemes
in time and space. This behaviour can clearly be observed on Fig. 5 and Fig. 6, and matches with our
numerical investigations.
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Figure 6: (γ, α)-cartography with MUSCL scheme in space and RK2 in time. Linear analysis (left) - Numerical experience
(right). The CFL is equal to 0.5 in both tests.

4. Asymptotic regimes

We show in this part the asymptotic preserving features of the current approach. In the one dimen-
sional frame, for a given time step ∆t and space step ∆x, the numerical scheme (4) can be interpreted
at the semi-discrete level as follows:

Hn+1
i −Hn

i = −∆t∂x(Hu)ni + (∆t)
2
γ∂x

(
Hi
∂xΦi
ε2

)n
(Hu)n+1

i − (Hu)ni = −∆t (∂x (ūi(Hu)∗i ))
n

−∆t

(
Hi
∂xΦi
ε2

)n
+ (∆t)

2
α

(
Hi
∂xx(Hu)i

ε2

)n , (40)

where (Hu)∗i = (Hu)i − ∆tγ

(
Hi
∂xΦi
ε2

)
, and ūi stands for the velocity ui perturbed with a O(∆x)

viscosity term resulting from the upwind strategy on the momentum equations. Note that the space step
is submitted to a classical explicit CFL condition of the form:

∆t

∆x

(
u+

c

ε

)
≤ cte . (41)

In this section, for the sake of clarity, the results will be established in the continuous frame. We refer to
[31] for some developments in a fully discrete context.

4.1. Fine time scale

For small time scale t = ετ the model (Mt,ε) degenerates toward a system of wave equations (see [37],
[12]):

∂2
ττHi − div(Hi∇Φi) = 0 . (Mτ,0)

4.1. Consistency with the wave equations (Mτ,0):
Consider the time step scaling ∆t = ε∆τ . The semi-discrete model (40) furnishes an approximation of
the wave equations (Mτ,0) with an error in the order of O(∆τ).
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Proof. Using the mass equation of (40) at times n and n+ 1:

Hn+1
i − Hn

i = −ε∆τ∂x(Hu)ni + (∆τ)
2
γ∂x (Hi∂xΦi)

n
,

Hn
i − Hn−1

i = −ε∆τ∂x(Hu)n−1
i + (∆τ)

2
γ∂x (Hi∂xΦi)

n−1
,

we write:

Hn+1
i − 2Hn

i +Hn−1
i

(∆τ)
2 = − ε

∆τ

[
∂x
(
(Hu)ni − (Hu)n−1

i

)]
+ γ

[
∂x

(
(hi∂xΦi)

n − (hi∂xΦi)
n−1
)]

. (42)

Consider now the momentum equations appearing in (40), and multiply by
ε

∆τ
:

ε

∆τ

(
(Hu)ni − (Hu)n−1

i

)
=− ε2 (∂x (ūi(Hu)∗i ))

n−1

− ε2

(
Hi
∂xΦi
ε2

)n−1

+ ε∆τα (Hi∂xx ((Hu)i))
n−1

.
(43)

Going back to the de�nition of (Hu)∗i we write:

ε2(Hu)∗i = ε2

(
(Hu)i − ε∆τγ∂x

(
Hi
∂xΦi
ε2

))
= O
ε→0

(ε2) +O(∆τ) .

Since ūi is O(1), we have as a direct consequence:

ε2 (∂x (ūi(Hu)∗i )) = O
ε→0

(ε2) +O(∆τ) .

Finally, injecting (43) in (42) we obtain:

Hn+1
i − 2Hn

i +Hn−1
i

(∆τ)
2 = ∂x (Hi∂xΦi)

n
+ O
ε→0

(ε2) +O(∆τ) , (44)

that is the one dimensional equivalent of (Mτ,0) with an error in the order of ∆τ and a second order
perturbation.

4.2. Large time scale

Assuming the Hessian H well conditioned with respect to ε, that is the condition number of H is
O
ε→0

(1), the asymptotic regime associated with large time scales t = O
ε→0

(1) can be derived as a divergence-

free model: {
div (Hui) = 0 ,

∂tui + (ui.∇)ui = −∇Φi
. (Mt,0)

4.2. Consistency with the divergence free model (Mt,0):
Consider the time step scaling ∆t = O

ε→0
(1), and assume that the spatial perturbation of the potential is

in the order of ε2:
Φi(t, x) = Φ̄i(t) + ε2Φ̂i(t, x) . (45)

Then then semi-discrete model (40) furnishes an approximation of the wave equations (Mt,0) with an
error in the order of O(∆t) and O(∆t,∆x) respectively.

Proof. Note that with (45), and based on the regularity assumptions made on the potential forces (2.1),
we also have:

∂tΦi = O
ε→0

(ε2) and ∂tHi = O
ε→0

(ε2) .

We directly obtain from the mass equation of (40):

∂x (Hu∗i )
n

= ∂x (Hui)
n −∆tγ∂x

(
Hi∂xΦ̂i

)n
= O
ε→0

(ε2) , (46)

that is the divergence-free condition with an error in O(∆t) and a second order perturbation. Using the
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relation:

(Hu)n+1
i − (Hu)ni =

(
Hn+1
i −Hn

i

)
un+1
i +Hn

i

(
un+1
i − uni

)
= Hn

i

(
un+1
i − uni

)
+ O
ε→0

(ε2) ,

together with the momentum equation available in (40) we write:

un+1
i − uni

∆t
= − 1

Hn
i

(
∂x (ūi(Hu)∗i ) +

(
Hi∂xΦ̂

))n
+ ∆tα

(
∂xx ((Hu)i)

n

ε2

)
+ O
ε→0

(ε2) . (47)

For any time n, we �rst note that:

1

Hi
∂x (ūi(Hu)∗i ) = ui∂xui + O

ε→0
(ε2) +O(∆t,∆x) (48)

going back to the semi-discrete divergence free relation (46), one has:

∂xx ((Hu)i) = ∆tγ∂xx

(
Hi∂xΦ̂i

)
+ O
ε→0

(ε2) , (49)

and hence:

∆tα

(
∂xx ((Hu)i)

ε2

)
=

(
∆t

ε

)2

αγ∂xx

(
H∂xΦ̂i

)
+O(∆t) . (50)

Under the explicit CFL (41), the �rst term of the right hand side is O(∆x2). At last this gives:

un+1
i − uni

∆t
= −ui∂xui − ∂xΦ̂i + O

ε→0
(ε2) +O(∆t,∆x) . (51)

5. Numerical test cases

This part is dedicated to the survey of the numerical scheme's global e�ciency at �rst and second
order, with a particular focus on low Froude regimes. Theoretical and numerical investigations involving
other speci�c mechanisms such as hydraulic jumps and/or evolution of wet/dry fronts, considering a
non-trivial topography and a complex management of the layers, are left for future works. For the sake
of completeness, the second order extension in space and time, the adaptative time step used and the
time stepping scheme to incorporate the Coriolis force are given in the Appendix 7.

It should be underlined that it is di�cult to carry on qualitative comparisons on the di�erent numerical
approaches in case of multiple layers. This is mainly due to the very low quantity of such academic test
cases available in the literature, as it is di�cult to derive analytical solutions. Some reference solutions for
the multilayer shallow water model with the Coriolis force are of course provided by more sophisticated
operational softwares like HYCOM [9], ROMS [35] or NEMO [27], but with the inconvenience of not
being necessary exactly based on the same physical model as that considered here.

A �rst academic test case is considered, involving two-dimensional oscillating layers around a steady
state in the linear small amplitude limit. It is investigated for this test the necessary inequality conditions
on the two stabilization coe�cients γ and α for the �rst and second order schemes, ones ensuring the linear
stability and ones ensuring the strict decrease of the mechanical energy, with a minimum of dissipation
and dispersion. A more advanced test case is then studied, the so called baroclinic vortex, that can be
found in the COMODO benchmark [1], a test suite set-up by the international oceanographic community
to evaluate and compare the numerical solvers e�ciency.

5.1. Linear waves

In the present test case we investigate the two-dimensional simulation of oscillating layers around a
steady state of �at layers in the presence of a �at bottom. In case of small amplitude of the waves, an
approximate analytical solution can be derived from the linear wave theory. Considering only one layer, in
the limit of small amplitude variation around the layer depth at rest η0, the deviation ζ1 (η1 = η0 + ζ1) is
solution of the wave equation in two-dimensions with the associated dispersive relation ω2 = c2

(
k2
x + k2

y

)
,

where kx and ky are the wave numbers in the x and y direction respectively. Considering now the same
problem for the L layers shallow water model, we obtain L coupled linear wave equations,
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∀i ∈ J1, LK ,
∂2ζi
∂t2
− c2i

L∑
j=1

min(ρi, ρj)

ρi
4ζj = 0 .

By denoting c̃i the eigenvalues of the matrix Aij =

(
c2i

min(ρi, ρj)

ρi

)
, the above coupled system of

wave equations can be rewritten in L uncoupled linear wave equations,

∀i ∈ J1, LK ,
∂2ζ̃i
∂t2
− c̃2i4ζ̃i = 0 ,

where ζ̃ is the projection of ζ onto the diagonal basis using the left eigenvectors matrix. Simulations
are initialized in a 100 km square box with closed lateral walls, a sea surface at rest η0 = 5000 m,
�ve evenly spaced layers hi = 1000 m with densities following a linear law ρi = 1000 + 50 (i − 1)
and a gravitational constant g = 10 m.s−2. Note that the density ratios considered here, large in
comparison with those encountered in more realistic contexts like oceans, have the e�ect of reducing
the wave phase speed di�erences, allowing to consider a smaller time integration to capture the layers
interaction. Considering a deviation ζ1 = cos (kxx) cos (kyy) only for the �rst layer with one wavelength
in each direction, approximatively 11 wave periods can be observed with a simulation time of one hour
for a maximum wave velocity max (c̃i) ≈

√
2gh0 ≈ 316 m.s−1. Note that the associated regime is giving

a very low Froude solution.

5.1.1. Stability issues - searching for optimal stabilization parameters

A preliminary goal for this test case is to search the range of the stabilization coe�cients γ and α in
order to achieve linear stability as a strict decrease of mechanical energy. To address that question, a �rst
stopping criterion has been established, based on a clear exponential growing of the mechanical energy. A
second stopping criterion, more restrictive, is to test if the mechanical energy decrease is violated between
each time step. In order to �nd by numerical experiments the optimum values minimizing the dissipation
without loosing these two stability criteria, thousands of simulations have been performed changing the
two coe�cients γ and α values with a step of 0.025. This experiment was carried out with the �rst
and second order schemes (scheme (57 - 58) in Appendix 7) using a �xed CFL number of 0.5 with the
adaptative time step (64). A 41× 41 mesh is used at �rst order and a 11× 11 mesh for the second order
scheme, remain in the same order of mechanical energy di�usion. All the results are summarized for the
�rst order scheme in Fig. 7 and for the second order scheme in Fig. 8.
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Figure 7: Mechanical energy ratio of dissipation function of γ and α with a �xed CFL number of 0.5 using the �rst order
explicit scheme on a 41 × 41 mesh; (left) gray zone corresponds to an exponential growing of energy; (right) gray zone
corresponds to a mechanical energy greater than at previous time step.

For the �rst criterion, which is corresponding to the linear stability of the scheme, it can be clearly
observed for the �rst order scheme that the sum of the two coe�cients γ and α must be greater than
a minimum value of 0.5. For this sum value, it is found a minimum of dissipation. Notice that one of
the two coe�cients can be taken to zero. One must note that greater sum values introduce quickly and
very nearly proportionally large amounts of dissipation. For the second order scheme, the same general
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Figure 8: Mechanical energy ratio of dissipation function of γ and α with a �xed CFL number of 0.5 using the second
order explicit scheme on a 11×11 mesh; (left) gray zone corresponds to an exponential growing of energy; (right) gray zone
corresponds to a mechanical energy greater than at previous time step.

behaviour is observed, except that the minimum sum value found is now 0.075, really very lower than
for the �rst order case. This result may be perceived unintuitive because MUSCL reconstructions tends
to reduce the value of the stabilization term in the mass �ux and for the pressure term for very regular
solutions. We have veri�ed that this is the time stepping scheme which mainly explains this reduction,
changing profoundly the di�usion terms nature, as it was presented for the one dimensional linear analysis
in the �3.4. The dissipation e�ect for greater sum values is also much more limited compared to the �rst
order scheme. If we consider now the strict decrease of mechanical energy, the two coe�cients must be
both greater than a minimum value of 0.25 for the �rst order scheme, and a minimum value of 0.05 for the
second order scheme except for too high ine�cient values exhibiting more dissipation. This result con�rms
that the two stabilization coe�cients are always both necessary in order to �nd a strict mechanical energy
decrease.

The stability condition inequalities found for this test case of fast gravitational waves are summarized
in Tab.1. It is found optimal values for the stabilization constants which are γ = 0.25 and α = 0.25 for
the �rst order scheme and γ = 0.05 and α = 0.05 for the second order scheme if the CFL number is �xed
to 0.5. Many other simulations were run in other contexts, without bringing any signi�cant variability
on these conditions. Finally note that these conditions are fully embedded in the results issuing from the
one dimensional linear analysis presented in �3.4.

�rst order scheme

linear stability mechanical energy
dissipation

γ + α ≥ 0.5 γ ≥ 0.25
and

α ≥ 0.25

second order scheme

linear stability mechanical energy
dissipation

γ + α ≥ 0.075 γ ≥ 0.05
and

α ≥ 0.05

Table 1: Stability inequalities conditions found by numerical experiments (two-dimensional gravity waves for one �xed
wave-length in each direction) for the �rst and second order scheme.

A similar study has been performed considering varying values of γ and CFL numbers. second sta-
bilization parameter α is now �xed to 0.25 for the �rst order scheme and 0.05 the second order scheme,
corresponding to the optimal values found above for a CFL number of 0.5. The results are summarized
in Fig. 9. For the �rst order scheme, it is found the same associated optimal stabilization coe�cient
γ = 0.25, regardless of the CFL number. For greater values, the eligible range of CFL numbers ensuring
linear stability is reduced as γ increases, but it cannot be retrieved the same dissipation except for too
low ine�cient CFL numbers. For the second order scheme, the dependence with the CFL is more com-
plicated and it is not clear how to extract an optimal stabilization parameter. An optimal value of 0.05
can be obtained for example with an optimal CFL number of 0.6. The behaviour seems to indicate that
an optimal e�cient CFL value is found for a stabilization coe�cient γ = 0.375, but it can be checked

22



that the mechanical energy is not dissipated in this case.
At last, a general robustness property of the scheme is that taken lesser CFL numbers for given stabi-
lization coe�cients always reduces the dissipation, at �rst and second order.
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Figure 9: Mechanical energy ratio of dissipation function of γ and the CFL. Gray zone is corresponding to an exponential
growing of energy; (left) using the �rst order explicit scheme with α = 0.25 and a 41 × 41 mesh; (right) using the second
order explicit scheme with α = 0.05 and a 11× 11 mesh.

5.1.2. Comparison with analytical solution

In Fig. 10 we propose the time evolution of the �ve surface layers using the �rst order scheme with
γ = 0.25 and α = 0.25 and the second order scheme with γ = 0.05 and α = 0.05, both with a CFL
number of 0.5, following the optimal values found in the previous section. The dispersive nature of the
scheme can clearly be observed because of the obvious phase changes, although this e�ect is reduced by
the second order scheme. Nevertheless, the scheme at �rst and second order is reproducing qualitatively
very well the multiple interactions between the layers in light of the 11× 11 coarse mesh used. For this
resolution and stabilization constants, the second order scheme does exhibit a minimum of dissipation,
only the dispersive e�ects can be clearly distinguished.
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Figure 10: Evolution of the �ve surface layers at the box center for a 11 × 11 mesh with analytical solution in continuous
line and numerical solution in dotted line; (left) using the �rst order scheme with γ = 0.25, α = 0.25 and a CFL number of
0.5; (right) using the second order scheme with γ = 0.05, α = 0.05 and a CFL number of 0.5.

5.2. Baroclinic vortex

on the COMODO benchmark [1], we study here an idealized axisymmetric and anticyclonic baro-
clinic vortex initially centered, propagating south-westward due to a β-plane approximation, following
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the numerical experiment proposed in [32]. The vortex is expected to approximatively retains its axisym-
metric shape with a progressive decrease of energy along its trajectory, mainly in the wave of emissions
of weak-amplitude Rossby-waves. The present test represents a good indicator of the schemes accuracy,
the principal di�culty lying here in the capability to describe precisely the vortex evolution. Indeed, the
numerical di�usion and dispersion induced by unsuitable schemes or coarse resolutions can quickly break
the axisymmetric nature of the vortex as the cyclostrophic initial balance and subsequently deteriorate
the vortex trajectory.

5.2.1. Initialization

A vortex is placed at the center of the box [−900 km, 900 km]
2
with boundary walls with an axisym-

metric Gaussian pressure pro�le:

η1 =
P0

gρ0
e−r

2/2λ2 , (52)

where ρ0 = 1024.4 kg.m−3 is the density at sea surface, g = 9.81 m.s−2 is the gravitational acceleration,
λ = 60 km and P0 = ρ0f0umaxλ

√
e is a pressure de�ned from a maximum velocity umax = 0.8 m.s−1,

giving an anticyclonic vortex. In each layer i, the vortex at cyclostrophic equilibrium respects an axisym-
metric balance between centripetal acceleration vi,θ, pressure pi and Coriolis force:

−
v2
i,θ

r
− fvi,θ +

dpi
dr

= 0 .

Eliminating the unphysical solution of the above second order equation, we obtain the �nal expression
of the velocity in each layer as a function of the layer pressure gradient in cylindrical coordinates:

vi,θ = −fr
2

1−

√√√√
1 +

4
dpi
dr
rf2

 .

With simulations initialized with a velocity at geostrophic equilibrium vi,θ = − 1

f

dpi
dr

as prescribed in

the original test case [1], it has been found too much parasitic currents from initial numerical unbalance
implying improper convergence. As a consequence, the value umax considered here is smaller than in the
original test case to ensure the positivity of the term in the square root.
A β-plane approximation is made for the Coriolis force:

f = f0 + βy , (53)

with a latitude θ = 38.5°, giving the two constants f0 = 2Ω sin (θ) ' 9, 054 10−5 and β = 2Ω cos (θ) /Rearth '
1, 788 10−11. The density distribution involves 10 layers at rest, evenly sized, following the linear law:

ρi = ρ0

(
1− N2

g
zi

)
with zi =

h0

(
i− 1

2

)
N

, (54)

where N = 3.10−3 s−1 is the Brunt-Väisälä frequency and h0 = 5000 m is the sea height. No motion is
prescribed under a level h1 = 2500 m in order to prevent from fast barotropic modes. It is derived here
a formal way to nullify the velocity starting from the sixth layer. For a L layers system, the potential in
the layer i can be written:

Φi =
g

ρi

(
ρ1η1 +

i∑
k=2

(ρk − ρk−1) ηk

)
.

If we suppose ∇Φi = 0, it is found that:

ρ1∇η1 +

i∑
k=2

(ρk − ρk−1)∇ηk = 0 .

If ∇ηk = 0 , ∀k > i, then we have also ∇Φk = 0 , ∀k > i. Suppose now that ∇ηk+1 = α∇ηk. Then:
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ρ1∇η1 +∇η2

i∑
k=2

(ρk − ρk−1)αk−2 = 0 .

This gives the �nal expression for the surface level gradient:

∇ηi =
−ρ1α

i−2∇η1

i∑
k=2

(ρk − ρk−1)αk−2

,

from which we extract the free surface distribution, adding the layer level at rest as a constant. Let
us notice the inverse sign of the internal layer gradients compared to the sea surface gradient ∇η1 (since
ρi > ρi+1), implying a pressure gradient decrease. Finally, we recall that we do not consider any viscosity
or bottom friction e�ects in this test.

5.2.2. Simulations

Figure 11: Sea surface levels for the baroclinic vortex test case. After 100 days of simulation, the vortex, initially centered,
has moved to the southwest and small amplitudes Rossby waves emission can be observed in the trajectory wake; (top-left)
∆x = 30 km; (top-right) ∆x = 20 km; (upper-left) ∆x = 10 km; (upper-right) ∆x = 5 km.

Simulations have been performed using the second order scheme presented in the Appendix 7.1.2 with a
time integration period of 100 days with �ve space resolutions ∆x = 30 km , 20 km , 10 km , 5 km and 2 km
coresponding respectively to discretizations of space domain with 60× 60× 10 , 90× 90× 10 , 180× 180×
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10 , 360×360×10 and 900×900×10 cells and layers. It has been chosen for the two stability coe�cients a
value of 0.1 for γ and 0 for α, with a CFL number of 0.5. We have seen before that this set of parameters
is su�cient to ensure the linear stability of the numerical scheme. Some additional comments on this
point will be discussed later on.

The surface levels for the �rst four resolutions are given in Fig. 11. It can roughly be observed a
relative rapid convergence since the solutions for the 10 km and 5 km resolutions are already very close.
The vortex �nal shape, as well as the position and amplitude of the Rossby waves in the trajectory wake,
are very similar excepted maybe for very �ne structures. For the lower resolutions of 30 km and 20 km,
the �nal axisymmetric vortex shape has not been completely broken, resulting to qualitative acceptable
simulations in comparison to the converged result. The large structures of the emitted Rossby waves are
correctly captured, especially the two bands in the northeast. However, the vortex has clearly lost an
important energy as the maximum amplitude is lower than for the �ner resolutions.

Going further in the convergence analysis, it is given in Fig. 12 the time evolution of the vortex
y-deviation (computed from the maximum amplitude with bilinear interpolation), the vortex maximum
amplitude, the kinetic energy and the total mechanical energy. Substracting to the potential energy
the unperturbed state contribution, the mechanical energy has been rescaled to the initial value. First,
the overall results for the 5 km and 2 km are su�ciently close to consider that the convergence has
been reached. For the 10 km resolution, all the curves are in very good agreement with the converged
solution, giving a very satisfactory simulation for this time integration period. Towards the end of the
simulation, the kinetic energy loss starts to move away the vortex trajectory from the converged one.
It also results a lower maximum amplitude as these two quantities are completely correlated. For the
two lower resolutions, the kinetic energy is lost directly at the beginning of the simulation because of a
bad initial numerical balance between centripetal acceleration, pressure and Coriolis forces. Despite this
initial unbalance, a lower decrease can be observed afterwards, highlighting a good accuracy for long time
simulations.

Figure 12: Time evolution of some revelant diagnostic quantities for the baroclinic vortex test case. Simulation coe�cients
are γ = 0.1 and α = 0 with the explicit scheme.

From a numerical point of view, it can be observed for all the resolutions a strict decrease of the
mechanical energy for the two chosen stabilization coe�cients γ and α. It appears that in practise the
parameter α is not always required to ensure a global control of the total mechanical energy, although
the simulated �ow is very complex. Since this parameter acts on a term proportional to the velocity
divergence, it could be explained by the fact that the simulated �ow is always close to the incompressible
condition. We also have performed another series of simulations for the 10 km resolution, with α =
0.025 , 0.050 , 0.075 and 0.100 keeping the same other simulation parameters. The results given in Fig.
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13 show a quick deterioration for increasing values of α. All the diagnostic quantities are approximately in
a range of the results obtained with the 20 km and 30 km resolutions eliminating this stabilization term.
The explanation is that the pressure term is impacted by a more important initial unbalance between
centripetal acceleration, pressure and Coriolis forces. It can be easily checked through the initial decrease
of the kinetic energy or the vortex maximum amplitude.

Figure 13: In�uence of the α parameter on the same relevant diagnostic quantities.

6. Conclusion

In this paper we have introduced an explicit numerical scheme for the two-dimensional multilayer
shallow water system with density strati�cation on unstructured meshes. The main characteristic of the
numerical approach stands in its ability to deal with non conservative terms with strong stability prop-
erties, and without the need of evaluating the eigenvalues of the system. The formalism is particularly
adapted to deal with well-balancing issues, and a positivity result is also exhibited. Assuming a classical
explicit CFL condition, the dissipation of the mechanical energy has been demonstrated under su�cient
inequality conditions on two stabilization coe�cients, as well as the consistency with respect to the low-
Froude regimes at di�erent time scales, which stand for two fundamental and challenging criterion in the
context of large scale oceanic or estuary �ows. The stability analysis has been complemented through a
linear study and put in balance with the numerical experiments. From a numerical point of view, it has
been observed that the calibration of the stabilization constants could be signi�cantly relaxed at second
order with the use of an appropriate time scheme. The increase of space and time accuracy being gener-
ally not accompanied with a gain of stability, this behaviour may appear as counter-intuitive. That being
so, the practical consequences are undeniable since it allows to considerably limit the di�usive losses in
the numerical simulations. In view of these results, a more advanced high order space and time analysis
is currently in progress, including an eventual extension to a general �nite elements frame. As it is still
con�rmed by our numerical experiments, these stability properties make the approach particularly well
suited to large scale oceanic circulation, and competitive with the other simulation platforms developed
within the oceanographic community.

In addition to high order space and time extensions, many other perspectives are driven by the present
developments. First, this explicit scheme must be balanced with its semi-implicit version, which accepts
eventually bigger time steps, but at the price of a more important computational cost due to the presence
of a nonlinear system on the implicit part and the di�culty to derive high order time and space extensions.
Thus to date, the time bene�ts brought by the semi-implicit version are not so clear, especially since the
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use of bigger time steps tends to rapidly deteriorate the accuracy and appropriate high order schemes
need to be used in order to limit this drawback. The global stability analysis of the numerical scheme
taking into account the Coriolis force with or without time stepping also needs to be performed. In
addition, and in view of very promising preliminary results, the present approach is currently oriented
toward other crucial operational contexts such as river �ows or coastal applications, with the necessity to
handle hydraulic jumps and wetting as in case of drying areas with management of disappearing layers
or emerging topographies.
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7. Appendix

This appendix presents some technical aspects for implementation purposes, including the MUSCL
reconstruction scheme, treatment of Coriolis force and the fully explicit formula used for the time step
selection.

7.1. Second order scheme

7.1.1. MUSCL reconstructions

We consider in this work a monoslope second order MUSCL scheme, which consists of local linear
reconstructions by computing a vectorial slope [∇WK ]m in each cell K and for each primitive variable
m, such that the two reconstructed primitive variables vectors We,K and We,Ke are evaluated at each
side of edge e by:

We,K = WK +∇WK .xK xe
We,Ke = WKe +∇WKe .xKexe

. (55)

These quantities are intended to replace the primitive variables in the original �rst order scheme (Eqs.
(4), (5) and (6)) to evaluate the numerical �ux Fne and the pressure Φn,∗e at the edge e. Classically, with
such a linear reconstruction, one can expect a scheme with a second-order accuracy in space for su�cient
regular solutions. To this end, a least square method is employed to compute the vectorial slopes for each
primitive variable hnK , u

n
K and vnK . More explicitly, the following sums of squares

Em ([∇WK ]m) =
∑
e∈∂K

([WKe ]m − ([WK ]m + [∇WK ]m .xKxKe))
2

, (56)

are minimized by setting the gradients to zero solution of simple 2 x 2 linear systems. This method
represents a good alternative among others to �nd the hyperplane because of its accuracy and robustness,
independently from the number of neighbours. No limitation is imposed to the computed vectorial slope
because all the numerical solutions considered in this work are largely su�ciently regular and far from
wet/dry conditions to ensure numerical stability.

7.1.2. Second order scheme

With the two reconstructed primitive variables vectors Wn
e,K and Wn

e,Ke
at each side of the edge e,

interface terms are simply replaced in the original �rst order scheme. In the general L layer case, and
omitting the subscript i referring to the layer numbering for the sake of clarity, this leads to the scheme:



hn+1
K = hnK − ∆t

mK

∑
e∈∂K

(Fne .ne,K)me

hn+1
K un+1

K = hnKunK − ∆t

mK
hnK

∑
e∈∂K

(Φn,∗e ne,K)me

− ∆t

mK

∑
e∈∂K

(
une,K (Fne .ne,K)

+
+ une,Ke (Fne .ne,K)

−
)
me

, (57)
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with


Fne =

1

2

(
hne,Kune,K + hne,Keu

n
e,Ke

)
− γ∆t

2

(
hne,K

m∂K

mK
+ hne,Ke

m∂Ke

mKe

)(
Φne,Ke − Φne,K

2

)
ne,K

Φn,∗e =
1

2

(
Φne,K + Φne,Ke

)
− α∆t

2
gL

(
m∂K

mK
+
m∂Ke

mKe

)(
hne,Keu

n
e,Ke
− hne,Kune,K
2

)
.ne,K

. (58)

For Fne we use the fully explicit version of the numerical �uxes, following comments of �3.2 and
Remark 3.5. As concerns the corrected potential, Φn,∗e , the constant CH is roughly estimated by gL/ρ,
ρ standing for the density of the considered layer. All the vectorial slopes are �rst computed and the
reconstructed primitive variables hne,K , u

n
e,K are subsequently extracted at each edge side. The numerical

scheme can afterwards be supplemented by a Heun scheme for time integration in order to derive a full
second order scheme is space and time, stable under a classical CFL number.

7.2. Time stepping for Coriolis force

It has been demonstrated that under inequalities conditions on γ and α, the �rst order scheme given
by Eqs. (4), (5) and (6) dissipates mechanical energy. This property has also been highlighted for the
second order scheme (57) and (58), at least numerically, in �5.1. The proposed approach to incorporate
the Coriolis force is designed to preserve at best these stability properties. From this perspective, a time
stepping scheme is considered to integrate the following ordinary di�erential equations :

∂

∂t

(
u
v

)
= f

(
0 1
−1 0

)(
u
v

)
. (59)

Among the desired stability properties, one asks the numerical approach to be a symplectic integrator
and to preserve kinetic energy, i.e. ‖u‖n+1

= ‖u‖n. A �rst way to proceed is to consider the exact
integration of the previous ordinary di�erential equations (59), resulting to the scheme: un+1 = cos (f∆tn un) + sin (f∆tn vn)

vn+1 = cos (f∆tn vn) − sin (f∆tn un)
. (60)

Another way is to consider the Crank-Nicolson scheme:
un+1 =

f∆tn

2

(
vn + vn+1

)
vn+1 = − f∆tn

2

(
un + un+1

) . (61)

It has been found by numerical experience that the last scheme (61) with an IMEX time steeping
scheme H-CN(2,2,2) de�ned below in Tab. 2 by his Butcher tableau is globally dissipative for long time
simulations.

0 0 0
1 1 0

1/2 1/2

0 0 0
1 1/2 1/2

1/2 1/2

Table 2: second order IMEX scheme H-CN(2,2,2) with an explicit Heun scheme for the model without Coriolis force and a
Crank-Nicolson scheme for the Coriolis force.

The above IMEX time steeping can be written for numerical implementation purpose as follows:

U
(1)
K = Un

K + ∆tn L(U
(1)
K )

U
(2)
K = U

(1)
K +

∆tn

2
C(Un

K) +
∆tn

2
C(U(2)

K )

U
(3)
K = U

(2)
K + ∆tn L(U

(2)
K )

Un+1
K =

1

2

(
Un
K −U

(1)
K + U

(2)
K + U

(3)
K

) , (62)

where L is the numerical space integration of the homogeneous model (corresponding to Eqs. (57)
and (58)) and C is the operator corresponding to the Coriolis force:
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C(Ui) =

 0
f hiui
−f hivi

 . (63)

As it can be observed in Fig. 12 for the long time simulations of the baroclinic vortex, the mechanical
energy is e�ectively dissipated using this time stepping scheme. These energy losses gradually become
less important as the mesh resolution increases.

7.3. Time step

Based on (12), the numerical CFL-like condition for the time step ∆tn for all the two-dimensional
simulations presented in this article is:

∆tn = τCFL min
K∈Ω

 2 mK

m∂K

(
‖ūnK‖+

√
gh̄nK

)
 , (64)

where τCFL is the CFL number, h̄nK is the total water depth and ‖ūnK‖ is the mean velocity, computed
from: 

h̄nK =

L∑
i=1

hnK,i

‖ūnK‖ =
1

h̄nK

√√√√( L∑
i=1

hnK,iu
n
K,i

)2

+

(
L∑
i=1

hnK,iv
n
K,i

)2
. (65)

The time step is thus calibrated on the barotropic gravity wave.
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