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Online State Complexity

An online algorithm has a restricted access to its input: it scans it exactly once from left to right. The notion of online computing has been identified as a fundamental research question in the 80s, and has since then blossomed into several directions with various approaches. In this work we are concerned with complexity questions, and in particular about the use of space for online algorithms, harkening back to a series of works initiated by Karp [START_REF] Karp | Some bounds on the storage requirements of sequential machines and Turing machines[END_REF]. An impressive result in this line of work is a tight bound on the complexity of checking the primality of a number written in binary for deterministic online algorithms by Hartmanis and Shank [START_REF] Hartmanis | Two memory bounds for the recognition of primes by automata[END_REF].

The class of deterministic online algorithms being rather weak, two natural extensions are commonly studied: adding randomisation or allowing the algorithm to make several passes over the input. The latter idea is popular in the field of streaming algorithms, introduced by Munro and Paterson [START_REF] Munro | Selection and sorting with limited storage[END_REF], Flajolet and Martin [START_REF] Flajolet | Probabilistic counting algorithms for data base applications[END_REF], and Alon, Matias and Szegedy [START_REF] Noga Alon | The space complexity of approximating the frequency moments[END_REF].

We initiate in this paper the study of alternating machines for representing online algorithms, as an expressive class of online algorithms making several passes over the input. Alternating (Turing) machines have been introduced by Chandra, Kozen and Stockmeyer [CS76,[START_REF] Kozen | On parallelism in Turing machines[END_REF][START_REF] Ashok | [END_REF], and generalise nondeterministic models where along the computation, the machine makes guesses about the input, and the computation is successful if there exists a sequence of correct guesses. In other words, these guesses are disjunctive choices; the alternating model restores the symmetry by introducing disjunctive and conjunctive choices, resolved by two competing agents, a Prover and a Verifier. Intuitively, the Prover argues that the input is valid and the Verifier challenges this claim.

Alternating machines are very expressive: the seminal results of Chandra, Kozen and Stockmeyer state that alternating Turing machines are exponentially more expressive than deterministic ones, which materialises by complexity classes equalities such as APTIME = PSPACE and ALOGSPACE = PTIME.

Contributions and organisation of the paper. We study alternating online state complexity, i.e. the amount of states required to solve a given problem using an alternating machine. We devise a generic lower bound technique based on boundedly generated lattices of languages.

We give the basic definitions and show some examples in the remainder of this section. We describe our lower bound technique in Section 2, and give two applications:

-Hierarchy theorem: in Section 3, we show a hierarchy theorem: for each natural number ℓ greater than or equal to 2, there exists a language having alternating online state complexity n ℓ but not n ℓ-ε for any ε > 0.

-Prime numbers: in Section 4, we look at the language of prime numbers written in binary. The works of Hartmanis and Shank culminated in showing that it does not have subexponential deterministic online state complexity [START_REF] Hartmanis | Two memory bounds for the recognition of primes by automata[END_REF]. We consider the stronger model of alternating online algorithms, and first observe that Hartmanis and Shank's techniques imply a logarithmic lower bound on the alternating online state complexity. Our contribution is to strengthen this result by showing a linear lower bound, which is thus an exponential improvement.

Definitions

We fix an input alphabet A, which is a finite set of letters. A word is a finite sequence of letters, often denoted w = w(0)w(1) • • • w(n -1), where w(i)'s are letters from the alphabet A, i.e. w(i) ∈ A. We say that w has length n, and denote it |w|. The empty word is denoted ε. We denote A * the set of all words and A ≤n the set of words of length at most n.

For a set E, we denote B + (E) the set of positive boolean formulae over E. For instance, if E = {p, q, r}, an element of B + (E) is p ∧ (q ∨ r).

Our aim is to prove lower bounds on the state complexity of online algorithms. Following Karp [START_REF] Karp | Some bounds on the storage requirements of sequential machines and Turing machines[END_REF], we do not work with Turing machines but with a more general model that we simply call machines; since we are interested in lower bounds, this makes our results stronger. We define alternating machines following Chandra, Kozen and Stockmeyer [START_REF] Ashok | Alternation[END_REF][START_REF] Kozen | On parallelism in Turing machines[END_REF][START_REF] Ashok | [END_REF].

Definition 1 (Alternating Machines). An alternating machine is given by a (potentially infinite) set Q of states, an initial state q 0 ∈ Q, a transition function δ : Q × A → B + (Q) and a set of accepting states F ⊆ Q.

To define the semantics of alternating machines, we use acceptance games. Consider an alternating machine A and an input word w, we define the acceptance game G A,w as follows: it has two players, Prover and Verifier. The Prover claims that the input word w should be accepted, and the Verifier challenges this claim.

The game starts from the initial state q 0 , and with each letter of w read from left to right, a state is chosen through the interaction of the two players. If in a state q and reading a letter a, the new state is obtained using the boolean formula δ(q, a); Prover chooses which formula is satisfied in a disjunction, and Verifier does the same for conjunctions. A play is won by Prover if it ends up in an accepting state.

The input word w is accepted by A if Prover has a winning strategy in the acceptance game G A,w . The language recognised by A is the set of input words accepted by A.

As special cases, a machine is:

-non-deterministic if for all q in Q, a in A, δ(q, a) is a disjunctive formula, -universal if for all q in Q, a in A, δ(q, a) is a conjunctive formula, -deterministic if for all q in Q, a in A, δ(q, a) is an atomic formula, i.e. if δ : Q × A → Q. Definition 2 (Online State Complexity Classes). Let f : N → N. The lan- guage L is in Alt (f )
if there exists an alternating machine recognising L and a constant C such that for all n in N:

q ∈ Q | ∃w ∈ A ≤n , q appears in the game G A,w ≤ C • f (n).
Such a machine is said to use f many states. Similarly, we define NonDet (f ) for non-deterministic machines and Det (f ) for deterministic machines.

For the sake of succinctness, the acronym OSC will be used in lieu of online state complexity.

We denote the function f : n → f (n) by f (n), so for instance Alt (log(n)) denotes the languages having logarithmic OSC.

We say that L has sublogarithmic (respectively sublinear) alternating OSC if it is recognised by an alternating machine using f states, where

f = o(log(n)) (respectively f = o(n)).

Applications to One-way Realtime Turing Machines

A Turing machine is:

one-way if its input head never moves to the left, realtime if there exists a bound K such that its input head can stay at the same place for at most K steps.

It has been observed [START_REF] Vollmer | Introduction to Circuit Complexity -A Uniform Approach[END_REF] that one-way alternating Turing machines using at least logarithmic space can simulate unrestricted alternating Turing machines. This idea does not work for one-way realtime Turing machines.

Given an alternating one-way realtime Turing machine, one can construct an alternating machine simulating it as follows: a state of the machine is a configuration of the Turing machine, i.e. a tuple describing the control state, the content of the working tapes, and the positions of the input and working heads. This leads to the following well-known result.

Theorem 1. An alternating one-way realtime Turing machine using space f can be simulated by an alternating machine using 2 f states.

Recall that in the definition of OSC, we count the number of states, whereas when measuring space for Turing machines, we count how many bits are required to describe the configurations. It is well known that these two quantities are exponentially related: k bits allow to describe 2 k states, and n states require log(n) bits to be described.

It follows that all lower bounds for OSC imply lower bounds for one-way realtime Turing machines.

Related Works

The definition of online state complexity is due to Karp [START_REF] Karp | Some bounds on the storage requirements of sequential machines and Turing machines[END_REF], and the first result proved in this paper is that non-regular languages have at least linear deterministic OSC. Hartmanis and Shank considered the language of prime numbers written in binary, and showed in [START_REF] Hartmanis | Two memory bounds for the recognition of primes by automata[END_REF] that it does not have subexponential deterministic OSC. We pursue this question in this paper by consider the alternating OSC of the prime numbers. Recently, we investigated the OSC of probabilistic automata; we substantiated a claim by Rabin [START_REF] Michael | Probabilistic automata[END_REF], by exhibiting a probabilistic automaton which does not have subexponential deterministic OSC [START_REF] Fijalkow | The online space complexity of probabilistic languages[END_REF].

Three models of computations share some features with alternating OSC. The first is boolean circuits; as explained in [START_REF] Fijalkow | The online space complexity of probabilistic languages[END_REF], the resemblance is only superficial as circuits do not process the input in an online fashion. For instance, one can observe that the language Parity, which is hard to compute with a circuit (not in AC 0 for instance), is actually a regular language, so trivial with respect to OSC.

The second model gives rise to the notion of automaticity; it has been introduced and studied by Shallit and Breitbart [START_REF] Shallit | Automaticity I: properties of a measure of descriptional complexity[END_REF]. The automaticity of a language L is the function N → N which associates to n the size of the smallest automaton which agrees with L on all words of length at most n. The essential difference is that automaticity is a non-uniform notion, as there is a different automaton for each n, whereas OSC is uniform, as it considers one machine. For this reason, the two measures behave completely differently. As an argument, consider a language L, and define its exponential padding:

Pad(L) = u♯ 2 |u| | u ∈ L .
It is easy to see that for every language L, its exponential padding Pad(L) has exponential deterministic automaticity. On the other hand, the OSC of L and of Pad(L) are essentially the same.

The third model is alternating communication complexity, developed by Babai, Frankl and Simon in 1986 [START_REF] Babai | Complexity classes in communication complexity theory (preliminary version)[END_REF]. In this setting, Alice has an input x in A, Bob an input y in B, and they want to determine h(x, y) for a given boolean function h : A × B → {0, 1} known by all. Alice and Bob are referees in a game involving two players, Prover and Verifier, who both know the two inputs. Prover and Verifier exchange messages, whose conformity to the inputs is checked by Alice and Bob. The cost of the protocol is the number of bits exchanged.

One can obtain strong lower bounds by a classical reduction from deterministic OSC to deterministic communication complexity; it it thus tempting to extend this to the alternating setting. However, as we argue in the following ex-ample, this gives very loose lower bounds, and our lower bound technique will be much stronger than this approach.

Consider the language L studied in Subsection 2.3, consisting of words of the form u♯u 1 ♯ • • • ♯u k such that u is equal to u j for some j in {1, . . . , k}. This induces an alternating communication complexity problem where Alice has a word u of length n as input, Bob has a word v = u 1 ♯ • • • ♯u k , and they want to determine whether u♯v is in L. One can show that if L is in Alt (f ), then the alternating communication complexity problem above can be solved by exchanging at most f (n) log(f (n)) bits. Here is a protocol: Prover first produces the number j in {1, . . . , k}, then Verifier enquires about a position i in {1, . . . , n}, and Prover replies by the letter in this position for both u and u j . At the end of this interaction, Alice and Bob each check that the declared letter is correct. This protocol uses roughly log(k) + log(n) bits, and since k is at most 2 n this gives roughly n + log(n) bits. This reasoning implies a lower bound on f , namely f (n) log(f (n)) ≥ n + log(n), from which we deduce that f (n) ≥ n. This is exponentially worse than the lower bound we will obtain using our technique, which states that f (n) ≥ 2 n .

Complexity Classes and Examples

Denote Reg the class of regular languages, i.e. those recognised by finite automata. Then Det (1) = NonDet (1) = Alt (1) = Reg, i.e. a language has constant OSC if, and only if, it is regular. Indeed, a machine which uses a constant number of states is essentially a finite automaton, and deterministic, nondeterministic and alternating finite automata are known to be equivalent.

We remark that Det (|A| n ) is the class of all languages. Indeed, consider a language L, we construct a deterministic machine recognising L using exponentially many states. Its set of states is A * , the initial state is ε and the transition function is defined by δ(w, a) = wa. The set of accepting states is simply L itself. The number of different states reachable by all words of length at most n is the number of words of length at most n, i.e. |A| n+1 -1 |A|-1 . It follows that the maximal OSC of a language is exponential, and the online state complexity classes are relevant for functions smaller than exponential. In particular, the class of languages of polynomial OSC is central.

We now give three examples.

Denote COUNTEQ 3 = {w ∈ {a, b, c} * | |w| a = |w| b = |w| c }.
The notation |w| a stands for the number of occurrences of the letter a in w. We construct a deterministic machine recognising this language using quadratically many states.

It has two counters that take integers values, initialised to 0 each, which maintain the value (|w| a -|w| b , |w| a -|w| c ). To this end, the letter a acts as (+1, +1), the letter b as (-1, 0), the letter c as (0, -1).

Formally, the set of states is Z 2 and the initial and only accepting state is (0, 0). The transitions are:

δ((p, q), a) = (p + 1, q + 1) δ((p, q), b) = (p -1, q) δ((p, q), c) = (p, q -1)
After reading the word w, the machine is in the state (|w| a -|w| b , |w| a -|w| c ). This means for a word of length at most n, there are at most (2n + 1) 2 different states, implying that COUNTEQ 3 is in Det n 2 . Denote NOTEQ = {u♯v | u, v ∈ {0, 1} * , u = v}. Note that there are three ways to have u = v: either v is longer than u, or v is shorter than u, or there exists a position for which they do not carry the same letter. We construct a nondeterministic machine recognising this language using linearly many states.

We focus on the third possibility for the informal explanation. The machine guesses a position in the first word, stores its position p and its letter a, and checks whether the corresponding position in the second word indeed carries a different letter. To this end, after reading the letter ♯, it decrements the position until reaching 1, and checks whether the letter is indeed different from the letter he carries in his state.

Formally, the set of states is N × (A ∪ {⊥}) × {<, >} ∪ {⊤}. The first component carries a position, the second component a letter or ⊥, meaning yet undeclared, and the third component states whether the separator ♯ has been read (>) or not (<). The initial state is (0, ⊥, <). The set of accepting states is {⊤} ∪ {(p, ⊥, >) | p = 0}. The transitions are:

δ((p, ⊥, <), a) = (p + 1, a, <) ∨ (p + 1, ⊥, <) δ((p, a, <), b) = (p, a, <) δ((p, a, <), ♯) = (p, a, >) δ((p, ⊥, <), ♯) = (p, ⊥, >) δ((p, a, >), b) = (p -1, a, >) if p = 0 δ((1, a, >), b) = ⊤ if a = b δ((p, ⊥, >), a) = (p -1, ⊥, >) δ((0, ⊥, >), a) = ⊤ δ(⊤, a) = ⊤
If v is longer than u, the state ⊤ will be reached using the second to last transition. If v is shorter than u, a state (p, ⊥, >) will be reached with p = 0. If u and v have the same length and differ on some positions, the state ⊤ will be reached by guessing one such position.

After reading a word of length at most n, the machine can be in one of (n + 1)

• (|A| + 1) • 2 + 1 states, thus NOTEQ is in NonDet (n).
Denote LEXICOGRAPHIC = {u♯v | u, v ∈ {0, 1} * , u ≤ lex v}. We construct an alternating machine recognising this language using linearly many states by unravelling the inductive definition of the lexicographic order: u ≤ lex v if, and only if,

(u 0 = 0 ∧ v 0 = 1) ∨ (u 0 = v 0 ∧ u |≥1 ≤ lex v |≥1 ).
The set of states is

(lex×N)∪(check-eq ×N×{0, 1}×{<, >})∪(check-sm ×N×{<, >})∪{⊤} .
The initial state is (lex, 0), the final state is ⊤. The transitions are:

δ((lex), p), 0) = (check-sm, p, <) ∨ ((check-eq, p, 0, <) ∧ (lex, p + 1)) δ((lex), p), 1) = (check-eq, p, 1, <) ∧ (lex, p + 1) δ((lex), p), ♯)
= ⊤ δ((check-eq), p, a, <), b) = (check-eq, p, a, <) δ((check-eq), p, a, <), ♯) = (check-eq, p, a, >) δ((check-eq), p, a, >), b) = (check-eq, p -1, a, >)

for p = 0 δ((check-eq), 0, a, >), b) = ⊤ if a = b δ((check-sm), p, <), b) = (check-sm, p, <) δ((check-sm), p, <), ♯) = (check-eq, p, >) δ((check-sm), p, >), b) = (check-sm, p -1, >)

for p = 0 δ((check-sm), 0, >), 1) = ⊤ δ(⊤, a) = ⊤
After reading a word of length at most n, the machine can be in 8n different states, thus LEXICOGRAPHIC is in Alt (n).

A Lower Bound Technique

In this section, we develop a generic lower bound technique for alternating online state complexity. It is based on the size of generating families for some lattices of languages; we describe it in Subsection 2.1, and a concrete approach to use it, based on query tables, is developed in Subsection 2.2. We apply it on an example in Subsection 2.3.

Boundedly Generated Lattices of Languages

Let L be a language and u a word. The left quotient of L with respect to u is

u -1 L = {v | uv ∈ L} .
If u has length at most n, then we say that u -1 L is a left quotient of L of order n.

A lattice of languages is a set of languages closed under union and intersection. Given a family of languages, the lattice it generates is the smallest lattice containing this family.

Theorem 2. Let L in Alt (f ). There exists a constant C such that for all n ∈ N, there exists a family of C • f (n) languages whose generated lattice contains all the left quotients of L of order n.

Proof. Let A be an alternating machine using recognising L witnessing that L is in Alt (f ).

Fix n. Denote Q n the set of states reachable by some word of length at most n; by assumption |Q n | is at most C • f (n) for some constant C. For q in Q n , denote L(q) the language recognised by A taking q as initial state, and L n the family of these languages.

We prove by induction over n that all left quotients of L or order n can be obtained as boolean combinations of languages in L n .

The case n = 0 is clear, as ε -1 L = L = L(q 0 ). Consider a word w of length n + 1, denote w = ua. We are interested in w -1 L = a -1 (u -1 L), so let us start by considering u -1 L. By induction hypothesis, u -1 L can be obtained as a boolean combination of languages in L n : denote u -1 L = φ(L n ), meaning that φ is a boolean formula whose atoms are languages in L n . Now consider a -1 φ(L n ). Observe that the left quotient operation respects both unions and intersections, i.e. a -1 (L

1 ∪L 2 ) = a -1 L 1 ∪a -1 L 2 and a -1 (L 1 ∩ L 2 ) = a -1 L 1 ∩ a -1 L 2 . It follows that w -1 L = a -1 (φ(L n )) = φ(a -1 L n );
this notation means that the atoms are languages of the form a -1 M for M in L n , i.e. a -1 L(q) for q in S n .

To conclude, we remark that a -1 L(q) can be obtained as a boolean combination of the languages L(p), where p are the states that appear in δ(q, a). To be more precise, we introduce the notation ψ(L(•)), on an example: if ψ = p∧(r ∨s), then ψ(L(•)) = L(p)∧(L(r)∨L(s)). With this notation, a -1 L(q) = δ(a, q)(L(•)). Thus, for q in Q n , we have that a -1 L(q) can be obtained as a boolean combination of languages in L n+1 .

Putting everything together, it implies that w -1 L can be obtained as a boolean combination of languages in L n+1 , finishing the inductive proof.

⊓ ⊔

The Query Table Method

Definition 3 (Query Table ). Consider a family of languages L. Given a word w, its profile with respect to L, or L-profile, is the boolean vector stating whether w belongs to L, for each L in L. The size of the query table of L is the number of different L-profiles, when considering all words. For a language L, its query table of order n is the query table of the left quotients of L of order n.

The name query table comes from the following image: the query table of L is the infinite table whose columns are indexed by languages in L and rows by words (so, there are infinitely many rows). The cell corresponding to a word w and a language L in L is the boolean indicating whether w is in L. Thus the L-profile of w is the row corresponding to w in the query table of L.

Lemma 1. Consider a lattice of languages L generated by k languages. The query table of L has size at most 2 k . Indeed, there are at most 2 k different profiles with respect to L.

Theorem 3. Let L in Alt (f ). There exists a constant C such that for all n ∈ N, the query table of L of order n has size at most 2 C•f (n) .

Thanks to Theorem 3, to prove that L does not have sublogarithmic (respectively sublinear) alternating OSC, it is enough to exhibit a constant C > 0 such that for infinitely many n, the query table of L of order n has size at least C • n (respectively at least 2 C•n ).

The proof of Theorem 3 relies on the following lemma.

Lemma We now prove Theorem 3. Thanks to Theorem 2, the family of left quotients of L of order n is contained in a lattice generated by a family of size at most C • f (n). It follows from Lemma 2 that the size of the query table of L of order n is smaller than or equal to the size of the query table of a lattice generated by at most C • f (n) languages, which by Lemma 1 is at most 2 C•f (n) .

A First Application of the Query Table Method

As a first application of our technique, we exhibit a language which has maximal (i.e. exponential) alternating OSC. Surprisingly, this language is simple in the sense that it is context-free and definable in Presburger arithmetic.

We say that L has subexponential alternating OSC if L ∈ Alt (f ) for some f such that f = o(C n ) for all C > 1. Thanks to Theorem 3, to prove that L does not have subexponential alternating OSC, it is enough to exhibit a constant C > 1 such that for infinitely many n, the query table of the left quotients of L of order n has size at least 2 C n . Theorem 4. There exists a language which does not have subexponential alternating OSC, yet is both context-free and definable in Presburger arithmetic.

Proof. Denote L = u♯u 1 ♯u 2 ♯ • • • ♯u k u, u 1 , . . . , u k ∈ {0, 1} * , ∃j ∈ {1, . . . , k} , u = u j .
The notation u stands for the reverse of u:

formally, u = u(n -1) • • • u(0).
It is easy to see that L is both context-free and definable in Presburger arithmetic (the use of reversed words in the definition of L is only there to make L context-free).

We show that L does not have subexponential alternating OSC. We prove that for all n, the query table of the left quotients of L of order n has size at least 2 2 n . Thanks to Theorem 3, this implies the result.

Fix n. Denote by U the set of all words u in {0, 1} n , it has cardinal 2 n . Consider any subset S of U , we argue that there exists a word w which satisfies that if u in U , then the following equivalence holds:

w ∈ u -1 L ⇐⇒ u ∈ S.
This shows the existence of 2 2 n different profiles with respect to the left quotients of order n, as claimed.

Denote u 1 , . . . , u |S| the words in S. Consider

w = ♯u 1 ♯u 2 ♯ • • • ♯u |S| .
The word w clearly satisfies the claim above. ⊓ ⊔

A Hierarchy Theorem for Languages of Polynomial Alternating Online State Complexity

Theorem 5. For each ℓ ≥ 2, there exists a language L ℓ such that:

-L ℓ is in Alt n ℓ , -L ℓ is not in Alt n ℓ-ε for any ε > 0. Consider the alphabet {0, 1} ∪ {♦, ♯}. Let ℓ ≥ 2. Denote L ℓ = ♦ p u♯u 1 ♯u 2 ♯ • • • ♯u k u, u 1 , . . . , u k ∈ {0, 1} * , j ≤ p ℓ and u = u j .
Proof.

-The machine has three consecutive phases: 1. First, a non-deterministic guessing phase while reading ♦ p , which passes onto the second phase a number j in 1, . . . , p ℓ .

Formally, the set of states for this phase is N, the initial state is 0 and the transitions are:

δ(0, ♦) = 1 δ(k ℓ , ♦) = j∈{1,...,(k+1) ℓ } j δ(p, ♦) = p 2.
Second, a universal phase while reading u. For each i in {1, . . . , |u|}, the machine launches one copy storing the position i, the letter u(i) and the number j guessed in the first phase.

Formally, the set of states for this phase is N × ({0, 1} ∪ {⊥}) × N. The first component is the length of the word read so far (in this phase), the second component stores the letter stored, where the letter ⊥ stands for undeclared, and the last component is the number j.

The initial state is (0, ⊥, j). The transitions are: δ((q, ⊥, j), a) = (q + 1, ⊥, j) ∧ (q, a, j) δ((q, a, j), b) = (q, a, j)

This requires quadratically many states. 3. Third, a deterministic phase while reading ♯u 1 ♯u 2 ♯ • • • ♯u k . It starts from a state of the form (q, a, j). It checks whether u j (q) = a. The localisation of the u j is achieved by decrementing the number j by one each time a letter ♯ is read. While in the corresponding u j , the localisation of the position q in u j as achieved by decrementing one position at a time. This requires quadratically many states.

-We now prove the lower bound. We prove that for all n, the size of the query table of L ℓ of order n + 2 n ℓ is at least 2 2 n . Thanks to Theorem 3, this implies that L ℓ is not in Alt n ℓ-ε for any ε > 0. Fix n. Denote by U the set of all words u in {0, 1} n , it has cardinal 2 n .

Observe that ♦ 2 n ℓ u♯u 1 ♯u 2 ♯ • • • ♯u 2 n belongs to L ℓ if, and only if, there exists j in {1, . . . , 2 n } such that u = u j . Consider any subset S of U , we argue that there exists a word w which satisfies that if u in U , then the following equivalence holds:

w ∈ ♦ 2 n ℓ u -1 L ⇐⇒ u ∈ S.
This shows the existence of 2 2 n different profiles with respect to the left quotients of order n + 2 n ℓ , as claimed. Denote u 1 , . . . , u |S| the words in S. Consider

w = ♯u 1 ♯u 2 ♯ • • • ♯u |S| .
The word w clearly satisfies the claim above.

The Online State Complexity of Prime Numbers

In this section, we give lower bounds on the alternating online state complexity of the language of prime numbers written in binary:

PRIMES = {u ∈ {0, 1} * | bin(u) is prime} .
By definition bin(w) = i∈{0,...,n-1} w(i)2 i ; note that the least significant digit is on the left.

The complexity of this language has long been investigated; many efforts have been put in finding upper and lower bounds. In 1976, Miller gave a first conditional polynomial time algorithm, assuming the generalised Riemann hypothesis [START_REF] Gary | Riemann's hypothesis and tests for primality[END_REF]. In 2002, Agrawal, Kayal and Saxena obtained the same results, but non-conditional, i.e. not predicated on unproven number-theoretic conjectures [START_REF] Agrawal | Primes is in P[END_REF].

The first lower bounds were obtained by Hartmanis and Shank in 1968, who proved that checking primality requires at least logarithmic deterministic space [START_REF] Hartmanis | On the recognition of primes by automata[END_REF], conditional on number-theoretic assumptions. It was shown by Hartmanis and Berman in 1976 that if the number is presented in unary, then logarithmic deterministic space is necessary and sufficient [START_REF] Hartmanis | On tape bounds for single letter alphabet language processing[END_REF].

The best lower bound we know from circuit complexity is due to Allender, Saks and Shparlinski: they proved unconditionally in 2001 that PRIMES is not in AC 0 [p] for any prime p [ASS01].

The results above are incomparable to our setting, as we are here interested in online computation. The first and only result to date about the OSC of PRIMES is due to Hartmanis and Shank in 1969: Theorem 6 ( [START_REF] Hartmanis | Two memory bounds for the recognition of primes by automata[END_REF]). The set of prime numbers written in binary does not have subexponential deterministic online state complexity.

Their result is unconditional, and makes use of Dirichlet's theorem on arithmetic progressions of prime numbers. More precisely, they prove the following result.

Proposition 1 ([HS69]

). Fix n > 1, and consider u and v two differents words of length n starting with a 1. Then the left quotients u -1 PRIMES and v -1 PRIMES are different.

Proposition 1 directly implies Theorem 6 [START_REF] Hartmanis | Two memory bounds for the recognition of primes by automata[END_REF]. It also yields a lower bound of n -1 on the size of the query table of PRIMES of order n. Thus, together with Theorem 3, this proves that PRIMES does not have sublogarithmic alternating OSC.

Corollary 1. The set of prime numbers written in binary does not have sublogarithmic alternating online state complexity.

Our contribution in this section is to extend this result by showing that PRIMES does not have sublinear alternating OSC, which is an exponential improvement.

Theorem 7. The set of prime numbers written in binary does not have sublinear alternating online state complexity.

We state the following immediate corollary for Turing machines, relying on Theorem 1.

Corollary 2. The set of prime numbers written in binary cannot be recognised by a one-way realtime alternating Turing machine using sublogarithmic space.

Our result is unconditional, but it relies on the following advanced theorem from number theory, which can be derived from the results obtained by Maier and Pomerance [START_REF] Maier | Unusually large gaps between consecutive primes[END_REF]. Note that their results are more general; we simplified the statement to make it both simple and closer to what we actually use.

Simply put, this result says that in any (reasonable) arithmetic progression and for any degree of isolation, there exists a prime number in this progression, isolated with respect to all prime numbers. Theorem 8 ( [START_REF] Maier | Unusually large gaps between consecutive primes[END_REF]). For every arithmetic progression a + bN such that a and b are coprime, for every N , there exists a number k such that p = a + b • k is the only prime number in [p -N, p + N ].

We proceed to the proof of Theorem 7.

Proof. We show that for all n > 1, the query table of PRIMES of order n has size at least 2 n-1 . Thanks to Theorem 3, this implies the result.

Fix n > 1. Denote by U the set of all words u of length n starting with a 1. Equivalently, we see U as a set of numbers; it contains all the odd numbers smaller than 2 n . It has cardinal 2 n-1 .

We argue that for all u in U , there exists a word w which satisfies that for all v in U , w is in v -1 PRIMES if, and only if, u = v. In other words the profile of w is 0 everywhere but on the column u -1 PRIMES. Let u in U ; denote a = bin(u). Consider the arithmetic progression a + 2 n N; note that a and 2 n are coprime. Thanks to Theorem 8, for N = 2 n , there exists a number k such that p = a + 2 n • k is the only prime number in [p -N, p + N ]. Denote w a word such that bin(w) = k. We show that for all v in U , we have the following equivalence: w is in v -1 PRIMES if, and only if, u = v.

Indeed, bin(vw) = bin(v) + 2 n • bin(w). Observe that

|bin(vw) -bin(uw)| = |bin(v) -bin(u)| < 2 n .
Since p is the only prime number in [p -2 n , p + 2 n ], the equivalence follows.

We constructed 2 n-1 words each having a different profile, implying the claimed lower bound.

⊓ ⊔

Theorem 7 proves a linear lower bound on the alternating OSC of PRIMES. We do not know of any non-trivial upper bound, and believe that there are none, meaning that PRIMES does not have subexponential alternating OSC.

An evidence for this is the following probabilistic argument. Consider the distribution of languages over {0, 1} * such that a word u in thrown into the language with probability 1 |u| . It is a common (yet flawed) assumption that the prime numbers satisfy this distribution, as witnessed for instance by the Prime Number theorem. One can show that with high probability such a language does not have subexponential alternating OSC, the reason being that two different words are very likely to induce different profiles in the query table. Thus it is reasonable to expect that PRIMES does not have subexponential alternating OSC.

We dwell on the possibility of proving stronger lower bounds for the alternating OSC of PRIMES. Theorem 8 fleshes out the sparsity of prime numbers: it constructs isolated prime numbers in any arithmetic progression, and allows us to show that the query table of PRIMES contains all profiles with all but one boolean value set to false.

To populate the query table of PRIMES further, one needs results witnessing the density of prime numbers, i.e. to prove the existence of clusters of prime numbers. This is in essence the contents of the Twin Prime conjecture, or more generally of Dickson's conjecture, which are both long-standing open problems in number theory, suggesting that proving better lower bounds is a very challenging objective. The Dickson's conjecture reads:

Conjecture 1 (Dickson's Conjecture). Fix b and a subset S ⊆ {1, . . . , b -1} such that there exists no prime number p which divides a∈S (b • k + a) for every k in N. Then there exists a number k such that b • k + a is prime for each a in S.

Unfortunately, the Dickson's conjecture is not enough; indeed, it constructs words whose profiles contain at least a certain number of booleans set to true (the ones from the subset S). To obtain different profiles, one needs to ensure that these profiles contain exactly these booleans set to true. Hence the following slight generalisation of Dickson's conjecture. Proof. We show that for all n > 1, the query table of PRIMES of order n has size doubly-exponential in n. Thanks to Theorem 3, this implies the result.

Fix n > 1. As above, denote by U the set of all words u of length n starting with a 1, i.e. odd numbers.

For a subset S of U , denote (♦) the property that there exists no prime number p which divides a∈S (b • k + a) for every k in N.

Let S be a subset of U satisfying (♦). We argue that there exists a word w which satisfies that for all v in U , w is in v -1 PRIMES if, and only if, v is in S. In other words the profile of w is 1 on the columns corresponding to S, and 0 everywhere else. Thanks to Conjecture 2, there exists a number k such that 2 n • k + a is prime if, and only if a is in S. Denote w a word such that bin(w) = k, it clearly satisfies the condition above.

For each subset S satisfying (♦) we constructed a word such that these words have pairwise different profiles. To conclude, we need to explain why there are doubly-exponentially many subsets S satisfying (♦). Advanced sieve techniques from number theory can be used to precisely estimate this; we will rely on a simpler argument here to obtain a doubly-exponential lower bound. Indeed, observe that if there exists one subset S satisfying (♦) of exponential size (i.e. C n for some C > 1), then all subsets of S also satisfy (♦), which yields doubly-exponentially many of them. We claim that S defined by {a ∈ U | 2 n + a is a prime number} satisfies (♦). This follows from the remark that no prime number can divide both a∈S a and a∈S (2 n + a).

⊓ ⊔

Conclusion

We have developed a generic lower bound technique for alternating online state complexity, and applied it to two problems. The first result is to show that the polynomial hierarchy of alternating online algorithms is infinite. The second result is to give lower bounds on the alternating online state complexity of the language of prime numbers; we show that it is not sublinear, which is an exponential improvement over the previous result. However, the exact complexity is left open; we conjecture that it is not subexponential, but obtaining this result may require major advances in number theory.

Conjecture 2 .

 2 Fix b and a subset S ⊆ {1, . . . , b -1} such that there exists no prime number p which divides a∈S (b • k + a) for every k in N. Then there exists a number k such that b • k + a is prime if, and only if, a is in S. Theorem 9. Assuming the Conjecture 2 holds true, the set of prime numbers written in binary does not have subexponential alternating online state complexity.