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Non-autonomous right and left multiplicative

perturbations and maximal regularity

Mahdi Achache and El Maati Ouhabaz ∗

Abstract

We consider the problem of maximal regularity for non-autonomous
Cauchy problems

u′(t) +B(t)A(t)u(t) + P (t)u(t) = f(t), u(0) = u0

and
u′(t) +A(t)B(t)u(t) + P (t)u(t) = f(t), u(0) = u0.

In both cases, the time dependent operators A(t) are associated with a
family of sesquilinear forms and the multiplicative left or right pertur-
bations B(t) as well as the additive perturbation P (t) are families of
bounded operators on the considered Hilbert space. We prove maximal
Lp-regularity results and other regularity properties for the solutions
of the previous problems under minimal regularity assumptions on the
forms and perturbations.

keywords: Maximal regularity, non-autonomous evolution equations,
multiplicative and additive perturbations.
Mathematics Subject Classification (2010): 35K90, 35K45, 47D06.

1 Introduction

The present paper deals with maximal Lp-regularity for non-autonomous
evolution equations in the setting of Hilbert spaces. Before explaining our
results we introduce some notations and assumptions.
Let (H, (·, ·), ‖ · ‖) be a Hilbert space over R or C. We consider another
Hilbert space V which is densely and continuously embedded into H. We
denote by V ′ the (anti-) dual space of V so that

V →֒d H →֒d V ′.
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We denote by 〈, 〉 the duality V-V ′ and note that 〈ψ, v〉 = (ψ, v) if ψ, v ∈ H.
We consider a family of sesquilinear forms

a : [0, τ ] × V × V → C

such that

• [H1]: D(a(t)) = V (constant form domain),

• [H2]: |a(t, u, v)| ≤ M‖u‖V‖v‖V (uniform boundedness),

• [H3]: Re a(t, u, u)+ν‖u‖2 ≥ δ‖u‖2
V (∀u ∈ V) for some δ > 0 and some

ν ∈ R (uniform quasi-coercivity).

Here and throughout this paper, ‖ · ‖V denotes the norm of V.
To each form a(t) we can associate two operators A(t) and A(t) on H

and V ′, respectively. Recall that u ∈ H is in the domain D(A(t)) if there
exists h ∈ H such that for all v ∈ V: a(t, u, v) = (h, v). We then set
A(t)u := h. The operator A(t) is a bounded operator from V into V ′ such
that A(t)u = a(t, u, ·). The operator A(t) is the part of A(t) on H. It is
a classical fact that −A(t) and −A(t) are both generators of holomorphic
semigroups (e−rA(t))r≥0 and (e−rA(t))r≥0 on H and V ′, respectively. The
semigroup e−rA(t) is the restriction of e−rA(t) to H. In addition, e−rA(t)

induces a holomorphic semigroup on V (see, e.g., Ouhabaz [15, Chapter 1]).
A well known result by J.L. Lions asserts that the Cauchy problem

u′(t) + A(t)u(t) = f(t), u(0) = u0 ∈ H (1.1)

has maximal L2-regularity in V ′, that is, for every f ∈ L2(0, τ ; V ′) there
exists a unique u ∈ W 1

2 (0, τ ; V ′) which satisfies (1.1) in the L2-sense. The
maximal regularity in H is however more interesting since when dealing
with boundary value problems one cannot identify the boundary conditions
if the Cauchy problem is considered in V ′. The maximal regularity in H is
more difficult to prove. J.L. Lions has proved that this is the case for initial
data u0 ∈ D(A(0)) under a quite restrictive regularity condition, namely
t 7→ a(t, g, h) is C2 (or C1 if u0 = 0). It was a question by him in 1961 (see
[11] p. 68) whether maximal L2-regularity holds in general in H.

A lot of progress have been made in recent years on this problem. It
was proved by Ouhabaz and Spina [14] that maximal Lp-regularity holds in
H if t 7→ a(t, g, h) is Cα for some α > 1/2 (for all g, h ∈ V). This result is
however proved for the case u0 = 0 only. In Haak and Ouhabaz [10], it is
proved that for u0 ∈ (H,D(A(0)))1− 1

p
,p and

|a(t, g, h) − a(s, g, h)| ≤ ω(|t− s|)‖h‖V ‖g‖V (1.2)

for some non-decreasing function ω such that
∫ τ

0

ω(t)

t
3
2

dt < ∞ and
∫ τ

0

(

ω(t)
t

)p

dt < ∞, (1.3)
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then the Cauchy problem (1.1) has maximal Lp-regularity in H. The con-
dition (1.3) can be improved if (1.2) holds with norms in some complex
interpolation spaces (see Arendt and Monniaux [2] and Ouhabaz [13]). It
was observed by Dier [7] that the answer to Lions’ problem is negative in
general. His example is based on non-symmetric forms for which the Kato
square root property D(A(t))1/2) = V is not satisfied. Recently, Fackler [9]
proved a negative answer to the maximal regularity problem for forms which
are Cα for any α < 1/2 (even symmetric ones). Let us also mention a recent
positive result of Dier and Zacher [8] on maximal L2-regularity in which the
condition (1.3) is replaced by a norm in a Sobolev space of order > 1

2 . For
forms associated with divergence form elliptic operators, Auscher and Egert
[4] proved that the order of this Sobolev space can be 1

2 .
One of the aims of the present paper is to study the same problem

for multiplicative perturbations. More precisely, we study maximal Lp-
regularity for

u′(t) +B(t)A(t)u(t) + P (t)u(t) = f(t), u(0) = u0 (1.4)

and also for

u′(t) +A(t)B(t)u(t) + P (t)u(t) = f(t), u(0) = u0, (1.5)

whereB(t) and P (t) are bounded operators on H such that Re (B(t)−1g, g) ≥
δ‖g‖2 for some δ > 0 and all g ∈ H. The left perturbation problem (1.4)
was already considered by Arendt et al. [1] and the right perturbation one
(1.5) by Augner et al. [3]. The two problems are motivated by applications
to semi-linear evolution equations and boundary value problems. We extend
the results in [1] and [3] in three directions. The first one is to consider gen-
eral forms which may not satisfy the Kato square root property, a condition
which was used in an essential way in the previous two papers. The second
direction is to deal with maximal Lp-regularity, whereas in the mentioned
papers only the maximal L2-regularity is considered. The third direction,
which is our main motivation, is to assume less regularity on the forms a(t)
with respect to t. In both papers [1] and [3] it is assumed that t 7→ a(t, g, h)
is Lipschitz continuous on [0, τ ]. In applications to elliptic operators with
time dependent coefficients, the regularity assumption on the forms reflects
the regularity needed for coefficients with respect to t.

Our main results can be summarized as follows (see Theorems 3.6 and 5.1
for more general and precise statements). Suppose that for some β, γ ∈ [0, 1],

|a(t, g, h) − a(s, g, h)| ≤ ω(|t− s|)‖g‖[H,V ]β
‖h‖[H,V ]γ

, u, v ∈ V

where ω : [0, τ ] → [0,∞) is a non-decreasing function such that
∫ τ

0

ω(t)

t1+ γ
2

dt < ∞.
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Suppose also that t 7→ B(t) is continuous on [0, τ ] with values in L(H). Then
the Cauchy problem (1.4) has maximal Lp-regularity in H for all p ∈ (1,∞)
when u0 = 0. If in addition,

∫ τ

0

ω(t)p

t
1
2

(β+pγ)
dt < ∞ (1.6)

then (1.4) has maximal Lp-regularity in H provided u0 ∈ (H,D(A(0)))1− 1
p

,p.

We also prove that if ω(t) ≤ Ctε for some ε > 0 and D(A(t)1/2) = V for
all t ∈ [0, τ ], then the solution u ∈ C([0, τ ]; V) and s 7→ A(s)1/2u(s) ∈
C([0, τ ]; H).

Concerning (1.5), we assume as in [3] that t 7→ B(t) is Lipschitz contin-
uous on [0, τ ] with values in L(H). The assumptions on a(t) are the same as
above. The maximal Lp-regularity results we prove are the same as previ-
ously. We could also consider both left and right perturbations, see the end
of Section 5.

We point out in passing that condition (1.6) is slightly better than the
second condition in (1.3) which was assumed in [10] and [13] (for the unper-
turbed problem). In the natural case ω(t) ∼ tα, one sees immediately that
for large p, (1.3) requires larger α (and then more regularity) than (1.6).

In order to prove our results we follow similar ideas as in [10] and [13].
However, several modifications are needed in order to deal with multiplica-
tive perturbations. Also, at several places we appeal to classical tools from
harmonic analysis such as square function estimates or Hörmander type
conditions for singular integral operators with vector-valued kernels.

Our results on maximal Lp-regularity could be applied to boundary val-
ues problems as well as to some semi-linear evolution equations. Such ap-
plications have been already considered in [1] and [3]. The gain here is that
we are able to assume less regularity with respect to the variable t. We shall
not write these applications explicitly in this paper since the ideas are the
same as in [1] and [3], one has just to insert our new results on maximal reg-
ularity. The reader interested in applications of non-autonomous maximal
regularity is referred to the previous articles and the references therein.

Notation. We denote by L(E,F ) (or L(E)) the space of bounded linear
operators from E to F (from E to E). The spaces Lp(a, b;E) and W 1

p (a, b;E)
denote respectively the Lebesgue and Sobolev spaces of function on (a, b)
with values in E. Recall that the norms of H and V are denoted by ‖ · ‖ and
‖ · ‖V . The scalar product of H is (·, ·).
Finally, we denote by C, C ′ or c... all inessential constants. Their values
may change from line to line.
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2 The maximal regularity for the unperturbed prob-

lem

Let H and V be as in the introduction. We consider a family of sesquilinear
forms

a(t) : V × V → C, t ∈ [0, τ ]

which satisfy the classical assumptions [H1]-[H3]. We denote again by A(t)
and A(t) the operators associated with a(t) on H and V ′, respectively. Note
that by adding a positive constant to A(t) we may assume that [H3] holds
with ν = 0. Therefore, there exists w0 ∈ [0, π

2 ) such that

a(t, u, u) ∈ Σ(w0), ∀t ∈ [0, τ ], u ∈ V. (2.1)

Here
Σ(w0) := {z ∈ C

∗, | arg(z)| ≤ w0}.

In (2.1) we take w0 to be the smallest possible value for which the inclusion
holds.

Definition 2.1. Fix u0 ∈ H. We say that the problem

u′(t) +A(t)u(t) = f(t) (t ∈ [0, τ ]), u(0) = u0 (2.2)

has maximal Lp-regularity in H if for each f ∈ Lp(0, τ ; H), there exists
a unique u ∈ W 1

p (0, τ ; H) such that u(t) ∈ D(A(t)) for almost all t and
satisfies (2.2) in the Lp-sense.

We denote by Vβ := [H,V]β the classical complex interpolation space.
Its usual norm is denoted ‖ · ‖Vβ

. We start with the following result on
maximal Lp-regularity of (2.2).

Theorem 2.2. Suppose that the forms (a(t))t∈[0,τ ] satisfy the standing hy-
potheses [H1]-[H3]. Suppose that for some β, γ ∈ [0, 1]

|a(t, u, v) − a(s, u, v)| ≤ ω(|t− s|)‖u‖Vβ
‖v‖Vγ , u, v ∈ V, (2.3)

where ω : [0, τ ] → [0,∞) is a non-decreasing function such that

∫ τ

0

w(t)

t1+ γ

2

dt < ∞.

Then the Cauchy problem (2.2) with u0 = 0 has maximal Lp-regularity in H
for all p ∈ (1,∞).
If in addition,

∫ τ

0

w(t)p

t
1
2

(β+pγ)
dt < ∞ (2.4)
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then (2.2) has maximal Lp-regularity in H for all u0 ∈ (H,D(A(0)))1− 1
p

,p.

Moreover there exists a positive constant C such that

‖u‖W 1
p (0,τ ;H) + ‖Au‖Lp(0,τ ;H) ≤ C

[

‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))
1−

1
p ,p

]

.

Here, (H,D(A(0)))1− 1
p

,p denotes the classical real-interpolation space and

the constant C depends only on the constants in [H1]-[H3].

The first part of the theorem (i.e., the case u0 = 0) was proved in [10]
when β = γ = 1 (and hence [H,V]β = [H,V]γ = V). The case with different
values β and γ was proved in [13]. See also [2] for a related result. In order
to treat the case of a non-trivial initial data u0 ∈ (H,D(A(0)))1− 1

p
,p, the

assumption required on ω in [10] is

∫ τ

0

(

ω(t)
t

)p

dt < ∞, (2.5)

and in [13],
∫ τ

0

(

ω(t)

t
β+γ

2

)p

dt < ∞. (2.6)

In the previous theorem we replace these conditions by the weaker condition
(2.4). The important example ω(t) = tα shows that (2.5) and (2.6)) require
a large α (and hence more regularity) in the case p > 2, whereas (2.4) does
not require any additional regularity than α > γ

2 which is already needed
for the first condition

∫ τ

0

w(t)

t1+ γ

2

dt < ∞.

Proof. As explained above the sole novelty here is the treatment of the case
u0 ∈ (H,D(A(0)))1− 1

p
,p under the condition (2.4). Following [10] and [13],

we have to prove that

t 7→ A(t)e−tA(t)u0 ∈ Lp(0, τ ; H). (2.7)

Since we can assume without loss of generality that A(0) is invertible, then
u0 ∈ (H,D(A(0)))1− 1

p
,p is equivalent to (see [17, Theorem 1.14])

t 7→ A(0)e−tA(0)u0 ∈ Lp(0, τ ; H). (2.8)

For g ∈ H and a chosen contour Γ in the positive half-plane we write by the
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holomorphic functional calculus

(A(t)e−tA(t)u0 −A(0)e−tA(0)u0, g)

=
1

2πi

∫

Γ
(ze−tz[(zI −A(t))−1 − (zI −A(0))−1]u0, g) dz

=
1

2πi

∫

Γ
(ze−tz[A(0) − A(t)

]

(zI −A(0))−1u0, (zI −A(0)∗)−1g)dz

=
1

2πi

∫

Γ
ze−tz[

a(0, (zI −A(0))−1u0, (zI −A(0)∗)−1g)−

a(t, (zI −A(0))−1u0, (zI −A(0))−1∗
g)
]

dz.

Hence by (2.3), the modulus is bounded by

Cω(t)
∫ ∞

0
|z|e−ct|z|‖(zI −A(0))−1u0‖Vβ

‖(zI −A(t))−1∗
g‖Vγ d|z|.

Note that by interpolation (see e.g. [13])

‖(zI −A(t)∗)−1‖L(H,Vγ) ≤
C

|z|1− γ
2

. (2.9)

On the other hand for f ∈ D(A(0)),

δ‖(zI −A(0))−1f‖2
V ≤ Re (A(0)(zI −A(0))−1f, (zI −A(0))−1f)

≤ ‖(zI −A(0))−1A(0)f‖‖(zI −A(0))−1f‖

≤
C

|z|
‖A(0)f‖‖(zI −A(0))−1f‖V .

The embedding V →֒ Vβ gives

‖(zI −A(0))−1‖L(D(A(0)),Vβ ) ≤
C

|z|
.

Hence, by (2.9) and interpolation

‖(zI −A(0))−1‖L((H,D(A(0)))
1−

1
p ,p

,Vβ) ≤
C

|z|
1− β

2p

. (2.10)

Using these estimates we obtain

|(A(t)e−tA(t)u0 −A(0)e−tA(0)u0, g)|

≤ Cω(t)
∫ ∞

0

e−ct|z|

|z|
1− 1

2
(γ+ β

p
)
d|z|‖g‖‖u0‖(H,D(A(0)))

1−
1
p ,p

≤ C ′ ω(t)

t
1
2

(γ+ β
p

)
‖g‖‖u0‖(H,D(A(0)))

1−
1
p ,p
.

Hence, t 7→ A(t)e−tA(t)u0 ∈ Lp(0, τ,H) for u0 ∈ (H,D(A(0)))1− 1
p

,p if ω(t)

satisfies (2.4).
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3 Maximal regularity for left perturbations

This section is devoted to the main subject of this paper in which we are
interested in maximal regularity for operators B(t)A(t) for a wide class of
operators B(t) and A(t). We will consider in another section the same
problem for right multiplicative perturbations A(t)B(t).

3.1 Single left multiplicative pertubation-Resolvent estimates

Let H and V be as above. We denote again by ‖·‖ and ‖·‖V their associated
norms, respectively.
Let a : V × V → C be a closed, coercive and continuous sesquilinear form.
We denote by A and A its associated operators on H and V ′, respectively.
Let b : H × H → C be a bounded sesquilinear form. We assume that b is
coercive, that is there exists a constant δ > 0 such that

Re b(u, u) ≥ δ‖u‖2, u ∈ H. (3.1)

There exists a unique bounded operator associated with b. We denote tem-
porarily this operator by C. Note that by coercivity, it is obvious that C is
invertible on H.

Now we introduce another operator Ab which we call the operator asso-
ciated with a with respect to b. It is defined as follows

D(Ab) = {u ∈ V,∃v H : a(u, φ) = b(v, φ) ∀φ ∈ V}, Abu := v.

The difference with A is that we take the form b instead of the scalar product
of H in the equality a(u, φ) = b(v, φ). The operator Ab is well defined.
Indeed, if b(v1, φ) = b(v2, φ) for all φ ∈ V then by density this equality
holds for all φ ∈ H. Therefore, taking φ = v2 −v1 and using (3.1), we obtain
v2 = v1.

Proposition 3.1. Let B := C−1. Then Ab = BA with domain D(Ab) =
D(A).

Proof. Let u ∈ D(Ab) and v = Abu. Then

a(u, φ) = b(v, φ) = (Cv, φ) ∀φ ∈ V.

Thus, u ∈ D(A) and Au = Cv = B−1v. This gives, u ∈ D(A) and Abu =
v = BAu.
For the converse, we write for u ∈ D(A) and φ ∈ V

a(u, φ) = (Au, φ) = (CBAu, φ) = b(BAu, φ).

This gives u ∈ D(Ab) and BAu = Abu.
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It is obvious that BA is a closed operator on H. In order to continue
we assume that a is coercive (i.e., it satisfies [H3] with ν = 0) and define w0

and w1 to be the angles of the numerical ranges of A and B, respectively.
That is

(Au, u) ∈ Σ(w0) := {z ∈ C
∗, | arg(z)| ≤ w0}

and
b(u, u) = (B−1u, u) ∈ Σ(w1)

where w0 and w1 are the smallest possible values for which these two prop-
erties hold for all u ∈ V. Note that w0, w1 ∈ [0, π

2 ) because of the coercivity
property.

Proposition 3.2. For all λ /∈ Σ(w0 + w1), the operator λI−BA is invertible
on H and

‖(λI −BA)−1‖L(H) ≤
δ−1‖B−1‖L(H)

dist(λ,Σ(w0 + w1))
.

Proof. Let u ∈ D(A). We write

‖(λI −BA)u‖‖u‖ = ‖B(λB−1 −A)u‖‖u‖

≥
1

‖B−1‖L(H)
‖(λB−1I −A)u‖‖u‖

≥
1

‖B−1‖L(H)
|(λB−1u−Au, u)|

=
|(B−1u, u)|
‖B−1‖L(H)

|λ−
(Au, u)

(B−1u, u)
|.

Since (Au,u)
(B−1u,u)

= a(u,u)
b(u,u) ∈ Σ(w0 + w1) it follows that

|(λ−
(Au, u)

(B−1u, u)
| ≥ dist(λ,Σ(w0 + w1)).

On the other hand, by (3.1), |(B−1u, u)| ≥ δ‖u‖2 and so

‖(λI −BA)u‖‖u‖ ≥
δ

‖B−1‖L(H)
‖u‖2dist(λ,Σ(w0 + w1)).

Hence,

‖(λI −BA)u‖ ≥
δ

‖B−1‖L(H)
‖u‖dist(λ,Σ(w0 +w1)) ∀u ∈ D(A). (3.2)

This implies that λI−BA is injective and has closed range for λ 6∈ Σ(w0 + w1).
In order to prove that λI −BA is invertible it remains to prove that it has
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dense range. By duality, one has to prove that the adjoint is injective.The
adjoint operator is λI −A∗B∗. We write

λI −A∗B∗ = (λB∗−1 −A∗)B∗.

The previous arguments show that λB−1 −A is injective. This also applies
to λB∗−1 −A∗. Since B∗ is invertible, we obtain λI −A∗B∗ is injective and
hence λI −BA is invertible . Now (3.2) gives

‖(λI −BA)−1‖ ≤
‖B−1‖L(H)

δ.dist(λ,Σ(w0 + w1))

for all λ 6∈ Σ(w0 + w1)).

Corollary 3.3. Suppose that w0 +w1 <
π
2 .Then −BA is the generator of a

bounded holomorphic semigroup on H.

Proof. By Proposition 3.2,

‖(λI −BA)−1‖ ≤
c

|λ|
, ∀λ 6∈ Σ(w0 + w1))

In other words, λI +BA is invertible for λ ∈ Σ(π − (w0 + w1)) and :

‖(λI +BA)−1‖ ≤
c

|λ|
, ∀λ ∈ Σ(π − (w0 + w1)).

It is a classical fact that the latter estimate implies that −BA generates a
bounded holomorphic semigroup of angle π

2 − (w0 +w1).

Obviously, one cannot remove the assumption w0 +w1 <
π
2 in the previ-

ous result. Indeed, let A = −ei π
3 ∆ on L2(Rd) and B be the multiplication

by ei π
3 . Then −BA = ei 2π

3 ∆ is not a generator of a C0-semigroup.

3.2 Single pertubation-Maximal regularity

Let (a(t))t∈[0,τ ], A(t),A(t) and b be as in the previous sub-section. We as-
sume that [H3] holds with ν = 0. In particular, (2.1) holds. We also have

b(u, u) ∈ Σ(w1) (3.3)

for some w1 ∈ [0, π
2 ) by coercivity of b.

We make the assumption w0 +w1 <
π
2 . By Corollary 3.3, for each t ∈ [0, τ ],

the operator −BA(t) generates a holomorphic semigroup (e−sBA(t))s≥0 on
H.

Our aim in this section is to prove maximal regularity in H for the
Cauchy problem associated with BA(t), t ∈ [0, τ ]. The definition of maximal
Lp-regularity in this context is the same as in Definition 2.1.
Set

R(λ,BA(t)) := (λI +BA(t))−1

for λ ∈ ρ(−BA(t)).
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Proposition 3.4. Assume that w0 + w1 <
π
2 . Then

1- ‖(λB−1 +A(t))−1‖L(H) ≤ C
|λ|+1 , λ ∈ Σ(π − (w0 +w1)),

2- ‖R(λ,BA(t))B‖L(V ′,H) ≤ C

(|λ|+1)
1
2
, λ ∈ Σ(π − (w0 + w1)),

3- ‖e−(t−s)BA(t)B‖L(V ′,H) ≤ C

(t−s)
1
2

,

4- ‖e−(t−s)BA(t)B‖L(V ′,V) ≤ C
(t−s) .

The constant C is independent of t and λ.

Proof. We have (λB−1+A(t))−1 = (λ+BA(t))−1B, then we obtain assertion
1- from Proposition 3.2.
Note that

(λB−1+A(t))−1 = (λ+A(t))−1+(λB−1+A(t))−1(λ(−B−1+I))(λ+A(t))−1.
(3.4)

Then

‖R(λ,BA(t))B‖L(V ′,H) = ‖(λB−1 +A(t))−1‖L(V ′,H)

≤ ‖(λI +A(t))−1‖L(V ′,H)+

‖(λB−1 +A(t))−1(λ(−B−1 + I))‖L(H)‖(λ+A(t))−1‖L(V ′,H).

Since

‖(λI +A(t))−1‖L(V ′,H) ≤
C

(|λ| + 1)
1
2

(see e.g. [10]), we obtain

‖R(λ,BA(t))B‖L(V ′,H) ≤
C

(|λ| + 1)
1
2

,

which proves assertion 2.
Now we choose an appropriate contour Γ = ∂Σ(θ) with θ < π

2 and write by
the functional calculus

e−(t−s)BA(t)B =
1

2πi

∫

Γ
e−(t−s)λ(λ−BA(t))−1Bdλ.

Then

‖e−(t−s)BA(t)B‖L(V ′,H) ≤
1

2π

∫ ∞

0
e−(t−s)Re λ‖(λ−BA(t))−1B‖L(V ′,H)d|λ|

≤ C

∫ ∞

0
e−(t−s)Re λ 1

(|λ| + 1)
1
2

d|λ|

≤
C ′

(t− s)
1
2

.
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In order to prove assertion 4- we write

‖e−(t−s)BA(t)B‖L(V ′,V) ≤ ‖e−
(t−s)

2
BA(t)BB−1‖L(H,V)‖e

−
(t−s)

2
BA(t)B‖L(V ′,H)

and

‖e−
(t−s)

2
BA(t)BB−1‖L(H,V) ≤ ‖B−1‖L(H)‖e

−
(t−s)

2
BA(t)B‖L(H,V).

We use the equality

(λB−1 +A(t))−1 = (λI+A(t))−1 +(λI+A(t))−1λ(I−B−1)(λB−1 +A(t))−1

in place of (3.4) to estimate ‖R(λ,BA(t))B‖L(H,V) and then argue as pre-
viously.

Now, let P (t) ∈ L(H) such that t 7→ P (t) is strongly measurable and

‖P (t)‖L(H) ≤ M, t ∈ [0, τ ] (3.5)

for some constant M . We consider the Cauchy problem

u′(t) +BA(t)u(t) + P (t)u(t) = f(t), u(0) = u0. (3.6)

Recall that B−1 is the operator associated with b. We are interested in
maximal regularity of (3.6). As explained at the beginning of the proof of
the next proposition, we may assume without loss of generality that the
forms a(t) are coercive and hence (2.1) is satisfied for some w0 ∈ [0, π

2 ).

Proposition 3.5. Suppose that the forms (a(t))t∈[0,τ ] satisfy [H1]-[H3], the
form b satisfies (3.1) and w0 + w1 <

π
2 . Suppose that for some β, γ ∈ [0, 1]

|a(t, u, v) − a(s, u, v)| ≤ ω(|t− s|)‖u‖Vβ
‖v‖Vγ , u, v ∈ V

where ω : [0, τ ] → [0,∞) is a non-decreasing function such that :

∫ τ

0

w(t)

t1+ γ
2

dt < ∞.

Then the Cauchy problem (3.6) with u0 = 0 has maximal Lp-regularity in H
for all p ∈ (1,∞).
If in addition,

∫ τ

0

ω(t)p

t
1
2

(β+pγ)
dt < ∞ (3.7)

then (3.6) has maximal Lp-regularity for all u0 ∈ (H,D(A(0)))1− 1
p

,p. More-

over there exists a positive constant C such that :

‖u‖W 1
p (0,τ ;H) + ‖Au‖Lp(0,τ ;H) ≤ C

[

‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))
1−

1
p ,p

]

.

Here C depends only on the constants in [H1]-[H3], ‖B‖L(H), ‖B−1‖L(H)

and M in (3.5).

12



Proof. Firstly, we note that for c ∈ R, (3.6) has maximal Lp-regularity if
and only if the Cauchy problem

v′(t) + (BA(t) + P (t) + cI)v(t) = e−ctf(t), v(0) = u0

has maximal Lp-regularity. The reason is that v(t) = u(t)e−ct and it is clear
that u ∈ W 1

p (0, τ ; H) if and only if v ∈ W 1
p (0, τ ; H).

Thus, by adding a large constant c we may assume that [H3] holds with
ν = 0 and BA(t) + P (t) is invertible for each t ∈ [0, τ ].
Note that BA(t) = A(t)b is the operator associated with the form a(t) with
respect to b (see Section 3.1). This allows us to use the same strategy of
proof as for Theorem 2.2 (cf. [13] or [10] in the case β = γ = 1).

Set v(s) := e−(t−s)BA(t)u(s). Writing v(t) − v(0) =
∫ t

0 v
′(s)ds we obtain

A(t)u(t) = A(t)e−tBA(t)u0 +A(t)
∫ t

0
e−(t−l)BA(t)B(A(t) − A(l))u(l)dl

+A(t)
∫ t

0
e−(t−l)BA(t)(−P (l))u(l)dl

+A(t)
∫ t

0
e−(t−l)BA(t)f(l)dl.

Note that by Proposition 3.4, the term e−(t−l)BA(t)B(A(t)−A(l))u(l) is well
defined.
We first prove the proposition in the case u0 = 0. We define

(Lf)(t) := A(t)
∫ t

0
e−(t−l)BA(t)f(l)dl.

Following [10] the operator L is a pseudo-differential operator with the
vector-valued symbol σ(t, ξ) given by

σ(t, ξ) :=











A(0)(iξ +B(0)A(0))−1 if t < 0
A(t)(iξ +B(t)A(t))−1 if 0 ≤ t ≤ τ
A(τ)(iξ +B(τ)A(τ))−1 if t > τ.

Then we use Proposition 3.2 and argue as in the proof of Lemmas 10 and 11
in [10] to prove the boundedness on Lp(0, τ ; H), 1 < p < ∞, of the operator
L.
We continue as in [10] and [13]. We set

(Sg)(t) := A(t)
∫ t

0
e−(t−l)BA(t)(P (l))A(l)−1g(l)dl.

By the boundedness of the operator L on Lp(0, τ ; H),

‖Sg‖Lp(0,τ ;H) ≤ C‖A−1g‖Lp(0,τ ;H).
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We define

(Qg)(t) := A(t)
∫ t

0
e−(t−l)BA(t)B(A(t) − A(l))A(l)−1g(l)dl.

Then, arguing as in [10] or [13] we obtain easily from Proposition 3.4

‖(Qg)(t)‖ ≤

∫ t

0

w(|t − l|)

(t− l)1+ γ
2

‖A−1(l)g(l)‖Vdl.

Thus,

‖Qg‖Lp(0,τ ;H) ≤ C

∫ τ

0

w(t)

t1+ γ
2

dt‖A−1g‖Lp(0,τ ;V).

From these estimates, we see that by replacing A(t) by A(t) + cI for c large
enough we obtain

‖S‖L(Lp(0,τ ;H)) <
1
4

and ‖Q‖L(Lp(0,τ ;H)) <
1
4
.

In particular, I − (S +Q) is invertible. Since

(Au)(t) = (I − (S +Q))−1(L(f))(t)

we obtain Au ∈ Lp(0, τ ; H) and hence u ∈ W 1
p (0, τ ; H). This proves maximal

Lp-regularity.
In order to treat the case u0 6= 0 we need to estimate the difference of

the resolvents, i.e., ‖R(λ,A(t)b) −R(λ,A(s)b)‖L(H) in terms of ω(|t− s|).
Let f, g ∈ H and λ ∈ Σ(π − (w0 + w1)). We write

([R(λ,A(t)b) −R(λ,A(s)b)]f, g)

= −([R(λ,BA(t))B(A(t) − A(s))R(λ,BA(t))]f, g).

Note that the RHS is well defined since R(λ,BA(t))B is a bounded operator
from V ′ to V (cf. Proposition 3.4). Therefore,

([R(λ,A(t)b) −R(λ,A(s)b)]f, g)

= 〈(A(t) − A(s))R(λ,BA(t))f,B∗R(λ,BA(t))∗g〉

= a(s,R(λ,BA(s))f, (λB∗−1 +A(t)∗)−1g)

− a(t, R(λ,BA(s))f, (λB∗−1 +A(t)∗)−1g).

Hence the modulus is bounded by

ω(|t− s|)‖R(λ,BA(s))f‖Vβ
‖λB∗−1 +A(t)∗)−1g‖Vγ .
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Let w0 be the common angle for the numerical range of a(t). By Proposition
3.2 we have for all λ /∈ Σ(w0 + w1)

δ‖R(λ,A(s)b)f‖2
V ≤ Re a(s,R(λ,A(s)b)f,R(λ,A(s)b)f)

= Re (A(s)R(λ,A(s)b)f,R(λ,A(s)b)f)

= Re (BA(s)R(λ,A(s)b)f, (B
−1)∗R(λ,A(s)b)f)

≤
C

|λ|
‖f‖2.

Hence, by interpolation

‖R(λ,A(s)b)f‖2
Vβ

≤
C

|λ|1− β
2

. (3.8)

Putting together the previous estimates yields

|b([R(λ,BA(t)) −R(λ,BA(s))]f, g)| ≤ C
ω(|t− s|)

|λ|2− β+γ
2

‖f‖‖g‖.

This shows

‖R(λ,A(t)b) −R(λ,A(s)b)‖L(H) ≤ C
ω(|t− s|)

|λ|2− β+γ
2

.

This is the estimate we need in order to obtain the proposition when u0 ∈
(H,D(A(0))1− 1

p
,p (see [10] or [13] for the details).

3.3 Time dependent perturbations-Maximal regularity

Let a(t), A(t),V and H be as above and suppose again that the standard
assumptions [H1]-[H3] are satisfied. Let (B(t))t∈[0,τ ] be a family of bounded
invertible operators on H. We assume that there exist constants δ > 0 and
M > 0 independent of t such that

Re (B(t)−1u, u) ≥ δ‖u‖2
H ∀u ∈ H, (3.9)

and
‖B(t)−1‖L(H) ≤ M. (3.10)

Let (P (t))t∈[0,τ ] be a family of bounded operators on H. We assume that

‖P (t)‖L(H) ≤ M. (3.11)

As a consequence of (3.9) and (3.10) the numerical range of B(t)−1 is
contained in a sector of angle w1 for some w1 ∈ [0, π

2 ), independent of t.
Note that (3.9) implies that

‖B(t)−1u‖ ≥ δ‖u‖
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and hence
‖B(t)‖L(H) ≤

1
δ
. (3.12)

We denote as previously by w0 the common angle of the numerical range of
forms a(t), t ∈ [0, τ ]. We assume again that

w0 + w1 <
π

2
. (3.13)

The following is our main result.

Theorem 3.6. Suppose that (a(t))t satisfies [H1]-[H3]. Let B(t) and P (t) be
bounded operators which satisfy (3.9)-(3.11) and (3.13). Suppose in addition
that t 7→ B(t) is continuous on [0, τ ] with values in L(H). Suppose that for
some β, γ ∈ [0, 1]

|a(t, u, v) − a(s, u, v)| ≤ ω(|t − s|)‖u‖Vβ
‖v‖Vγ , u, v ∈ V (3.14)

where ω : [0, τ ] → [0,∞) is a non-decreasing function such that :

∫ τ

0

ω(t)

t1+ γ
2

dt < ∞. (3.15)

Then the Cauchy problem

u′(t) +B(t)A(t)u(t) + P (t)u(t) = f(t), u(0) = 0 (3.16)

has maximal Lp-regularity in H for all p ∈ (1,∞).
If in addition,

∫ τ

0

ω(t)p

t
1
2

(β+pγ)
dt < ∞ (3.17)

then
u′(t) +B(t)A(t)u(t) + P (t)u(t) = f(t), u(0) = u0 (3.18)

has maximal Lp-regularity in H provided u0 ∈ (H,D(A(0)))1− 1
p

,p. Moreover

there exists a positive constant C such that :

‖u‖W 1
p (0,τ ;H) + ‖BAu‖Lp(0,τ ;H) ≤ C

[

‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))
1−

1
p ,p

]

.

(3.19)
The constant C depends only on the constants in [H1]-[H3], δ and M in
(3.9)-(3.11).

Remark. As we shall see in the proof, the regularity assumption on B(t)
can be weakened considerably. Indeed, continuity at finite number of ap-
propriate points is sufficient.
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Before starting the proof, let us define the maximal regularity space

MR(p,H) := {u ∈ W 1
p (0, τ ; H) : u(t) ∈ D(A(t)) a.e., A(.)u(.) ∈ Lp(0, τ ; H)}.

It is a Banach space for the norm

‖u‖MR(p,H) := ‖u‖W 1
p (0,τ ;H) + ‖Au‖Lp(0,τ ;H).

Proof. Let f ∈ Lp(0, τ ; H) and u0 ∈ (H,D(A(0))1− 1
p

,p. By Proposition 3.5,

there exists a unique u ∈ MR(p,H) such that
{

u′(t) +B(0)A(t)u(t) + P (t)u(t) = f(t)
u(0) = u0.

Hence, for a given v ∈ MR(p,H), there exists a unique u ∈ MR(p,H) such
that

{

u′(t) +B(0)A(t)u(t) + P (t)u(t) = f(t) + (B(0) −B(t))A(t)v(t)
u(0) = u0.

(3.20)
We define

S : MR(p,H) → MR(p,H)

v → u.

For v1, v2 ∈ MR(p,H) we set u1 := Sv1 and u2 := Sv2. Obviously, u :=
u1 − u2 satisfies

{

u′(t) +B(0)A(t)u(t) + P (t)u = (B(0) −B(t))A(t)(v1 − v2)
u(0) = 0.

Thus, by Proposition 3.5, there exists a constant C such that

‖u1 − u2‖MR(p,H)

≤ C‖(B(0) −B(·))A(·)(v1 − v2)‖Lp(0,τ ;H)

≤ C ′ sup
t∈[0,τ ]

(

‖B(0) −B(t)‖L(H)

)

‖v1 − v2‖MR(p,H).

By continuity at 0, for ǫ > 0 there exists t0 > 0 such that for t ∈ [0, t0]

‖(B(0) −B(t))‖L(H) < ǫ.

Hence for τ = t0 small enough, the operator S is a contraction on MR(p,H)
and so it has a fixed point u ∈ MR(p,H). Clearly, u is a solution of the
Cauchy problem (3.16) on [0, t0]. The uniqueness of u follows from the
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uniqueness of the fixed point of S. The a priori estimate of Proposition 3.5
and the fact that v = u on [0, t0] give

‖u‖MR(p,H) ≤ C

[

‖f‖Lp(0,t0;H) + ‖u0‖(H,D(A(0)))
1−

1
p ,p

]

. (3.21)

Next, we divide the interval [0, τ ] into ∪i∈1,....,N [ti−1, ti] with ti − ti−1

small enough. On each interval [ti−1, ti], we search for a solution ui to
(3.16) with initial data ui(ti−1) = ui−1(ti−1). The forgoing arguments
prove existence and uniqueness of a solution on [ti−1, ti] with maximal Lp-
regularity provided ui−1(ti−1) ∈ (H,D(A(ti−1)))1− 1

p
,p. Once we do this we

glue these solutions and obtain a unique solution u of (3.16) with maximal
Lp-regularity on [0, τ ] for all u0 ∈ (H,D(A(0)))1− 1

p
,p. Thus, our task now

is to prove that ui−1(ti−1) ∈ (H,D(A(ti−1)))1− 1
p

,p. In order to make the

notation simpler, we work on [0, τ ] (with τ small enough) instead of [ti−1, ti]
and set A := A(τ). We have to prove that the solution u to (3.16) satis-
fies u(τ) ∈ (H,D(A))1− 1

p
,p. This means that (remember we always assume

w.l.o.g. that the operators A(t) are invertible, i.e. ν = 0 in [H3])

t 7→ Ae−tAu(τ) ∈ Lp(0, τ ; H). (3.22)

We start with an expression for u(τ). Set

v(s) := e−(τ−s)Au(s), 0 ≤ s ≤ τ.

We have

v′(s) = Ae−(τ−s)Au(s) + e−(τ−s)A(−B(s)A(s)u(s) − P (s)u(s) + f(s)).

Hence

u(τ) = e−τAu0 +
∫ τ

0
e−(τ−s)A(A(τ) − A(s))u(s)ds (3.23)

+
∫ τ

0
e−(τ−s)A [(I −B(s)A(s)u(s) − P (s)u(s) + f(s)] ds.

Since

‖Ae−(t+τ)A‖L(H) ≤
C

t+ τ

it is clear that t 7→ Ae−tAe−τAu0 ∈ Lp(0, τ ; H).
For the second term we have

‖A

∫ τ

0
e−(t+τ−s)A(A(τ) − A(s))u(s)ds‖

≤

∫ τ

0

C

t+ τ − s
‖e− 1

2
(t+τ−s)A(A(τ) − A(s))u(s)ds‖

≤ C

∫ τ

0

ω(τ − s)

(t+ τ − s)1+ γ
2

‖u(s)‖Vβ
ds

≤ C

∫ τ

0

ω̃(t + τ − s)

(t+ τ − s)1+ γ

2

‖u(s)‖Vβ
ds,
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where ω̃(r) = ω(r) for r ∈ [0, τ ] and = ω(τ) for r > τ . Therefore, using the
assumption (3.15) on ω and Young’s inequality we obtain
∫ τ

0
‖A

∫ τ

0
e−(t+τ−s)A(A(τ) − A(s))u(s)ds‖pdt ≤ C ′‖u‖p

Lp(0,τ ;V). (3.24)

Now we consider the last term in (3.23). We start with the case p = 2.
Set

g(s) := (I −B(s)A(s)u(s) − P (s)u(s) + f(s). (3.25)

We have
(
∫ τ

0
‖Ae−tA

∫ τ

0
e−(τ−s)Ag(s)ds‖2dt

)1/2

=
(
∫ τ

0
‖A1/2e−tA

∫ τ

0
A1/2e−(τ−s)Ag(s)ds‖2dt

)1/2

≤ C‖

∫ τ

0
A1/2e−(τ−s)Ag(s)ds‖.

In the last inequality we use the boundedness of the square function, namely
∫ ∞

0
‖A(t)1/2e−rA(t)x‖2dr ≤ C‖x‖2 (3.26)

for all x ∈ H. This estimate is a consequence of the fact that A(t) has a
bounded holomorphic functional calculus as an accretive operator, see [6].
We repeat the previous argument but since g is not necessarily constant in
s we cannot use directly the square function estimate. We argue by duality.
For x ∈ H we have

|(
∫ τ

0
A1/2e−(τ−s)Ag(s)ds, x)|

= |

∫ τ

0
(g(s), A∗1/2e−(τ−s)A∗

x)|

≤ (
∫ τ

0
‖g(s)‖2ds)1/2(

∫ τ

0
‖A∗1/2e−(τ−s)A∗

x‖2ds)1/2

≤ C‖x‖(
∫ τ

0
‖g(s)‖2ds)1/2.

Since this is true for all x ∈ H, we obtain

(
∫ τ

0
‖Ae−tA

∫ τ

0
e−(τ−s)Ag(s)ds‖2dt

)1/2

≤ C(
∫ τ

0
‖g(s)‖2ds)1/2.

We define the operator T by

Tg(t) =
∫ τ

0
Ae−(τ+t−s)Ag(s)ds.
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We have proved that T : L2(0, τ ; H) → L2(0, τ ; H) is bounded. We extend
this operator to Lp(0, τ ; H) for all p ∈ (1,∞). Indeed, note that T is a
singular integral operator with kernel

K(t, s) = Ae−(τ+t−s)A

and we use Hörmander’s integral condition for K(t, s) and K(s, t) (see, e.g.
[16], Theorems III 1.2 and III 1.3). A similar argument was used in [10].
We have to prove that

∫

|t−s|≥2|s′−s|
‖K(t, s) −K(t, s′)‖L(H)dt ≤ C (3.27)

for some constant C independent of s, s′ ∈ (0, τ).
Assume for example that s ≤ s′. Since the semigroup generated by −A

is bounded holomorphic we have for some constant C
∫

|t−s|≥2|s′−s|
‖K(t, s) −K(t, s′)‖L(H)dt

=
∫ τ

2s′−s
‖Ae−(τ+t−s)A −Ae−(τ+t−s′)A‖L(H)

=
∫ τ

2s′−s
‖

∫ s′

s
A2e−(τ+t−r)Adr‖L(H)dt

≤ C

∫ τ

2s′−s

∫ s′

s

1
(τ + t − r)2

drdt

= C

∫ τ

2s′−s

[

1
τ + t− s′

−
1

τ + t− s

]

dt

= C

[

log
τ + t− s

τ + t− s′

]t=τ

t=2s′−s
≤ C log 2.

This proves (3.27). The same arguments apply for the kernel of the adjoint
T ∗. Hence

T : Lp(0, τ ; H) → Lp(0, τ ; H)

is a bounded operator for all p ∈ (1,∞). We obtain

(
∫ τ

0
‖Ae−tA

∫ τ

0
e−(τ−s)Ag(s)ds‖pdt

)1/p

≤ C(
∫ τ

0
‖g(s)‖pds)1/p. (3.28)

Note that for f ∈ Lp(0, τ ; H) we have A(·)u(·) ∈ Lp(0, τ ; H) since we have
proved maximal Lp-regularity for small τ . Hence g ∈ Lp(0, τ ; H) (remember
that g is given by (3.25)). This finishes the proof of u(τ) ∈ (H,D(A(τ))1− 1

p
,p

and we obtain maximal Lp-regularity of (3.16) on [0, τ ] for every τ > 0. The
uniqueness of the solution on [0, τ ] follows from the uniqueness on each small
sub-interval [ti, ti+1].
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It remains to prove the a priori estimate (3.19). On each small sub-
interval [ti; ti+1] we have the a priori estimate (3.21). That is

‖u‖W 1
p (ti,ti+1;H) + ‖A(·)u(·)‖Lp(ti,ti+1;H)

≤ C

[

‖f‖Lp(ti,ti+1;H) + ‖u(ti)‖(H;D(A(ti)))
1−

1
p ;p

]

.

Using again the expression (3.23) and the estimates (3.24) and (3.28) we
obtain

‖u(ti)‖(H;D(A(ti)))
1−

1
p ;p

≤ C

[

‖f‖Lp(0,ti;H) + ‖u0‖(H,D(A(0)))
1−

1
p ,p

+ ‖u‖Lp(0,ti;V)

]

.

(3.29)
Remember that we can replace A(t) by A(t) + cI for a given constant c ∈
(0,+∞). Since

‖(A(t) + cI)−1‖L(H,V) ≤
c0

(c+ 1)
1
2

it follows that

‖u(t)‖V ≤ ‖(A(t) + cI)−1‖L(H,V)‖(A(t) + cI)u(t)‖H

≤
c0

(c+ 1)
1
2

‖(A(t) + cI)u(t)‖H.

Summing over i in (3.29) and taking c large enough we see that for some
constant C1

‖u‖W 1
p (0,τ ;H) + ‖A(·)u(·)‖Lp(0,τ ;H)

≤ C1

[

‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))
1−

1
p ,p

]

.

This proves the desired a priori estimate and finishes the proof of the theo-
rem.

4 Further regularity results

We continue our investigations on the solution of the problem (3.18). We
work with the same assumptions as in Theorem 3.6. For f ∈ L2(0, τ ; H) the
solution u ∈ W 1

2 (0, τ ; H) and by the Sobolev embedding u ∈ C([0, τ ]; H).
It is interesting to know whether u is also continuous for the norm of V.
This is indeed the case if the forms a(t) are symmetric (or perturbations
of symmetric forms) and t 7→ a(t, x, y) is Lipschitz continuous on [0, τ ] for
all x, y ∈ V. This is proved in [1]. Continuity in V was also proved in
[2] for the unperturbed problem (i.e., without multiplicative and additive
perturbations) when γ in (3.14) is < 1. This is a rather restrictive condition
but turns out to be satisfied in some cases such as time-dependent Robin
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boundary conditions. Here we make no restriction on γ and β and we assume
less regularity for t 7→ a(t, x, y) than what was previously known.
The continuity of the solution with respect to the norm of V is used in [1] in
applications to some semi-linear PDE’s. In this section, we look at again this
question in the setting of Theorem 3.6 in which we assume less regularity
(than Lipschitz continuous) on t 7→ a(t, g, h).

In the statements below we shall need the following square root property
(called Kato’s square root property)

D(A(t)1/2) = V and c1‖A(t)1/2v‖ ≤ ‖v‖V ≤ c2‖A(t)1/2v‖ (4.1)

for all v ∈ V and t ∈ [0, τ ], where the positive constants c1 and c2 are
independent of t. Note that this assumption is always true for symmetric
forms when ν = 0 in [H3].

We start with the following lemma which will be used later.

Lemma 4.1. Suppose (4.1). Then for all f ∈ L2(0, t; H), 0 ≤ s ≤ t ≤ τ ,

‖

∫ t

s
e−(t−r)A(t)f(r)dr‖V ≤ C‖f‖L2(s,t;H).

Proof. By (4.1),

‖

∫ t

s
e−(t−r)A(t)f(r)dr‖V ≤ c2‖

∫ t

0
A(t)1/2e−(t−r)A(t)f(r)dr‖

= c2 sup
‖x‖=1

|

∫ t

s
(f(r), A(t)∗1/2e−(t−r)A(t)∗

x)dr|

≤ c2 sup
‖x‖=1

(
∫ t

s
‖A(t)∗1/2e−(t−r)A(t)∗

x‖2dr

)

1
2

×

‖f‖L2(s,t;H)

≤ C‖f‖L2(s,t;H).

Note that in the last inequality we use again the square function estimate
for A(t)∗ (see (3.26)). This proves the lemma.

In the next result we prove continuity of the solution to (3.18) as a
function with values in V. Note that if D(A(0)1/2) = V, then

(D(A(0),H) 1
2

,2 = D(A(0)1/2) = V.

Theorem 4.2. Suppose (4.1) and that the assumptions of Theorem 3.6
are satisfied. Suppose also that ω(t) ≤ ctε for some ε > 0. Let f ∈
L2(0, τ ; H) and u0 ∈ V. Then the solution u to the problem (3.18) satis-
fies u ∈ C([0, τ ]; V).
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Proof. We fix s and t in [0, τ ] such that s < t. We first derive a formula sim-
ilar to (3.23). Define v(r) := e−(t−r)A(t)u(r) for r ∈ [s, t]. After derivation
and integration from s to t we obtain

u(t) = e−(t−s)A(t)u(s) +
∫ t

s
e−(t−r)A(t)(A(t) −B(r)A(r))u(r)dr

+
∫ t

s
e−(t−r)A(t)[−P (r)u(r) + f(r)]dr.

Hence

u(t) = e−(t−s)A(t)u(s) +
∫ t

s
e−(t−r)A(t)(A(t) − A(r))u(r)dr

+
∫ t

s
e−(t−r)A(t)[(−B(r) + I)A(r)u(r) − P (r)u(r) + f(r)]dr, (4.2)

and so

‖u(t) − u(s)‖V ≤ ‖

∫ t

s
e−(t−r)A(t)(A(t) − A(r))u(r)dr‖V

+ ‖

∫ t

s
e−(t−r)A(t)[(I −B(r))A(r)u(r) − P (r)u(r) + f(r)]dr‖V

+ ‖[e−(t−s)A(t) − I]u(s)‖V .

We estimate each term in the RHS and obtain

‖u(t) − u(s)‖V ≤ C(
∫ t

s

ω(t− r)
t− r

‖u(r)‖Vdr

+ ‖f‖L2(s,t;H) + ‖Au‖L2(s,t;H) + ‖u‖L2(s,t;H))

+ ‖[e−(t−s)A(t) − I]u(s)‖V

≤ C(
∫ t−s

0

ω(r)
r

dr‖u‖L∞(0,τ ;V) + ‖f‖L2(s,t;H)

+ ‖Au‖L2(s,t;H) + ‖u‖L2(s,t;H))

+ ‖[e−(t−s)A(t) − I]u(s)‖V .

Note that MR(2,H) is continuously embedded into L∞(0, τ ; V) by Propo-
sition 4.5 in [12]. This proposition is proved for forms which are symmetric
but it remains true under the assumption (4.1). Thus, by maximal regularity
result (Theorem 3.6), u ∈ MR(2,H) and hence u ∈ L∞(0, τ ; V).

Next, since ω satisfies the assumptions of Theorem 3.6,
∫ τ

0
ω(r)

r dr < ∞
and since u,Au ∈ L2(0, τ ; H) we see that the first four terms in the RHS
converge to 0 as t → s (or as s → t). It remains to proves that

‖[e−(t−s)A(t) − I]u(s)‖V → 0 as t → s (or as s → t). (4.3)
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We first prove (4.3) when t → s (for fixed s). We write

‖[e−(t−s)A(t) − I]u(s)‖V ≤ ‖[e−(t−s)A(t) − e−(t−s)A(s)]u(s)‖V

+ ‖[e−(t−s)A(s) − I]u(s)‖V .

Using Proposition 3.4 and the functional calculus (on the sector Σ(θ) for
appropriate θ ∈ (0, π

2 )) we estimate the first terms as follows.

‖[e−(t−s)A(t) − e−(t−s)A(s)]u(s)‖V

=
1

2π
‖

∫

Γ
e−(t−s)λ[(λ−A(t))−1(A(t) − A(s))(λ−A(s))−1]u(s)dλ‖V

≤ cω(t − s)
∫ ∞

0
e−(t−s)|λ| cos θ(1 + |λ|)−1d|λ|‖u(s)‖V

≤ c′ω(t− s)
(t− s)ε′

‖u(s)‖V .

Here we use u(s) ∈ D(A(s)
1
2 ) (see the proof of Theorem 3.6) and (4.1).

Now the fact that ω(t) ≤ ctε for some ε > 0 and the strong continuity of the
semigroup e−tA(s) on V imply that ‖[e−(t−s)A(t) − I]u(s)‖V → 0 as t → s.
This proves that u is right continuous for the norm of V.

It remains to prove left continuity of u. We need a formula similar to
(4.2) but with u(s) expressed in terms of u(t). Fix 0 ≤ s < t ≤ τ and set
v(r) := e−(r−s)A(s)u(r) for r ∈ [s, t]. Then

v′(r) = −e−(r−s)A(s)(A(s) +B(r)A(r) + P (r))u(r)) + e−(r−s)A(s)f(r),

and hence

u(s) = e−(t−s)A(s)u(t) +
∫ t

s
e−(r−s)A(s)(A(s) +B(r)A(r))u(r)dr

−

∫ t

s
e−(r−s)A(s)[f(r) − P (r)u(r)]dr. (4.4)

Therefore

u(s) − u(t) = [e−(t−s)A(s)u(t) − u(t)] +
∫ t

s
e−(r−s)A(s)(A(s) −A(r))u(r)dr

+
∫ t

s
e−(r−s)A(s)((B(r) + I)A(r)u(r))dr

−

∫ t

s
e−(r−s)A(s)[f(r) − P (r)u(r)]dr

=: I1(s, t) + I2(s, t) + I3(s, t) + I4(s, t).

By Lemma 4.1,

‖I4(s, t)‖V ≤ C[‖u‖L2(s,t;H) + ‖f‖L2(s,t;H)].
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By Lemma 4.1
‖I3(s, t)‖V ≤ C‖A(·)u(·)‖L2(s,t;H).

For I2(s, t) we have immediately,

‖I2(s, t)‖V ≤ C

∫ t

s

w(r − s)
r − s

dr‖u‖L∞(0;τ,V).

For I1(s, t) we proceed as before. We write

[e−(t−s)A(s)u(t) − u(t)] = [e−(t−s)A(s)u(t) − e−(t−s)A(t)u(t)]

+ [e−(t−s)A(t)u(t) − u(t)]

We use again the functional calculus as above to obtain

‖[e−(t−s)A(s)u(t) − e−(t−s)A(t)u(t)]‖V ≤ c
ω(t − s)
(t − s)ε′

‖u(t)‖V .

The remaining term ‖e−(t−s)A(t)u(t) − u(t)‖V converges to 0 as s → t by
strong continuity of the semigroup on V. We have proved that u is left
continuous in V and finally u ∈ C([0, τ ]; V).

Proposition 4.3. Suppose that the assumptions of the previous theorem are
satisfied. Let f ∈ L2(0, τ ; H), u0 ∈ V and u be the solution of (3.18). Then

s → A(s)
1
2u(s) ∈ C([0, τ ]; H).

Proof. We use again (4.2) and write

A(t)
1
2u(t) −A(s)

1
2u(s)

= A(t)
1
2 e−(t−s)A(t)u(s) −A(s)

1
2u(s)

+A(t)
1
2

∫ t

s
e−(t−r)A(t)(A(t) − A(r))u(r)dr

+A(t)
1
2

∫ t

s
e−(t−r)A(t)[(−B(r) + I)A(r)u(r) − P (r)u(r) + f(r)]dr.

By (4.1), the norms in H of the last two terms are equivalent to the norms
in V of the same terms but without A(t)

1
2 . We have seen in the proof of

Theorem 4.2 that these norms in V converge to 0 as t → s or as s → t.
It remains to consider the term A(t)

1
2 e−(t−s)A(t)u(s) − A(s)

1
2u(s). We use

again the functional calculus to write

A(t)
1
2 e−(t−s)A(t)u(s) −A(s)

1
2u(s)

= A(t)
1
2 e−(t−s)A(t)u(s) −A(s)

1
2 e−(t−s)A(s)u(s)

+A(s)
1
2 e−(t−s)A(s)u(s) −A(s)

1
2u(s)

=
1

2πi

∫

Γ
λ

1
2 e−(t−s)λ[(λ −A(t))−1 − (λ−A(s))−1]u(s)dλ

+A(s)
1
2 e−(t−s)A(s)u(s) −A(s)

1
2u(s).
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By the resolvent equation

(λ−A(t))−1 − (λ−A(s))−1 = (λ−A(t))−1(A(s) − A(t))(λ−A(s))−1

and Proposition 3.4 we have

‖(λ−A(t))−1 − (λ−A(s))−1‖

≤ ‖(λ−A(t))−1‖L(V ′,H)‖(A(s) − A(t))‖L(V ,V ′)‖(λ−A(s))−1‖L(V)

≤ C|λ|−1/2ω(|t − s|)
1

1 + |λ|
.

Therefore for any ε > 0,

‖A(t)
1
2 e−(t−s)A(t)u(s) −A(s)

1
2 e−(t−s)A(s)u(s)‖

≤ Cω(|t− s|)
∫ ∞

0

1
1 + r

e−(t−s)rdr‖u(s)‖V

≤ Cε
ω(|t− s|)
|t − s|ε

′
‖u(s)‖V .

Remember that u ∈ L∞(0, τ ; V) by Theorem 4.2. Using the assumption on
ω, the latest term converges to 0 as |t−s| → 0. The termA(s)

1
2 e−(t−s)A(s)u(s)−

A(s)
1
2u(s) converges to 0 as t → s by the strong continuity of the semigroup.

This proves the right continuity of s 7→ A(s)
1
2u(s). The left continuity is

proved similarly, we use (4.4) instead of (4.2).

5 Right perturbations-Maximal regularity

Let B(t) and P (t) (t ∈ [0, τ ]) be bounded operators on H. We investigate
the maximal Lp-regularity property for right multiplicative perturbations
A(t)B(t). As mentioned in the introduction, this problem has been consid-
ered in [3] and was motivated there by several applications. We will extend
the results from [3] in the sense that we require much less regularity for
t 7→ a(t).

Let a(t) be a family of sesquilinear forms satisfying again [H1]-[H3] and
denote as before A(t) the corresponding associate operators. Under the
assumptions of Theorem 3.6, for each t, the operator −B(t)A(t) generates a
holomorphic semigroup on H. The same is also true for −B(t)∗A(t)∗ since
the adjoint operators B(t)∗ and A(t)∗ satisfy the same properties as B(t)
and A(t). Hence by duality, −A(t)B(t) generates a holomorphic semigroup
on H. Here, the domain of A(t)B(t) is given by

D(A(t)B(t)) = {x ∈ H, B(t)x ∈ D(A(t))}.

For right perturbations, we say that the Cauchy problem

u′(t) +A(t)B(t)u(t) + P (t)u(t) = f(t), u(0) = u0
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has maximal Lp-regularity if for every f ∈ Lp(0, τ,H) there exists a unique
u ∈ W 1

p (0, τ ; H), B(t)u(t) ∈ D(A(t)) a.e. and u satisfies the Cauchy problem
in the Lp-sense.

Our main result in this section is the following.

Theorem 5.1. Let (a(t))t satisfy [H1]-[H3] and B(t) and P (t) be bounded
operators satisfying (3.9)-(3.11) and (3.13). We suppose that t 7→ B(t)
is Lipschitz and t 7→ P (t) is strongly measurable. Suppose that for some
β, γ ∈ [0, 1]

|a(t, u, v) − a(s, u, v)| ≤ ω(|t− s|)‖u‖Vβ
‖v‖Vγ , u, v ∈ V

where ω : [0, τ ] → [0,∞) is a non-decreasing function such that :
∫ τ

0

ω(t)

t1+ γ

2

dt < ∞.

Then the Cauchy problem

u′(t) +A(t)B(t)u(t) + P (t)u(t) = f(t), u(0) = 0 (5.1)

has maximal Lp-regularity in H for all p ∈ (1,∞).
If in addition,

∫ τ

0

ω(t)p

t
1
2

(β+pγ)
dt < ∞ (5.2)

then
u′(t) +A(t)B(t)u(t) + P (t)u(t) = f(t), u(0) = u0 (5.3)

has maximal Lp regularity in H provided u0 ∈ B(0)−1(H,D(A(0)))1− 1
p

,p.

Moreover there exists a positive constant C such that :

‖u‖W 1
p (0,τ ;H) + ‖A(·)B(·)u(·)‖Lp(0,τ ;H) (5.4)

≤ C

[

‖f‖Lp(0,τ ;H) + ‖B(0)u0‖(H,D(A(0)))
1−

1
p ,p

]

.

We start with the following lemma.

Lemma 5.2. Under the above assumptions on B(t), the mapp t 7→ B(t)−1x
is differentiable on (0, τ) with values in L(H) and

d

dt
B(t)−1x = −B(t)−1B′(t)B(t)−1x

for all x ∈ H.

Proof. We write

B(t+ h)−1 −B(t)−1 = −B(t+ h)−1(B(t+ h) −B(t))B(t)−1 (5.5)

and since B(t + h)−1 has norm bounded with respect to h it follows that
B(t + h)−1 converges uniformly to B(t)−1. Using this and the fact that
t 7→ B(t)x is Lipschitz we obtain the lemma.
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Proof of Theorem 5.1. Let f ∈ Lp(0, τ ; H) and initial data u0 such that
u0 ∈ B(0)−1(H,D(A(0)))1− 1

p
,p. We consider the Cauchy problem with left

multiplicative perturbations
{

v′(t) +B(t)A(t)v(t) −B′(t)B(t)−1v(t) +B(t)P (t)B(t)−1v(t) = B(t)f(t)
v(0) = B(0)u0.

(5.6)
Note that B(·)f(.) ∈ Lp(0, τ ; H) and B(0)u0 ∈ (H,D(A(0)))1− 1

p
,p. Note

also that t 7→ −B′(t)B(t)−1 +B(t)P (t) is strongly measurable with values in
L(H). Thus, we can apply Theorem 3.6. We obtain existence and uniqueness
of v ∈ W 1

p (0, τ ; H) such that v(t) ∈ D(A(t)) for a.e. t ∈ [0, τ ] which satisfies
(5.6). We set u(t) := B(t)−1v(t). Using Lemma 5.2 we check easily that
u ∈ W 1

p (0, τ ; H), B(t)u(t) ∈ D(A(t)) for a.e. t and it is the unique solution
of (5.1). Finally, (5.4) follows immediately from the a priori estimate of
Theorem 3.6.

Note that we may consider both left and right multiplicative perturba-
tions at the same time. Let B0(t) and B1(t) be bounded operators satisfying
the same assumptions (3.9) and (3.10). We assume that t 7→ B0(t) is con-
tinuous and t 7→ B1(t) is Lipschitz continuous on [0, τ ]. We assume that the
forms a(t) and P (t) are as in Theorem 5.1. We consider the Cauchy problem

u′(t) +B0(t)A(t)B1(t)u(t) + P (t)u(t) = f(t), u(0) = u0. (5.7)

Then the maximal Lp-regularity results of Theorem 5.1 hold for (5.7) for
initial data u0 ∈ B1(0)−1(H,D(A(0)))1− 1

p
,p. The proof is very similar to

the previous one. We consider the Cauchy problem with left perturbations










v′(t) +B1(t)B0(t)A(t)v(t) −B′
1(t)B1(t)−1v(t) +B1(t)P (t)B1(t)−1v(t)

= B1(t)f(t)
v(0) = B1(0)u0.

(5.8)
We obtain the maximal Lp-regularity for (5.8) by Theorem 3.6 and set as
above u(t) = B1(t)−1v(t).
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