Memory management for data streams subject to concept drift - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Memory management for data streams subject to concept drift

Résumé

Learning on data streams subject to concept drifts is a challenging task. A successful algorithm must keep memory consumption constant regardless of the amount of data processed, and at the same time, retain good adaptation and prediction capabilities by effectively selecting which observations should be stored into memory. We claim that, instead of using a temporal window to discard observations with a time stamp criterion, it is better to retain observations that minimize the change in outputted prediction and rule learned with the full memory case. Experimental results for the Droplets algorithm, on 6 artificial and semi-artificial datasets reproducing various types of drifts back this claim.
Fichier principal
Vignette du fichier
Memory management for data streams subject to concept drift - Final.pdf (517.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01340498 , version 1 (01-07-2016)

Identifiants

  • HAL Id : hal-01340498 , version 1

Citer

Pierre-Xavier Loeffel, Christophe Marsala, Marcin Detyniecki. Memory management for data streams subject to concept drift. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Apr 2016, Bruges, Belgium. ⟨hal-01340498⟩
222 Consultations
90 Téléchargements

Partager

More