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Abstract. We study the bifurcation diagram of the Rössler system. It displays
the various dynamical regimes of the system (stable or chaotic) when a parameter
is varied. We choose a diagram that exhibits coexisting attractors and banded
chaos. We use the topological characterization method to study these attractors.
Then, we detail how the templates of these attractors are subtemplates of a
unique template. Our main result is that only one template describes the
topological structure of eight attractors. This leads to a topological partition
of the bifurcation diagram that gives the symbolic dynamic of all bifurcation
diagram attractors with a unique template.
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1. Introduction

Since 1976, the Rössler system [1] is well know for its simplicity (three differential
equations with only one non linear term) and its dynamical richness producing chaos.
Used as a basic system to demonstrate various properties of dynamical systems, this
system is still a source inspiration for researchers. This system has been widely
explored with several tools. The main goal of this paper is to extend the use of
the topological characterization method to several chaotic attractors. We introduce
a way to use the template as a global description that contains various attractors
templates of the Rössler system.

In this paper, we will study this system in a parameter space to highlight common
properties of neighbours attractors in this space. Castro et al. [2] study of the
parameter space of this system using Lyapunov exponents reflects its dynamics (stable,
chaotic or trajectory diverging). The maps are built varying parameters a and c of the
system. These maps display fractal structure and illustrate period doubling cascades.
This principle is also employed by Barrio et al. [3] for the three parameters of the
Rössler system. Their analysis of local and global bifurcations of limit cycles permits
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to a have a better understanding of the parameter space. Additionally, attractors with
equilibrium points associated to their first return maps are also plotted to illustrate
the various dynamics of this system, including coexistence of attractors. To enlarge
this overview of recent work on the bifurcations and dynamics on the Rössler system,
Genesio et al. [4] use the first-order harmonic balance technique to study fold, flip and
Neimark-Sacker bifurcations in the whole parameter space. Finally, the recent work
of Sprott & Li [5] introduces another way to reach coexisting attractors in addition to
the cases identified by Barrio et al. [3].

In this paper we study a bifurcation diagram of the Rössler system exhibiting
various dynamics using topological properties of attractors. We use the topological
characterization method based on the topological properties of the attractor’s periodic
orbits [6]. The purpose is not only to obtain templates of chaotic attractors but also
to find common points or properties as it as already been shown for this system
by Letellier et al. [7] for a “funnel attractor”. In this particular case, a linking
matrix describes the template depending on the number of branches. In this paper,
we will explore a bifurcation diagram and show that only one template contains all
the templates of attractors as subtemplates.

This paper is organized as follow. The first part introduces the Sprott & Li
[5] work with their bifurcation diagram. The second part details the topological
characterization method; eight attractors are studied and their templates are obtained.
Then we prove that the eight templates are subtemplates of a unique template.
It describes the topological structure of all the attractors of the entire bifurcation
diagram. Finally we provide a partition of the bifurcation diagram giving the symbolic
dynamic associated with the unique template depending on the bifurcation parameter.

2. Bifurcation diagram

Barrio et al. [3] highlight the fact that a Rössler system can have two coexisting
attractors as solutions for a set of parameters. Sprott & Li [5] parametrize the Rössler
system [1] with the parameter α

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ = −y − z
ẏ = x + ay
ż = b + z(x − c)

with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a = 0.2 + 0.09α
b = 0.2 − 0.06α
c = 5.7 − 1.18α

(1)

in order to explore bifurcations. When α = 1, two attractors coexist in the phase
space. We reproduce their bifurcation diagram when α varies. The value of the fixed
points of the system are

S± =

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

x± = c ±√c2 − 4ab
2

y± = −c ∓
√
c2 − 4ab
2a

z± = c ±√c2 − 4ab
2a

.

(2)

The bifurcation diagram Fig. 1 is obtained using the following Poincaré section

P ≡ {(yn,−zn) ∈ R2 ∣ − xn = −x−} (3)
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where x− is the x value of the fixed point S− (see [8] for details on this Poincaré
section). The uses of this Poincaré section explains why Fig. 1 is similar to FIG. 5 of
[5]: we use yn and they use M which is a local maximum of x. Consequently, in both
case, values close to zero correspond to value close to the center of the attractor and
oppositely, high absolute values correspond to the outside boundary of the attractor.

Figure 1. Bifurcation diagram when α varies: α increasing (red) and α decreasing
(black). This figure is similar to the last part of the FIG. 5 of [5]. Using α

increasing or decreasing replaces different initial conditions used in the original
paper [5]. A, B, C, D, E1, E2, F and G refers to attractors solutions with the
parameters indicated in (4).

This diagram indicates parameter for the Rössler system where the solution is
a limit cycle or chaotic. This diagram exhibits a doubling period cascade that is a
classical route to chaos for −2 < α < 0.2. This is followed by a chaotic puff (α = 0.5)
and by various regimes (banded chaos and almost fully developed chaos). We choose
representative values of α where one or two attractors are solutions of the system

A α = −0.25 E1 α = 1B α = 0.5 E2 α = 1C α = 0.78 F α = 1.135D α = 0.86 G α = 1.22 .
(4)

We analyse these attractors using topological characterization method in order to
obtain a generic description of the attractors while α is varied.

3. Topological characterization

The main purpose of the topological characterization method is to build a template
using topological properties of periodic orbits. The template has been introduced
by [9, 10] further to the works of Poincaré [11]. According to Ghrist et al. [12], a
template is a compact branched two-manifold with boundary and smooth expansive
semiflow built locally from two type of charts: joining and splitting. Each charts
carries a semiflow, endowing the template with an expanding semiflow, and the gluing
maps between charts must respect the semiflow and act linearly on the edges. This
topological characterization method is detailed by Gilmore & Lefranc [13, 6]. Recently,
we detail additional conventions to obtain templates that can be compared and sorted
[14, 15]. We start with a brief description of the method. As the trajectories are
chaotic, they are unpredictable in a long term behavior. But attractors have a time
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invariant global structure where its orbits compose its skeleton. The purpose of the
method is to use the topological properties of these orbits to describe the structure
of the attractor. We provide a sum up of this method with eight steps (including our
conventions):

(i) Display the attractor with a clockwise flow;

(ii) Find the bounding torus;

(iii) Build a Poincaré section;

The first step permits to ensure that the study will be carried out to the respect
of conventions: clockwise flow having a clockwise toroidal boundary and described
by a clockwise template. This clockwise convention ensures us to describe template
with a unique linking matrix, a keystone to work only with linking matrices [14]. The
toroidal boundary give a global structure that permit to classify attractors. For a given
toroidal boundary, a typical Poincaré section is associated according to the Tsankov &
Gilmore theory [16]. This Poincaré section contains one or more components to permit
an effective discretization of trajectories and consequently an efficient partition of the
attractor.

(iv) Compute the first return map and define a symbolic dynamic;

(v) Extract and encode periodic orbits;

(vi) Compute numerically the linking numbers between couple of orbits;

The first return map details how two consecutive crossings of a trajectory through
the Poincaré section are related and permits to associate a symbol to each point. It
permits to define a partition of the attractor and a symbolic dynamic. Associated
symbols depend on the parity of the slope (even for the increasing one, odd for the
other). Up to this point, periodic orbits structuring the attractor are extracted and
encoded using this symbolic dynamic. The linking number between a pair of orbits
is a topological invariant indicating how orbits are wind one around another. In this
paper, we use the orientation convention of Fig. 2. The linking numbers are equal to
the half-sum of the oriented crossings in a regular plane projection. These crossings are
obtained numerically by following the path of one orbit and counting the crosses with
the other orbit. This algorithm is implemented by splitting orbits into continuous part
having either positive or negative derivative of the x value. This permits to simplify
the sign identification of the crossing knowing the orientation of orbits.

Convention Permutations Torsions

+1 −1 positive negative positive negative

Figure 2. Convention representation of oriented crossings. The permutation
between two branches is positive if the crossing generated is equal to +1, otherwise
it is a negative permutation. We use the same convention for torsions.

The final steps concern the template:

(vii) Propose a template;

(viii) Validate the template with the theoretical computation of linking numbers.
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The template is clockwise oriented. The template of an attractor bounded by genus
one torus is defined by a unique linking matrix. This matrix describes how branches are
torn and permuted. We use the Melvin & Tufillaro [17] standard insertion convention:
when the branches stretch and squeeze, the left to the right order of the branches
corresponds to the bottom to top order. The diagonal elements of the matrix indicate
the torsions of branches and off diagonal elements give the permutations between
two branches. Finally, to validate a template, we use a procedure introduced by Le
Sceller et al. [18] that permits to compute linking numbers theoretically from a linking
matrix. Linking numbers obtained theoretically with this method have to correspond
with those obtained numerically at the step (vi) to validate the template. The challenge
of this procedure resides in the step (vii) because it is non trivial to find a template
whose theoretical linking numbers correspond to the numerically computed linking
numbers.

3.1. Attractor A
In this section we will detail the previously described procedure step by step for
attractor A.
(i) Display the attractor with a clockwise flow;

We propose to make a rotation of the attractor around the y-axis. Displaying the
attractor in the phase space (−x, y), the flow evolves clockwise (Fig. 3a).

(ii) Find the bounding torus;

The attractor is bounded by a genus one torus: a surface with only one hole.
Consequently, a Poincaré section with one-component is required.

(iii) Build a Poincaré section;

We build our Poincaré section using x− (2)

P ≡ {(yn,−zn) ∈ R2 ∣ − xn = −x−} . (5)

This Poincaré section is a half-plan transversal to the flow as illustrated in grey Fig. 3a.
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Figure 3. (a) Chaotic attractor A solution to the equation (1). Parameter value
α = −0.25 with the initial conditions x = −1.25, y = −0.72 and z = −0.1. (b)
First return map to the Poincaré section (5) using ρn (the arrow indicates the
orientation).
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(iv) Compute the first return map and define a symbolic dynamic;

To compute the first return map, we first normalize the intersection value of the flow
through the Poincaré section: ρn. This value is oriented from the inside to the outside
(Fig. 3a). Then the first return map is obtained by plotting ρn+1 versus ρn (Fig. 3b).
This return map is the classical unimodal map made of an increasing branch followed
by a decreasing one. This first return map indicates that the classical “horseshoe”
mechanism generate this chaotic attractor. The symbolic dynamic is defined as follow:
“0” for the increasing branch and “1” for the decreasing one.

(v) Extract and encode periodic orbits;

Using, the first return map, we can locate periodic orbits that the flow visits while
it covers the attractor. For instance, there is only one period one orbit because the
bisector crosses the map once. We extract five orbits with a period lower than six: 1,
10, 1011, 10110 and 10111 (Fig. 4).
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Figure 4. Orbits of the chaotic attractor A.

(vi) Compute numerically the linking numbers;

We compute linking numbers between each pair of periodic orbits. The linking number
between a pair of orbits is obtained numerically (Tab. 1).

Table 1. Linking numbers between pairs of orbits extracted from the chaotic
attractor A.

(1) (10) (1011) (10110)

(10) -1

(1011) -2 -3

(10110) -2 -4 -8

(10111) -2 -4 -8 -10

(vii) Propose a template;

Using these linking numbers and the first return map structure, we propose the
template (Fig. 5). This template is made of trivial part with a chaotic mechanism. The
latter is composed by a splitting chart that separates continuously the flow into two
branches. The left one encoded “0” permutes negatively over the right one encoded
“1”; the latter have a negative torsion. After the torsion and permutation, branches
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stretch and squeeze to a branch line using the standard insertion convention. This
template is thus described by the linking matrix

T (A) = [ 0 -1
-1 -1

⟧ . (6)

In literature, two conventions are used to describe templates. One needs a matrix
to describe torsions and permutations with an additional array to order the branches
for the squeezing mechanism. The other only requires one matrix with respect to
the Melvin & Tufillaro [17] standard insertion convention. For more details about the
links between these two conventions, see [19]. Here, the double line in the right bracket
refers to the standard insertion convention indicating that the squeezing mechanism
is included in the linking matrix. This use permits to simplify computation between
algebraic description of templates using only one matrix. Here, with respect to this
convention, the branch “0” is on the right side of the branch “1” after the permutation
and torsion, thus branch “0” is over the branch “1” when the branches squeeze.

0 1

Figure 5. TA: template of attractor A.

(viii) Validate the template computing theoretically the linking numbers.

The theoretical calculus using the linking matrix and the orbits permits to obtain the
same table of linking numbers. This validates the template of A defined by T (A)
(Fig. 5).

3.2. Attractors B to G
In this section, we will only give the key steps for others attractors: B, C, D, E1, E2,F and G. We start with the Fig. 6 displaying these attractors for parameters (4) and
with a clockwise flow evolution. We can observe that these attractors are made of
fully developed chaos (Fig. 6acg) or banded chaos (Fig. 6bdf) or coexisting attractors
of banded chaos (Fig. 6e).

All these attractors are bounded by a genus one torus. We use the Poincaré
sections: (7) for A, C, G, (8) for D, E1, E2, F and (9) for B:

P ≡ {(yn,−zn) ∈ R2 ∣ − xn = −x−} , (7)
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-12

-10

-8

-6

-4

-2

0

2

4

6

8

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10

y

−x

-12

-10

-8

-6

-4

-2

0

2

4

6

8

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10

y

−x

-12

-10

-8

-6

-4

-2

0

2

4

6

8

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10

y

−x

(d) D for α = 0.86 (e) E1 and E2 for α = 1 (f) F for α = 1.135

-12

-10

-8

-6

-4

-2

0

2

4

6

8

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10

y

−x

(g) G for α = 1.22
Figure 6. Eight chaotic attractors for different values of α from the bifurcation
diagram (Fig. 1)

P ≡ {(yn,−zn) ∈ R2 ∣ − xn = −x−, −ẋn < 0, y < −7} , (8)

P ≡ {(yn,−zn) ∈ R2 ∣ − xn = −x−, −ẋn < 0, y < −9} . (9)

We compute the first return maps to these Poincaré sections using a normalized
variable ρn oriented from the inside to the outside of the boundary. The eight return
maps (Fig. 7) are multimodal with differential points and the number of their branches
are two, three or four. We choose a symbolic dynamic for each first return map with
respect to the slope orientation of branches

A 0 1 E1 0 1B 0 1 E2 1 2C 0 1 2 F 0 1 2 3D 0 1 2 G 0 1 2 .

(10)

We extract a set of orbits for each attractors and numerically compute linking
numbers between pairs of orbits (Tab. 2). Thus, we propose templates. They are
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Figure 7. First return maps of the eight attractors of the Fig. 6.

validated using Le Sceller et al. procedure [18]. All the results are summed up in the
Tab. 2.

Only attractors C and G have the same template even if they have not the same
orbits of period lower than five. The dynamic is not fully developed on each branch:
some orbits are missing in both attractors compare to the full set of orbits. On the
other hand, the two coexisting attractors have the same linking numbers but the orbits
are encoded in two distinct ways. Their linking matrix are related as their template
too. In fact, the orientation of the chaotic mechanism is the opposite one. This case
permits to underline how orientation conventions are necessary to distinguish these
two attractors.
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Table 2. Linking numbers between pairs of orbits extracted from the attractors
of Fig. 6 and their associated linking matrix describing their template.

Linking numbers Linking matrix

A
(1) (10) (1011) (10110)

(10) -1

(1011) -2 -3

(10110) -2 -4 -8

(10111) -2 -4 -8 -10

T (A) = [ 0 -1
-1 -1

⟧

B
(1) (10) (1011) (10110)

(10) -5

(1011) -10 -21

(10110) -13 -26 -52

(10111) -13 -26 -52 -65

T (B) = [ -6 -6
-6 -5

⟧

C
(1) (10) (2010) (2011)

(10) -1

(2010) -2 -3

(2011) -2 -3 -6

(1011) -2 -3 -6 -6

T (C) =
⎡⎢⎢⎢⎢⎢⎣

0 -1 -1
-1 -1 -1
-1 -1 0

MQQQQQO

D

(1) (221) (211) (2221) (2211)

(221) -4

(211) -4 -12

(2221) -5 -15 -15

(2211) -5 -15 -15 -20

(22110) -6 -18 -18 -24 -24

T (D) =
⎡⎢⎢⎢⎢⎢⎣

-4 -4 -4
-4 -3 -3
-4 -3 -2

MQQQQQO

E1
(1) (10) (1011) (101111)

(10) -3

(1011) -6 -11

(101111) -9 -17 -34

(101110) -9 -17 -34 -51

T (E1) = [ -2 -3
-3 -3

⟧

E2
(1) (21) (2111) (211111)

(21) -3

(2111) -6 -11

(211111) -9 -17 -34

(212111) -9 -17 -34 -51

T (E2) = [ -3 -3
-3 -2

⟧

F

(3) (30) (31) (32) (313) (312) (322)

(30) -3

(31) -3 -6

(32) -3 -6 -6

(313) -4 -9 -9 -8

(312) -4 -9 -9 -8 -12

(322) -4 -9 -9 -8 -12 -12

(332) -4 -9 -9 -8 -12 -12 -12

T (F) =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

-4 -4 -4 -4
-4 -3 -3 -3
-4 -3 -2 -3
-4 -3 -3 -3

MQQQQQQQO

G
(1) (21) (2111) (2021)

(21) -1

(2111) -2 -3

(2021) -2 -3 -6

(2110) -2 -3 -6 -6

T (G) =
⎡⎢⎢⎢⎢⎢⎣

0 -1 -1
-1 -1 -1
-1 -1 0

MQQQQQO
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4. Subtemplate

4.1. Algebraical relation between linking matrix

In this section, we will use some algebraic relations between linking matrices already
defined in our previous papers [14, 15]. Here, we provide an overview of these relations.
In the following description, a strip also nominates a branch of a branched manifold
and a writhe is the number of positive crossings minus the number of negative crossings
of an oriented link diagram. First of all, a linker is a synthesis of the relative
organization of n strips: torsions and permutations in a planar projection (Fig. 2). A
mixer is a linker ended by a joining chart that stretch and squeeze strips to a branch
line. In the previous section, templates are only composed by one mixer defined by
a linking matrix. We also define the concatenation of a torsion with a mixer and
the concatenation of two mixers using the operator “+” in the following equations
(see [14, 15] for more details). The concatenation of a torsion with a torsion is a
torsion; the concatenation of a mixer with a torsion is a mixer and the concatenation
of a mixer with a mixer is a mixer. We remind that X designates the attractor,
TX its template and T (X ) the linking matrix that defines its template. Using these
algebraical relations between mixers and torsions, we can link the mixers of previously
studied attractors:

T (C) = T (G)

T (E1) = T (E2)p [ -3 -3
-3 -2

⟧ = [ -2 -3
-3 -3

⟧
p

T (B) = [−5] + T (A) [ -6 -6
-6 -5

⟧ = [ -5 -5
-5 -5

] + [ 0 -1
-1 -1

⟧

T (E2) = [−2] + T (A) [ -2 -3
-3 -3

⟧ = [ -2 -2
-2 -2

] + [ 0 -1
-1 -1

⟧

(11)

T (E1) = T (E2)p means that it is the transposed matrix: thus mixer of E2 is symmetric
to the mixer of E1 in a sens that the branch order is reversed. Then we obtain
T (B) = [−5] + T (A) because the concatenation of an odd torsion before a mixer
reverse the branch order. Finally, T (E2) = [−2] + T (A) because the concatenation of
an even torsion before a mixer do not reverse the branch order of the mixer.

4.2. Subtemplates

A subtemplate is defined as follow by Ghrist et al. [12]: a subtemplate S of a templateT , written S ⊂ T , is a topological subset of T which, equipped with the restriction of
a semiflow of T to S, satisfies the definition of a template. For the eight attractors
previously studied (A, B, C, D, E1, E2, F and G) we will demonstrate that their
templates are subtemplates of the template of C made of one mixer defined by

⎡⎢⎢⎢⎢⎢⎣
0 -1 -1
-1 -1 -1
-1 -1 0

MQQQQQO
. (12)

Using the linking matrix defining TA and TC , we directly find that T (A) is a
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subset of T (C) with the two first lines and columns

[ 0 -1
-1 -1

⟧ ⊂
⎡⎢⎢⎢⎢⎢⎣

0 -1 -1
-1 -1 -1
-1 -1 0

MQQQQQO
. (13)

0 1 2

(a) TC (b) TA ⊂ TC
Figure 8. Template of A is a subtemplate of the template of C.

The strip organization of TA are the same of the two first strips of TC . This means
that TA is a subtemplate of TC : TA ⊂ TC . This is illustrated on Fig. 8 where we only
display the mixers and not the trivial part of the template that link the bottom to top
on the left side to have a clockwise flow as shown Fig. 5; this is also the case for the
remainder of this article. We will use graphical representation of the templates and
subtemplates because it details the relation between template and subtemplate. This
representation combined with algebraical relations between linking matrices proves
that a template is a subtemplate of a template.

4.2.1. Banded chaos Attractors B, E1 and E2 display banded chaos because they are
composed by several strips, or bands, with writhes. We start with the template TB.
We know that this template can be considered with five negative torsions before a
“horseshoe” mechanism (11). Thus we have to find a subtemplate that goes through a
“horseshoe” mechanism and have five negative torsions. Letellier et al. [20] underline
the fact that if a writhe is observed in an attractor bounded by a genus one torus,
this is equivalent to two torsions by isotopy; the sign of the torsions is the same of the
writhe one (see FIG. 3 and FIG. 4 of [20] for additional details). As a consequence, a
subtemplate with n portions induces n writhes that are equivalent to 2n torsions by
isotopy; the sign of these 2n torsions is the sign of the writhe that is also the sign of
the permutations of subtemplate portions. We propose to build such a subtemplate
where Fig. 9a is TB as the subtemplate of TC .

We propose to use algebraical relations between linking matrices to validate
subtemplates. Fig. 9b is the template of B shaped as a subtemplate of C. When we
establish the template of B, we chose to use the Poincaré section (9) that corresponds
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B C A

B C A

(a) TB ⊂ TC (b) TB

Figure 9. (a) Template of attractor B is a subtemplate of the template of C. (b)
Template of attractor B shaped as a subtemplate of C. The arrow over A refers
to the Poincaré section (9) with the ρn orientation.

to the portion far from the inside of the attractor; this portion is labeled A on Fig. 9b.
We propose to concatenate its components with respect to their relative order: from
A to B, then B to C and C to A that are respectively: a mixer, a strip without torsion
and a negative torsion. We finally consider the transformation by isotopy that does
not have an impact on the orientation of the strips. Thus we decide to concatenate the
2n torsions after the concatenation of the components. As illustrated Fig. 9b, there
is two negative permutations (B to C over A to B and C to A over A to B) that are
equivalent to 2 × 2 = 4 negative torsions (dashed circles of Fig. 9b). Consequently, we
concatenate all these mixers and torsions

[ -1 -1
-1 0

⟧ + [−1] + [−2] + [−2] = [ -6 -6
-6 -5

⟧ = T (B) (14)

and obtain the linking matrix defining the template of B. Consequently TB is a
subtemplate of TC .

We now consider the two coexisting attractors E1 and E2. They have a similar
structure and coexist in the phase space for distinct initial conditions. The mixer of
TC with three branches has also a symmetric structure: the middle of the second strip
of the mixer T (C) is a reflecting symmetry axis where the left side is symmetric of the
right side. To build the TE1 and TE2 as subtemplate of TC , we take this symmetry into
account.

We propose these subtemplates as illustrated Fig. 10. We compute the
concatenation of torsions and mixer of these figures. For TE1 , we have two parts: one is
a mixer and the other is a strip without torsion. These parts permute negatively once
in a writhe; it algebraically corresponds to a concatenation of two negative torsions.
Thus, the linking matrix of such a subtemplate (Fig. 10a) is

[ 0 -1
-1 -1

⟧ + [−2] = [ -2 -3
-3 -3

⟧ = T (E1) . (15)
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(a) TE1 ⊂ TC (b) TE2 ⊂ TC (c) TE1 and TE2 coexisting

Figure 10. Coexisting templates TE1 and TE2 are subtemplates of the template
of C.

Similarly, the linking matrix of TE2 as a subtemplate (Fig. 10b) is

[ -1 -1
-1 0

⟧ + [−2] = [ -3 -3
-3 -2

⟧ = T (E2) . (16)

These algebraical relations between template and subtemplate linking matrices with
Fig. 10 prove that TE1 ⊂ TC and TE2 ⊂ TC . Moreover, these two subtemplates are
symmetric one to the other by reflection and coexist in the template of C (Fig. 10c).

4.2.2. Concatenation of mixers We now consider TF , the template of F , made of
four strips. In a previous paper [15], we demonstrate that the concatenation of two
mixers is a mixer and its number of strips is the product of the number of strips of
each mixer. Thus, the concatenation of two mixers made of two branches is a mixer
with four branches. Our hypothesis is that the four strips of TF are the result of this
process. To validate it, we draw its subtemplate by splitting the template of C into
the two symmetric part containing a mixer; we obtain the Fig. 11a.

We decompose this subtemplate (Fig. 11b) in parts: the two parts contain a
mixer and these parts permute negatively once. Thus, we concatenate a mixer before
a mixer and two negative torsions (cf. 4.2.1). The first concatenation gives a mixer
defined by a linking matrix; the algebraical relation necessary to obtain this matrix
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(a) TF ⊂ TC (b) TF

Figure 11. (a) The template of F is a subtemplate of the template of C. (b) TF
with two mixers.

are detailed in [15]. The linking matrix of TF as a subtemplate (Fig. 11a) is:

[−1 −1−1 0
⟧ + [ 0 −1−1 −1⟧ + [−2]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

RRRRRRRRRRRRRRRRRR

-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 0 0
-1 -1 0 0

RRRRRRRRRRRRRRRRRR
+
RRRRRRRRRRRRRRRRRR

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

RRRRRRRRRRRRRRRRRR
+
RRRRRRRRRRRRRRRRRR

-1 -1 -1 -1
-1 0 0 -1
-1 0 0 -1
-1 -1 -1 -1

RRRRRRRRRRRRRRRRRR

MQQQQQQQO
+ [−2]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

-2 -2 -2 -2
-2 -1 -1 -1
-2 -1 0 -1
-2 -1 -1 -1

MQQQQQQQO
+ [−2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

-4 -4 -4 -4
-4 -3 -3 -3
-4 -3 -2 -3
-4 -3 -3 -3

MQQQQQQQO
= T (F)

(17)

This algebraical relation between template and subtemplate linking matrices
associated to Fig. 11 prove that TF ⊂ TC .

We now consider the attractor D, we have TD ⊂ TF directly from their mixers

⎡⎢⎢⎢⎢⎢⎣
-4 -4 -4
-4 -3 -3
-4 -3 -2

MQQQQQO
⊂
⎡⎢⎢⎢⎢⎢⎢⎢⎣

-4 -4 -4 -4
-4 -3 -3 -3
-4 -3 -2 -3
-4 -3 -3 -3

MQQQQQQQO
; (18)

this is illustrated on Fig. 12. We previously obtain that TF ⊂ TC , thus we prove that
TD ⊂ TC .

Consequently, we prove that the six templates of attractors A, B, D, E1, E2
and F are subtemplate of the template of the attractor C; it is a template with six
subtemplates. We remind that G and C have the same template (TG = TC).
5. A template for the whole bifurcation diagram

We obtain a unique template containing the eight templates of attractors. We now
consider the whole bifurcation diagram (Fig. 1) and not only specific attractors. In
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Figure 12. Template of D is a subtemplate of the template of F and
consequently, it is also a subtemlate of the template of C.

this section, we will show that the template of C contains all attractors templates for
any parameter value take from this bifurcation diagram. We use the Poincaré section
(3) and build return maps using yn for α ∈]−2; 1.8[ when an attractor is solution. We
associate a symbolic dynamic with the three symbols “0”, “1”, “2” of TC . Note that
Barrio et al. [21] also use this process to study return maps of a Rössler system from
a Lyapunov diagram. The authors display return maps with superstability curve and
coexisting stable points. Here we prefer to collect extrema points to make a partition
of the bifurcation diagram.

Figure 13. Partition of the bifurcation diagram when α varies build using first
return maps on yn of the Poincaré section (3). This partition give a symbolic
dynamic with three symbols “0”, “1”, “2” depending on α.

In the diagram Fig. 13, we indicate the values of yn splitting the return maps into
two or three parts. We remind the reader that we orientate application from the inside
to the outside of the attractor. Thus, the branches are labelled with symbol number
increasing while yn decrease. Fig. 13 reveals that the separator values are linear to α.
We note y0∣1(α) the value of yn that split branches “0” and “1” and y1∣2(α) the value
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of yn that split branches “1” and “2”. A linear regression gives

y0∣1(α) = 1.43638α − 6.76016
y1∣2(α) = 2.18237α − 11.1289 . (19)

Up to this point, if there is an attractor solution, its orbits can be encoded with
the symbols depending on the previous equations. This also requires the use of the
Poincaré section (3).

For a given range of a bifurcation parameters (α ∈] − 2; 1.8[), the parameters of
the Rössler system depends on α: a(α), b(α) and c(α). The fixed points depend on
the parameters and the Poincaré section depend on the fixed points. Thus, we obtain
a Poincaré section and its partition (19) depending on α while the template is defined
by the linking matrix ⎡⎢⎢⎢⎢⎢⎣

0 -1 -1
-1 -1 -1
-1 -1 0

MQQQQQO
. (20)

The main result is that the topological characterization of chaotic attractors can
be extended as a description of various attractors whose parameters come from one
bifurcation diagram. In this bifurcation diagram, we show that there are regimes
where the chaotic mechanisms are topologically equivalent (TC = TG), symmetric (TE1
and TE2) and they are a subset of the same chaotic mechanism. The point is that
our work can help to understand the complex structure of attractors considering
them as subtemplates of their neighbors (in term of bifurcation parameter). This
also enlarge the possibility to use the topological characterization to describe more
than an attractor, but an entire bifurcation diagram.

6. Conclusion

In this paper we study eight attractors of the Rössler system. The parameters values of
these attractors come from a bifurcation diagram that exhibits various dynamics such
as coexisting attractors. For each attractor we apply the topological characterization
method that give us a template of the attractor. These templates detail the chaotic
mechanism and these are only made of stretching and folding mechanism followed by
a squeezing mechanism with two, three and four strips.

The second part of this paper is dedicated to the proof that the eights templates
are subtemplates of a unique template: the template of C. The main result here
is that a template is no longer a tool to describe one attractor but also a set of
neighbours attractors (in the parameter space). Thus for a bifurcation diagram, we
build a partition using symbols of TC . This partition over the whole diagram gives a
global structure of attractors for a range of parameters.

This better understanding of the structure of bifurcation diagram can help
researchers that want to explore the behaviour of their system, especially if it exhibits
chaotic properties. For instance Matthey et al. [22] design a robot using coupled
Rössler oscillators to simulate its locomotion. A similar theoretical analysis of their
system can provide various set of parameters with specific chaotic properties that
might induce new locomotion pattern. A partitioned bifurcation diagram details the
various non equivalent dynamical behavior of the system to find them.

This work on templates of attractors from a unique bifurcation diagram is a first
step that can lead to a description of manifolds using templates. It is also a new way
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to classify templates grouping them as subtemplates and not claiming that there exist
six new attractors for the Rössler system. To conclude, this work permits to apply the
topological characterization method to a set of attractors from a bifurcation diagram.
The partition of a bifurcation diagram associated with a unique template is a new tool
to describe the global dynamical properties of a system while a parameter is varied. In
future works, we will apply this method on attractors bounded by higher genus torus
to highlight how symmetry breaking or template number of branches are related in a
bifurcation diagram.
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