
HAL Id: hal-01340384
https://hal.science/hal-01340384

Submitted on 1 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Computer Scientist Nightmare: My Favorite Bug
Manuel Serrano

To cite this version:
Manuel Serrano. The Computer Scientist Nightmare: My Favorite Bug. A List of Successes That Can
Change the World : Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, 9600,
Springer, pp.356-366, 2016, Lecture Notes on Computer Science, 978-3-319-30936-1. �hal-01340384�

https://hal.science/hal-01340384
https://hal.archives-ouvertes.fr

The Computer Scientist Nightmare

My Favorite Bug

Manuel Serrano
Manuel.Serrano@inria.fr

Inria Sophia Méditerranée
2004 route des Lucioles - BP 93

F-06902 Sophia Antipolis, Cedex – France

Hop has recently been used by a small French company, which we will call
AIMM in the rest of this paper, to implement a new widget for a web multimedia
application. This widget contained two parts: a music selector that lets end users
browse a database of artists and music, and an HTML5 music player supporting
on-demand conversion from one music format to another.

Figure 1 presents a screenshot of the widget. The music player is on the top,
the database browser on the bottom. Clicking an artist name pushes a new panel
presenting the songs that artist has produced. Clicking the small black arrow to
the left of the name restores the previous panel. Graphical effects improve user
experience. Depending on the speed of the platform and the web browser used,
a new panel slides from left to right or blends into the previous one.

More than a real application, this was an endeavor, or an evaluation in order
to understand how Hop fits in the context of realistic multimedia web appli-
cation. The development was a priori easy because all the elements needed to
implement the widget were provided by the Hop development kit off the shelf. I
was in charge of the development that I estimated would take only a handful of
days. With the AIMM engineers, we agreed on a common API that Hop could
use to access the actual database; then I started to develop the widget. After a
couple of days, everything went as we wished. The prototype was operational.
Early tests showed that it was reliable enough to enter the second stage: to be
tested on the AIMM server.

The AIMM server was a classical Linux Debian hosted by an x86/64 pro-
cessor. A usual setting, almost the same as the one I used for developing the
widget. After having installed additional Linux packages required by Hop, I in-
stalled the development kit and the prototype. Then I started to test the widget.
At first, it seemed to be doing perfectly well. Everything seemed to be working
as it should, until I realized that, on some browsers, clicking the artist names on
the selector produced no effect. The new panel never showed up. Plagued with
this erroneous behavior, the application was utterly useless. So began the battle
I fought to understand and eliminate that bug.

1 A multitier bug

Mainly Firefox appeared to be affected by the disease. Other browsers, such as
Chrome, Midori, or Opera, were doing well. At that early moment the logical

Fig. 1. The Hop web widget

suspicion was that something specific to Firefox prevented it from executing the
application correctly. However, this first intuition was contradicted by an obvious
observation: the same Firefox was doing well when the web page was served by
a server running on my machine, that is, when the application was executed en-
tirely locally. This was particularly shocking because the client-side code served
by the two servers, the AIMM server and my local machine, were supposed to
be identical. My first investigation drove me to inspect the implementation of
the client-side part of the application in order to spot which Firefox specificity
was breaking its execution.

Hop is a multitier language. A single formalism is used to program the server-
side and the client-side of web applications. The web page visualized on a browser
is first elaborated on a server as an abstract syntax tree that is eventually com-
piled on-the-fly into Html. Both ends of the application use the same Document
Object Model to reify Html trees as first class values. In Hop, Html tags are
standard functions. Hop extends the official set of Html tags with numerous
new widgets that are implemented by composing elementary objects. The artist
selector was implemented using one of these objects: the SPAGE widget.

A SPAGE, which stands for sliding page, is an Html container (i.e., a box)
augmented with a title and a stack of inner elements. Only the top-most element

is visible at a time. A visual effect gives the feeling that new elements slide over
the previous ones. The source code using the SPAGE in the AIMM application
was similar to:

(<SPAGE> :title "languages" :id "lang"

(<DIV>

(<SPAGE> :title "functional" :parent "lang"

(

("Lisp")

("ML")

("Haskell"))))

(<DIV>

(<SPAGE> :title "sequential" :parent "lang"

(

("Fortran")

("Pascal")

("C")))))

The functions <DIV>, , and are the Hop functions for the eponymous
Html tags1. The function <SPAGE> is the constructor for the sliding page. In this
example, the first page displays the words functional and sequential. When
one is clicked, the corresponding page slides onto the screen and the associated
enumeration is displayed. The default graphical configuration of SPAGE is defined
by the following CSS rule set:

spage {

background: white;

border: 1px solid darkorange;

font-size: 12px;

border-radius: 0.2em;

effect: auto;

}

The AIMM widget overrides these rules to use a gray background gradient and
white texts, as shown in Figure 1. The effect field lets applications choose the
graphical effect they desire when a new element is pushed or popped. The four
possible values are “fade”, “slide”, “auto”, or “none”. It defaults to “auto”,
which tells Hop to select the most suitable effect according to the character-
istic of the browser. The CSS declaration is used by the client-side function
spage-effect which implements the graphical effect on the browser. It is de-
fined as:

1 Note that in Hop, identifiers may contain the special characters “<”, “>”, “!”, or
“+”. Hence, “<DIV>” is a regular identifier as is “string->integer”, “remq!”, or
even “+”.

(define (spage-effect node width step)

(let ((e (node-computed-style-get node :effect)))

(cond

((eq? e ’fade)

(spage-fade node (if (> step 0) -0.3 0.2)))

((eq? e ’slide)

(spage-slide node width step))

((eq? e ’none)

(spage-none node (- step)))

((< (hop-config :browser-speed) 80)

(spage-fade node (if (> step 0) -0.3 0.2)))

(else

(spage-slide node width step)))))

When the effect is “auto”, it chooses the best effect according to the browser
graphical animation speed. If the browser graphical animation is slow, it fades
elements. Otherwise, it slides them. At the time that problem occurred, browsers
based on Gecko (Firefox) were not able to animate smoothly the visual effect,
while browsers based on Webkit (Google-Chrome, Midori, Safari) could do it. So,
the configuration effect: auto of the SPAGE widget yield two different visual
effects on the two browser families. This explained why Firefox and Google-
Chrome behaved differently: they were simply not using the same code for the
animation. A brief additional examination of the client-side code unveiled that
the very call to spage-fade was the reason for the problem.

The central piece of the Hop development kit is the web broker. It is a
full-fledged web server which embeds the Hop compilers. When a program runs
on the broker, i.e., the server-side of the application, it generates the program
which is installed on the web browser, i.e., the client-side of the application. This
client-side part is compiled on-the-fly into JavaScript, the universal language of
web browsers, by the Hop broker. As it turned out, the call to spage-fade was
erroneously compiled into JavaScript. Instead of:

SpageFade(node, step > 0 ? -0.3 : 0.2);

it was compiled into:

SpageFade(node, step > 0 ? -0.0 : 0.0);

These zeroes were of course the reason for the problem: the step of the fad-
ing being 0, the element stayed invisible forever. So, the problem was not due
to Firefox executing incorrectly the code it received but to Hop delivering this
incorrect code! Firefox being innocent, the question remained: what was so spe-
cial with the compilation of the SpageFade call that drove Hop to generate these
wrong zeroes?

2 Read, Compile, Print

Although Hop and JavaScript share many similarities (they are both fully poly-
morphic functional languages, using dynamic type checking, and automatic mem-
ory management), the compilation from Hop to JavaScript is not straightfor-
ward. First, JavaScript is not fully lexically scoped. Hence, a closure analysis
is needed to compile Hop closures into JavaScript closures. Second, JavaScript
is not properly tail-recursive, so static analyses are needed to efficiently com-
pile Hop tail recursion into JavaScript loops. Third, because on the web the
client-side code first traverses the network, its size matters. The client-side Hop
compiler uses fancy features to generate code as compact as possible. All in all,
this makes the implementation of the JavaScript compiler about 17KLOC of Hop
code (the system is fully bootstrapped). The reason for the erroneous generation
of “0.0” was likely to be located somewhere in these lines.

After thorough investigations I ended up with the conclusion that the Hop
reader, that is the server-side function in charge of reading Hop files, was at
some point broken. At the beginning of the application, the reader was correct
and then, after a while, it was returning 0 for all floating point numbers. The
compiler was then probably not broken per se, only the reader was wrong.

The Hop syntax is defined by a regular language. It can then be parsed
efficiently by a finite state automaton such as those generated by the Hop form
“regular-grammar”. The actual implementation of the Hop parser looks like:

(regular-grammar ((float (or (: (* digit) "." (+ digit))

(: (+ digit) "." (* digit))))

...)

...

((: (* digit)

(or letter special)

(* (or letter special digit (in))))

(the-symbol))

((: (? (in "-+"))

(or float

(: (or float (+ digit))

(in "eE") (? (in "+-")) (+ digit))))

(the-flonum))

...)

The first part defines variables (float in the code snippet above) which bind
regular expressions used in the rules. These rules bind regular expressions, de-
fined in a infix syntax, to expressions that are executed when a pattern matches.
Regular grammars are compiled on the fly into Hop procedures. The implemen-
tation of regular grammars is about 3.5KLOC of Hop code for the compiler,
seconded by 1.1KLOC of native code for the IO layer.

Compiling the Hop reader produces a function such as:

(lambda (ip)

(define (the-flonum::double)

(rgc buffer flonum ip))

(define (the-fixnum::long)

(rgc buffer fixnum ip))

(define (the-symbol::symbol) ...)

...

(define (STATE0 ip) ...)

(case (STATE0 ip)

...

((10) (the-flonum))

...))

The function rgc buffer flonum extracts from the input buffer the correspond-
ing floating point number. It is part of the native runtime system. The Hop
native compiler (73KLOC of Hop code) can produce either native code, JVM
bytecode, or .NET bytecode. The function rgc buffer flonum thus exists for
the three backends. C was the backend used for the AIMM experiment. Its im-
plementation is:

#define rgc buffer flonum(ip) \

strtod(RGC INPUT PORT BUFFER(ip), 0);

As the reader at some point was no longer able to read numbers correctly,
either RGC INPUT PORT BUFFER or the libc function strtod had to be wrong!
This was very shocking. I could not believe that Hop IO buffers were wrong. The
overall size of the Hop implementation is about 325KLOC of Hop code which
are all read by the Hop reader. If the buffers were not correctly managed, the
bootstrap which reads all the 12,371,080 characters composing the source code
could not reasonably succeed! I could not either believe that strtod was wrong.
The Gnu libc is too widely used and too many applications depend on it for such
an obvious error to occur. However, the Linux version running on the AIMM
server being rather old, I spent half an hour googling to check if that particular
version of the library was known to have a wrong strtod implementation. It
was not.

3 The usual suspects

At this point of the paper, it is probably useful to make a short point. I was
chasing a bug that i) only appeared with Firefox but Firefox was innocent; ii)
appeared in the client-side of the application but it was located in the server-side
of the application; iii) was due to an error in the server-side code in charge of
producing the client-side; iv) was due to server-side code that seemed to first
behave correctly and then, at some point of the execution, started to behave
badly; v) was not observable when executed on my machine but systematic when

executed on the AIMM server. The obvious conclusion of all these observations
was that something specific to the AIMM server was responsible for the wrong
behavior.

When portability across a single operating system seems broken, the first idea
that usually comes to mind is to check if there could be a potential confusion
between pointers size. In our case we had an ideal suspect: my personal machine
was using 32bit pointers while the AIMM server was using 64bit pointers! This
suspicion was even strengthened by my previous investigation. As said before,
I was more or less suspecting an IO buffer overflow and a confusion between
32bit pointers and 64bit pointers is very prone to buffer overflows. A quick test
conducted on another x86/64 Linux machine of our own showed that Hop and the
AIMM widget were running like a charm on that other 64bit pointers computer.
The problem was elsewhere.

The Hop broker (75KLOC) is deeply multi-threaded. When started, it spawns
several preemptive threads (usually 20) that wait for connections. Each client
request is handled in a separate thread. So, several client-side compilations may
occur simultaneously. Multi-threaded applications are known to be a nightmare
to program and an even worse nightmare to debug, in particular because multi-
threading may break sequentially correct code. The C standard library is plagued
with several non-thread-safe functions. In particular, all those that use static
buffers, such as strtok. Would it be possible that strtod was also using a
static buffer that made it non thread-safe? An excerpt of the Linux man page is
given Figure 2. It tells nothing about multi-threading and it proposes no thread-
safe alternative. So, at least with the Gnu libc, it is very likely that strtod

is thread safe. Another observation mostly invalidates the theory of a poten-
tial multi-threading problem. The bug was far too reproducible! The charm of
multi-threading errors is their non-deterministic behavior. Here, the bug always
occurred, at the same moment, on the same machine. Not something that could
have happened with an error in the implementation of the parallelism.

After all, since the bug was reproducible, it was an ideal candidate for a
debugger. I recompiled everything in debug mode and tried to learn more. No
success. Firstly, the debugger was not easy to use because the error did not show
up until the function had been called several thousand times. Secondly, it merely
validated some already known facts: yes, the problem also showed up when the
application was running inside the debugger; yes, after a while the-flonum was
returning 0. Nothing else to learn. In addition to the debugger, I tried the read-
eval-print loop Hop can spawn. Same result.

Since the debugger and the interactive loop were mostly useless, I instru-
mented the application to log all the calls to strtod and I wrote another pro-
gram for replaying the logs. Surprisingly, this new program ran well, as all the
calls to strtod completed correctly. So, if strtod was broken, it was broken in
a weird context-dependent way. This experiment taught me another important
fact: by observing the log player running correctly, I realized that many Hop in-
stances were running well on the AIMM server. Something specific to the AIMM
widget made it run incorrectly on the AIMM server!

4 The solution

At a moment, for no particular reason, by luck, or because I was unconsciously
examining all the possible directions, the small detail that I had in front of my
eyes since the beginning and that I had neglected so far attracted my attention: if
strtod was wrong by returning 0.0 how come it returned -0.0 and not just 0.0 for
“-0.3”? Where did this “-” come from? After all, it seemed that something was
correct in the result since the sign was correct! A further experiment showed
that actually the result was only wrong for the decimal part of the numbers.
That is “0.2” was read as 0.0 but “1.2” was read as 1.0. After this observation
everything went fast and easy.

As stated in the Linux man page (see above), strtod is locale-dependent.
In French, the radix character is “,”, contrary to English that uses “.”. Hence,
parsing -0.3 in English must return -0.3 while parsing it in French must return
-0.0, because the french parsing of the number stops after parsing the characters
- and 0, ignoring the rest of the string. My computer and the AIMM server were
both located in France but my machine was using an English setting while the
AIMM server was using a French setting. On the AIMM server, the Linux global
environment variable LOCALE was set to “fr FR”. This was the reason for the
bug. The only problem yet to be solved was to understand why the behavior of
strtod changed during the execution. Why did it start with an English setting
and at some point switch to French?

The Hop server starts in a bare minimal core image. When an application
is loaded it dynamically loads the libraries it depends on. Many multimedia
Hop applications depend on the widely used Gstreamer library to manipulate
multimedia material. In the AIMM application, it was used to encode MP3 into
OGG on the fly (while Google-Chrome supports MP3, Firefox only supports
OGG). So, when the AIMM application started it loaded Gstreamer.

The Gstreamer documentation specifies that an application should first call
gst init to initialize the library but it says nothing about the locale. However
inspecting the source code, and in particular, the file gst/gst.c, I spotted the
following:

static gboolean

init pre (GOptionContext * context, GOptionGroup * group,

gpointer data, GError ** error)

{

...

#ifdef ENABLE NLS

setlocale (LC ALL, "");

bindtextdomain (GETTEXT PACKAGE, LOCALEDIR);

bind textdomain codeset (GETTEXT PACKAGE, "UTF-8");

#endif /* ENABLE NLS */

...

}

This clearly meant that Gstreamer allowed itself to change the locale of the
application, with the side effect of changing the behavior of strtod, and in that
case, breaking the Hop client-side compiler. The fix was straightforward and it
took exactly two lines of code. It merely required saving the current locale before
calling the gst init function and to restore it afterward as in:

char *locale = setlocale(LC ALL, 0);

gst init(&argc, &argv);

setlocale(LC ALL, locale);

5 Concluding remarks

This article is unacademic on purpose. It is written in a first-person narrative
mode. it contains no citations, no mathematical formulae of any kind, and no
algorithms, but it does contain code! Readers will eventually judge, but I think
that in spite of containing no theorem, it demonstrates a flaw in the principles
we use to design our languages and to write our programs because the bug that
is described in this paper could probably occur in many different contexts and
with most programming languages. How many readers of this paper can be sure
that none of their programs are affected by a similar problem?

This paper tells a story of a program that apparently broke none of our
commonly accepted rules but that still went wrong. The program suffered no
memory leak. It was type safe, with respect to the common understanding of
what a type should be. It suffered no data race. But still it went wrong!

Who is to blame for the error then? This is a legitimate question. Someone
has to be blamed! Obviously I have my share of responsibility. It might be
argued that the Hop implementation of the-flonum is incorrect and this is
the reason for the whole problem. It definitively is and the function should
be re-written. My knowledge of the C function strtod was too imprecise and
it had yielded to the problem described in the paper. I’m the main culprit.
However, it is inconceivable to re-implement all the low level functions used by
Hop. It is likely that some other functions rely on a hidden state that might
be changed externally, in particular amongst the functions used to implement
the network and DNS APIs. However, re-writing these functions would take an
unreasonable amount of work and independently of the feasibility of the task
it is also worth wondering if this approach makes any sense. The purpose of
Hop is to provide an infrastructure to help re-using code written elsewhere by
other people, maybe using other formalisms. Re-writing all the core APIs in Hop
would then contradict the overall goal of the whole system.

If I’m not the only one to blame, who else? Clearly the C functions strtod

and atof have a peculiar design that is partly responsible for the problem.
First, relying on external information, the locale, they make programs that use
them unsealed. Second, using a weak definition for the external representation
of numbers, they are prone to incorrectly parse numbers. Even worse, they offer

no means to isolate the code relying on them. The locale used by this function
is always a kind of oracle that cannot be controlled by the program.

In my opinion, the Gstreamer library also shares a part of the responsibility.
First, it might be argued that no API should ever change the global context in
which programs that use them execute. Second, if such a modification cannot be
avoided, then it should be stated very explicitly in the documentation. In that
particular case, Gstreamer seemed to call setlocale for no particularly good
reason (parsing ID3 tags potentially expressed in the locale of the host is a weak
motivation). Second, as reported, the documentation of the gst init function
does not even mention the change of the locale. This might be the biggest fault.

What tool could have helped to prevent the error or to detect it? Usual debug-
gers were of no help because, first, the execution was correct although with an
unintended behavior (after all, strtod was configured to return -0.0), second,
the lines of code that were incorrect were not implemented in the main language
but in a hidden implementation language that the system tries hard to make
invisible to the end programmer.

It is frequently argued that strong static type checking is a powerful tool
that helps detecting errors soon. In this particular case it would have been of
no help. With respect to the type system found in general purpose languages,
everything in the execution was correct. Maybe this tells us that the types we
are used to are inadequate? Maybe this tells that we should rely on types that
denote concrete entities and not abstract mathematical things? Maybe the type
of strtod should not be a function that takes a string of characters and that
returns a real but a function that takes a floating point number represented as
a string of characters and that returns a real? Maybe the type of gst init

should not only be a function that accepts an integer and an array of strings
and that returns an integer but also something that denotes the effect on the
current locale?

I think the real reason for the error presented in this paper is that the lan-
guages we have designed so far, and maybe even the way we think a program
should be written, do not allow programs to compose safely. The error presented
in this article came from an apparently innocuous function of a widely used li-
brary that was permitted to modify the whole behavior of the application. As
long as the systems we design will be liable to such behaviors this kind of error
will keep occurring. I think this story shows the limit of the current direction
we are following in designing our languages and programs. I also think that it
shows that we should explore different paths where safe composition is the start-
ing point of the design. In the era we are to enter where programs need to use
heterogeneous sets of resources and data, this will be vital for the reliability of
our yet to be invented brave new applications.

STRTOD(3) Linux Programmer’s Manual STRTOD(3)

NAME

strtod, strtof, strtold - convert ASCII string to floating-point number

SYNOPSIS

#include <stdlib.h>

double strtod(const char *nptr, char **endptr);

...

DESCRIPTION

The strtod(), strtof(), and strtold() functions convert the initial

portion of the string pointed to by nptr to double, float, and long

double representation, respectively.

The expected form of the (initial portion of the) string is optional

leading white space as recognized by isspace(3), an optional plus (’+’)

or minus sign (’-’) and then either (i) a decimal number, or (ii) a

hexadecimal number, or (iii) an infinity, or (iv) a NAN (not-a-number).

A decimal number consists of a nonempty sequence of decimal digits pos-

sibly containing a radix character (decimal point, locale-dependent,

usually ’.’), optionally followed by a decimal exponent. A decimal

exponent consists of an ’E’ or ’e’, followed by an optional plus or

minus sign, followed by a nonempty sequence of decimal digits, and

indicates multiplication by a power of 10.

...

CONFORMING TO

C89 describes strtod(), C99 describes the other two functions.

Fig. 2. The Linux man page for strtod

