
HAL Id: hal-01340368
https://hal.science/hal-01340368v1

Submitted on 1 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Measuring Energy Footprint of Software Features
Syed Islam, Adel Noureddine, Rabih Bashroush

To cite this version:
Syed Islam, Adel Noureddine, Rabih Bashroush. Measuring Energy Footprint of Software Features.
24th IEEE International Conference on Program Comprehension, May 2016, Austin, United States.
�hal-01340368�

https://hal.science/hal-01340368v1
https://hal.archives-ouvertes.fr

Measuring Energy Footprint of Software Features
Syed Islam, Adel Noureddine, and Rabih Bashroush

School of Architecture, Computing and Engineering
University of East London, United Kingdom

Email: syed.islam@uel.ac.uk, a.noureddine@uel.ac.uk, r.bashroush@qub.ac.uk

Abstract—With the proliferation of Software systems and
the rise of paradigms such the Internet of Things, Cyber-
Physical Systems and Smart Cities to name a few, the energy
consumed by software applications is emerging as a major
concern. Hence, it has become vital that software engineers
have a better understanding of the energy consumed by the
code they write. At software level, work so far has focused on
measuring the energy consumption at function and application
level. In this paper, we propose a novel approach to measure
energy consumption at a feature level, cross-cutting multiple
functions, classes and systems. We argue the importance of such
measurement and the new insight it provides to non-traditional
stakeholders such as service providers. We then demonstrate,
using an experiment, how the measurement can be done with a
combination of tools, namely our program slicing tool (PORBS)
and energy measurement tool (Jolinar).

I. INTRODUCTION

With the proliferation of Software systems and the rise
of paradigms such the Internet of Things, Cyber-Physical
Systems and Smart Cities to name a few, the rate of energy
consumption of Information and Communication Technologies
(ICT) is rising at an alarming rate. It is estimated that ICT
consumption will rise from 168 to 433 Gigawatts (7% to
14.5%) by 2020 [1]. Greenhouse Gas emissions (GH) from
ICT are also expected to double to 1430 MtCO2e within
the same period [2], highlighting the need for more energy
efficient hardware as well as software.

In addition to traditional software properties often cited to
aid in program comprehension [3], we argue that in the near
future, it will become vital for software engineers to better
understand the energy consumed by their applications. While
software energy consumption is already a major software
engineering concern in some application areas such as mobile
computing (given the impact on battery life, and ultimately the
product viability), monitoring and optimising the energy con-
sumption of software systems is gaining considerable traction
else where. A recent survey showed that software architects
envisage energy becoming a major architectural concern in the
next five years [4].

Current research focuses on measuring the energy con-
sumption of applications at two main granularities. The first
considers the energy consumption of a particular function or a
set of functions, while the second level of granularity looks at
the energy consumed by the entire software stack or process.
Work in this area entails creating accurate models to esti-
mate the energy consumption of software, which sometimes
includes the use of complex formulas or additional hardware.

Such measurements are vertical in nature and oriented towards
measuring the consumption of software constructs. Although
such approaches can aid software engineers identify bottle-
necks, hotspots or energy smells in the code, they do not lend
themselves to better understand consumption at feature-level,
which is ultimately what is being consumed by end-users.

In this paper, we propose a novel approach for measuring
energy consumption of end-user features, taking a more hor-
izontal cross-cutting view. Our approach will enable newer
levels of programme comprehension and understanding. On
the one hand, it will empower software engineers analyse
the consumption of a given feature, which can cross-cut
multiple classes, or even programming languages. On the other
hand, it will help cloud service providers isolate and better
understand energy consumption of their system features, and
where applicable, introduce better charging models for end-
users based on real energy consumption.

The rest of the paper is structured as follows. The next
section discusses related literature and motivation. Section 3
presents our feature oriented approach. Validation and results
are then analysed in Section 4. Finally, Section 5 rounds off
the paper with a summary and future work.

II. MOTIVATION & RELATED WORK

Current approaches for monitoring energy range from hard-
ware devices to power models and tools [5]. Hardware-
based solutions, such as power meter devices and dedicated
integrated circuits or sensors, demand additional investment,
complex installations, and treat the entire system as a black
box. Other approaches overcome such large granularity limita-
tions by estimating software energy using power models or a
calibration process. Tools, such as pTop, PowerSpy, PowerAPI,
JouleMeter or Energy Checker provide power and energy in-
sights into software energy footprint but at the cost of limiting
usability. For instance, some require a power meter in order
to calibrate their models, or for runtime energy monitoring
(PowerAPI, PowerSpy, JouleMeter), others require modifica-
tions to applications’ source code or patching parts of the
operating system to effectively monitor software energy con-
sumption (pTop, Energy Checker). Source-based approaches
provide energy readings for methods and functions [6] or
for individual lines of code [7]. These approaches measure
the energy consumption of software artefacts (e.g., methods,
classes, lines of code), mostly ignoring their functionality or
the relationships between them.

Modern software systems are typically composed of more
than one programming language and often comprise dozens
of features that cross-cut hundreds of components. Thus, the
comprehension of such information would allow developers to
focus their optimisation efforts on entire features consumed by
end-users, rather than only software constructs. This, for ex-
ample, could help cloud providers model their billing structure
around the energy consumption of particular system features.

III. APPROACH

Our approach to measuring software energy consumption
at the feature-level has two steps. The first step involves
the identification and extraction of an executable subset of
the original program that implements the feature of interest
(feature slicing). The second involves the measurement of the
energy consumed by the feature slice (energy measurement).
The two steps are discussed below.

A. Feature slicing

The first step in our approach is to identify what parts of
the system constitutes a feature of the software. Unlike formal
functional components of a software system, what constitutes a
feature is often down to the granularity at which the software
system is modelled. At higher architectural levels, a feature
constitutes work done by several modules to achieve some
purpose; However, even a small utility function within that
same system can be regarded as a feature when taking a more
fine-grained view.

Program Slicing is a technique for identifying the influence
or dependencies for a specific point of interest within the code,
referred to as the slicing criteria. Program Slicing is well re-
searched and has many applications [8], including comprehen-
sion, testing, debugging, maintenance, re-engineering, re-use,
and refactoring. Although useful for debugging, the original
notion of program slicing now known as static slicing is not
suitable for feature extraction. The static form is a conservative
approach where any possible influences on the slice criterion
for all possible inputs are identified. This conservatism over
approximates and includes much more dependencies than what
a typical execution of a feature would require. For example,
if a static slice was taken with respect to variable n on line
38 of program p (Figure 1), the static slice would include
the entire program. Several extensions to the original notion
of slicing have been proposed over the years that attempt to
tackle feature extraction [9], [10], [11]. However, most of these
techniques do not yield a slice that is an executable program
in its own right. Furthermore, none of these techniques can
handle multi-language systems.

Recently proposed Observation-based Slicing [12] is a tech-
nique that finds its origin in Weiser’s original motivation for
slicing [13]: uninteresting statements can be deleted (sliced
out) of a program to help focus attention on relevant statements
(i.e., the slice). Operationally, PORBS1 (our observation-based
slicer) achieves this by tentatively deleting one or more

1http://www.syedislam.com/orbs.html

-s -u Program P
1 | | public class SortUniqeUtility {
2

3 | | static ArrayList l = new ArrayList();
4

5 | | public static void main (String[] args)...{
6 | | readFile(args[0]);
7 if (args[1].equals("-s"))
8 | sort();
9 if (args[1].equals("-u"))

10 | unique();
11 | | writeList();
12 | | }
13

14 | | static void readFile(String s) ... {
15 | | FileReader fr = new FileReader(s);
16 | | BufferedReader br = new BufferedReader(fr);
17 | | String line = "";
18 | | while ((line = br.readLine()) != null) {
19 | | l.add(line);
20 | | }
21 br.close();
22 fr.close();
23 | | }
24

25 | static void sort(){
26 | Collections.sort(l);
27 | }
28

29 | static void unique(){
30 | Set<String> hs = new HashSet<>();
31 | hs.addAll(list);
32 | l.clear();
33 | l.addAll(hs);
34 | }
35

36 | | static void writeList(){
37 | | for (String n : l)
38 | | System.out.println(n); // slice on n
39 | | }
40 | | }

Fig. 1. Observation-based Slice for Line 38 with option -s and -u.

statements and then observing the behaviour of the resulting
program. It attempts to find a subset of the program (slice) that
preserves the behaviour of the original program with respect
to a certain set of inputs and the slice criterion.

Figure 1 shows a program P , which is a utility program
with two features, sort and unique. The first, reads a file and
outputs contents of the file in sorted order, while the second,
reads a file and outputs non-repeating contents. The features
are triggered by providing the name of the input file and
options -s (sort) or -u (uniq), respectively. We present this
simplistic version of the utility tool to explain our approach
ignoring details such as error checking. The code has been
structured in such a way that the main, readFile and
writeList methods will be required for both utilities. Each
specific feature is then provided by one of the two methods,
namely sort by sort method and uniq by unique method.

Running PORBS slicer on the code with an appropriate
input file and a feature options causes PORBS to produce
an executable slice implementing the certain feature. For
example, Column 2 of Figure 1 marks lines included in the
slice for the feature option -s and Column 3 marks the lines
included in the slice for feature option -u. Both slices are

executable programs on their own right and will produce
the same output as the original program (P) for respective
features. PORBS is therefore able to extract executable slices
that contains all the code pertaining to the implementation of
a particular feature within a program. We are therefore using
PORBS in our approach to extract a minimal set of code that
implements a certain feature.

B. Energy measurement

We estimate the energy consumption of features using
Jolinar 2, an accurate, lightweight and easy-to-use tool for
energy measurements. Jolinar is based on our energy mod-
els introduced and validated in [14], [15]. These models use
publicly available hardware OEM specifications to calculate
resource utilisation for monitored applications, then estimate
their energy consumption based on energy formulas. First, we
measure resource utilisation by the hardware (so far, CPU,
disk and memory) and apply energy models to estimate how
much the hardware modules are currently consuming. Next, we
capture the resources used by the monitored application (for
example, number of CPU cycles, or number of bytes written
to the disk the application is using), and apply a second set
of energy models to estimate software energy consumption.

The models in Formulas 1 and 2 takes into consideration
modern processors’ characteristics, such as DVFS (Dynamic
Voltage and Frequency Scaling), CPU’s TDP (Thermal Design
Power) and real-time processor frequency and voltage changes.
The power consumption is calculated every 500 milliseconds,
following power variation whenever frequency or voltage
changes.

P f
CPU =

0.7× TDP

fTDP × V 2
TDP

× f × V 2 × tPID
CPU

tCPU
(d) (1)

PCPU =

∑
f∈frequencies P

f
CPU × tfCPU∑

f∈frequencies t
f
CPU

(2)

Disk and memory energy models use a similar approach of
capturing resources and estimating energy consumption. Disk
energy model uses the number of bytes read and written by
the application (see Formula 3), while the memory mode uses
the percentage of RAM memory occupied by the application.
These models were validated with an error margin of around
3% on average [14], [15].

Pdisk = Bytesread × (
DiskPowerread
DiskRateread

)

+Byteswrite × (
DiskPowerwrite

DiskRatewrite
) (3)

IV. VALIDATION

We validate our approach using the use case shown in
Figure 1 where we identify two executable program slices,
the first one is for the sort feature and the second one for
the uniq feature. Following the extraction of these slices

2http://www.noureddine.org/research/jolinar

Fig. 2. Jolinar’s output for uniq slice with 10’000’000 inputs

using PORBS, we apply our energy model using Jolinar
to estimate the amount of energy consumed by each of the
slices when processing a file with 100,000, 1,000,000 and
10,000,000 integer values using a machine running an Intel
Pentium T3400 processor running at 2.16 GHz and a Seagate
Momentus 5400.5 SATA hard disk.

Figure 2 shows the energy output running for uniq slice
with 10,000,000 inputs as provided by Jolinar. Table I
outlines the energy results for the different inputs, detailing
energy consumed by the CPU, disk and memory, for both the
sort and uniq slices. The results show an exponential growth
in the energy consumption for the sort feature, going from
10 joules to more than 1415 joules when integer inputs are
multiplied by 100. The majority of this energy is due to sorting
calculations (therefore the CPU), with an increase of memory
energy for larger data sets. Nearly a third of the energy
(31.2%) consumed by the 10 million integer sort feature is
due to memory access (read/write) for sorting. In particular,
Collections.sort(), which is used in the sort feature
(see line 26 in Figure 1), requires a temporary storage of up
to n/2 object references [16]. On the other hand, the uniq
feature exhibits a much lower memory energy consumption as
the unique method (see line 29, Figure 1) only adds input
to a hashset and a list.

Figure 3 and 4 show the power consumption of the
sort and uniq features with 10,000,000 inputs, respectively.
Initially, there is an increase in disk power consumption
due to disk activities reading the input file (e.g., method
readFile(String s) in lines 14–23 in Figure 1). Mem-
ory consumption for sort is constant across the experiment as
Java allocates a large memory buffer for sorting and did not
require additional memory space. More interestingly, the graph
outlines spikes in the CPU power consumption which are
explained by the sorting cycles in the algorithm and the copy-
ing of data in-between. With a shorter experiment duration,
uniq seeks processing power for copying and clearing Java

sort uniq
Input File Size Input Size CPU Disk Memory Total CPU Disk Memory Total

556K 100000 9.51 0.01 0.23 9.75 5.49 0.01 0.07 5.57
5.4M 1000000 55.6 0.12 7.46 63.18 8.68 0.12 0.22 9.02
54M 10000000 972.3 1.18 441.44 1414.92 54.34 1.18 6.53 62.05

TABLE I
ENERGY CONSUMPTION BY THE FEATURES SORT AND UNIQ FOR VARIOUS INPUT SIZES

collections objects (a hashset and a list) as seen in Figure 4.
Comprehension of energy consumption by feature can help

developers identify the features that are consuming more
energy and use additional information (such as importance
and likely frequency of use) to decide on where to focus
optimisation efforts (e.g. optimise code or dedicate energy
efficient resources to frequently used features).

0

2

4

6

8

10

12
Power	consumption	of	the	sort	feature	(in	watts)

CPU Disk Memoy

Fig. 3. Power consumption of the sort slice with 10,000,000 inputs

0

2

4

6

8

10

12
Power	consumption	of	the	uniq	feature	(in	watts)

CPU Disk Memory

Fig. 4. Power consumption of the uniq slice with 10,000,000 inputs

V. SUMMARY AND FUTURE WORK

In this paper, we present a novel approach for better
understanding the amount of energy consumed by software
at a feature level as compared to traditional methods which
analyse energy consumption based on software artefacts (e.g.
function or process). We argue the value of such analysis and
validate our approach by using PORBS to extract executable
slices from an example program for each specific feature.
We then use Jolinar to measure the amount of energy
consumed by these features. Our validation shows that we
are able to identify and measure the energy consumption of
features (slices), which could help software engineers conduct
a new level of analysis and optimisation (e.g. focus on what
matters most).

Future work includes extending our empirical validation
using large real-world cloud-based systems where such in-
formation is likely to have a huge impact. We also plan to
automate the energy monitoring at feature-level, and expand
our energy models to additional hardware and platforms in the
cloud. Finally, our future work will also consider calculating
in real-time the GHG emissions of features based on energy
consumption and power grid mix (e.g. % renewables) data in
countries where such information is readily available.

REFERENCES

[1] W. Vereecken, W. Van Heddeghem, D. Colle, M. Pickavet, and P. De-
meester. Overall ICT footprint and green communication technologies.
In Communications, Control and Signal Processing (ISCCSP), 2010 4th
International Symposium on, pages 1–6, March 2010.

[2] Molly Webb. SMART 2020: enabling the low carbon economy in the
information age, a report by The Climate Group on behalf of the Global
eSustainability Initiative (GeSI). GeSI, 2008.

[3] M. A. Storey. Theories, methods and tools in program comprehension:
past, present and future. In 13th International Workshop on Program
Comprehension, May 2005.

[4] R. Bashroush, E. Woods, and A. Noureddine. Data center energy
demand: What got us here won’t get us there. IEEE Software, 33(2):18–
21, Mar 2016.

[5] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. A review of
energy measurement approaches. SIGOPS Oper. Syst. Rev., 47(3):42–49,
November 2013.

[6] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. Monitor-
ing energy hotspots in software. Automated Software Engineering,
22(3):291–332, 2015.

[7] Ding Li, Shuai Hao, William G. J. Halfond, and Ramesh Govindan. Cal-
culating source line level energy information for Android applications.
Proceedings of the 2013 International Symposium on Software Testing
and Analysis - ISSTA 2013, page 78, 2013.

[8] Andrea De Lucia. Program slicing: Methods and applications. In 1st

IEEE International Workshop on Source Code Analysis and Manipula-
tion, pages 142–149, Los Alamitos, California, USA, 2001.

[9] Andrea De Lucia, Anna Rita Fasolino, and Malcolm Munro. Under-
standing function behaviours through program slicing. In 4th IEEE
Workshop on Program Comprehension, pages 9–18, March 1996.

[10] W. E. Wong, S. S. Gokhale, J. R. Horgan, and K. S. Trivedi. Locating
program features using execution slices. In Application-Specific Systems
and Software Engineering and Technology, pages 194–203, 1999.

[11] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating
features in source code. 29(3), 2003. Special issue on ICSM 2001.

[12] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke,
and Shin Yoo. ORBS: Language-independent program slicing. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on
the Foundations of Software Engineering, FSE 2014, pages 109–120,
2014.

[13] Mark Weiser. Program slicing. In 5th International Conference on
Software Engineering, pages 439–449, San Diego, CA, March 1981.

[14] Adel Noureddine, Aurelien Bourdon, Romain Rouvoy, and Lionel Sein-
turier. A preliminary study of the impact of software engineering on
greenit. In Proceedings of the First International Workshop on Green
and Sustainable Software, Piscataway, NJ, USA, 2012. IEEE Press.

[15] Adel Noureddine. Towards a Better Understanding of the Energy
Consumption of Software Systems. Theses, Université des Sciences et
Technologie de Lille - Lille I, March 2014.

[16] Java class collections. https://docs.oracle.com/javase/7/docs/api/java/util/
Collections.html.

https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html
https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html

	Introduction
	Motivation & Related Work
	Approach
	Feature slicing
	Energy measurement

	Validation
	Summary and Future Work
	References

