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Abstract 

Most existing research on software release time determination assumes that parameters of 

the software reliability model (SRM) are deterministic and the reliability estimate is 

accurate. In practice, however, there exists a risk that the reliability requirement cannot be 

guaranteed due to the parameter uncertainties in the SRM, and such risk can be as high as 

50% when the mean value is used.  It is necessary for the software project managers to 

reduce the risk to a lower level by delaying the software release, which inevitably 

increases the software testing costs. In order to incorporate the managers’ preferences 

over these two factors, a decision model based on multi-attribute utility theory (MAUT) 

is developed for the determination of optimal risk-reduction release time.  
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1. Introduction 

Software plays key roles in many industrial systems (e.g. power grid, telecommunication 

network, internet, etc) of modern society. Software reliability is of great importance for 

the stable operation of such systems. To ensure the reliability, software needs to be 

systematically tested prior to its release to the market. During the testing phase, the latent 

software faults are identified, isolated and removed. As a result, software reliability is 

improved. Based on the time-to-failure data obtained from the testing phase, software 

reliability can be measured and predicted using appropriate software reliability models 

(SRMs) (Musa et al., 1987, Xie, 1991, Lyu, 1996).  

 

Besides measuring and predicting software reliability, the SRMs are often used to support 

the software project managers making important decisions. A typical application is to 

advice the managers when to release the software. Consequently, the optimal release time 

determination during the software testing phase has become an extensively researched 

topic (Okumoto and Goel, 1980, Yamada et al., 1984, Yamada and Osaki, 1985, Pham, 

1996, Pham and Zhang, 1999, Xie and Yang, 2003, Huang and Lyu, 2005, Boland and Ní 

Chuív, 2007, Liu and Chang, 2007, Ho et al., 2008, Yang et al., 2008, Lai et al., 2011, Li 

et al., 2011). Okumoto and Goel (1980) originally formulated and studied the optimal 

software release time determination problem. Yamada et al. (1984) studied the optimum 

release policies minimizing the total expected software cost with a scheduled software 

delivery time. Yamada and Osaki (1985) developed a decision-making model, where both 

reliability and cost are considered. Pham and Zhang (1999) developed a software 

reliability-cost model to determine the optimal release policies that maximize the 

expected net gain in reliability. Pham (1996), Xie and Yang (2003), and Boland and Ní 

Chuív (2007) investigated the effect of imperfect debugging on release time 

determination. Huang and Lyu (2005) highlighted the importance of testing effort and 

testing efficiency in this decision problem. Ho et al. (2008) emphasized the learning 

effects for release time determination. Liu and Chang (2007) proposed a non-Gaussian 

Kalman filter model for a reliability-constrained software release policy. More recently, 

Yang et al. (2008) developed a new optimal software release time model, which can 

control the risk of the project being over-budgeting. Li et al. (2011) proposed a model for 
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the optimal version-updating time determination of open source software using multi-

attribute utility theory (MAUT) to combine two decision attributes: development time 

and reliability. Similar as (Yamada and Osaki, 1985), Lai et al. (Lai et al., 2011) studied 

the software release time policy considering both reliability and software cost.  

 

In the release time determination problem, meeting the reliability requirement is of great 

importance. This is because the customers generally have a minimum reliability 

requirement, which can be specified in the contract. In order to check whether the 

reliability requirement is satisfied, SRM is often adopted to predict the reliability of 

software after its release. Most existing research on release time determination assumes 

that the parameters of the software reliability model are deterministic and the reliability 

estimate is accurate (Yamada and Osaki, 1985, Xie and Yang, 2003, Huang and Lyu, 

2005, Boland and Chuĭv, 2007, Liu and Chang, 2007, Ho et al., 2008, Yang et al., 2008, 

Li et al., 2011). In practice, however, there exists a risk that the reliability requirement 

cannot be guaranteed due to the uncertainties in the software testing process which are 

reflected in the parameters of SRMs, and such risk can be as high as 50% if the software 

is released at the moment the estimated reliability equals to the reliability requirement 

(shown in Section 2). It is necessary for managers to reduce the risk to a lower level, and 

thus the testing process is expected to be longer, which inevitably increases the costs of 

testing. In order to balance between reducing the risk of unfulfilling the reliability 

requirement and controlling the cost incurred by release delay, this paper develops a new 

decision model for software release time determination, using MAUT (Fishburn, 1970) to 

optimize the two conflicting objectives simultaneously. 

 

The rest of the paper is organized as follows. In Section 2, the limitations of the existing 

research on software release time determination are further discussed, which motivate us 

to develop a new decision model. In addition, the attributes including risk and delay 

incurred cost are formulated. In Section 3, the decision model based on MAUT is 

presented, and the procedures of constructing it are described. In Section 4, the proposed 

decision model is illustrated by a case study. In Section 5, threats to validity are discussed. 

Finally, concluding remarks are presented in Section 6. 
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2. Model Formulation 

Considering the minimum reliability requirement level R0, the decision problem is 

typically formulated as 

0)|( RtxR  ,                                                    (1) 

where )|( txR  is the conditional software reliability, defined as the probability that the 

software will operate without failure within time interval ],( xtt   given that it is released 

at t. The optimal release time T is then the minimum testing time required so that the 

software reliability reaches the level R0. In most software reliability models, there are a 

set of parameters  m ,...,, 21θ  (where m is the number of parameters) used to 

represent the optimal release time T  by a function  021 ,,...,, RfT m . To solve T, 

most existing research works assume that these model parameters are known without 

uncertainty, and )|( txR  can model the actual software reliability exactly (Yamada and 

Osaki, 1985, Xie and Yang, 2003, Huang and Lyu, 2005, Boland and Chuĭv, 2007, Liu 

and Chang, 2007, Ho et al., 2008, Yang et al., 2008, Li et al., 2011). 

 

2.1 Risk considerations  

In reality, the exact values for these model parameters are often unknown. Instead, they 

are estimated from the collected time-to-failure data. Parameter uncertainty arises since 

the estimated parameters are subject to the random variations (or noises) in the data (Dai 

et al., 2007). Due to the uncertainty of parameters, the software reliability computed from 

SRM is no longer deterministic. Consequently, the optimal release time T given a 

reliability target is also a random variable.  

 

When the SRM parameters are estimated by the maximum likelihood estimation (MLE) 

method (Nelson, 1982), it is shown that the optimal release time T given R0 is 

asymptotically normally distributed with mean T̂  and variance  TVar ˆ . Here, T̂  is 

obtained from solving (1) with the estimated parameters, and  TVar ˆ  is the variance of T̂ . 

Details about these quantities are presented in the Appendix 1.  
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Considering the uncertainty in T, the risk that software cannot meet the reliability 

requirement when it is released at time t can be quantified as  

     )
)ˆ(

ˆ
(1)(| 00

TVar

Tt
TtPRtxRPtr




,                           (2)
 

where  x  is the cumulative probability function (CDF) of standard normal distribution. 

It is seen that when the mean value of release time, T̂  is used, there is )0(1  =50% 

chance that the reliability requirement cannot be guaranteed. Such risk is too high to be 

acceptable. As a result, reducing the risk to a lower level to improve the confidence on 

the software reliability becomes an important issue. To account for this, the risk-reduction 

release time TR is introduced as, 

 TVarzTT rR
ˆˆ

0
 ,                                                  (3) 

where r0 denotes the acceptable risk level of managers, and 
0r

z  is the (1-r0) quantile of 

the standard normal distribution. As seen from (3), the release time based on risk 

reduction requires a delay of   TVarzr
ˆ

0
, which often results in the increase of the  

testing costs. This is a useful approach if the managers are certain about the risk level 

required and are committed to achieve it at all costs. On the other hand, it is also easy to 

elicit a maximum tolerable risk value given the project budget (Nan and Harter, 2009). 

  

2.2 Cost Considerations 

From the managers’ perspective, it is also important to control the cost incurred by 

release delay (Pham and Zhang, 1999). Let the testing cost function be denoted by C(t), 

the delay incurred cost at time t ( Tt ˆ ) is obtained as,  

  )ˆ()( TCtCtCp                                                (4) 

The discussions above indicate that reducing the risk and controlling the delay incurred 

cost are two important but conflicting criteria that should be considered simultaneously 

when determining the software release time. Therefore, it is natural to incorporate the 

managers’ preference into the decision process to make a compromise between these two 
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criteria. In Section 3, the MAUT is adopted, and a decision model is developed for the 

determination of optimal release time. 

 

3. The decision model based on MAUT  

The application of MAUT is based on a one-dimensional multi-attribute utility function, 

which is the measure of the attractiveness of the conjoint outcome of the different 

attributes. The additive form of the multi-attribute utility function is given by 

   



n

i

iin duwdddU
1

21 ,..., ,                                        (5) 

where each attribute is denoted by di, i=1,2,…n, the attractiveness of each attribute is 

represented by the single utility function u(di) and wi is the scaling constant which 

represents the importance weight for the utility u(di). The sum of the weights is equal to 1 

(von Winterfeldt and Edwards, 1986). By maximizing the multi-attribute utility function, 

the best alternative (i.e. the best set of values of the decision variables) is obtained, which 

gives the maximum attractiveness of the conjoint outcome of the attributes. 

 

The main reason for using MAUT in our approach is that the typical management 

scenarios can be appropriately represented within its structure. In the decision problem 

formulated, there are two competing objectives to be balanced: minimizing the risk and 

minimizing the delay incurred cost. Given that the risk reduction and the cost control are 

both subjective, the single utility function is used to reveal managers’ preference towards 

each attribute. By allocating different values of importance weights to the utilities of the 

attributes, managers can use the multi-attribute utility function to measure the total 

attractiveness of the conjoint outcome of the risk and the delay incurred cost given a 

specified release time.  

 

Another reason for the selection of MAUT is that it has strong theoretical foundations 

due to the use of the expected utility theory. The utility theory takes managers’ risk 

attitude into account, e.g. risk neutrality, risk aversion and risk proneness (Fishburn, 

1970). Furthermore, MAUT provides a feasible approach for considering the continuous 

scale of the alternatives. Specifically, in our problem, the release time as the alternative 
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should be considered in a continuous scale. Last but not least, when managers have other 

requirements, i.e., the minimization of the total cost in the software development cycle 

(Sgarbossa and Pham, 2010), the control of the uncertainty in the total cost function 

(Yang et al., 2008), the optimized resource allocation (Ngo-The and Ruhe, 2009), our 

decision model can be extended by introducing more attributes in the framework of 

MAUT. The proposed MAUT procedure for our decision problem is discussed in detail 

below. 

 

3.1 Elicitation of single utility function for each attribute 

After the quantification of each attribute by (2) and (4), managers’ preference towards the 

performance of each attribute should be assessed. To represent this, the single utility 

function is used. Suppose that the highest and lowest expected risks are first selected as 

0
0r  and 1

0r , respectively. In real applications, they provide the lowest and highest 

satisfactions to the managers, respectively. Cukic et al. (Cukic et al., 2003) suggests that 

the reliability and the confidence of the reliability are usually application specific and 

predefined. For example, suppose that managers can only accept a risk level below 5%. 

Then, %50
0 r  and 01

0 r . At these boundary conditions, we have   00
0 ru and   11

0 ru . 

The superscript of ir0 ,  1 ,0i  is used to represent the corresponding utility value, which 

is determined so that the management is indifferent between the following two 

alternatives: 1) getting risk ir0  with certainty; 2) getting risk 
0

0r  with probability (1-i) and 

1

0r  with probability i (Keeney and Raiffa, 1976, von Winterfeldt and Edwards, 1986). The 

single utility function is generally described by the linear or exponential function shown 

as follows (Keeney and Raiffa, 1976): 

  00 rru    or    00 exp rru    ,                            (6) 

where  ,   and   are constants which ensure    1 ,00 ru .  

To determine which form in (6) should be used, we can compare the certainty 

equivalent u(50%) and the expected value of the 50-50 lottery (u(0%)+u(100%))/2. 

Specifically, if they are equal to each other, the managers are risk neutral and the linear 

form should be used. In this case, the utility function can be written as  
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 
1

0

0

0

1

00
0 1

rr

rr
ru




  

Otherwise, the managers are not risk neutral and the exponential form should be adopted. 

In this case, the utility function can be written as  

 
   
   1

0

0

0

0

0

0
0

expexp

expexp

rr

rr
ru









 

where   is the non-zero solution to       0exp2expexp 5.0

0

0

0

1

0  rrr  .  

 

3.2 Estimation of scaling constants 

The following step is the estimation of the scaling constants w1 and w2=1-w1, which 

correspond to the important weights of u(r0) and u(Cp). There are two common methods 

to assess the scaling constants: certainty scaling and probabilistic scaling (von 

Winterfeldt and Edwards, 1986). Given that only two attributes are considered in our 

problem, the probabilistic scaling technique is used.  

 

In the probabilistic scaling approach, the managers are asked to compare their preference 

over the two choices: 1) a deterministic joint outcome  01

0 , pCr  comprising of the lowest 

risk and the highest delay incurred cost; 2) the lottery consists of both attributes at their 

best levels  11

0 , pCr
 
with probability p and both attributes at their worst levels  00

0 , pCr
 

with probability 1-p. The managers are first asked to compare the deterministic outcome 

with the lottery having a 50-50 chance of occurrence. If the managers prefer the certain 

outcome, the probability p is gradually increased until they are indifferent with these two 

choices. On the other hand, if the managers prefer the lottery, we decrease p. When the 

indifference is achieved, p is equal to the scaling constant w1 for the risk attribute (von 

Winterfeldt and Edwards, 1986). 

 

3.3 Maximization of multi-attribute utility function 

By maximizing the multi-attribute utility function  

     ,)()()(),( 2010 tCuwtruwtCtrU pp                                           (7) 
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the optimal risk-reduction release time is obtained as   )(),(maxarg 0

* tCtrUT p
t

R  . It is 

worth noting that (7) is based on certain independence assumptions. Interested readers 

can refer to (Keeney and Raiffa, 1976) for detailed theoretical discussions. In real-world 

applications, these assumptions are commonly accepted (Brito and de Almeida, 2008, 

Ferreira et al., 2009). Moreover, it has been shown that even when these assumptions are 

violated, the additive multi-attribute utility function can provide fairly good 

approximations (Edwards, 1977, Farmer, 1987). 

   

3.4 Summary of the procedure 

The first step of the implementation of the decision model is to quantify the attributes, i.e., 

the risk and the delay incurred cost. For the risk attribute, based on the standard statistical 

results, risk can be quantified by (2). For the cost attribute, the generalized cost model is 

used and it is quantified by (4). The following step is the elicitation of single utility 

functions for both attributes. After this, the scaling constants for each attribute are 

determined following procedures in Section 3.2. Finally, based on the single utility 

functions and the scaling constants, the multi-attribute utility function is obtained as 

shown in (7). The optimal risk-reduction release time is determined by maximizing it.  

 

4.  Case Study 

In this section, the proposed optimal release time determination approach is applied onto 

the case study used in (Pham and Zhang, 1999). By considering the risk and the delay 

incurred cost simultaneously, the optimal release time is determined by incorporating the 

managers’ preference into the decision process. In addition, sensitivity analysis is 

introduced to assist checking the robustness of the final decision.  

 

4.1 The determination of optimal risk-reduction release time 

Step 1: quantification of attributes 

The Goel-Okumoto (GO) model (Goel and Okumoto, 1979) was adopted in (Pham and 

Zhang, 1999) to analyze the failure data for reliability assessment. In this work, we use 

this model as well. It is noted that the procedures are similar if other software reliability 
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models are adopted. Moreover, future research can be carried out to analyze the impact of 

parameter uncertainties when different models are used for software release time 

determination. The mean value function and the failure intensity function of the GO 

model are given by 

)1()( bteatm   and btabet )(                                   (8) 

where a denotes the total number of expected faults in the software and b represents the 

fault detection rate. Furthermore, the reliability of the software system during its 

operational phase is obtained as 

 xttxR )(exp)|(                                              (9) 

and )|( txR  represents the conditional software reliability, which is defined as the 

probability that the software will not fail given a specified time interval ],( xtt   in the 

operational phase (Yang and Xie, 2000). Since x is usually set to 1 without loss of 

generality, the release time given the reliability target R0 is  











)/1ln(
ln

1

0R

ab

b
T                                               (10) 

Suppose that customer has indicated a reliability requirement of R0=0.95. Based on the 

maximum likelihood estimates 862.139ˆ a  and 144.0ˆ b  (see Appendix 2 for details), 

the mean value of the release time is 479.41ˆ T . Moreover, from the standard statistical 

analysis (Nelson, 1982), as shown in the appendix, the variance of the release time is 

obtained 758.9)ˆ( TVar . Accordingly, the attribute risk can be quantified by substituting 

these estimated values into (2). 

 

The cost model proposed by Pham and Zhang (1999) consists of two parts, i.e., the 

expected general testing cost  tC1  and the expected cost of removing errors during 

testing phase  tC2  as 

  tctC 11  ,     ytmctC 22  ,                                          (11) 

where c1 is the software test cost per unit time,   is the discount rate of the testing cost 

due to the learning effect, c2 is the cost of removing an error per unit time during the 
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testing phase and 
y is the expected time of removing an error during this period. 

According to Pham and Zhang (1999), the coefficients in the cost model can be 

determined by empirical data and previous experiences of the staff members. We set the 

parameters as: c1=700, 95.0 , c2=60 and 1.0y , same to the assignments in (Pham 

and Zhang, 1999). It is worth noting that risk is expected to be less than 50% from 

managers’ point of view. Therefore the software should be released after 479.41ˆ T  in 

order to reduce the risk, that is, we just need to consider ),ˆ[  Tt  . Accordingly, the 

delay incurred cost at the time t is obtained as  

           yp TmtmcTtctC 
 ˆˆ

21 





  .                              (12) 

 

Step 2: Elicitation of single utility functions 

The following step is to assess managers’ preference towards the performance of the risk 

and the delay incurred cost. Interviews with the managers are needed to elicit reasonable 

single utility functions. Suppose that management scenarios are as follows:  

(1) Managers are risk neutral towards both attributes.  

(2) Managers indicate that they can only accept up to a risk level of 5%, and the smaller 

the risk the better, until the risk can be eliminated. 

(3) Managers have an incurred cost budget of $15000 and they are completely unsatisfied 

when all the money is spent; their satisfaction increases when the expense decreases, and 

the highest satisfaction level is achieved when no money is spent. 

 

According to the management scenarios above, corresponding explanations on the 

determination of single utility functions are shown as follows: 

(1) Since managers are risk neutral towards both attributes, the linear form of the single 

utility function is used.  

(2) The lowest risk requirement is %50
0 r  and the highest risk expectation is 01

0 r . 

The single utility function for risk is obtained as   00 201 rru  . 
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(3) The maximum cost budget is 150000 pC  and the highest satisfactory cost 

expectation is 01 pC . The single utility function for delay incurred cost is determined as 

  150001 pp CCu  . 

 

Step 3: Estimation of scaling constants 

At this stage, the scaling constant w1 is estimated first by comparing the deterministic 

joint outcome  01

0 , pCr  with the lottery consists of   11

0 , pCr  with probability p and 

 00

0 , pCr
 
with probability 1-p. Suppose managers claim that they are indifferent between 

these two choices when p is equal to 0.5, then w1=0.5. Since the sum of scaling constants 

is equal to one, w2 is equal to 0.5 as well.  

 

Step 4: Maximization of multi-attribute utility function 

Based on the estimated single utility functions and scaling constants, the multi-attribute 

utility function can be obtained by (7). Figure 1 shows this multi-attribute utility function 

as a function of the release time. This multi-attribute utility function is maximized when 

586.50* RT  and the corresponding risk and delay incurred cost at this time are 

  %18.0*

0 RTr  and   9.5002* Rp TC  respectively. As a result, software should be released 

at the optimal risk-reduction release time 586.50* RT  to appropriately compromise 

between reducing the risk and controlling the delay incurred cost.  

 

 

Figure 1 Multi-attribute utility function given different release times 

 

4.2 Illustration of the proposed decision model 

In Figure 3, we denote 479.41ˆ T  as the mean value of release time without 

consideration of parameter uncertainty. If we release the software at this time, no cost is 

incurred and 01 pC . However, at this release time, the 50% risk is too high to be 

acceptable by the managers because the lowest risk requirement %50
0 r  is not satisfied. 
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At this point, the manager has to make a compromise between reducing the risk and 

controlling the delay incurred cost.  

 

With this consideration, the software testing time is expected to increase. We denote 

  618.460

0 rT  and   026.690 pCT  as the release times when the lowest risk 

requirement %50
0 r  and the maximum cost budget 150000 pC  are satisfied 

respectively.  When t increases between these two time points, the single utility function 

associated with risk increases and the single utility function associated with cost 

decreases. As the weighted sum of the two single utility functions, the multi-attribute 

utility function increases first and then decreases. The optimal risk-reduction release time 

which maximizes the multi-attribute utility function is 586.50* RT , and the 

corresponding risk and delay incurred cost are    %18.0*

0 RTr  and   9.5002* Rp TC  

respectively. 

 

Finally, it should be noted that during the time periods   0
0 ,ˆ rTT  and    ,0

pCT , the 

multi-attribute utility function is dominated by only one of the attributes. More 

specifically, for the first period, since the lowest risk requirement  %50
0 r  has not been 

satisfied, the delay incurred cost is the only attribute contributing to the multi-attribute 

utility function. Given that the delay incurred cost is increasing over time and managers’ 

satisfaction level is decreasing with it, the multi-attribute utility function is decreasing 

during this time period. While for the second time period, the multi-attribute utility 

function is dominated by the risk attribute and it equals to 0.5u(r0). Figure 1 shows that 

the multi-attribute utility function remains at 0.5 level when release time is greater than 

 0
pCT . It implies that the available cost budget 150000 pC  is sufficient for the managers 

to reduce the risk to the best level 01
0 r . 

 

4.3 Sensitivity analysis 
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As shown in the Sections above, the optimal risk-reduction release time can be 

determined by maximizing the multi-attribute utility function. However, since most 

parameters in the MAUT are obtained based on the subjective assessments of the 

managers, the optimal risk-reduction release time obtained may not be accurate. In 

practice, the managers have to know how robust the optimal decision is, and thus 

sensitivity analysis is needed. More specifically, sensitivity analysis can help to 

investigate the relative variation of the optimal solution when a specific parameter 

changes, i.e., the change of cost parameters, scaling constants, etc. The results from 

sensitivity analysis reveal the stability of the optimal solution. 

 

Sensitivity analysis is generally done by changing one parameter and setting the other 

parameters at the fixed levels (Xie and Hong, 1998, Li et al., 2010). The sensitivity of the 

optimal decision to one parameter x can be quantified by xqS , , defined as the relative 

change of the optimal risk-reduction release time when x is changed by 100q% (Xie and 

Hong, 1998, Li et al., 2010). 

)(

)()(
*

**

,
xT

xTqxxT
S

R

RR
xq


                                                 (13) 

A large value of xqS ,  indicates that parameter x has significant impact onto the 

determination of *
RT , and *

RT  is regarded as sensitive to the change of x. Normally, 

managers should pay special attention to the important parameters as the optimal decision 

*
RT  is heavily dependent on the accurate estimates of them (Xie and Hong, 1998, Li et al., 

2010). 

 

From a practical point of view, it may not be necessary to conduct sensitivity analysis for 

all the parameters in this optimal release time problem. For instance, parameters c2 and 

y  are expected to be insignificant, because the expected cost to remove errors from 

time t to T̂  is negligible. More specifically, given a high reliability requirement such as 

R0=0.95, there will be few faults detected from T̂  to t. Additionally, as c1=700, c2=60  

and 1.0y ; compared with the estimated value of c1, the product of c2 and y  is too 
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small to have any impact on the delay incurred cost function in (12). Another example is 

the determination of 1
0r and 1

pC , which represents the highest risk reduction expectation 

and highest cost control expectation, respectively. Since managers always prefer less risk 

and less cost, setting them to zero can properly describe the best cases for risk reduction 

and cost control respectively. 

 

In contrast, parameters c1 and   are much more important since they dominate the 

change of the delay incurred cost over time. Similarly, 0
0r  and 0

pC  are of importance as 

shown in Figure 1, where  0
0rT  and  0

pCT  are the changing points of multi-attribute 

utility function. Furthermore, scaling constants w1 and w2 are also important since they 

represent the different importance weights allocated to both attributes, which directly 

affect the final solution of *
RT . Since the sum of these two weights is equal to one, 

investigating one factor is sufficient. Results of sensitivity analysis with regard to these 

parameters are summarized in Table 1. Specially, since parameter   represents the 

learning effect of the testing team which is not greater than 1, the value of ,qS  when 

1  is used for the positive change of  . 

 

Table 1 Sensitivity analysis results given different parameters 

q -30% -20% -10% 10% 20% 30% 

1,wqS  -1.36% -0.88% -0.43% 0.42% 0.84% 1.27% 

0, pCq
S  -0.77% -0.48% -0.22% 0.20% 0.38% 0.55% 

0
0,rq

S  0.74% 0.47% 0.22% -0.20% -0.39% -0.57% 

1,cqS  0.74% 0.47% 0.22% -0.20% -0.39% -0.57% 

,qS  2.91% 1.96% 0.99% -0.53% 

 

It can be seen that these parameters do not significantly influence the final solution on *
RT  

since all the absolute values of xqS ,  are below 3%. In other words, the optimal risk-

reduction release time obtained is robust to the changes in the parameters. Moreover, 
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results in Table 1 indicate that *
RT  is positively correlated with w1 and 0

pC , and negatively 

correlated with 0
0r , c1 and  . Physical meanings of these parameters can actually explain 

these results. For instance, when w1 increases, it means that more importance is allocated 

for the control of risk. As a result, *
RT  increases as well.  

 

5. Threats to validity  

Based on the standard statistical analysis (Nelson, 1982), there is 50% chance that the 

software will not meet its reliability requirement when the mean value of the release time, 

T̂  is used. However, it should be noted that the standard statistical analysis is an 

approximation. It is still an open question whether the risk is really as high as 50%. To 

investigate this problem, an empirical case study is conducted by the Monte Carlo 

simulation using MATLAB tool.  

 

In particular, the GO model is adopted, where the preset parameters are given by 100a  

and 1.0b . Suppose that the reliability requirement is 95.00 R , then the real value of 

optimal release time can be obtained as 73.52realT . According to the general 

procedures discussed in (Lyu, 1996), 10000 failure data sets are generated, and each 

failure data set is composed of ninety time-to-failure data points. Since each failure data 

set can produce an estimate of the optimal release time denoted by T̂ , risk that software 

cannot meet the reliability requirement can be easily estimated by comparing these T̂  

values with realT , and such risk is estimated as %21.600̂ r . Although this result is 

different from the estimated risk based on the standard statistical analysis, it is another 

piece of evidence that the risk due to parameter uncertainty cannot be neglected, because 

the risk can be even higher than 50%. 

 

In addition, the normal distribution is used to quantify the uncertainty of optimal release 

time. Although this type of approximation technique is widely applied to reliability 

engineering, it may not be accurate. In this case, incorporating experts’ opinion and past 

experience could be a choice. For example, experts could probably know the distributions 
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of some model parameters based on their past experience on similar software projects. 

Based on this type of information, parameter uncertainty can be effectively quantified by 

combining the Maximum-Entropy Principle (MEP) into the Bayesian approach (Dai et al., 

2007). By incorporating this quantification of parameter uncertainty into the simulation 

of optimal release time, the uncertainty of optimal release time can be modeled more 

sufficiently. 

   

Besides the consideration of risk, the delay incurred cost is incorporated into our decision 

problem. This is because the risk cannot be overlooked due to the limit cost budget of the 

project (Nan and Harter, 2009). Management needs to strike a balance between reducing 

the risk and controlling the delay incurred cost. In other words, given a reliability 

requirement, we introduce two new important dimensions for the determination of 

optimal release time: the risk that software cannot meet the reliability requirement due to 

parameter uncertainty, and the delay incurred cost associated with such risk. However, it 

should be noted that the formulation here may not be sufficient for release time 

determination. In reality, managers can also have other requirements, which may include 

the minimization of the total cost in the software development cycle (Sgarbossa and 

Pham, 2010), the control of the uncertainty in the total cost function (Yang et al., 2008), 

and the optimized resource allocation (Ngo-The and Ruhe, 2009), etc. When these 

requirements are considered, our decision model can be extended by introducing more 

attributes into the framework of MAUT. 

 

6. Conclusions 

The software release problem during the testing phase is of great importance in the 

software development cycle. This paper discusses in detail when to release software 

given a reliability constraint. In particular, we highlight the risk in the reliability estimate 

due to the parameter uncertainty in the SRM. However, reducing such risk inevitably 

increases the testing costs. Thus, from the management’s point of view, a compromise 

should be made between reducing the risk and controlling the delay incurred cost 

associated with it. To account this issue, a decision model based on MAUT is developed 

for the determination of optimal risk-reduction release time. The proposed model 



 

17 

 

provides project managers with a boarder view of the release time determination problem. 

It not only allows managers to optimize two criteria simultaneously, but also incorporates 

managers’ preference to the decision process. In this paper, the risk of not fulfilling the 

software reliability requirement is studied from the aspect of parameter uncertainties in 

the SRM. Future work can be conducted to analyze the effect of choosing different SRMs 

on the estimated optimal release time and the risk of not fulfilling the reliability 

requirement.  
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Appendix 1 

Parameters in the software reliability model are estimated on the basis of the recorded 

time-to-failure data. Maximum likelihood estimation (MLE) technique is generally 

adopted for such estimation. Based on the standard statistical analysis (Nelson, 1982), the 

optimal release time T given a reliability target is asymptotically normally distributed 

with mean T̂  and variance  TVar ˆ .   

 

Suppose that there are totally m model parameters to be estimated, m ,,, 21  . Let in  

denote the number of failures observed within each time interval ),[ 1 ii tt  , where 

tttt k  100  and t is the time at which the testing process has expired. The 

likelihood function for a non-homogeneous Poisson process (NHPP) model with mean 

value function )(tm  is 

    



 

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i i

ii

n

ii

n

tmtmtmtm
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i

1

11

!

)()(exp)()(
                             (14) 

By maximizing the likelihood function above, point estimates of model parameters can 

be determined. The variances of these estimators can be calculated following the 
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asymptotic theory for maximum likelihood estimation (Nelson, 1982). In particular, the 

Fisher information matrix is obtained as  
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According to the standard theory of MLE, when the data size is large,  m ,, 21   

converges to m-variate normal distribution with mean  m ˆ,ˆ,ˆ
21   and variance 

 )ˆ(,),ˆ(),ˆ( 21 mVarVarVar   . The asymptotic covariance matrix, which is the inverse of 

the Fisher information matrix, is given by 
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Subsequently, based on the covariance matrix, the uncertainty of other quantities, which 

are functions of parameters  m ,, 21  , can be quantified as well. In our release time 

determination problem, we denote  mfT  ,...,, 21  as the optimal release time given 

the reliability target. The variance of it is estimated by  
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where iT  /  is evaluated at  m ˆ,ˆ,ˆ
21  . Based on the standard statistical analysis 

(Nelson, 1982), T is asymptotically normally distributed with mean T̂  and variance 

 TVar ˆ . 
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Table 2 shows the software testing data used in (Pham and Zhang, 1999), which are 

summarized as the number of failures per one-hour interval of execution time.  

Table 2 Failure in 1 hour intervals and cumulative failures 

Hour (i) Number of failures (ni) Cumulative failures 

1 27 27 

2 16 43 

3 11 54 

4 10 64 

5 11 75 

6 7 82 

7 2 84 

8 5 89 

9 3 92 

10 1 93 

11 4 97 

12 7 104 

13 2 106 

14 5 111 

15 5 116 

16 6 122 

17 0 122 

18 5 127 

19 1 128 

20 1 129 

21 2 131 

22 1 132 

23 2 134 

24 1 135 

25 1 136 

According to (14), the likelihood function can be written as 
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According to (8), we have 
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Solving 0
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 gives 862.139ˆ a  and 144.0ˆ b . 
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