Rui Peng

Yan-Fu Li
email: yanfu.li@ecp.fr

Jun-Guang Zhang

Xiang Li

A risk-reduction approach for optimal software release time determination with the delay incurred cost

Keywords: software reliability, software release time, parameter uncertainty, multiattribute utility theory (MAUT)

Most existing research on software release time determination assumes that parameters of the software reliability model (SRM) are deterministic and the reliability estimate is accurate. In practice, however, there exists a risk that the reliability requirement cannot be guaranteed due to the parameter uncertainties in the SRM, and such risk can be as high as 50% when the mean value is used. It is necessary for the software project managers to reduce the risk to a lower level by delaying the software release, which inevitably increases the software testing costs. In order to incorporate the managers' preferences over these two factors, a decision model based on multi-attribute utility theory (MAUT) is developed for the determination of optimal risk-reduction release time.

1

Introduction

Software plays key roles in many industrial systems (e.g. power grid, telecommunication network, internet, etc) of modern society. Software reliability is of great importance for the stable operation of such systems. To ensure the reliability, software needs to be systematically tested prior to its release to the market. During the testing phase, the latent software faults are identified, isolated and removed. As a result, software reliability is improved. Based on the time-to-failure data obtained from the testing phase, software reliability can be measured and predicted using appropriate software reliability models (SRMs) [START_REF] Musa | Software Reliability: Measurement, Prediction, Application[END_REF][START_REF] Xie | Software reliability modelling[END_REF][START_REF] Lyu | Handbook of Software Reliability Engineering[END_REF].

Besides measuring and predicting software reliability, the SRMs are often used to support the software project managers making important decisions. A typical application is to advice the managers when to release the software. Consequently, the optimal release time determination during the software testing phase has become an extensively researched topic [START_REF] Okumoto | Optimum release time for software systems, based on reliability and cost criteria[END_REF][START_REF] Yamada | Optimum release policies for a software system with a scheduled software delivery time[END_REF][START_REF] Yamada | Cost-reliability optimal release policies for software systems[END_REF][START_REF] Pham | A software cost model with imperfect debugging, random life cycle and penalty cost[END_REF][START_REF] Pham | A software cost model with warranty and risk costs[END_REF][START_REF] Xie | A study of the effect of imperfect debugging on software development cost[END_REF][START_REF] Huang | Optimal release time for software systems considering cost, testing-effort, and test efficiency[END_REF][START_REF] Boland | Optimal times for software release when repair is imperfect[END_REF][START_REF] Liu | A reliability-constrained software release policy using a non-Gaussian Kalman filter model[END_REF][START_REF] Ho | The determination of optimal software release times at different confidence levels with consideration of learning effects[END_REF][START_REF] Yang | A study of uncertainty in software cost and its impact on optimal software release time[END_REF][START_REF] Lai | A Study of When to Release a Software Product from the Perspective of Software Reliability Models[END_REF][START_REF] Li | Reliability analysis and optimal version-updating for open source software[END_REF]. [START_REF] Okumoto | Optimum release time for software systems, based on reliability and cost criteria[END_REF] originally formulated and studied the optimal software release time determination problem. [START_REF] Yamada | Optimum release policies for a software system with a scheduled software delivery time[END_REF] studied the optimum release policies minimizing the total expected software cost with a scheduled software delivery time. [START_REF] Yamada | Cost-reliability optimal release policies for software systems[END_REF] developed a decision-making model, where both reliability and cost are considered. [START_REF] Pham | A software cost model with warranty and risk costs[END_REF] developed a software reliability-cost model to determine the optimal release policies that maximize the expected net gain in reliability. [START_REF] Pham | A software cost model with imperfect debugging, random life cycle and penalty cost[END_REF], [START_REF] Xie | A study of the effect of imperfect debugging on software development cost[END_REF], and [START_REF] Boland | Optimal times for software release when repair is imperfect[END_REF] investigated the effect of imperfect debugging on release time determination. [START_REF] Huang | Optimal release time for software systems considering cost, testing-effort, and test efficiency[END_REF] highlighted the importance of testing effort and testing efficiency in this decision problem. [START_REF] Ho | The determination of optimal software release times at different confidence levels with consideration of learning effects[END_REF] emphasized the learning effects for release time determination. [START_REF] Liu | A reliability-constrained software release policy using a non-Gaussian Kalman filter model[END_REF] proposed a non-Gaussian Kalman filter model for a reliability-constrained software release policy. More recently, [START_REF] Yang | A study of uncertainty in software cost and its impact on optimal software release time[END_REF] developed a new optimal software release time model, which can control the risk of the project being over-budgeting. [START_REF] Li | Reliability analysis and optimal version-updating for open source software[END_REF] proposed a model for the optimal version-updating time determination of open source software using multiattribute utility theory (MAUT) to combine two decision attributes: development time and reliability. Similar as [START_REF] Yamada | Cost-reliability optimal release policies for software systems[END_REF], [START_REF] Lai | A Study of When to Release a Software Product from the Perspective of Software Reliability Models[END_REF] studied the software release time policy considering both reliability and software cost.

In the release time determination problem, meeting the reliability requirement is of great importance. This is because the customers generally have a minimum reliability requirement, which can be specified in the contract. In order to check whether the reliability requirement is satisfied, SRM is often adopted to predict the reliability of software after its release. Most existing research on release time determination assumes that the parameters of the software reliability model are deterministic and the reliability estimate is accurate [START_REF] Yamada | Cost-reliability optimal release policies for software systems[END_REF][START_REF] Xie | A study of the effect of imperfect debugging on software development cost[END_REF][START_REF] Huang | Optimal release time for software systems considering cost, testing-effort, and test efficiency[END_REF][START_REF] Boland | Optimal times software release when repair is imperfect[END_REF][START_REF] Liu | A reliability-constrained software release policy using a non-Gaussian Kalman filter model[END_REF][START_REF] Ho | The determination of optimal software release times at different confidence levels with consideration of learning effects[END_REF][START_REF] Yang | A study of uncertainty in software cost and its impact on optimal software release time[END_REF][START_REF] Li | Reliability analysis and optimal version-updating for open source software[END_REF]. In practice, however, there exists a risk that the reliability requirement cannot be guaranteed due to the uncertainties in the software testing process which are reflected in the parameters of SRMs, and such risk can be as high as 50% if the software is released at the moment the estimated reliability equals to the reliability requirement (shown in Section 2). It is necessary for managers to reduce the risk to a lower level, and thus the testing process is expected to be longer, which inevitably increases the costs of testing. In order to balance between reducing the risk of unfulfilling the reliability requirement and controlling the cost incurred by release delay, this paper develops a new decision model for software release time determination, using MAUT [START_REF] Fishburn | Utility Theory for Decision Making[END_REF] to optimize the two conflicting objectives simultaneously.

The rest of the paper is organized as follows. In Section 2, the limitations of the existing research on software release time determination are further discussed, which motivate us to develop a new decision model. In addition, the attributes including risk and delay incurred cost are formulated. In Section 3, the decision model based on MAUT is presented, and the procedures of constructing it are described. In Section 4, the proposed decision model is illustrated by a case study. In Section 5, threats to validity are discussed.

Finally, concluding remarks are presented in Section 6.

Model Formulation

Considering the minimum reliability requirement level R 0 , the decision problem is typically formulated as

0) | (R t x R  , (1) where
) | (t x R
is the conditional software reliability, defined as the probability that the software will operate without failure within time interval] , (

x t t 
given that it is released at t. The optimal release time T is then the minimum testing time required so that the software reliability reaches the level R 0 . In most software reliability models, there are a set of parameters

  m    ,..., , 2 1  θ
(where m is the number of parameters) used to represent the optimal release time T by a function

  0 2 1 , ,..., , R f T m     . To solve T,
most existing research works assume that these model parameters are known without uncertainty, and

) | (t x R
can model the actual software reliability exactly [START_REF] Yamada | Cost-reliability optimal release policies for software systems[END_REF][START_REF] Xie | A study of the effect of imperfect debugging on software development cost[END_REF][START_REF] Huang | Optimal release time for software systems considering cost, testing-effort, and test efficiency[END_REF][START_REF] Boland | Optimal times software release when repair is imperfect[END_REF][START_REF] Liu | A reliability-constrained software release policy using a non-Gaussian Kalman filter model[END_REF][START_REF] Ho | The determination of optimal software release times at different confidence levels with consideration of learning effects[END_REF][START_REF] Yang | A study of uncertainty in software cost and its impact on optimal software release time[END_REF][START_REF] Li | Reliability analysis and optimal version-updating for open source software[END_REF].

Risk considerations

In reality, the exact values for these model parameters are often unknown. Instead, they are estimated from the collected time-to-failure data. Parameter uncertainty arises since the estimated parameters are subject to the random variations (or noises) in the data [START_REF] Dai | Uncertainty analysis in software reliability modeling by Bayesian approach with maximum-entropy principle[END_REF]. Due to the uncertainty of parameters, the software reliability computed from SRM is no longer deterministic. Consequently, the optimal release time T given a reliability target is also a random variable.

When the SRM parameters are estimated by the maximum likelihood estimation (MLE) method [START_REF] Nelson | Applied Life Data Analysis[END_REF], it is shown that the optimal release time T given R 0 is asymptotically normally distributed with mean T ˆ and variance   T Var ˆ. Here, T ˆ is obtained from solving (1) with the estimated parameters, and

  T Var ˆ is the variance of T ˆ.
Details about these quantities are presented in the Appendix 1.

Considering the uncertainty in T, the risk that software cannot meet the reliability requirement when it is released at time t can be quantified as

     )) ((1) (| 0 0 T Var T t T t P R t x R P t r         , (2)
where  

x  is the cumulative probability function (CDF) of standard normal distribution.

It is seen that when the mean value of release time, T ˆ is used, there is

) 0 (1   =50%
chance that the reliability requirement cannot be guaranteed. Such risk is too high to be acceptable. As a result, reducing the risk to a lower level to improve the confidence on the software reliability becomes an important issue. To account for this, the risk-reduction

release time T R is introduced as,   T Var z T T r R 0   , (3)
where r 0 denotes the acceptable risk level of managers, and 0 r z is the (1-r 0) quantile of the standard normal distribution. As seen from (3), the release time based on risk reduction requires a delay of

 

T Var z r 0 , which often results in the increase of the testing costs. This is a useful approach if the managers are certain about the risk level required and are committed to achieve it at all costs. On the other hand, it is also easy to elicit a maximum tolerable risk value given the project budget [START_REF] Nan | Impact of budget and schedule pressure on software development cycle time and effort[END_REF].

Cost Considerations

From the managers' perspective, it is also important to control the cost incurred by release delay [START_REF] Pham | A software cost model with warranty and risk costs[END_REF]. Let the testing cost function be denoted by C(t),

the delay incurred cost at time t (T t ) is obtained as,  ) () (T C t C t C p   (4)
The discussions above indicate that reducing the risk and controlling the delay incurred cost are two important but conflicting criteria that should be considered simultaneously when determining the software release time. Therefore, it is natural to incorporate the managers' preference into the decision process to make a compromise between these two criteria. In Section 3, the MAUT is adopted, and a decision model is developed for the determination of optimal release time.

The decision model based on MAUT

The application of MAUT is based on a one-dimensional multi-attribute utility function, which is the measure of the attractiveness of the conjoint outcome of the different attributes. The additive form of the multi-attribute utility function is given by

       n i i i n d u w d d d U 1 2 1 ,... , , (5)
where each attribute is denoted by d i , i=1,2,…n, the attractiveness of each attribute is represented by the single utility function u(d i) and w i is the scaling constant which represents the importance weight for the utility u(d i). The sum of the weights is equal to 1 (von [START_REF] Winterfeldt | Decision Analysis and Behavioral Research[END_REF]. By maximizing the multi-attribute utility function, the best alternative (i.e. the best set of values of the decision variables) is obtained, which gives the maximum attractiveness of the conjoint outcome of the attributes.

The main reason for using MAUT in our approach is that the typical management scenarios can be appropriately represented within its structure. In the decision problem formulated, there are two competing objectives to be balanced: minimizing the risk and minimizing the delay incurred cost. Given that the risk reduction and the cost control are both subjective, the single utility function is used to reveal managers' preference towards each attribute. By allocating different values of importance weights to the utilities of the attributes, managers can use the multi-attribute utility function to measure the total attractiveness of the conjoint outcome of the risk and the delay incurred cost given a specified release time.

Another reason for the selection of MAUT is that it has strong theoretical foundations due to the use of the expected utility theory. The utility theory takes managers' risk attitude into account, e.g. risk neutrality, risk aversion and risk proneness [START_REF] Fishburn | Utility Theory for Decision Making[END_REF]. Furthermore, MAUT provides a feasible approach for considering the continuous scale of the alternatives. Specifically, in our problem, the release time as the alternative should be considered in a continuous scale. Last but not least, when managers have other requirements, i.e., the minimization of the total cost in the software development cycle [START_REF] Sgarbossa | A Cost Analysis of Systems Subject to Random Field Environments and Reliability[END_REF], the control of the uncertainty in the total cost function [START_REF] Yang | A study of uncertainty in software cost and its impact on optimal software release time[END_REF], the optimized resource allocation (Ngo-The and Ruhe, 2009), our decision model can be extended by introducing more attributes in the framework of MAUT. The proposed MAUT procedure for our decision problem is discussed in detail below.

Elicitation of single utility function for each attribute

After the quantification of each attribute by (2) and (4), managers' preference towards the performance of each attribute should be assessed. To represent this, the single utility function is used. Suppose that the highest and lowest expected risks are first selected as 0 0 r and 1 0 r , respectively. In real applications, they provide the lowest and highest satisfactions to the managers, respectively. Cukic et al. [START_REF] Cukic | The theory of software reliability corroboration[END_REF] suggests that the reliability and the confidence of the reliability are usually application specific and predefined. For example, suppose that managers can only accept a risk level below 5%. The superscript of i r 0 ,

  1 , 0  i
is used to represent the corresponding utility value, which is determined so that the management is indifferent between the following two alternatives: 1) getting risk i r 0 with certainty; 2) getting risk 0 0 r with probability (1-i) and 1 0 r with probability i (Keeney and Raiffa, 1976, von Winterfeldt and Edwards, 1986). The single utility function is generally described by the linear or exponential function shown as follows [START_REF] Keeney | Decisions with Multiple Objectives: Preferences and Value Tradeoffs[END_REF]:

  0 0 r r u      or     0 0 exp r r u       , (6
)
where  ,  and  are constants which ensure    

1 , 0 0  r u .
To determine which form in (6) should be used, we can compare the certainty equivalent u(50%) and the expected value of the 50-50 lottery (u(0%)+u(100%))/2.

Specifically, if they are equal to each other, the managers are risk neutral and the linear form should be used. In this case, the utility function can be written as

  1 0 0 0 1 0 0 0 1 r r r r r u    
Otherwise, the managers are not risk neutral and the exponential form should be adopted.

In this case, the utility function can be written as

          1 0 0 0 0 0 0 0 exp exp exp exp r r r r r u           
where  is the non-zero solution to

      0 exp 2 exp exp 5 . 0 0 0 0 1 0       r r r    .

Estimation of scaling constants

The following step is the estimation of the scaling constants w 1 and w 2 =1-w 1 , which correspond to the important weights of u(r 0) and u(C p). There are two common methods to assess the scaling constants: certainty scaling and probabilistic scaling (von [START_REF] Winterfeldt | Decision Analysis and Behavioral Research[END_REF]. Given that only two attributes are considered in our problem, the probabilistic scaling technique is used.

In the probabilistic scaling approach, the managers are asked to compare their preference over the two choices: 1) a deterministic joint outcome   with probability 1-p. The managers are first asked to compare the deterministic outcome with the lottery having a 50-50 chance of occurrence. If the managers prefer the certain outcome, the probability p is gradually increased until they are indifferent with these two choices. On the other hand, if the managers prefer the lottery, we decrease p. When the indifference is achieved, p is equal to the scaling constant w 1 for the risk attribute (von [START_REF] Winterfeldt | Decision Analysis and Behavioral Research[END_REF].

Maximization of multi-attribute utility function

By maximizing the multi-attribute utility function

     ,) () () (), (2 0 1 0 t C u w t r u w t C t r U p p   (7)
the optimal risk-reduction release time is obtained as

   ) (), (max arg 0 * t C t r U T p t R 
. It is worth noting that (7) is based on certain independence assumptions. Interested readers can refer to [START_REF] Keeney | Decisions with Multiple Objectives: Preferences and Value Tradeoffs[END_REF] for detailed theoretical discussions. In real-world applications, these assumptions are commonly accepted [START_REF] Brito | Multi-attribute risk assessment for risk ranking of natural gas pipelines[END_REF]de Almeida, 2008, Ferreira et al., 2009). Moreover, it has been shown that even when these assumptions are violated, the additive multi-attribute utility function can provide fairly good approximations [START_REF] Edwards | Use of multiattribute utility measurement for social decision making[END_REF][START_REF] Farmer | Testing the robustness of multiattribute utility theory in an applied setting[END_REF].

Summary of the procedure

The first step of the implementation of the decision model is to quantify the attributes, i.e., the risk and the delay incurred cost. For the risk attribute, based on the standard statistical results, risk can be quantified by (2). For the cost attribute, the generalized cost model is used and it is quantified by (4). The following step is the elicitation of single utility functions for both attributes. After this, the scaling constants for each attribute are determined following procedures in Section 3.2. Finally, based on the single utility functions and the scaling constants, the multi-attribute utility function is obtained as shown in (7). The optimal risk-reduction release time is determined by maximizing it.

Case Study

In this section, the proposed optimal release time determination approach is applied onto the case study used in [START_REF] Pham | A software cost model with warranty and risk costs[END_REF]. By considering the risk and the delay incurred cost simultaneously, the optimal release time is determined by incorporating the managers' preference into the decision process. In addition, sensitivity analysis is introduced to assist checking the robustness of the final decision.

The determination of optimal risk-reduction release time

Step 1: quantification of attributes

The Goel-Okumoto (GO) model [START_REF] Goel | Time-dependent error-detection rate model for software reliability and other performance measures[END_REF]) was adopted in [START_REF] Pham | A software cost model with warranty and risk costs[END_REF] where a denotes the total number of expected faults in the software and b represents the fault detection rate. Furthermore, the reliability of the software system during its operational phase is obtained as

  x t t x R) (exp) | (   (9) and) | (t x R
represents the conditional software reliability, which is defined as the probability that the software will not fail given a specified time interval] , (x t t  in the operational phase [START_REF] Yang | A study of operational and testing reliability in software reliability analysis[END_REF]. Since x is usually set to 1 without loss of generality, the release time given the reliability target R 0 is . Moreover, from the standard statistical analysis [START_REF] Nelson | Applied Life Data Analysis[END_REF], as shown in the appendix, the variance of the release time is

      ) / 1 ln(ln 1 0 R ab b T (10
obtained 758 . 9) ( T Var
. Accordingly, the attribute risk can be quantified by substituting these estimated values into (2).

The cost model proposed by [START_REF] Pham | A software cost model with warranty and risk costs[END_REF] consists of two parts, i.e., the expected general testing cost   t C 1 and the expected cost of removing errors during testing phase

  t C 2 as    t c t C 1 1  ,     y t m c t C  2 2  , (11
)
where c 1 is the software test cost per unit time,  is the discount rate of the testing cost due to the learning effect, c 2 is the cost of removing an error per unit time during the testing phase and y  is the expected time of removing an error during this period.

According to [START_REF] Pham | A software cost model with warranty and risk costs[END_REF], the coefficients in the cost model can be determined by empirical data and previous experiences of the staff members. We set the parameters as:

c 1 =700, 95 . 0   , c 2 =60 and 1 . 0  y 
, same to the assignments in [START_REF] Pham | A software cost model with warranty and risk costs[END_REF]. It is worth noting that risk is expected to be less than 50% from managers' point of view. Therefore the software should be released after 479 . 41 ˆ T in order to reduce the risk, that is, we just need to consider) , [  T t

. Accordingly, the delay incurred cost at the time t is obtained as

            y p T m t m c T t c t C    2 1           . (12
)
Step 2: Elicitation of single utility functions The following step is to assess managers' preference towards the performance of the risk and the delay incurred cost. Interviews with the managers are needed to elicit reasonable single utility functions. Suppose that management scenarios are as follows:

(1) Managers are risk neutral towards both attributes.

(2) Managers indicate that they can only accept up to a risk level of 5%, and the smaller the risk the better, until the risk can be eliminated.

(3) Managers have an incurred cost budget of $15000 and they are completely unsatisfied when all the money is spent; their satisfaction increases when the expense decreases, and the highest satisfaction level is achieved when no money is spent.

According to the management scenarios above, corresponding explanations on the determination of single utility functions are shown as follows:

(1) Since managers are risk neutral towards both attributes, the linear form of the single utility function is used.

(2) The lowest risk requirement is % 5 0 0  r and the highest risk expectation is 0

1 0  r .
The single utility function for risk is obtained as  

0 0 20 1 r r u   .
(3) The maximum cost budget is 15000

0  p C
and the highest satisfactory cost expectation is 0

1  p C
. The single utility function for delay incurred cost is determined as

  15000 1 p p C C u   .
Step 3: Estimation of scaling constants At this stage, the scaling constant w 1 is estimated first by comparing the deterministic

joint outcome   0 1 0 , p C r
with the lottery consists of  

1 1 0 , p C r
with probability p and

  0 0 0 , p C r
with probability 1-p. Suppose managers claim that they are indifferent between these two choices when p is equal to 0.5, then w 1 =0.5. Since the sum of scaling constants is equal to one, w 2 is equal to 0.5 as well.

Step 4: Maximization of multi-attribute utility function Based on the estimated single utility functions and scaling constants, the multi-attribute utility function can be obtained by (7). . However, at this release time, the 50% risk is too high to be acceptable by the managers because the lowest risk requirement % 5 0 0  r is not satisfied.

At this point, the manager has to make a compromise between reducing the risk and controlling the delay incurred cost.

With this consideration, the software testing time is expected to increase. We denote Finally, it should be noted that during the time periods

    0 0 , ˆr T T and       , 0 p C T
, the multi-attribute utility function is dominated by only one of the attributes. More specifically, for the first period, since the lowest risk requirement % 5 0 0  r has not been satisfied, the delay incurred cost is the only attribute contributing to the multi-attribute utility function. Given that the delay incurred cost is increasing over time and managers' satisfaction level is decreasing with it, the multi-attribute utility function is decreasing during this time period. While for the second time period, the multi-attribute utility function is dominated by the risk attribute and it equals to 0.5u(r 0). Figure 1 shows that the multi-attribute utility function remains at 0.5 level when release time is greater than

  0 p C T . It implies that the available cost budget 15000 0  p C
is sufficient for the managers to reduce the risk to the best level 0 1 0  r .

Sensitivity analysis

As shown in the Sections above, the optimal risk-reduction release time can be determined by maximizing the multi-attribute utility function. However, since most parameters in the MAUT are obtained based on the subjective assessments of the managers, the optimal risk-reduction release time obtained may not be accurate. In practice, the managers have to know how robust the optimal decision is, and thus sensitivity analysis is needed. More specifically, sensitivity analysis can help to investigate the relative variation of the optimal solution when a specific parameter changes, i.e., the change of cost parameters, scaling constants, etc. The results from sensitivity analysis reveal the stability of the optimal solution.

Sensitivity analysis is generally done by changing one parameter and setting the other parameters at the fixed levels [START_REF] Xie | Software reliability modelling[END_REF]Hong, 1998, Li et al., 2010). The sensitivity of the optimal decision to one parameter x can be quantified by x q S , , defined as the relative change of the optimal risk-reduction release time when x is changed by 100q% [START_REF] Xie | Software reliability modelling[END_REF]Hong, 1998, Li et al., 2010).

) () () (* * * , x T x T qx x T S R R R x q    (13)
A large value of x q S , indicates that parameter x has significant impact onto the determination of * R T , and * R T is regarded as sensitive to the change of x. Normally, managers should pay special attention to the important parameters as the optimal decision * R T is heavily dependent on the accurate estimates of them (Xie and Hong, 1998, Li et al., 2010).

From a practical point of view, it may not be necessary to conduct sensitivity analysis for all the parameters in this optimal release time problem. For instance, parameters c 2 and y  are expected to be insignificant, because the expected cost to remove errors from time t to T ˆ is negligible. More specifically, given a high reliability requirement such as R 0 =0.95, there will be few faults detected from T ˆ to t. Additionally, as c 1 =700, c 2 =60 and 1 . 0  y  ; compared with the estimated value of c 1 , the product of c 2 and y  is too small to have any impact on the delay incurred cost function in (12). Another example is the determination of 1 0 r and 1 p C , which represents the highest risk reduction expectation and highest cost control expectation, respectively. Since managers always prefer less risk and less cost, setting them to zero can properly describe the best cases for risk reduction and cost control respectively.

In contrast, parameters c 1 and  are much more important since they dominate the change of the delay incurred cost over time. Similarly, 0 0 r and 0 p C are of importance as shown in Figure 1, where   Since the sum of these two weights is equal to one, investigating one factor is sufficient. Results of sensitivity analysis with regard to these parameters are summarized in Table 1. Specially, since parameter  represents the learning effect of the testing team which is not greater than 1, the value of

S

-0.77% -0.48% -0.22% 0.20% 0.38% 0.55% 0 0

, r q S 0.74% 0.47% 0.22% -0.20% -0.39% -0.57% 1 ,c q S 0.74% 0.47% 0.22% -0.20% -0.39% -0.57%

 , q S 2.91% 1.96% 0.99% -0.53%
It can be seen that these parameters do not significantly influence the final solution on * R T since all the absolute values of x q S , are below 3%. In other words, the optimal riskreduction release time obtained is robust to the changes in the parameters. Moreover, results in Table 1 indicate that * R T is positively correlated with w 1 and 0 p C , and negatively correlated with 0 0 r , c 1 and  . Physical meanings of these parameters can actually explain these results. For instance, when w 1 increases, it means that more importance is allocated for the control of risk. As a result, * R T increases as well.

Threats to validity

Based on the standard statistical analysis [START_REF] Nelson | Applied Life Data Analysis[END_REF], there is 50% chance that the software will not meet its reliability requirement when the mean value of the release time, T ˆ is used. However, it should be noted that the standard statistical analysis is an approximation. It is still an open question whether the risk is really as high as 50%. To investigate this problem, an empirical case study is conducted by the Monte Carlo simulation using MATLAB tool.

In particular, the GO model is adopted, where the preset parameters are given by 100  a and 1 . 0  b

. Suppose that the reliability requirement is 95 . 0 0  R , then the real value of optimal release time can be obtained as 73 . 52  real T

. According to the general procedures discussed in [START_REF] Lyu | Handbook of Software Reliability Engineering[END_REF], 10000 failure data sets are generated, and each failure data set is composed of ninety time-to-failure data points. Since each failure data set can produce an estimate of the optimal release time denoted by T ˆ, risk that software cannot meet the reliability requirement can be easily estimated by comparing these T ˆ values with real T , and such risk is estimated as % 21 . 60 ˆ0  r

. Although this result is different from the estimated risk based on the standard statistical analysis, it is another piece of evidence that the risk due to parameter uncertainty cannot be neglected, because the risk can be even higher than 50%.

In addition, the normal distribution is used to quantify the uncertainty of optimal release time. Although this type of approximation technique is widely applied to reliability engineering, it may not be accurate. In this case, incorporating experts' opinion and past experience could be a choice. For example, experts could probably know the distributions of some model parameters based on their past experience on similar software projects.

Based on this type of information, parameter uncertainty can be effectively quantified by combining the Maximum-Entropy Principle (MEP) into the Bayesian approach [START_REF] Dai | Uncertainty analysis in software reliability modeling by Bayesian approach with maximum-entropy principle[END_REF]. By incorporating this quantification of parameter uncertainty into the simulation of optimal release time, the uncertainty of optimal release time can be modeled more sufficiently.

Besides the consideration of risk, the delay incurred cost is incorporated into our decision problem. This is because the risk cannot be overlooked due to the limit cost budget of the project [START_REF] Nan | Impact of budget and schedule pressure on software development cycle time and effort[END_REF]. Management needs to strike a balance between reducing the risk and controlling the delay incurred cost. In other words, given a reliability requirement, we introduce two new important dimensions for the determination of optimal release time: the risk that software cannot meet the reliability requirement due to parameter uncertainty, and the delay incurred cost associated with such risk. However, it should be noted that the formulation here may not be sufficient for release time determination. In reality, managers can also have other requirements, which may include the minimization of the total cost in the software development cycle [START_REF] Sgarbossa | A Cost Analysis of Systems Subject to Random Field Environments and Reliability[END_REF], the control of the uncertainty in the total cost function [START_REF] Yang | A study of uncertainty in software cost and its impact on optimal software release time[END_REF], and the optimized resource allocation (Ngo-The and Ruhe, 2009), etc. When these requirements are considered, our decision model can be extended by introducing more attributes into the framework of MAUT.

Conclusions

The software release problem during the testing phase is of great importance in the software development cycle. This paper discusses in detail when to release software given a reliability constraint. In particular, we highlight the risk in the reliability estimate due to the parameter uncertainty in the SRM. However, reducing such risk inevitably increases the testing costs. Thus, from the management's point of view, a compromise should be made between reducing the risk and controlling the delay incurred cost associated with it. To account this issue, a decision model based on MAUT is developed for the determination of optimal risk-reduction release time. The proposed model provides project managers with a boarder view of the release time determination problem.

It not only allows managers to optimize two criteria simultaneously, but also incorporates managers' preference to the decision process. In this paper, the risk of not fulfilling the software reliability requirement is studied from the aspect of parameter uncertainties in the SRM. Future work can be conducted to analyze the effect of choosing different SRMs on the estimated optimal release time and the risk of not fulfilling the reliability requirement.



              k i i i i n i i n t m t m t m t m L i 1 1 1 !) () (exp) () ((14)
By maximizing the likelihood function above, point estimates of model parameters can be determined. The variances of these estimators can be calculated following the asymptotic theory for maximum likelihood estimation [START_REF] Nelson | Applied Life Data Analysis[END_REF]. In particular, the Fisher information matrix is obtained as

                                                                                                        2 2 2 2 1 2 2 2 2 2 2 2 1 2 1 2 1 2 2 2 1 2 1 ln ln ln ln ln ln ln ln ln) , , (m m m m m m L E L E L E L E L E L E L E L E L E I                                                  (15)
According to the standard theory of MLE, when the data size is large,  

                                            (17
)
where

i T    / is evaluated at   m    , , ˆ2 1 
. Based on the standard statistical analysis [START_REF] Nelson | Applied Life Data Analysis[END_REF], T is asymptotically normally distributed with mean T ˆ and variance   T Var ˆ.

Appendix 2

Table 2 shows the software testing data used in [START_REF] Pham | A software cost model with warranty and risk costs[END_REF], which are summarized as the number of failures per one-hour interval of execution time.

                               

 lowest risk and the highest delay incurred cost; 2) the lottery consists of both attributes at their best levels   probability p and both attributes at their worst levels  

 Figure1shows this multi-attribute utility function as a function of the release time. This multi-attribute utility function is maximized risk and controlling the delay incurred cost.

Figure

 Figure 1 Multi-attribute utility function given different release times

 t increases between these two time points, the single utility function associated with risk increases and the single utility function associated with cost decreases. As the weighted sum of the two single utility functions, the multi-attribute utility function increases first and then decreases. The optimal risk-reduction release time which maximizes the multi-attribute utility function is 586

 points of multi-attribute utility function. Furthermore, scaling constants w 1 and w 2 are also important since they represent the different importance weights allocated to both attributes, which directly affect the final solution of * R T .

 the positive change of  .

 on the covariance matrix, the uncertainty of other quantities, which are functions of parameters  

 to analyze the failure data for reliability assessment. In this work, we use this model as well. It is noted that the procedures are similar if other software reliability models are adopted. Moreover, future research can be carried out to analyze the impact of parameter uncertainties when different models are used for software release time determination. The mean value function and the failure intensity function of the GO

	model are given by														
	(t m)		1 (a		e	bt )	and		t ()		bt  abe	(8)

Table 1

 1 Sensitivity analysis results given different parameters

		q		-30%	-20%	-10%	10%	20%	30%
	S	q	1 ,w	-1.36% -0.88% -0.43% 0.42%	0.84%	1.27%
	q	,	C	0	
						p	

Table 2

 2 Failure in 1 hour intervals and cumulative failures

	Hour (i)	Number of failures (n i)	Cumulative failures
	1	27	27
	2	16	43
	3	11	54
	4	10	64
	5	11	75
	6	7	82
	7	2	84
	8	5	89
	9	3	92
	10	1	93
	11	4	97
	12	7	104
	13	2	106
	14	5	111
	15	5	116
	16	6	122
	17	0	122
	18	5	127
	19	1	128
	20	1	129
	21	2	131
	22	1	132
	23	2	134
	24	1	135
	25	1	136
	According to (14), the likelihood function can be written as	

Acknowledgment

The research is partially supported by the China NSFC under grant number 71231001, China Postdoctoral Science Foundation funded project under grant number 2013M530531, and the Fundamental Research Funds for the Central Universities under Grant FRF-MP-13-009A and FRF-TP-13-026A.

Appendix 1

Parameters in the software reliability model are estimated on the basis of the recorded time-to-failure data. Maximum likelihood estimation (MLE) technique is generally adopted for such estimation. Based on the standard statistical analysis [START_REF] Nelson | Applied Life Data Analysis[END_REF], the optimal release time T given a reliability target is asymptotically normally distributed with mean T ˆ and variance

 

T Var

Suppose that there are totally m model parameters to be estimated,