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Abstract 

Context: Due to the complex nature of the software development process, traditional parametric models 

and statistical methods often appear to be inadequate to model the increasingly complicated 

relationship between project development cost and the project features (or cost drivers). Machine 

learning (ML) methods, with several reported successful applications, have gained popularity for 

software cost estimation in recent years. Data preprocessing has been claimed by many researchers as a 

fundamental stage of ML methods; however, very few works have been focused on the effects of data 

preprocessing techniques.  

Objective: This study aims for a systematic assessment of the effectiveness of data preprocessing 

techniques on ML methods in the context of software cost estimation.  

Method: In this work, we first conduct a literature survey of the recent publications using data 

preprocessing techniques, followed by a systematic empirical study to analyze the strengths and 

weaknesses of individual data preprocessing techniques as well as their combinations. 

Results: Our results indicate that data preprocessing techniques may significantly influence the final 

prediction. They sometimes might have negative impacts on prediction performance of ML methods. 

Conclusion: In order to reduce prediction errors and improve efficiency, a careful selection is necessary 

according to the characteristics of machine learning methods, as well as the datasets used for software 

cost estimation.  

Keywords – software cost estimation, data preprocessing, missing-data treatments, scaling, feature 

selection, case selection  
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1. Introduction  

Software project managers often need to estimate the cost/effort of developing a 

software system at the early stage of its life-cycle [1] in order to plan the project 

management activities. The ability to accurately estimate the development cost plays 

an important role in the success of software project management. In the past decades, 

numerous research works have been published on software cost estimation (SCE) 

methods, which can be classified into the following three main categories. 

1. Expert judgment: It requires the consultation of one or more experts to derive the 

cost estimate [2]. With the experience and available information of past projects 

and the understanding of a new project, the experts could obtain the estimation by 

a non-explicit and subjective reasoning process. It is the most frequently applied 

method for software projects in practice [3]. 

2. Parametric models: They often involve the utilization of analytical or statistical 

equations relating software project cost to a number of project features. The well-

known ones include COCOMO [4] and SLIM Model [5]. 

3. Machine Learning (ML) methods: They involve at least one modeling method, 

taking a number of project features and producing a cost prediction, making no or 

minimal assumptions about the form of the relation under study. Thus they can 

provide higher approximation capabilities to solve complex problems. Recently, 

they have been adopted as an alternative or together with the first two methods [6-

10]. Representative ML methods include artificial neural networks (ANN) [8, 11, 

12], case-based reasoning (CBR) [12, 13] (also referred to as analogy-based 

estimation [14, 15] or estimation by analogy [16]), and classification and 

regression trees (CART) [7, 17, 18].  

When targeting estimation accuracy, considerable effort has been devoted to 

improving ML methods [1, 19-24]. For the empirical validations, ML algorithms are 

routinely tested on the SCE datasets. Data preprocessing (DP) is a fundamental stage 

of the ML application, which has been reported to have significant impacts onto the 
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performances of ML methods [21].  

To the knowledge of the authors, there is very few research work focused on the 

DP techniques in the SCE literature. In many situations the DP techniques, such as 

feature selection (FS) [10, 25-27] and case selection (CS) [6, 14, 15, 28], have been 

considered as a necessary step for CBR while for other ML methods, such as ANN 

and CART, they might be ignored. In the literature some studies focus on analyzing 

DP techniques. Strike et al. [29] simulated various incomplete data and found that the 

best regression model could be obtained from missing-data imputation with Z-score 

scaling. The combination of scaling scheme and missing-data treatment (MDT) is 

firstly analyzed; however, their impacts onto the ML method were not studied. Many 

studies propose one or more DP techniques to deal with a specific issue in SEC, such 

as data missingness [30-32], redundant or irrelevant features [13, 28], or abnormal 

cases [33, 34]. But they did not study the effectiveness of different DP techniques. 

Keung et al. [35] first time concluded that the performance of a ML method could be 

significantly altered by a DP technique, such as scaling and FS. But the number of DP 

techniques they considered is limited and the effectiveness of combined DP 

techniques are not investigated.  

From the analysis above, a systematic study on multiple DP techniques for ML 

methods is needed to promote much more careful use of the DP techniques rather than 

taking one or more DP approaches as granted. The empirical results obtained would 

be beneficial to the following research works who adopt ML methods for SCE.  

The rest of this paper is organized as follows: Section 2 presents a literature 

survey on DP applications; Section 3 presents the four datasets used in this study, an 

overview on the ML methods (i.e. ANN, CBR and CART), and the experimental 

design; Section 4 presents the experiment results and analysis; Section 5 discusses the 

threats to four types of validity; Section 6 concludes this work and points out future 

research directions. 
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2. Related Work 

2.1 Literature survey 

The application of ML algorithm requires the presence of data in a mathematically 

feasible format through data preprocessing. DP techniques consist of data reduction, 

data projection and missing-data treatment. Data reduction aims to decrease the size 

of the datasets by means of feature selection (FS) or case selection (CS). Data 

projection intends to transform the appearance of the data, e.g. scaling, which scales 

all features into a pre-defined same range. Missing-data treatments (MDTs) include 

deleting missing values [15, 18, 19, 36, 37] and/or replacing them with the estimates 

[16, 38, 39]. Moreover, the logarithm transformation [40] is also regarded as one data 

projection method and is frequently applied for linear regression due to the normality 

assumption of the linear model. Logarithm is mostly used by regression studies to 

ensure the normality of the residual. For ML methods, it is not a commonly applied 

DP technique. In our survey, there are only three publications [35, 41-43] that used 

logarithm for ML methods. Considering its relatively infrequent utilization by the 

researchers, we choose to not include it as a candidate DP method in our experiments 

which aim to investigate the effectiveness of the popular DP techniques for ML 

methods. 

To reveal the situations of DP technique utilization in the literature, we first 

conduct a survey of relevant ML papers from 2005 to present published on the 

following journals: IEEE Transactions on Software Engineering (IEEE TSE), 

Empirical Software Engineering (ESE), Journal of Systems Software (JSS), 

Information and Software Technology (IST), and Software Quality Journal (SQJ), and 

the following major conference proceedings: International Conference on Software 

Engineering (ICSE), International Symposium on Empirical Software Engineering 

and Measurement (ESEM), and International Conference on Predictive Models in 

Software Engineering (PROMISE). Both the individual studies of ML methods and 

the comparative studies (within ML methods or between ML and other methods) are 
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included. We summarize the publications according to the ML methods and the DP 

techniques applied. In specific, we explore the use of MDT, scaling, FS and CS. 

These 48 publications are presented in Table 1. It is shown that most publications 

have employed certain DP techniques. 12 works [6, 11, 14, 43-51] only mention single 

step of DP. Table 1 also shows that many studies use combined DPs. For examples, 

there are 7 of totally 48 works combined only scaling and FS/CS [20, 27, 34, 52-55], 

and 7 of 48 works combined only MDTs and FS/CS [19, 23, 36, 56-59]. FS and CS 

have been considered as a necessary step for CBR in several studies [6, 14, 23, 26, 33, 

37, 47, 48, 52, 55-57, 60-63]. However, there is no systematic study to investigate the 

DPs and their combinations. 

Table 1  

Data preprocessing techniques used by ML methods for SCE 

Source Reference Methods FS
a
/CS

b
 Scaling

c 
MDT

d
 

IEEE TSE 

Pendharkar et al. (2005) [49] ANN, BBN, CART FS   

Auer et al. (2006) [50] CBR  [0, 1]  

Keung et al. (2008) [26] CBR FS, CS [0, 1] LD 

Kocaguneli et al. (2012) [14] CBR FS, CS   

Kocaguneli et al. (2012) [41] CART, SVM FS [0, 1] MI 

Kocaguneli et al. (2013) [64] CBR, CART FS [0, 1] MI 

Menzies et al. (2013) [51] CBR FS   

Mittas and Angelis (2013) [65] ANN, CART, CBR FS  LD 

JSS 

Chiu and Huang (2007) [17] ANN, CART, CBR  [0, 1] LD 

de Barcelos Tronto et al. (2008) [11] ANN  [0, 1]  

Vinary et al. (2008) [27] ANN FS [0, 1]  

Li et al. (2009) [28] ANN, CART, CBR, SVM CS [0, 1] LD 

Azzeh et al. (2011) [15] CBR  [0, 1] LD 

Bou et al. (2013) [6] ANN FS, CS   

IST 

Huang and Chiu (2006) [18] ANN, CART, CBR FS [0, 1] LD 

Mittas et al. (2008) [44] ANN  [0, 1]  

Oliveira et al. (2010) [20] SVM, GP FS [0, 1]  

Minku and Yao (2013) [61] ANN, CART, CBR FS, CS [0, 1] MI 

ESE 

Li et al. (2007) [38] CBR FS [0, 1] LD 

Li and Ruhe (2008) [19] CBR FS  LD 

Azzeh et al. (2009) [36] CBR, ANN FS  LD 

Li et al. (2009) [54] ANN FS [0, 1]  

Mittas and Angelis (2010) [37] CBR FS, CS [0, 1] LD 

Lopez-Martin et al. (2011) [66] ANN CS   

Azzeh (2012) [62] CBR FS, CS [0, 1] LD 

Corazza et al. (2013) [59] CBR, SVM FS  LD 

Kocaguneli et al. (2013) [16] CBR FS [0, 1] MI 

Seo and Bae (2013) [33] CBR FS, CS [-1, 1] LD 

SQJ 

Liu et al. (2008) [57] CART, CBR FS, CS  LD 

Bakır et al. (2009) [67] SVM, CBR FS [0, 1] LD 

Hsu and Huang (2010) [63] ANN, CART, CBR FS, CS [0, 1] LD 

Bakır et al. (2011) [68] CART, CBR FS [0, 1] LD 

Khatibi et al. (2013) [58] CBR FS  LD 

ICSE Ramasubbu and Balan (2012) [69] CBR CS   
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ESEM 

Li et al. (2007) [45] CBR   MI 

Mendes (2007) [46] BBN, CBR, CART FS   

Keung (2008) [47] CBR FS, CS   

Corazza et al. (2009) [43] SVM, CBR, BBN CS   

Kocaguneli and Menzies (2011) [53] CBR CS [0, 1]  

PROMISE 

Li and Ruhe (2007) [60] CBR FS, CS  MI 

Brady and Menzies (2010) [52] CBR FS, CS [0, 1]  

Corazza et al. (2010) [42] ANN, SVM, CBR, BBN CS [0, 1]  

Minku and Yao [23] ANN, CART FS, CS  k-NN 

Tsunoda et al. (2011) [34] CBR CS [0, 1] LD 

Borges and Menzies (2012) [55] CBR, RI FS, CS [0, 1]  

Ferrucci et al. (2012) [48] CBR FS, CS   

Kocaguneli et al. (2012) [56] CART, CBR FS, CS  MI 

Kosti et al. (2012) [70] CBR CS [0, 1] LD 

ANN: Artificial Neural Networks, BBN: Bayesian Belief Network, CART: Classification and 

Regression Trees, CBR: Case-Based Reasoning, GP: Genetic Programming, RI: Rule Induction, SVM: 

Support Vector Machine 
a
FS/

 b
CS: if Feature Selection

 
or/and Case Selection are used;  

c
Scaling: [0, 1], [-1, 1], or in blank (Not specific);  

d
MDT: which Missing-Data Treatment is used, LD (Listwise Deletion), MI (Mean Imputation), k-NN 

imputation or in blank (Not specific). 

The following section presents an overview on the four types of DP methods and 

summarizes the evidence and arguments in the literature that lead to the research 

questions of this study and serve as the foundation for the empirical work.   

2.2 Data preprocessing techniques 

2.2.1 Missing-data treatments 

Due to the high cost of gathering and reporting data from projects, development 

teams are less focused on data collection [31]. The incomplete datasets also frequently 

appear across the SCE datasets (e.g. the ISBSG database and PROMISE datasets) [16, 

24, 31, 32, 37, 58, 71]. The missing values have significant impacts on ML estimation 

performances, as reported by [22, 31, 45]. 

There are many MDTs in the literature. They often include: deletion methods 

(listwise deletion  and pairwise deletion [31, 49, 70, 71]), and imputation methods 

(mean imputation, k-NN imputation, hot-deck imputation, cold-deck imputation, 

regression imputation and multiple imputation methods) [16, 23, 38, 55, 56, 60]. It is 

noted that the deletion methods, especially listwise deletion (LD), widely used as a 

default approach dealing with missing-values, can result in discarding large 
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proportions of datasets in cases and introducing biasness [31, 37]. As another solution 

of MDT, imputation requires more extensive and complicated statistical and 

computational analysis [29, 31] and also includes natural prediction error [37]. Mean 

imputation (MI) imputes each missing value with the mean of observed values and 

preserves the information of data. However, as the simplest imputation method it may 

cause to diminish the variance of variables [29].  

According to results of our survey in Table 1, LD is the most popular method 

followed by MI. Particularly, several works [15, 18, 19, 24, 34, 36, 37, 57-59, 63, 65, 

67] regarded LD as the default DP method for missing values. However, some studies 

show that MI or k-NN imputations are better than LD [29-31, 72-74]. In this study, we 

will validate the superiority of MI over LD. 

2.2.2 Scaling 

Scaling generally refers to measurements or assessments conducted under exact, 

specified and repeatable conditions. In ML, scaling transforms feature values 

according to a defined rule so that all scaled features have the same degree of 

influence [40] and thus the method is immune to the choice of units [70], which is a 

major stage for ML methods [75]. Normally, the intervals of [0, 1] and [-1, 1] are used 

to be the target of scaling, as shown in Eq. (1). 

              

min( )
[0,1] interval = 

max( ) min( )

(max( ) min( )) / 2
[ 1,1] interval = 

(max( ) min( )) / 2

actualValue allValues

allValues allValues

actualValue allValues allValues

allValues allValues





 




         (1) 

Z-score standardization is also used for scaling [29], which makes the unit of the 

variables the sample standard deviation. Scaling is essential since every sub-

sequential process is dependent upon the choice of unit for each feature. For example, 

it will be improper to let Lines of Code (LOC) be a thousand times more influential 

than KLOC. In SCE context, scaling is the most popular preprocessing technique.  

As shown in Table 1, most of the studies that consider scaling use [0, 1] and only 
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one study uses [-1, 1]. The survey also revealed that [0, 1] scheme is used by most 

researchers by default without questioning whether it is truly effective or not, and 

many studies do not even consider or mention any type of scaling during the 

estimation processes. For example, in [76] the scaling scheme of [0, 1] was conducted 

without reasoning. 

2.2.3 Feature selection 

FS, also known as attribute selection or feature subset selection, is the process of 

selecting a subset of features that have significant or similar impacts onto the 

evaluation target as using all features [63, 77]. It assumes the data contains irrelevant 

or/and redundant features [78] that might decrease the model performance. FS was 

initially proposed to increase the accuracy of induced classifier in supervised learning 

algorithm [78]. Later, Mendes et al. [79] and Chen et al. [77] introduced FS to SCE. 

An exhaustive search for all possible subsets of features is calculated by 2 1N  , in 

which N is the total number of project features. Take ISBSG dataset [80] as example, 

since n=15 (See in Section 3.1.1), there are 32767 possible subsets. Obviously, 

exhaustively exploring all the subsets will not be cost-effective. 

More intelligent FS techniques have been developed. They can be classified as 

wrappers and filters. The former often convolves with predictors, using cross-

validation to predict the benefits of adding or removing a feature from the feature 

subset used [78]. In SCE literature, wrapper methods utilize random searching, hill 

climbing, forward sequential selection [13, 26] and reduce research method [19] to 

guide the search process. As the predictors (i.e. ML methods) are often expensive to 

run, the wrappers are generally time-consuming and possibly leads to over-fitting [26, 

78]. The latter selects features by evaluating some preset criteria independently prior 

to training the ML methods, which has much lower time complexity than the former 

does. For example, variable ranking with the correlation coefficient is a filter method: 

it is independent of the choice of the predictor [81]. However, the selected features 

often yield considerable prediction errors [82]. 
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In SCE literature, there are a number of studies that propose new FS techniques or 

investigate the effectiveness of the existing ones. In general, majority of the 

researchers [13, 19, 20, 26, 36, 77, 83] support the use of FS with ML methods. In this 

study, we will check the validity of applying FS technique. Our survey also reveals 

that FSS is the most popular FS algorithm, due to its simplicity and the ease of 

adaptation to various ML methods. There are 19 of 48 publications (shown in Table 1) 

using this strategy [14, 19, 36-38, 41, 46-48, 54-57, 60, 62, 64-66, 68].  

2.2.4 Case selection 

Similar to the features of a dataset, not all the historical cases are useful for estimating 

the present project. CS aims to identify and remove redundant and irrelevant cases 

[84]. By reducing the entire dataset into a smaller subset that consist only of 

representative cases, this method could save computing time and produce prediction 

results comparable to those using all the cases. Searching techniques for FS are also 

applicable to CS, e.g. random search, hill climbing, simulated annealing, forward and 

backward sequential selection [60, 84], genetic algorithm [28], and filters [81, 82]. On 

contrary to the selection of useful cases, the abnormal cases detection [33, 34] is also 

regarded as one type of CS. Compared to FS, the CS treatment is relatively infrequent 

but with a rising trend in the recent literature. In the first CS study, Kirsopp and 

Shepperd [84] presented a conservative backward sequential selection (BSS) and 

proved its effectiveness. In this study we will implement this technique since 

discarding a large number of projects at the initiate stage of FSS could result in loss of 

useful information.   

2.3 Research questions 

Based upon the above bibliographic analysis the following 5 research questions (RQs) 

are raised for the empirical study:  

RQ1: Is MDT effective? Which commonly used MDT is preferred?  

RQ2: Is scaling effective? [0, 1] scheme or [-1, 1], which is preferred? 
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RQ3: Is FS effective? Shall we consider it for all ML methods? 

RQ4: Is CS effective? Shall we consider it as well? 

RQ5: Is any combination of DP techniques effective? How do we select the DP 

techniques for each ML method and each dataset? 

The above questions are answered in Section 4: Experimental results.    

3. Experiment Design 

In this section, we describe the datasets, error metrics and experiment procedures for 

our empirical studies.  

3.1 Dataset description  

In this study, we have selected the ISBSG database, Desharnais dataset, and 

Kitchenham dataset from PROMISE datasets for empirical tests.   

3.1.1 ISBSG dataset 

ISBSG has developed and refined its data collection standard over 10 years based 

on the metrics that have proven to be most useful in helping to improve software 

development management and processes. In this study, we adopted the ISBSG R10 

data repository [80], which contains totally 6000 projects (with 105 features) coming 

from 24 countries and various organizations. Due to the heterogeneous nature and 

large size of the entire repository, ISBSG recommends extracting a suitable subset for 

any SCE practice [80]. In this study, we follow ISBSG‟s suggestion to select a subset 

with 14 features including 7 numerical project size features, and the following 

categorical features: „development type‟, „primary programming language‟, 

„development platform‟, „organization type‟, „business area type‟, „application type‟, 

and „development techniques‟ [80]. As suggested by [71, 85] that data in ISBSG needs 

to be appropriately prepared for further usage, the following steps are taken to remove 

the cases with minor significance to our analysis: 
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1. Select the project with A or B rating in data quality as well as A rating in UFP as 

suggested by ISBSG [80] and related published papers [37, 57, 65, 86, 87] . The 

rest with lower rating are excluded.  

2. Filter out the projects with normalized ratio larger than 1.2, as it is suggested by 

ISBSG that the ratio up to 1.2 is more acceptable [80]. The normalized ratio 

defined as normalized effort divided by summary effort, is constructed by ISBSG 

for the refinement of project subset.  

3. Select the project with resource level equal to „1‟. As shown in ISBSG dataset [80], 

a resource level of „1‟ means that only the effort of development team is recorded; 

the levels above add peripheral efforts. Similar to related studies [33, 66, 71, 88], 

this study is only interested in the work effort of development team.  

4. Select the project using IFPUG as the functional sizing method. The functional 

sizing method is used to compute the number of AFP (Adjusted Function Points), 

an essential feature in most SCE study. The projects in ISBSG repository sized 

using 4 types of functional sizing methods: IFPUG, NESMA, MARK II, 

COSMIC-FFP, among which IFPUG gains the highest popularity [37, 61, 63, 66]. 

Furthermore, ISBSG suggests users do not mix the projects sized using pre-

IFPUG with the ones sized using IFPUG V4/V4+. Therefore, we only keep the 

projects sized using IFPUG V4/V4+. 

After these four procedures, we obtain a subset of 446 projects with a considerable 

amount of missing values. Among all features, „NorEffort‟ is to be estimated. The 

descriptive statistics of the numerical features are summarized in Table 2. It shows 

that the ISBSG subset is of high order non-normality. Note that in Table 2, w/o 

indicates that the statistics in the column are obtained by excluding the missing values. 

Table 2  

Descriptive statistics of numeric features of ISBSG dataset 

Features 
Mean Std Dev Min Max Skewness Kurtosis 

w/* w/o* w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o 

DevType 1.4 1.8 0.5 0.5 1 1 3 3 1.0 -0.3 -0.1 0.3 

OrgType 4.7 5.9 4.6 4.0 -1 1 17 16 1.0 1.0 0.2 -0.1 

BusType 0.3 3.0 2.0 1.4 -1 1 7 7 1.4 1.4 1.2 1.2 

AppType 5.0 5.3 5.1 5.6 -1 1 19 19 1.0 1.4 0.0 0.8 

DevPlat 0.9 1.6 1.3 1.0 -1 1 4 4 0.2 1.7 0.2 1.7 
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PriProLan 4.8 7.7 4.9 6.6 -1 1 19 19 1.2 0.4 0.4 -1.5 

DevTech 0.1 2.3 1.8 1.8 -1 1 7 6 1.8 1.0 3.2 -0.6 

InpCont 58.7 243.7 452.8 1082.1 -1 0 9404 9404 19.9 8.4 410.4 72.1 

OutCont 27.2 112.4 83.2 169.0 -1 0 1221 1221 8.3 4.4 101.5 25.3 

EnqCont 23.3 71.8 67.6 116.9 -1 0 893 893 6.6 5.0 67.3 33.1 

FileCont 28.1 120.7 149.4 345.0 -1 0 2955 2955 17.2 7.7 333.2 63.7 

IntCont 4.5 16.9 17.2 27.5 -1 0 160 135 5.1 2.4 31.1 6.0 

AFP 348.9 627.0 980.3 2014.9 6 43 17518 17518 13.5 8.2 220.0 69.3 

NorEffort 5165.6 3531.9 10140.5 6647.1 91 300 134211 54620 7.1 6.5 70.4 48.4 

*
w/: with missing values (missing values are denoted as ‘-1’); 

*
w/o: without missing values 

3.1.2 Desharnais dataset 

The Desharnais dataset [12, 89] has been used in many research works [12, 25, 

41], due to its scalability and availability. It includes 81 projects (4 with missing 

values) and 11 features. The features include „TeamExp‟, „ManagerExp‟, „YearEnd‟, 

„Length‟, „Transactions‟, „Entities‟, „PointsAdjust‟, „Envergure‟, „PointsNonAjust‟, 

„Language‟ and „Effort‟, among which the dependent value „Effort‟ will be estimated. 

Table 3 shows the statistics of the numerical features in details.  

Table 3  

Descriptive statistics of numeric features of Desharnais dataset 

Features 
Mean Std Dev Min Max Skewness Kurtosis 

w/* w/o* w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o 

TeamExp 2.2 2.3 1.4 1.3 -1 0 4 4 -0.2 -0.1 -1.0 -1.3 

ManagerExp 2.5 2.6 1.6 1.5 -1 0 7 7 0.0 0.2 0.1 0.1 

YearEnd 85.8 85.8 1.1 1.1 83 83 88 88 -0.2 -0.2 0.0 0.1 

Length 11.7 11.3 7.4 6.8 1 1 39 36 1.6 1.5 3.1 2.7 

Language 1.6 1.6 0.7 0.7 1 1 3 3 0.9 0.9 -0.5 -0.5 

Transactions 179.9 177.5 143.3 146.1 9 9 886 886 2.4 2.4 7.7 7.7 

Entities 122.3 120.5 84.9 86.1 7 7 387 387 1.3 1.4 1.5 1.5 

PointsAdjust 302.2 298.0 179.7 182.3 73 73 1127 1127 1.8 1.8 4.9 5.1 

Envergure 27.6 27.5 10.6 10.5 5 5 52 52 -0.1 -0.2 -0.3 -0.4 

PointsNonAdjust 287.0 282.4 185.1 186.4 62 62 1116 1116 1.7 1.7 4.2 4.4 

Effort 5046.3 4833.9 4418.8 4188.2 546 546 23940 23940 2.0 2.0 4.7 5.3 

*
w/: with missing values (missing values are denoted in as ‘-1’); 

*
w/o: without missing values 

3.1.3 Kitchenham dataset 

The Kitchenham dataset includes 145 projects of a software development 

company. There are only three features to be recommended as independent variables, 

which are Project type, Actual duration, and AFP, plus the dependent attribute Actual 

effort [34]. Table 4 shows the statistics of the numerical features in details. 

Table 4  

Descriptive statistics of numeric features of Kitchenham dataset 

Features 
Mean Std Dev Min Max Skewness Kurtosis 

w/* w/o* w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o 
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Project type 1.4 1.5 0.9 0.7 -1 1 4 -0.3 1.5 5.0 5.5 

Actual duration 527.7 527.8 1522 1572.9 15.4 18.9 181400 10.8 10.5 125.3 118.1 

AFP 206.7 201 134.1 130.6 37 37 950 1.9 2.1 8.9 10.5 

Actual effort 3113.1 3169.1 9598 9333.6 219 219 113930 10.8 10.4 124.3 116.2 

*
w/: with missing values (missing values are denoted in as ‘-1’); 

*
w/o: without missing values 

3.1.4 USPFT dataset 

The USPFT (University Student Projects developed in 2005) dataset includes 76 

projects, which were collected from student projects on web and client/server 

applications. As referred from Li, Ruhe, Al-Emran and Richter‟s work in [38], the 

projects with a feature (FT, a set of requirements) as objective type are used as USPFT. 

Table 5 shows the statistics of the numerical features in details. 

Table 5  

Descriptive statistics of numeric features of USPFT dataset 

Features 
Mean Std Dev Min Max Skewness Kurtosis 

w/* w/o* w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o 

Internal Process 19.9 19.9 17.5 17.5 0 0 100 1.6 1.6 7.6 7.6 

Data E/M/D 26.2 26.2 13.8 13.8 0 0 80 0.9 0.9 7.5 7.5 

Output form  21.5 21.5 17.2 17.2 0 0 100 2.5 2.5 12.4 12.4 

Data Query 22.5 22.5 11.6 11.6 0 0 54 -0.1 -0.1 3.0 3.0 

Printing 1.6 1.6 5.0 5.0 0 0 30 3.5 3.5 17.0 17.0 

Report 2.3 2.3 4.8 4.8 0 0 20 2.2 2.2 7.3 7.3 

Other 5.6 5.6 13.3 13.3 0 0 100 4.9 4.9 34.2 34.2 

IntComplx 1.9 1.9 1.2 1.2 1 1 5 1.1 1.1 3.1 3.1 

DataFile 3.3 3.3 3.3 3.3 0 0 18 2.0 2.0 7.4 7.4 

DataEn 17.4 17.4 48.3 48.3 0 0 314 4.6 4.5 25.4 25.4 

DataOut 1.9 2.0 6.1 6.2 -1 0 50 6.6 6.6 50.3 49.3 

UFP 11.7 12.1 26.0 26.3 -1 0 180 4.0 3.9 24.2 23.6 

Lang 2.6 2.7 0.8 0.6 -1 1 4 -2.1 -1.2 8.6 4.5 

Tools 2.7 2.8 0.8 0.5 -1 1 4 -2.7 -1.4 12.5 6.8 

ToolExpr 10.7 11.0 11.6 11.6 -1 0 52.5 1.8 1.8 5.4 5.3 

AppExpr 2.5 2.5 1.4 1.4 1 1 5 0.4 0.4 1.7 1.7 

TeamSize 1.7 1.7 0.7 0.7 1 1 4 1.4 1.3 4.8 4.8 

DBMS 1.5 1.8 1.1 0.5 -1 1 3 -1.3 0.0 3.9 2.7 

Method 2.2 2.9 1.7 0.8 -1 1 4 -1.0 -0.9 2.5 3.6 

AppType 2.6 2.8 1.1 0.6 -1 1 4 -2.3 -1.3 8.2 5.7 

Effort 5.5 5.5 8.7 8.7 0.5 0.5 40 2.4 2.4 8.5 8.5 

*
w/: with missing values (missing values are denoted in as ‘-1’); 

*
w/o: without missing values 

3.2 Machine learning methods in study 

In SCE literature, ML methods receive increasing attention in the recent years 

according to a comprehensive review done by Jorgensen and Shepperd [90]. 

Additionally, Section 2.1 shows that ANN, CBR, and CART are mostly applied in 

recent studies. We therefore select them for experiments.  

Case-based reasoning CBR has been extensively studied and implemented due to its 
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simplicity and effectiveness [9, 17, 18, 40, 50, 79, 91]. Generally, a CBR consists of 

the following three steps:  

1. Collect the measurements of past projects and prepare the historical projects 

dataset.  

2. Select the relevant features, and then calculate the distances of the selected 

features between the project x  being estimated and the i-th historical projects 
ix , 

and retrieve K nearest neighbors. The Euclidean distance, 

 
1

, ( , )
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i ij jj
D x x Dis x x


   , and Manhattan distance, 
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  , are considered in this study. ( , )ij jDis x x  is defined 
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         (2) 

3. Compute the final prediction for the new project x  based on the selected K 

nearest neighbors. We use mean, median and inverse distance weighted mean 

(IDWM) as adaptation techniques in this study. The mean is the classical measure 

of central tendency and treats all analogies as being equally influential on the cost 

estimates. The median is more robust statistic when the number of neighbors 

increases [40]. IDWM [10] allows more close neighbors to have more influence 

than less close ones. 

 

Artificial neural network Due to the capability of good approximation, ANN has 

become a frequently applied methodology in the context of SCE [7, 8, 92]. A typical 

feed-forward ANN architecture consists of a number of neurons connected through 

the input layer, hidden layer(s), and output layer. A typical three layer ANN has the 

following mathematical form 

 
1 1

ˆ( ) ( ( ) )
J p

j j ij i jj i
y f x f w f v x  

 
                               (3) 
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where px R , ( )f   is the transfer function, J is the number of hidden nodes, 
ijv  is the 

connection weight between the i-th input node and j-th hidden node, 
j  is the bias of 

the j-th hidden node, 
jw  is the weight on the link between the j-th hidden node and 

the output neuron, and   is the bias. The classical back-propagation algorithm is 

commonly used [66] to update the weights and biases with the attempt to minimize 

the predictive error [20, 92]. The user-defined parameters in ANN, i.e. the number of 

hidden layers, the number of hidden nodes and the type of transfer function, have 

significant impacts on ANN prediction performance. In this study, only one hidden 

layer is used since multiple layers may lead to an over parameterized ANN structure 

which is often prone to over-fitting. 

 

Classification and regression trees CART is capable of dealing with both numerical 

and categorical features to identify major subsets [7]. The construction of CART 

involves recursively splitting the data set into relatively homogeneous subsets until 

the terminate conditions are satisfied. The algorithm starts with all the training 

instances in the root node and then selects an independent feature Ai that best divides 

the training set into disjoint subsets. The partition is determined by minimizing the 

Mean Square Error (MSE) of the dependent feature (e.g., project cost). Suppose the 

feature fi partition the entire training data set X into subsets Xij where each sample 

takes the same value for feature fi. The MSE of any subset Xij with the dependent 

value yk is  

  2( ) /
ij

ij k ij

k T

MSE X y y X


                                           (4) 

where y  is the mean of the yk values exhibited in Xij and ijX  is the size of the set Xij. 

The feature that minimizes  iji
MSE X  is selected for partition. This process is 

repeated until each node reaches a user-specified minimum tree size. The primary 

control parameter in CART, level of tree pruning, is optimized by the cross-validation 

scheme. 
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3.3 Error metrics 

Error evaluation criteria are essential to the evaluation of prediction. Three 

popular error metrics: Mean of Balanced Relative Error (MBRE), PRED(0.25), and 

Median of Balanced Relative Error (MdBRE) are also used in this study. Their 

building block: Balanced Relative Error (BRE) of the estimated i-th project is defined 

as 

ˆ

ˆmin( , )
i

i i

i i

BRE
y y

y y



                                                  (5). 

Based on Eq. (5), MBRE is defined as 

1

/
n

i

i

MBRE BRE n


                                                   (6) 

and MdBRE is defined as 

( )iMdBRE median BRE                                              (7) 

MBRE is a balanced symmetric error metric [93]. MdBRE, exhibiting a pattern 

similar to that of MBRE but less sensitive to extreme outliers, is more likely to select 

the true model especially in the underestimation cases [94, 95]. PRED(0.25) is the 

percentage of predictions that fall within 25 percent of the actual cost. It is defined as  

1

0.25

0,

1,  1
(0.25)

n
i

i

if BRE
PRED

otherwisen 


 




                                   (8) 

PRED(0.25) identifies the SCE methods that are generally accurate.  

MBRE has been widely used for accuracy measuring due to its advantages: 

applicability to all kinds of prediction models across all datasets, independence to 

measurement units and scales [29, 91]. Compared with MBRE and MdBRE, PRED 

exhibits an opposite pattern. These three evaluation criteria are widely used in recent 

SCE studies [37, 54, 61, 74, 96, 97]. In our experiments, we consider MBRE as the 

guidance for the parameter optimization of the ML methods on validating datasets. 

The analysis in Section 3.5 shows that it is significantly correlated with both 

PRED(0.25) and MdBRE, which confirms that MBRE could be a representative error 
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metric for parameter optimization.  

3.4 Experiment setting 

For each testing dataset, we generate 24 processed versions by using different 

combinations of DP techniques. The FS, CS, scaling and MDT introduced in Section 

2.2 are regarded as four main factors in our experiment design. First, for missing 

values we include the MDTs discussed in the review: listwise deletion (LD) and mean 

imputation (MI). Then, for scaling we employ two scaling schemes, [0, 1] and [-1, 1], 

to evaluate possible effects of scaling into different intervals. Finally, as Kirsopp and 

Shepperd [84] suggested (see in Section 2.2.4), we adopt forward sequential selection 

(FSS) search strategy for FS and backward sequential selection (BSS) search strategy 

for CS. Under each of the main factors except MDTs, we setup the alternative „Null‟ 

as control, which means no corresponding preprocessing is performed. Consequently, 

24 processed datasets are generated by this design. Table 6 presents the details of the 

design. 

Table 6  

Generation of processed datasets 

Preprocessing 

techniques 

FS Null FSS 

CS Null BSS Null BSS 

MDT Scaling      

LD 

Null  #1 #7 #13 #19 

[0, 1]  #2 #8 #14 #20 

[-1, 1]  #3 #9 #15 #21 

MI 

Null  #4 #10 #16 #22 

[0, 1]  #5 #11 #17 #23 

[-1, 1]  #6 #12 #18 #24 

MDT: missing-data treatment; LD: listwise deletion; MI: mean imputation; FS: feature selection; CS: 

case selection; FSS: forward sequential selection; BSS: backward sequential selection; Null: no DP is 

used. 

It should be noted that the processing techniques are applied on only the project 

features (independent variables). The cost values (dependent variable) are scaled into 

the range [0, 1] regardless of the type of processing technique applied on features.  
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3.5 Cross-validation 

As discussed in the overview of ML methods, the predefined parameters have 

large impacts on their performances. A systematic way of determining the predefined 

parameters should be considered in the experiments. A simple but effective way for 

parameter tuning is the so-called cross-validation scheme. In this scheme, the entire 

dataset is randomly split into three equally sized and mutually exclusive subsets: 

training subset, validating subset and testing subset. The training subset is used to 

construct models with specified parameter settings. The validating subset is used for 

parameter tuning and to prevent over-fitting problem of ML methods. The testing 

subset is used to evaluate the prediction abilities of training methods with optimal 

parameters. The above validation scheme is performed three times on each processed 

dataset to eliminate the biases from different split, similarly to [79].  

Table 7  

Predefined parameters in meta-modeling techniques 

Methods Predefined parameters Range 

 1. Distance functions {Euclidean distance, Manhattan distance} 

CBR 2. Number of nearest neighbors {k | k = 1, 2, 3, 4, 5} 

 3. Adaptation functions {Mean, Median, Inverse distance weighted mean} 

ANN 
1. Number of hidden neurons {n | n = 1, 3, 5, 7, 9, 11, 13} 

2. Hidden layer transfer function {Linear, Tan-Sigmoid, Log-Sigmoid} 

CART Level of tree pruning {l | l = 1, 2, 3, 4, 5} 
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Fig. 1 Experiment process 

Table 7 summarizes the predefined parameters of each method and their ranges for 

tuning. The CBR parameters ranges cover most existing ones appeared in CBR 

studies. For ANN, the maximal number of hidden neurons is set to 13 because too 

many hidden neurons may lead to an over-parameterized ANN structure. The three 

types of hidden layer transfer functions are most frequently used in ANN models. 

ANN is trained by the back-propagation algorithm. The training stops when the MSE 

drops below the specified threshold (0.0001 in this study). For CART, the level of tree 

pruning is in the range from 1 to 5, to balance modeling accuracy and over-fitting. 

The training stops when its MSE is below 0.0001. Note that all the methods in this 

study are implemented via MATLAB programming. Fig. 1 illustrates the overall 

experiment procedures. After MDT and scaling steps, the cross-validation scheme 

starts. At each fold, FS is applied with ML methods on the training and the validation 
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sets followed by CS treatment, then the parameters are tuned on validation set and 

finally the methods are tested on the testing set. After 3 times of repetitions, the 

testing results across all data splits are aggregated to compute MBRE, PRED and 

MdBRE. 

4. Experiment Results 

Experiment results are first analyzed by investigating the marginal impact of each 

individual preprocessing technique on the ML performances. As discussed in section 

2.2, the techniques considered in this study are: FS (Null/FSS), CS (Null/BSS), 

Scaling (Null/[0, 1]/[-1, 1]), and MDT (LD/MI). First, the means and standard 

deviations of the error metrics (MBRE, PRED(0.25) and MdBRE) across the testing 

subsets (i.e. three random splits of each dataset) by each technique are collected and 

analyzed. The mean values of error metrics indicate one method‟s average accuracy 

on a group of processed datasets. The standard deviations of error metrics reflect the 

robustness of one method across different datasets. The „PC‟ column in tables refers to 

the percentage of change between comparisons. Then, ANOVA is conducted to 

examine the significance of each preprocessing technique and their combinations. 

Finally, the overall performances of ML methods are compared and analyzed. 

4.1 Performance under MDT scheme 

The marginal means and standard deviations of the testing errors under two MDT 

schemes are shown in  

Table 8. For ISBSG dataset with relatively large number of missing values, MI 

could enlarge MBRE of all ML methods. The testing error of ANN has some outliers 

under MI, as the mean MBREs are not consistent with mean PREDs and MdBREs. 

For Desharnais dataset with a small amount of missing values, only ANN has slightly 

decreased MBRE value by MI. Furthermore, MI generally performs worse than LD in 

terms of accuracy and robustness of CBR and CART under MBRE. However, the 

testing errors of CBR and CART have outliers under MI as well. For Kitchenham 
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dataset with also a small amount of missing values, only CBR has increased MBRE 

by MI. The testing errors in terms of PRED and MdBRE are consistent with the result 

of MBRE. MI could generally enhance the robustness of ANN and CART on 

Kitchenham dataset. On USPFT dataset with a medium number of missing values, the 

results are similar to that on ISBSG data. The testing error of CART has outliers under 

MI in terms of the results of PREDs and MdBREs are not consistent with the MBREs. 

The results indicate that the effectiveness of MI compared with LD depend on the 

datasets as well as the ML methods. CBR is consistently negatively influenced by MI. 

CART is sensitive to outliers, and ANN is less sensitive to small amount of missing 

values. The answers to RQ1 from the results are the following: 1) it might not be 

correct to apply the same LD or MI to all ML methods on all datasets (as most of the 

previous studies did); 2) the MDT needs to be carefully selected for each ML method 

on each dataset. To the knowledge of the authors, none of the existing studies have 

made such discoveries. 

Table 8  

Average accuracy and robustness under MDT scheme 

Testing 

Error 

Metrics 

ML 

Methods 

Mean Std. Mean Std. 

LD MI 
*
PC (%) LD MI 

*
PC (%) LD MI 

*
PC (%) LD MI 

*
PC (%) 

Dataset ISBSG Kitchenham 

MBRE 

CBR 0.365 6.79 +1762 0.0623 4.13 +6535 2.39 2.62 +9.70 0.306 0.344 +12.5 

ANN 0.531 9.39 +1668 0.749 2.36 +215 12.9 12.7 -1.55 10.3 7.82 -24.5 

CART 0.349 5.96 +1606 0.0242 0.912 +3658 2.72 2.50 -8.27 0.441 0.262 -40.6 

PRED 

CBR 0.487 0.477 -2.05 0.0831 0.0390 -53.0 0.243 0.218 -10.6 0.0461 0.0552 +19.8 

ANN 0.544 0.563 +3.47 0.0746 0.0302 -59.4 0.198 0.206 +4.03 0.0435 0.0426 -2.31 

CART 0.520 0.497 -4.27 0.0440 0.0376 -14.5 0.212 0.241 +13.3 0.0181 0.0110 -39.2 

MdBRE 

CBR 0.269 0.274 +1.82 0.0598 0.0333 -44.2 0.736 0.847 +15.1 0.113 0.245 +116 

ANN 0.231 0.215 -6.84 0.0419 0.0171 -59.3 0.947 0.912 -3.70 0.287 0.252 -11.8 

CART 0.237 0.254 +7.25 0.0364 0.0304 -16.4 0.807 0.771 -4.58 0.0618 0.0502 -18.8 

Dataset Desharnais USPFT 

MBRE 

CBR 11.7 16.3 +39.0 1.28 12.1 +847 138 222 +60.5 74.8 124 +65.9 

ANN 51.2 51.0 -0.391 20.1 17.5 -12.9 330 352 +6.81 165 194 +17.3 

CART 23.9 27.8 +16.0 14.9 20.4 +36.5 140 160 +14.1 48.5 53.2 +9.79 

PRED 

CBR 0.467 0.475 +1.66 0.0418 0.0558 +33.5 0.656 0.564 -13.9 0.0671 0.0907 +35.0 

ANN 0.507 0.513 +1.16 0.0333 0.0465 +39.6 0.422 0.354 -16.2 0.0981 0.102 +4.28 

CART 0.461 0.506 +9.78 0.0311 0.0353 +13.6 0.431 0.500 +16.0 0.167 0.0651 -60.8 

MdBRE 

CBR 0.282 0.266 -5.63 0.0451 0.0395 -12.1 0 0.135 +∞ 0 0.138 +∞ 

ANN 0.252 0.249 -1.23 0.0271 0.0323 +19.3 0.431 0.528 +22.4 0.167 0.254 +52.6 

CART 0.281 0.252 -10.3 0.0153 0.0162 +5.94 0.328 0.282 -13.8 0.0843 0.0555 -34.1 

*PC (%) is the percentage of change between LD and MI. 
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4.2 Performance under Scaling scheme 

The marginal means and marginal standard deviations of the testing errors under 

different scaling schemes are shown in Table 9. The results exhibit diverse patterns in 

each dataset. On all datasets, the scaling scheme has no impact on CART. The result 

of ISBSG dataset shows the testing errors are not consistent with MBREs although 

scaling schemes generally improve the accuracy and robustness of MBREs. On 

Desharnais dataset, the scaling schemes reduce testing error and improve robustness 

of ANN method. CBR, instead, is impacted by outliers. On Kitchenham dataset with a 

small number of features, CBR is uniquely negatively impacted by scaling schemes. 

On USPFT dataset, the [0, 1] scheme improves the accuracy and robustness of CBR 

and ANN. The [0, 1] scheme outperforms [-1, 1] scheme consistently in terms of ANN. 

Table 9  

Average accuracy and robustness under scaling scheme 

Dataset 

Testing 

Error 

Metrics 

ML 

Methods 

Mean Std. 

Null [0, 1] 
*
PC (%) [-1, 1] 

*
PC (%) Null [0, 1] 

*
PC (%) [-1, 1] 

*
PC (%) 

ISBSG 

MBRE 

CBR 4.47 3.14 -29.8 3.13 -30.0 6.05 3.51 -42.1 3.47 -42.6 

ANN 5.26 4.51 -14.1 5.11 -2.61 4.73 4.54 -4.12 5.79 +22.4 

CART 3.15 3.15 0 3.15 0 3.07 3.07 0 3.07 0 

PRED 

CBR 0.495 0.479 -3.13 0.473 -4.38 0.0837 0.0508 -39.2 0.0586 -29.8 

ANN 0.558 0.560 +0.358 0.548 -1.77 0.0676 0.0629 -6.97 0.0437 -35.2 

CART 0.508 0.508 0 0.508 0 0.0435 0.0435 0 0.0435 0 

MdBRE 

CBR 0.269 0.271 +0.631 0.274 +1.92 0.0594 0.0432 -27.3 0.0443 -25.3 

ANN 0.221 0.219 -0.905 0.226 +2.69 0.0365 0.0358 -1.92 0.0253 -30.6 

CART 0.246 0.246 0 0.246 0 0.0355 0.0355 0 0.0355 0 

Desharnais 

MBRE 

CBR 18.8 11.4 -39.2 11.8 -37.0 14.5 1.15 -92.1 0.948 -93.4 

ANN 56.9 42.6 -25.1 53.6 -5.75 24.8 14.3 -42.2 13.1 -47.3 

CART 25.8 25.8 0 25.8 0 18.4 18.4 0 18.4 0 

PRED 

CBR 0.500 0.462 -7.56 0.451 -9.62 0.0564 0.0301 -46.5 0.0462 -18.1 

ANN 0.491 0.531 +7.85 0.507 +3.18 0.0479 0.0302 -36.9 0.0333 -30.4 

CART 0.483 0.483 0 0.483 0 0.0417 0.0417 0 0.0417 0 

MdBRE 

CBR 0.243 0.286 +17.9 0.294 +21.0 0.0363 0.0306 -15.7 0.0431 +18.5 

ANN 0.265 0.234 -11.7 0.253 -4.48 0.0317 0.0226 -28.8 0.0267 -15.7 

CART 0.267 0.267 0 0.267 0 0.0225 0.0225 0 0.0224 0 

Kitchenham 

MBRE 

CBR 2.22 2.65 +19.5 2.66 +19.5 0.0866 0.339 +292 0.338 +290 

ANN 15.6 13.0 -17.1 8.89 -43.2 9.02 10.3 +14.5 7.11 -21.1 

CART 2.59 2.59 0 2.59 0 0.374 0.374 0 0.374 0 

PRED 

CBR 0.265 0.213 -19.5 0.214 -19.2 0.0319 0.0541 +69.6 0.0527 +65.1 

ANN 0.191 0.219 +14.7 0.196 +2.53 0.0635 0.0222 -65.1 0.0289 -54.4 

CART 0.227 0.227 0 0.227 0 0.0223 0.0223 0 0.0223 0 

MdBRE 

CBR 0.643 0.867 +34.8 0.866 +34.7 0.0289 0.208 +621 0.208 +619 

ANN 1.13 0.788 -30.3 0.868 -23.3 0.351 0.132 -62.2 0.124 -64.7 

CART 0.782 0.782 0 0.782 0 0.0640 0.0640 0 0.0640 0 

USPFT MBRE 
CBR 171 140 -18.1 229 +33.7 124 122 -1.80 61.7 -50.4 

ANN 321 289 -9.85 414 +29.0 169 99.8 -41.1 233 +37.8 
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CART 150 150 0 150 0 53.2 53.2 0 53.2 0 

PRED 

CBR 0.619 0.626 +1.12 0.585 -5.57 0.0765 0.0668 -12.7 0.125 +64.3 

ANN 0.385 0.440 +14.2 0.339 -11.7 0.104 0.0765 -26.9 0.114 +8.82 

CART 0.465 0.465 0 0.465 0 0.134 0.134 0 0.134 0 

MdBRE 

CBR 0.0643 0.0337 -43.7 0.104 +210 0.0906 0.0551 -39.1 0.178 +222 

ANN 0.436 0.389 -10.9 0.614 +40.5 0.149 0.136 -8.83 0.284 +89.8 

CART 0.305 0.305 0 0.305 0 0.0770 0.0770 0 0.0770 0 

*PC (%) is the percentage change between the [0, 1] and NULL or the [-1, 1] and NULL. 

The results reveal that [0, 1]  scheme of appears to be less effective to highly-

skewed ISBSG and Kitchenham datasets (described in Section 3.1) than to the less-

skewed Desharnais and USPFT datasets. The influences of both [0, 1] and [-1, 1] 

schemes for CART are ignorable for all datasets. This might be attributed to the fact 

that the scaling does not change the distributions of the original data and consequently 

does not impact the splitting results of CART. Additionally, the [0, 1] scheme is more 

suitable than [-1, 1] scheme for ANN in all datasets. For CBR, only the results 

obtained from USPFT dataset are improved by [0, 1] scheme consistently. The 

discussions in this paragraph provide answers to RQ2. 

4.3 Performance under FS scheme 

Table 10 illustrates the marginal means and standard deviations of the three error 

metrics on testing subsets classified by FS scheme: Null/FSS. The results show that 

FSS could generally reduce the testing error and improve robustness for CBR method. 

In addition, FS is more efficient on Desharnais dataset in terms of reducing testing 

error and enhancing robustness of CBR and ANN methods. For ISBSG dataset, ANN 

and CART appear to reduce prediction accuracy and robustness in terms of MBRE. 

However, for CART method on all datasets, FS generally has a negative impact. For 

Kitchenham dataset with relative small number of features, FSS also shows negative 

impact on ANN method. On USPFT dataset, the prediction accuracy and robustness 

of CBR and ANN in terms of MBRE have been improved; however, the testing errors 

are not consistent. 

This analysis shows that FS generally improve CBR method (especially for 

ISBSG, Desharnais and Kitchenham data) and it should be used with care for ANN. 
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Applying FS for CART might not be a good choice. For datasets with small number 

of features, applying FS for ANN could overall reduce the number of hidden nodes 

and therefore hinder its approximation ability. Nevertheless, these might attribute to 

the limitation of specific FS approach used in this study. The discussions in this 

paragraph provide answers to RQ3. 

Table 10 

Average accuracy and robustness under FS scheme 

Testing 

Error 

Metrics 

ML 

Methods 

Mean Std. Mean Std. 

Null FSS 
*
PC (%) Null FSS 

*
PC (%) Null FSS 

*
PC (%) Null FSS 

*
PC (%) 

Dataset ISBSG Kitchenham 

MBRE 

CBR 5.11 2.05 -59.7 5.52 2.03 -63.1 2.67 2.35 -11.8 0.362 0.236 -34.8 

ANN 4.79 5.13 +7.16 4.36 5.46 +25.2 11.8 13.2 +11.7 7.47 10.5 +41.7 

CART 2.78 3.53 +27.0 2.53 3.36 +33.1 2.55 2.67 +4.40 0.409 0.341 -16.4 

PRED 

CBR 0.467 0.498 +6.87 0.0649 0.0608 -6.32 0.211 0.250 +18.4 0.0536 0.0431 -19.4 

ANN 0.531 0.577 +8.60 0.0578 0.0469 -18.7 0.190 0.215 +12.9 0.0391 0.0434 +11.1 

CART 0.506 0.511 +0.812 0.0297 0.0522 +75.7 0.219 0.233 +6.71 0.0185 0.0206 +11.2 

MdBRE 

CBR 0.282 0.261 -7.51 0.0473 0.0470 -0.759 0.879 0.705 -19.7 0.238 0.0843 -64.5 

ANN 0.237 0.209 -11.6 0.0346 0.0239 -31.1 1.02 0.839 -17.7 0.237 0.269 +13.3 

CART 0.247 0.243 -1.88 0.0261 0.0414 +59.2 0.820 0.757 -7.64 0.0512 0.0482 -6.02 

Dataset Desharnais USPFT 

MBRE 

CBR 14.8 13.2 -10.4 11.7 4.61 -60.7 242 118 -51.1 94.8 86.5 -8.75 

ANN 60.8 41.3 -32.1 18.0 13.2 -26.3 367 315 -13.9 198 156 -21.2 

CART 23.4 28.3 +20.6 14.4 20.6 +42.1 136 164 +20.8 51.8 47.7 -7.77 

PRED 

CBR 0.454 0.488 +7.48 0.0498 0.0427 -14.4 0.599 0.621 +3.67 0.0389 0.124 +220 

ANN 0.490 0.529 +8.12 0.0401 0.0288 -28.0 0.413 0.363 -12.1 0.0666 0.129 +95.1 

CART 0.487 0.480 -1.39 0.0240 0.0522 +116 0.500 0.431 -13.9 0.175 0.0340 -80.5 

MdBRE 

CBR 0.278 0.271 -2.16 0.0475 0.0380 -19.9 0.0388 0.0965 +148 0.0632 0.152 +141 

ANN 0.266 0.236 -11.2 0.0275 0.0232 -15.6 0.418 0.541 +29.5 0.109 0.278 +153 

CART 0.267 0.265 -0.758 0.0179 0.0252 +40.5 0.303 0.307 +1.52 0.0966 0.0443 -54.1 

*PC (%) is the percentage change between FSS and NULL. 

4.4 Performance under CS scheme 

Table 11 presents the performance of the ML methods under CS scheme: 

Null/BSS. On ISBSG dataset, CS appears to lead to diverse results: for ANN, the 

testing error is reduced and robustness is improved for all metrics; for CBR and 

CART, the situation is the opposite to that of ANN. On Desharnais dataset, CS could 

increase testing error and reduce robustness of ANN, and reduce the testing error of 

CART. As to CBR on Desharnais dataset, the result shows the testing error is not 

consistent with the MBRE. On Kitchenham dataset, CS appears to lead to negative 

impact on CART and positive impact on ANN. For CBR, the MBRE is slightly 
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reduced but the testing errors are not consistent. On USPFT dataset, only CART is 

consistently improved by CS. For ANN and CBR, MBREs are not consistent with the 

testing errors. It is possibly due to the outliers inside the dataset. 

Table 11 

Average accuracy and robustness under CS scheme 

Testing 

Error 

Metrics 

ML 

Methods 

Mean Std Mean Std 

Null BSS 
*
PC (%) Null BSS 

*
PC (%) Null BSS 

*
PC (%) Null BSS 

*
PC (%) 

Dataset ISBSG Kitchenham 

MBRE 

CBR 2.89 4.26 +47.5 3.36 5.23 +55.6 2.52 2.50 -0.817 0.413 0.266 -35.4 

ANN 5.31 4.60 -13.3 5.31 4.52 -14.8 12.6 12.4 -1.82 8.71 9.65 +10.7 

CART 3.09 3.22 +4.04 2.87 3.12 +8.61 2.34 2.88 +23.1 0.332 0.144 -56.5 

PRED 

CBR 0.501 0.463 -7.58 0.0465 0.0742 +59.5 0.252 0.209 -17.1 0.0322 0.0592 +84.0 

ANN 0.551 0.556 +0.915 0.0579 0.0576 -0.431 0.185 0.218 +17.7 0.0398 0.0396 -0.502 

CART 0.510 0.507 -0.658 0.0338 0.0497 +47.1 0.231 0.221 -4.18 0.0215 0.0193 -10.2 

MdBRE 

CBR 0.255 0.288 +12.7 0.0341 0.0544 +59.3 0.738 0.845 +14.4 0.121 0.243 +101 

ANN 0.224 0.222 -0.571 0.0349 0.0310 -11.1 1.01 0.849 -16. 1 0.306 0.196 -36.1 

CART 0.244 0.246 +0.641 0.0300 0.0388 +29.3 0.776 0.801 +3.14 0.0468 0.0677 +44.5 

Dataset Desharnais USPFT 

MBRE 

CBR 16.8 11.2 -32.8 11.9 1.30 -89.1 164 196 +19.4 100 119 +18.3 

ANN 49.2 53.1 +7.96 13.5 22.8 +68.0 309 373 +20.6 181 174 -3.70 

CART 42.16 9.601 -77.2 8.28 0.0716 -99.1 160 140 -12.1 53.4 48.4 -9.44 

PRED 

CBR 0.477 0.465 -2.33 0.0532 0.0447 -15.9 0.604 0.616 +2.05 0.115 0.0634 -44.8 

ANN 0.505 0.515 +2.05 0.0341 0.0456 +34.0 0.384 0.392 +2.16 0.119 0.0917 -23.1 

CART 0.455 0.512 +12.5 0.0299 0.0258 -13.4 0.406 0.524 +29.2 0.131 0.0984 -24.9 

MdBRE 

CBR 0.273 0.275 +0.826 0.0411 0.0452 +9.89 0.101 0.0344 -65.8 0.146 0.0722 -50.7 

ANN 0.253 0.248 -1.99 0.0247 0.0341 +37.7 0.481 0.478 -0.765 0.251 0.186 -25.6 

CART 0.281 0.252 -10.3 0.0167 0.0155 -7.22 0.346 0.263 -23.9 0.0841 0.0218 -74.1 

*PC (%) is the percentage change between BSS and NULL. 

The results show different patterns across the datasets in the study. CBR unlikely 

benefit from CS. CART may benefit from CS on within-company datasets, like 

Desharnais and USPFT datasets, whereas CS might have negative impacts to CART 

on cross-company datasets, such as ISBSG and Kitchenham datasets. CS could be 

used by ANN for cross-company datasets. However, it is not always effective when 

attached to CART or ANN, possibly due to the loss of information for training. The 

discussions in this paragraph provide answers to RQ4. 

4.5 ANOVA test 

To further quantify the impact and significance of each preprocessing technique as 

well as the interactions between them, we conduct Analysis of Variance (ANOVA) for 

this purpose. MBRE is used as the sole response (or dependable variable) for ANOVA. 
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We analyze Spearman‟s rho non-parametric correlations between the individual error 

metrics (MBRE, PRED(0.25) and MdBRE) across all testing datasets. The analysis 

reveals a significant positive correlation at the level of 0.01 between MBRE and 

MdBRE, and a negative correlation at the level of 0.01 between MBRE and 

PRED(0.25). Consequently, the use of MBRE as response solely appears to be 

feasible. On top of the significance testing, the non-linear interactions between the 

main effects are also investigated. The factors of ANOVA including “Method” (CBR, 

ANN or CART), MDT (LD/MI), Scaling (Null/[0, 1]/[-1, 1]), FS (Null/FSS) and CS 

(Null/BSS), are all transformed to dummy variable and regarded as fixed factors. The 

interactions in this study include ten 2-ways, ten 3-ways, and five 4-ways. The 

factors/interactions are regarded as influential only if they have the significance level 

of 0.05 at least. Prior to the ANOVA, the logarithmic transformation is performed in 

response to reducing the skewness and the heterogeneity of the variances of different 

groups of MBRE values.   

The ANOVA results are presented separately in Table 12, which lists all the main 

effects and significant interactions. The main effects and their interactions to explain a 

proportion of the total variance is measured by the partial eta squared statistic ( 2

p ) 

with larger values related to higher relative importance. For ISBSG dataset, the main 

effects of „Method‟, FS and MDT are proven to be significant at the level of 0.01. 

Moreover, Scaling is only significant at the level of 0.05. It confirms our finding from 

previous individual analysis that MDT, scaling, forward sequential feature selection 

appear to have strong influence on testing performances on ISBSG dataset. With 

respect to the interactions, two 2-way interactions: „MDT × CS‟, „Scaling × FS‟, three 

3-way interactions: „MDT × Scaling × CS‟, „Method × Scaling × FS‟, and „Method × 

MDT × FS‟, and two 4-way interaction: „Method × MDT × FS × CS‟ and „Method × 

Scaling × FS × CS‟ are significant at the level of 0.05.  

For Desharnais dataset, only the main effects of „Method‟ and CS are shown to be 

significant at the level of 0.01. With respect to the interactions, a 2-way interactions 
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and a 3-way interaction are significant at the level of 0.05, which are „MDT × CS‟ and 

„MDT × Scaling × CS‟, respectively. Furthermore, on Desharnais dataset, MDT 

appears to have strong interactions with CS. 

For Kitchenham dataset, all main effects except the FS and CS are shown to be 

significant at the level of 0.05. It also confirms the findings that the preprocessing 

methods of FS and CS have less consistent influence on the prediction results. For 

USPFT dataset, all the main effects are shown to be significant at the level of 0.05 at 

least. Many interactions are shown to be significant at the level of 0.05. 

In general, the analysis recognizes the single DP methods of MDT, FS and scaling 

significantly could impact the final prediction results for the most datasets or ML 

methods.  

Table 12 

ANOVA results of main effects and relevant interactions 

Dataset 
Factors/ 

Interactions 
d.f. 

Type III 

Sum Sq. 
Mean Sq. F p-value 

2

p
  

ISBSG 

Method 2 1.028 .514 27.510 .005
** 

.932 

MDT 1 155.101 155.101 8303.128 .000
**

 .999 

Scaling 2 .238 .119 6.365 .050
*
 .761 

FS 1 1.228 1.228 66.740 .001
**

 .943 

CS 1 .007 .007 .374 .574 .086  

MDT× CS 1 .208 .208 11.160 .029
*
 .736 

Scaling × FS 2 .423 .211 11.320 .023
*
 .850 

MDT × Scaling × CS 2 .336 .168 8.992 .033
*
 .818 

Method × Scaling × FS 4 .462 .115 6.182 .050
*
 .861 

Method × MDT × FS 2 1.651 .825 44.190 .002
**

 .957 

Method × MDT × FS × CS  2 .518 .259 13.864 .016
*
 .874 

Method × Scaling × FS × CS 4 .500 .125 6.694 .046
*
 .870 

Desharnais 

Method 2 21.409 10.701 208.600 .000
**

 .991 

MDT 1 .144 .144 2.814 .169 .413 

Scaling 2 .409 .205 3.989 .112 .666 

FS 1 5.189 5.189 93.682 .050
*
 .879 

CS 1 5.978 5.978 116.500 .000
**

 .967 

MDT × CS 1 .386 .386 7.524 .050
*
 .653 

MDT × Scaling × CS 2 .546 .273 5.318 .050
*
 .727 

Kitchenham 

Method 2 28.695 14.348 94.024 .000
**

 .979 

MDT 1 .479 .479 7.549 .043
*
 .716 

Scaling 2 .244 .122 .799 .050
*
 .685 

FS 1 .006 .006 .038 .856 .009 

CS 1 .065 .065 .428 .549 .097 

USPFT 

Method 2 9.549 4.774 238.819 .000
**

 .992 

MDT 1 .870 .870 43.538 .003
**

 .916 

Scaling 2 1.908 .954 47.726 .002
**

 .960 

FS 1 2.050 2.050 102.564 .001
**

 .962 

CS 1 .145 .145 7.270 .050
*
 .645 
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FS × CS 1 1.476 1.476 73.829 .001
**

 .949 

Scaling × FS 2 2.979 1.489 74.496 .001
**

 .974 

Method × FS × CS 2 .545 .272 13.623 .016
*
 .872 

Scaling × FS × CS 2 .340 .170 8.501 .036
*
 .810 

Method × MDT × CS 2 .711 .356 17.789 .010
**

 .899 

Method × MDT × FS 2 .477 .239 11.937 .021
*
 .857 

Method × Scaling × FS 4 3.164 .791 39.567 .002
**

 .975 

Method × Scaling × FS × CS 2 .587 .294 14.682 .014
*
 .880 

*
Significant at the 0.05 level (2-tailed) 

**
Highly significant at the 0.01 level (2-tailed) 

4.6 Overall performance  

Table 13 summarizes the testing results across of all experiments. The data shows 

that CBR and CART generally achieve the best overall performance in terms of 

average accuracy, followed by ANN, which could be better in terms of PRED(0.25) or 

MdBRE. All the methods seem very close to each other under the error metric 

PRED(0.25) and MdBRE in most cases.  

Table 13 

Overall averages and standard deviations of error values 

Dataset ISBSG Desharnais Kitchenham USPFT 

Testing 

Error 

Metrics 

ML 

Methods 
Mean Std. Mean Std. Mean Std. Mean Std. 

MBRE 
CBR 3.582 4.358 14.1 8.78 2.51 0.340 180 109 
ANN 4.964 4.842 51.1 18.4 12.5 8.99 341 177 
CART 3.159 2.938 25.8 17.6 2.61 0.373 150 50.8 

PRED 
CBR 0.482 0.0637 0.471 0.0484 0.230 0.0515 0.611 0.0911 
ANN 0.554 0.0566 0.510 0.0397 0.202 0.0423 0.388 0.104 
CART 0.508 0.0417 0.483 0.0399 0.226 0.0206 0.465 0.128 

MdBRE 
CBR 0.271 0.0474 0.274 0.0423 0.792 0.196 0.0676 0.118 
ANN 0.223 0.0324 0.251 0.0292 0.930 0.265 0.480 0.216 
CART 0.245 0.0340 0.266 0.0215 0.789 0.0583 0.305 0.0735 

To further analyze the error metrics in testing phase, we draw out the boxplots of 

MBRE, PRED(0.25), and MdBRE on three datasets in Fig. 2, Fig. 3, Fig. 4 and Fig. 5. 

The boxplots confirm the findings from Table 13. CBR and CART appear to obtain 

either lowest medians or shortest inter-quartiles range among all methods in the plots 

of MBRE, PRED and MdBRE. In general, ANN has the largest inter-quartiles range, 

especially happens when MBRE is the testing error metric, and what is more, it has 

long ranges. The performance of CBR is slightly influenced by outliers, so the mean 

results in Table 13 cannot generally outperform CART. Although boxplots are useful 

graphical tool for visually comparing predictions, they cannot statistically confirm 
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whether one technique is significant better than another. Therefore, we perform the 

significant tests on the error values. 

  

Fig. 2 Boxplots of error metric values of ISBSG dataset 

  

Fig. 3 Boxplots of error metric values of Desharnais dataset 
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Fig. 4 Boxplots of error metric values of Kitchenham dataset 

 

Fig. 5 Boxplots of error metric values of USPFT dataset 
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sign-rank test (significance level α = 0.05 and α = 0.01 with two tails) is chosen to test 

the method pairs. The p-values of the Wilcoxon tests are presented in Table 14. The 

entry in the upper triangle range contains the p-value of the test between methods 

located in its corresponding row and column. From the results of three testing error 

metrics in Fig. 2 and Fig. 4, we can tell that CBR is generally better than ANN, but 

not always better than CART. The only obvious exception happens in the plots of 

PRED and MdBRE of Desharnais and ISBSG dataset as shown in Fig. 2 & 3. ANN 

appears to perform better than the other two ML methods in terms of both PRED and 

MdBRE. Observing from Table 13, CBR and ANN are obviously significantly 

different in terms of all testing error metrics. For Desharnais dataset, CBR and CART 

are significantly different in terms of MBRE; for ISBSG and USPFT datasets, they are 

only different in terms of PRED and MdBRE; and for Kitchenham dataset, they are 

very the same. These findings imply that CBR and CART could be the best choice 

among the three ML methods on all datasets. CBR obviously outperforms CART on 

Desharnais and USPFT datasets. On ISBSG and Kitchenham datasets, the 

performance of CART and CBR are not significantly different.  

Table 14  

Results of Wilcoxon sign-rank tests 

Dataset ISBSG Desharnais Kitchenham USPFT 

Testing 

Error 

Metrics 

ML 

Methods 
ANN CART ANN CART ANN CART ANN CART 

MBRE 
CBR .457

 
.819 .000

** 
.049

*
 .000

**
 .209 .000

**
 .049

*
 

ANN - .010
**

 - .000
**

 - .000
**

 - .000
**

 

PRED 
CBR .000

**
 .003

**
 .014

*
 .413 .134 .697 .000

**
 .002

**
 

ANN - .000
**

 - .050
*
 - .015

*
 - .043

*
 

MdBRE 
CBR .000

**
 .000

**
 .050

*
 .317 .110 .607 .000

**
 .000

**
 

ANN - .003
**

 - .050
*
 - .046

*
 - .002

**
 

*
Highly significant at the 0.01 level (2-tailed) 

**
Significant at the 0.05 level (2-tailed) 

One drawback of the above analysis is that the testing error metrics used are all 

based on BRE. Because BRE is relative error metric [94], we also consider Absolute 

Residuals (AR) as the alternative testing error metric for further analysis. We apply 

two-tailed Wilcoxon signed-rank test (α=0.05) to investigate the significance of 
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methods under BRE and AR across three random data splits on 24 generated datasets 

for preprocessing (totally 24 × 3 = 72). Table 15 presents the summary of the testing 

results. The symbols „=‟, „<‟, and „>‟ represent the relationships of „equal‟, „smaller 

than‟, and „larger than‟ between the ML methods located in column and in row. The 

table entry denotes how many significance tests report the relationship represented by 

the symbol. The entries in the upper triangle range represent the results from 

significant tests on AR values whilst the entries in the lower triangle range are for the 

tests on BRE values. For instance, the entry with value „16‟ under column „CBR‟ and 

the sub-column „>‟ means that there are totally 16 out 72 tests reported that ANN is 

significantly larger than CBR in terms of BRE in ISBSG dataset. 

Table 15 

Summary of Wilcoxon sign-rank tests for AR and BRE of each experiment 

ML 

Methods 

CBR ANN CART CBR ANN CART 

= < > = < > = < > = < > = < > = < > 

Dataset ISBSG Kitchenham 

CBR - - - 53 19 0 68 3 1 - - - 60 12 0 66 5 1 

ANN 56 0 16 - - - 59 0 13 60 0 12 - - - 55 3 14 

CART 66 2 4 57 15 0 - - - 68 1 3 58 14 0 - - - 

 Desharnais USPFT 

CBR - - - 67 5 0 63 9 0 - - - 51 21 0 59 13 0 

ANN 68 0 4 - - - 67 0 5 34 5 33 - - - 62 1 9 

CART 61 0 11 61 11 0 - - - 48 3 21 56 11 5 - - - 

It is seen that both CBR and CART stand a fair chance to outperform ANN on 

ISBSG dataset. For instance, 16/72 significance tests report that ANN‟s BRE values 

are larger than those of CBR and 15/72 tests confirm that CART‟s BRE values are 

smaller than those of ANN. For AR, 19/72 significance tests confirm that CBR‟s AR 

values are smaller than those of ANN and 3/72 tests confirm that CBR‟s AR are 

smaller than those of CART. Note that the result of CART method in Table 13 is 

influenced by the outliers. On Desharnais dataset, the three methods are generally 

equal. In specific, CBR is slightly better than ANN or CART on both datasets. On 

Kitchenham dataset, the results are similar to that on ISBSG dataset. On USPFT 

dataset, CBR obviously outperforms ANN and CART. For instance, 21/72 tests 

confirm that CART‟s BRE values are larger than those of CBR. In summary, CBR 

appears to be a better alternative compared with ANN and CART in terms of all kinds 
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combinations of DP methods used in this study.  

At the last, we analyze the performance of the combinations of DP techniques. We 

rank the DP combination according to the value of testing error metrics. From the 

experiment design, there are 24 processed datasets. Therefore, we have 24 sets of 

results for MBRE, PRED and MdBRE. We only keep the best 33% of the ranked 

results, i.e. 8 minimal MBREs, 8 maximal PREDs and 8 minimal MdBREs, and their 

corresponding DP methods. As expected, we did not find an overall dominant DP 

combination for all the four datasets and three ML methods. However, we do obtain 

results that could provide meaningful suggestion for other research works. The results 

are organized in Table 16.  

Table 16 

Summary of recommended DP combinations under different datasets and ML methods 

Dataset 
ML 

Methods 

CBR ANN CART 

Error 

value in 

order 

DP combination Error 

value in 

order 

DP combination Error 

value in 

order 

DP combination 

MDT *Sca FS CS MDT *Sca FS CS MDT *Sca FS CS 

ISBSG 

MBRE 

.2808 1 3 2 2 .2500 1 3 2 1 .3128 1 1 2 2 

.2986 1 3 2 1 .2517 1 3 2 2 .3128 1 2 2 2 

.3214 1 1 2 1 .2548 1 1 2 1 .3128 1 3 2 2 

.3214 1 2 2 1 .2843 1 2 2 2 .3506 1 1 2 1 

.3425 1 1 2 2 .3050 1 1 2 2 .3506 1 2 2 1 

.3425 1 2 2 2 .3145 1 2 2 1 .3506 1 3 2 1 

.3563 1 1 1 1 .3491 1 2 1 2 .3590 1 1 1 1 

.3613 1 2 1 1 .3516 1 1 1 2 .3590 1 2 1 1 

PRED 

.6133 1 3 2 2 .6773 1 3 2 2 .5733 1 1 2 2 

.6000 1 3 2 1 .6333 1 1 2 1 .5733 1 2 2 2 

.5381 2 3 1 1 .6266 1 3 2 1 .5733 1 3 2 2 

.5333 1 1 2 1 .6147 2 1 1 1 .5466 1 1 2 1 

.5333 1 2 2 1 .6132 2 2 1 2 .5466 1 2 2 1 

.5224 2 1 1 1 .5920 1 2 2 2 .5466 1 3 2 1 

.5200 1 1 2 2 .5874 2 1 1 2 .5358 2 1 1 1 

.5200 1 2 2 2 .5710 2 3 1 2 .5358 2 2 1 1 

MdBRE 

.1925 1 3 2 2 .1693 1 3 2 2 .2007 1 1 2 2 

.1992 1 3 2 1 .1784 1 3 2 1 .2007 1 2 2 2 

.2256 1 1 2 1 .1794 1 1 2 1 .2007 1 3 2 2 

.2256 1 2 2 1 .1902 2 2 1 2 .2065 1 1 2 1 

.2285 2 3 1 1 .1906 2 1 1 1 .2065 1 2 2 1 

.2380 2 1 1 1 .1995 1 2 2 2 .2065 1 3 2 1 

.2399 1 1 2 2 .2008 2 1 1 2 .2188 2 1 1 2 

.2399 1 2 2 2 .2032 2 3 2 1 .2188 2 2 1 2 

Desharnais 

MBRE 

9.380 2 3 1 2 16.36 2 3 2 2 9.528 2 1 1 2 
9.590 1 1 2 2 27.07 1 1 2 2 9.528 2 2 1 2 
9.660 1 2 1 2 28.25 1 1 2 1 9.528 2 3 1 2 
9.668 1 1 1 2 34.32 2 1 2 2 9.539 2 1 2 2 
11.83 2 3 2 2 38.47 2 1 1 1 9.539 2 2 2 2 
11.85 2 2 1 2 38.84 1 1 1 1 9.539 2 3 2 2 
11.85 2 2 2 1 39.92 1 2 2 2 9.647 1 1 2 2 
11.86 2 1 1 1 42.90 2 2 1 2 9.647 1 2 2 2 

PRED 

.6049 2 3 1 1 .5948 2 3 2 2 .5555 2 1 2 1 

.5308 2 2 1 2 .5822 2 1 2 2 .5555 2 2 2 1 

.5194 1 3 2 1 .5528 2 1 2 1 .5555 2 3 2 1 

.5185 2 3 1 2 .5472 1 2 2 1 .5185 2 1 1 1 

.5064 1 1 2 1 .5451 1 1 2 1 .5185 2 2 1 1 

.5064 1 3 2 2 .5433 1 2 2 2 .4935 2 3 1 2 

.4938 2 2 2 2 .5387 2 2 1 2 .4935 2 2 1 2 

.4935 1 1 1 1 .5376 1 1 2 2 .4935 2 1 1 2 

MdBRE 
.1760 2 3 1 1 .1953 2 1 2 2 .2287 2 1 2 1 
.2018 1 3 2 2 .2039 2 3 2 2 .2287 2 2 2 1 
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.2131 2 2 1 2 .2196 2 1 2 1 .2287 2 3 2 1 

.2438 1 3 2 1 .2227 1 1 2 1 .2475 2 1 1 1 

.2484 1 1 2 1 .2252 1 2 2 2 .2475 2 2 1 1 

.2484 2 3 1 2 .2256 1 2 2 1 .2635 2 3 1 2 

.2583 1 1 1 1 .2262 1 1 2 2 .2635 2 2 1 2 

.2583 1 3 1 1 .2296 2 2 1 2 .2635 2 1 1 2 

Kitchenham 

MBRE 

2.118 1 3 2 2 3.040 1 1 1 1 2.060 2 1 1 1 
2.156 1 1 2 1 3.317 2 3 2 2 2.060 2 2 1 1 
2.156 1 2 2 1 3.480 1 2 2 2 2.060 2 3 1 1 
2.163 2 3 1 1 4.624 2 2 1 1 2.129 2 1 2 1 
2.165 2 3 2 1 4.722 1 2 1 2 2.129 2 2 2 1 
2.201 1 3 1 1 5.084 1 1 2 1 2.129 2 3 2 1 
2.203 1 3 2 1 5.274 1 2 2 1 2.316 1 1 1 1 
2.237 1 1 2 2 5.499 1 2 1 1 2.316 1 2 1 1 

PRED 

.2962 1 1 2 2 .2824 2 3 1 2 .2551 2 1 2 1 

.2962 1 2 2 2 .2711 1 3 2 2 .2551 2 1 2 2 

.2896 2 3 1 1 .2619 1 2 2 2 .2551 2 2 2 1 

.2896 2 3 2 1 .2533 2 1 2 1 .2551 2 3 2 1 

.2888 1 3 1 1 .2470 2 3 2 2 .2551 2 3 2 2 

.2888 1 3 2 1 .2407 1 1 2 1 .2482 2 1 1 1 

.2758 2 3 1 2 .2318 2 1 2 2 .2482 2 2 1 1 

.2592 1 1 2 1 .2313 1 1 1 1 .2482 2 3 1 1 

MdBRE 

.6170 2 3 1 2 .6088 2 1 2 1 .7130 1 1 2 2 

.6175 2 3 1 1 .6201 1 2 2 2 .7130 1 3 2 2 

.6253 1 3 1 1 .6406 2 3 2 2 .7220 2 1 2 2 

.6253 1 3 2 1 .6560 1 1 2 1 .7220 2 3 2 2 

.6293 2 3 2 1 .7019 2 1 2 2 .7246 2 1 2 1 

.6682 1 3 2 2 .7342 2 3 1 2 .7246 2 2 2 1 

.6690 1 1 2 1 .7598 1 3 2 2 .7246 2 3 2 1 

.6690 1 1 2 2 .7608 1 2 2 1 .7400 2 1 1 1 

USPFT 

MBRE 

27.44 1 1 2 1 138.1 2 3 2 1 93.47 2 1 1 1 
27.45 1 1 2 2 149.3 1 1 2 2 93.47 2 2 1 1 
27.47 1 3 2 1 169.2 2 1 1 1 93.47 2 3 1 1 
34.80 2 1 2 2 177.0 1 3 2 1 103.6 1 1 1 2 
52.47 2 1 2 1 177.7 1 2 1 1 103.6 1 2 1 2 
95.83 2 3 2 2 186.3 2 3 2 2 103.6 1 3 1 2 
95.87 2 3 2 1 221.8 1 2 2 2 110.3 1 1 2 2 
97.96 1 3 2 2 228.6 1 1 2 1 110.3 1 2 2 2 

PRED 

.7413 1 3 2 1 .5410 1 1 2 1 .6724 1 1 1 2 

.7241 1 1 2 1 .5375 1 3 1 1 .6724 1 2 1 2 

.7241 1 3 2 2 .5162 1 3 1 2 .6724 1 3 1 2 

.7068 1 1 2 2 .5006 1 1 2 2 .5789 2 1 1 1 

.7068 1 2 2 1 .4844 2 1 2 2 .5789 2 2 1 1 

.6724 1 2 2 2 .4837 1 1 1 1 .5789 2 3 1 1 

.6551 1 1 1 1 .4521 2 1 2 1 .5263 2 1 1 2 

.6447 2 1 1 2 .4362 1 2 1 2 .5263 2 2 1 2 

MdBRE 

0 1 1 1 2 .2447 1 3 1 1 .2495 1 1 1 2 
0 1 1 2 1 .2467 1 1 2 1 .2495 1 2 1 2 
0 1 1 2 2 .2536 1 3 1 2 .2495 1 3 1 2 
0 1 2 1 2 .2681 1 1 2 2 .2498 2 1 1 1 
0 1 2 2 1 .3023 2 1 2 2 .2498 2 1 1 2 
0 1 2 2 2 .3081 1 1 1 1 .2498 2 2 1 1 
0 1 3 2 2 .3704 2 1 2 1 .2498 2 2 1 2 
0 1 3 2 1 .3838 1 2 1 1 .2498 2 3 1 1 

       MDT, 1 – Listwise deletion; 2 – Mean imputation 
*Sca: Scaling, 1 – [0, 1], 2 – [-1, 1], 3 – Null 
FS, 1 – FSS, 2 – Null; 
CS, 1 – BSS, 2 – Null. 

All the repeated DP combinations inside a particular data under a specific ML 

method are marked in bold. For example, in dataset of ISBSG, under CBR method, 

the DP combination of 1-3-2-2 (Listwise deletion, Null scaling, without FSS for FS or 

BSS for CS) is marked in bold since it exists in MBRE, PRED and MdBRE 

simultaneously.  

For specific ML method, we can see that 1-1-2-1 is a stable choice for ANN since 

it shows up in bold for all the three datasets used in this study. For CBR, the 



35 

 

performance of DP combinations for datasets varies. Only 1-1-2-1, 1-3-2-1 and 1-1-2-

2 have stable performances on ISBSG, Kitchenham and USPFT datasets. As for 

CART, the results further identifies that it is totally immune to [0, 1] scaling or [-1, 1] 

scaling. Whatever the scaling scheme is, once the rest DP combination is the same, the 

prediction results of CART are the same as well. The performance of DP 

combinations in CART varies a lot, only 2-X-1-1 (X is denoted as [0, 1] or [-1, 1] or 

Null) performs relatively stable for both USPFT and Kitchenham datasets and the 

corresponding estimation accuracy is promising. We could only suggest using the DP 

combination of 1-X-2-2 for ISBSG dataset and 2-X-1-2 for Desharnais dataset when 

SCE is based on CART algorithm. 

Further observation from Table 16 provides more useful knowledge of 

implementation of DP combinations. The DP combination should be carefully used 

according to the characteristics of data and the estimation method as well. All the 

recommendations in terms of using data preprocessing for corresponding datasets or 

ML-based methods in the context of SCE are listed in Table 17. Notice that in Table 

16, only the best DP combinations are selected from the rankings in Table 16. The 

criterion for selection is based on the ranking of the average value of MBRE, -PRED, 

and MdMER, shown in the 3
rd

 column of Table 17. Note that the recommended DP 

combinations in Table 17 are denoted in the same way Table 16 presents. The ANOVA 

shows that certain DPs and DP combinations could be overall significantly effective 

to SCE. The result showing in Table 17 further shows which DP combinations are the 

most positively effective to different datasets and different ML methods. It gives us 

the answer to RQ5 in terms of DP techniques selection.  

Table 17 

Recommended DP Combinations  

Dataset ML method (MBRE-PRED+MdBRE)/3 
Recommended DP 

combinations 

ISBSG 

CBR -0.0467 1-3-2-2 

ANN -0.0854 1-3-2-2 

CART -0.0199 1-X*-2-2 

Desharnais 

CBR 3.04 2-3-1-2 

ANN 5.32 2-3-2-2 

CART 3.10 2-X*-1-2 
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Kitchenham 

CBR 0.830 2-3-1-1 

ANN 1.24 2-3-2-2 

CART 0.851 2-X*-1-1 

USPFT 

CBR 8.91 1-1-2-1 

ANN 49.7 1-1-2-2 

CART 31.0 2-X*-1-1 

X* - [0, 1] or [-1, 1] or Null (scaling has no impact on CART) 

The results in Table 16 and Table 17 show that for Desharnais, Kitchenham and 

USPFT datasets, all the best DP combinations include MI. For the dataset with high 

percentage of missing values, e.g. ISBSG dataset, MI may not provide accurate 

estimation of the  missing data. In Desharnais, Kitchenham and USPFT datasets, the 

issue of missing values is not as critical as that in ISBSG data. MI may be a good 

choice for ANN based SCE in these three datasets. 

Further observation from Table 17 shows that most of the best DP combinations 

contain Null scaling scheme, except on USPFT data, the scaling scheme of [0, 1] is 

preferred. Observing that the most SCE studies adopt [0, 1] scheme intuitively, we 

recommend researchers to consider Null scaling alternatively to see if results are 

improved. The scaling scheme of [-1, 1] is less suggested since it does not appear in 

any recommended DP combinations. 

Although applying FS for ANN could be overall beneficial on Desharnais data as 

Table 10 presents, the result in Table 17 shows that all the best DP combinations for 

ANN method in four datasets do not include FSS for FS. Similar situation happens 

when applying CS for ANN. Weigh repeatedly, we suggest not conducting FS or CS 

for ANN based SCE.  

CS should be very carefully regarded when using it into a DP combination. 

Observing from Table 16, all the well-performed DP combinations for ISBSG, USPFT 

and Kitchenham data under CART contains BSS for CS. But if we take a look at the 

results in Table 11, the prediction accuracy of CART based estimation in Kitchenham 

data is in average reduced by CS. From the results, we found that certain DP 

combinations with BSS for CS could seriously lower the accuracy of CART based 

SCE; therefore, the mean testing error in Table 11 becomes more unsatisfied. The 
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similar situation applies to ISBSG data as well. The result in Table 17 shows that most 

of the best DP combinations in four datasets do not include BSS for CS. In conclusion, 

CS might only be useful for better prediction results of CBR or CART on specific 

datasets, and it should be conducted more carefully. 

5. Threats to Validity 

The threats to validity could be distributed into four groups in this study, including 

conclusion, internal, construct, and external validity. The conclusion validity is related 

to the ability to draw significant correct conclusions; in regard to which, we carefully 

applied the statistical tests, showing statistical significance for the obtained results. 

Moreover, we used medium-sized datasets to mitigate the threats related to the 

number of observations composing the datasets. 

 As this study focuses on the structured investigations on DP techniques, we 

discuss the internal validity in terms of threats to our experiments designs. There are 

several aspects: firstly, different numbers of pre-defined parameters are considered for 

each ML method in this study. For example, CBR has three parameters while CART 

has only one parameter. We observed that CBR is generally not significantly different 

from CART and both of them are more accurate than ANN method. However CBR‟s 

accuracy may be due to the extra parameters of CBR. Therefore, the sensitivity 

analysis of parameters is of interest to identify which parameter is important and how 

does the parameter affect the prediction performances. In addition, more sophisticated 

parameter tuning schemes can be explored because ML methods performances 

heavily depend on these parameters and the cross-validation plus grid search scheme 

is time-consuming to select parameters with large ranges. Moreover, this study 

chooses MBRE to guide parameter optimization of ML methods. However, MBRE is 

only one type of balanced relative error metric, other types of balanced error metrics 

such as Mean Square Error (MSE) could be considered as the error metric for 

parameter selection. 
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 The construct validity refers to the agreement between a theoretical concept and a 

specific measurement. It has to establish correct operational measures for the concepts 

being studied. As to the assessment of different combinations of DP techniques, we 

made use of three performance measures and four public datasets in our study. All the 

performance measures are used with statistical test as suggested by Kitchenham et al. 

[98]. The datasets in our study have been previously used in many other empirical 

studies carried out to evaluate effort estimation. 

 The external validity represents the possibility of generalizing the findings of this 

study. The threats to external validity are as follows. Firstly, the limited datasets cause 

some difficulties to generalize our conclusions. The ISBSG dataset is very large and 

regarded as a benchmarking dataset in SCE literature, but it is multi-organizational in 

nature and with heterogeneous properties. There are no commonly accepted data 

refinement criteria to the knowledge of the authors. Nevertheless, we refer to works of 

[37, 66, 85] and refine the ISBSG data. In real world estimation procedures, many 

project managers prefer to use the data from one company to ensure data consistency. 

Therefore, our results based on the four datasets might be difficult to generalize to 

those estimations obtained from single and homogeneous company data. Recently, 

some research works [99, 100] have been conducted to investigate to what extent a 

cross-company cost model can be successfully employed to estimate single company 

projects. Nevertheless, the experiment design proposed in our study can be easily 

extended to other single company datasets.  

 In addition, missing data is a common situation in software engineering datasets. 

Many studies [29, 31, 39, 74] have proposed different imputation techniques to 

recover missing data by estimating replacement values. But our study is mainly 

focusing on the LD and MI. More advanced methods of imputation could be adopted 

to deal with missing data. Moreover, limited DP techniques and ML methods are 

explored in our study. There might be some difficulties to extend our conclusions to 

other ML methods to select appropriate DP scheme. Furthermore, in the experiment 
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the 3-fold cross-validation scheme, though it is the most widely used one in the 

literature, might not produce sufficiently stable estimation of the prediction accuracy. 

More advanced scheme as 10-fold cross-validation or even leave-one-out cross-

validation could be considered. The side effect of these schemes is mainly the high 

computational expense.  

 

6. Conclusion and Future Works 

 Data preprocessing is a fundamental stage of ML method and has large impact on 

the accuracy of ML methods. However, there is still lack of systematic study in the 

SCE context for DP techniques despite of their importance. In this study, a structured 

literature survey of DP techniques is first conducted. Subsequently, a systematic 

empirical study is conducted to analyze the effectiveness of the four DP techniques, 

i.e. MDT, Scaling, FS and CS. In addition, the interactions between the preprocessing 

techniques and ML methods‟ predictive accuracies are also studied. ANOVA test is 

conducted to quantify the significance of each preprocessing technique and the 

interactions between them and ML methods. In the end, the recommendation of using 

DP combination for different datasets and different ML methods is summarized (See 

Table 17). For example, the best DP combination for Kitchenham data in the context 

of CBR based SCE is MI, Null scaling, FSS for FS, and BSS for CS. Seven findings 

are noteworthy: 

1. The effectiveness of an ML method used for SCE (e.g. CBR, ANN and CART) 

can be significantly altered by single DP steps and their combinations (especially, 

the MDT, scaling, FS), which further extends the findings found by Keung et al. 

[35]. 

2. The performance of DP methods is generally dependent on the characteristics of 

data and the ML methods. 
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3. The percentage of missingness inside data is an important matter when we 

consider using MDT for ML-based SCE. Compared with MI, LD is preferred for 

datasets with a large number of missing values in terms of improving prediction 

accuracy and robustness. For datasets with a small number of missing values, 

ANN is less sensitive to MI and CART could benefit from MI.  

4. No need to use [0, 1] or [-1, 1] scaling for CART based SCE. The scaling scheme 

of Null scaling could be better than [0, 1] under certain circumstance. Scaling 

appears to be less significant to large and highly-skewed dataset.  

5. FS is more appropriate for CBR based SCE rather than for ANN or CART. For 

ANN and CART, the impact of FS is dependent on the characteristics of data, 

such as the number of features. CS could be effective, but it is not recommended 

using CS for ANN.  

6. ANN performs worse than other two ML methods in our study (e.g. CBR and 

CART), similar to the results obtained by Keung et al. [35]. CBR and CART 

could be better methods for SCE according to our experiments. CART is 

negatively impacted by FS and more sensitive to CS. An appropriate strategy of 

DP is necessary for CART. 

7. The selection of DP combination is dependent on datasets and ML methods. We 

suggest the SCE research works that utilize any ML method consider fine-tuning 

the DP techniques so that the performance of ML method can be improved. This 

finding conveys a meaningful message to the majority of the completed or 

ongoing SCE research works where the DP techniques have been or are being 

used without sufficient attentions. 

As for the future works, 1) more extensive experiments on various datasets will be 

considered to generalize the findings of this study; 2) more advanced ML methods can 

be involved in the experiment, for example the more complicated tree model of CART, 

such as multiple additive regression trees (MART) and multivariate adaptive 
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regression splines (MARS); 3) use unbiased novel performance measure, such as 

standardized accuracy [101], for comparison of DPs. 
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