
HAL Id: hal-01340341
https://hal.science/hal-01340341

Submitted on 30 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Systematic Analysis of Data Preprocessing for
Machine Learning- based Software Cost Estimation

Jianglin Huang, Yan-Fu Li, Min Xie

To cite this version:
Jianglin Huang, Yan-Fu Li, Min Xie. A Systematic Analysis of Data Preprocessing for Machine
Learning- based Software Cost Estimation. Information and Software Technology, 2015, 67, pp.108-
127. �10.1016/j.infsof.2015.07.004�. �hal-01340341�

https://hal.science/hal-01340341
https://hal.archives-ouvertes.fr

A Systematic Analysis of Data Preprocessing for Machine Learning-

based Software Cost Estimation

Jianglin Huang
*
, Yan-Fu Li, Min Xie

 J. Huang and M. Xie are with the Department of Systems Engineering and Engineering

Management, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China

E-mails: jianhuang7-c@my.cityu.edu.hk, minxie@cityu.edu.hk

 Y. F. Li is with the Laboratory of Industrial Engineering, Ecole Centrale Paris, Grande Voie des

Vignes 92295, Chatenay-Malabry Cedex, France.

E-mail: yanfu.li@ecp.fr

*corresponding author. Tel: +85256013641

Abstract

Context: Due to the complex nature of the software development process, traditional parametric models

and statistical methods often appear to be inadequate to model the increasingly complicated

relationship between project development cost and the project features (or cost drivers). Machine

learning (ML) methods, with several reported successful applications, have gained popularity for

software cost estimation in recent years. Data preprocessing has been claimed by many researchers as a

fundamental stage of ML methods; however, very few works have been focused on the effects of data

preprocessing techniques.

Objective: This study aims for a systematic assessment of the effectiveness of data preprocessing

techniques on ML methods in the context of software cost estimation.

Method: In this work, we first conduct a literature survey of the recent publications using data

preprocessing techniques, followed by a systematic empirical study to analyze the strengths and

weaknesses of individual data preprocessing techniques as well as their combinations.

Results: Our results indicate that data preprocessing techniques may significantly influence the final

prediction. They sometimes might have negative impacts on prediction performance of ML methods.

Conclusion: In order to reduce prediction errors and improve efficiency, a careful selection is necessary

according to the characteristics of machine learning methods, as well as the datasets used for software

cost estimation.

Keywords – software cost estimation, data preprocessing, missing-data treatments, scaling, feature

selection, case selection

mailto:jianhuang7-c@my.cityu.edu.hk
mailto:minxie@cityu.edu.hk

2

1. Introduction

Software project managers often need to estimate the cost/effort of developing a

software system at the early stage of its life-cycle [1] in order to plan the project

management activities. The ability to accurately estimate the development cost plays

an important role in the success of software project management. In the past decades,

numerous research works have been published on software cost estimation (SCE)

methods, which can be classified into the following three main categories.

1. Expert judgment: It requires the consultation of one or more experts to derive the

cost estimate [2]. With the experience and available information of past projects

and the understanding of a new project, the experts could obtain the estimation by

a non-explicit and subjective reasoning process. It is the most frequently applied

method for software projects in practice [3].

2. Parametric models: They often involve the utilization of analytical or statistical

equations relating software project cost to a number of project features. The well-

known ones include COCOMO [4] and SLIM Model [5].

3. Machine Learning (ML) methods: They involve at least one modeling method,

taking a number of project features and producing a cost prediction, making no or

minimal assumptions about the form of the relation under study. Thus they can

provide higher approximation capabilities to solve complex problems. Recently,

they have been adopted as an alternative or together with the first two methods [6-

10]. Representative ML methods include artificial neural networks (ANN) [8, 11,

12], case-based reasoning (CBR) [12, 13] (also referred to as analogy-based

estimation [14, 15] or estimation by analogy [16]), and classification and

regression trees (CART) [7, 17, 18].

When targeting estimation accuracy, considerable effort has been devoted to

improving ML methods [1, 19-24]. For the empirical validations, ML algorithms are

routinely tested on the SCE datasets. Data preprocessing (DP) is a fundamental stage

of the ML application, which has been reported to have significant impacts onto the

3

performances of ML methods [21].

To the knowledge of the authors, there is very few research work focused on the

DP techniques in the SCE literature. In many situations the DP techniques, such as

feature selection (FS) [10, 25-27] and case selection (CS) [6, 14, 15, 28], have been

considered as a necessary step for CBR while for other ML methods, such as ANN

and CART, they might be ignored. In the literature some studies focus on analyzing

DP techniques. Strike et al. [29] simulated various incomplete data and found that the

best regression model could be obtained from missing-data imputation with Z-score

scaling. The combination of scaling scheme and missing-data treatment (MDT) is

firstly analyzed; however, their impacts onto the ML method were not studied. Many

studies propose one or more DP techniques to deal with a specific issue in SEC, such

as data missingness [30-32], redundant or irrelevant features [13, 28], or abnormal

cases [33, 34]. But they did not study the effectiveness of different DP techniques.

Keung et al. [35] first time concluded that the performance of a ML method could be

significantly altered by a DP technique, such as scaling and FS. But the number of DP

techniques they considered is limited and the effectiveness of combined DP

techniques are not investigated.

From the analysis above, a systematic study on multiple DP techniques for ML

methods is needed to promote much more careful use of the DP techniques rather than

taking one or more DP approaches as granted. The empirical results obtained would

be beneficial to the following research works who adopt ML methods for SCE.

The rest of this paper is organized as follows: Section 2 presents a literature

survey on DP applications; Section 3 presents the four datasets used in this study, an

overview on the ML methods (i.e. ANN, CBR and CART), and the experimental

design; Section 4 presents the experiment results and analysis; Section 5 discusses the

threats to four types of validity; Section 6 concludes this work and points out future

research directions.

4

2. Related Work

2.1 Literature survey

The application of ML algorithm requires the presence of data in a mathematically

feasible format through data preprocessing. DP techniques consist of data reduction,

data projection and missing-data treatment. Data reduction aims to decrease the size

of the datasets by means of feature selection (FS) or case selection (CS). Data

projection intends to transform the appearance of the data, e.g. scaling, which scales

all features into a pre-defined same range. Missing-data treatments (MDTs) include

deleting missing values [15, 18, 19, 36, 37] and/or replacing them with the estimates

[16, 38, 39]. Moreover, the logarithm transformation [40] is also regarded as one data

projection method and is frequently applied for linear regression due to the normality

assumption of the linear model. Logarithm is mostly used by regression studies to

ensure the normality of the residual. For ML methods, it is not a commonly applied

DP technique. In our survey, there are only three publications [35, 41-43] that used

logarithm for ML methods. Considering its relatively infrequent utilization by the

researchers, we choose to not include it as a candidate DP method in our experiments

which aim to investigate the effectiveness of the popular DP techniques for ML

methods.

To reveal the situations of DP technique utilization in the literature, we first

conduct a survey of relevant ML papers from 2005 to present published on the

following journals: IEEE Transactions on Software Engineering (IEEE TSE),

Empirical Software Engineering (ESE), Journal of Systems Software (JSS),

Information and Software Technology (IST), and Software Quality Journal (SQJ), and

the following major conference proceedings: International Conference on Software

Engineering (ICSE), International Symposium on Empirical Software Engineering

and Measurement (ESEM), and International Conference on Predictive Models in

Software Engineering (PROMISE). Both the individual studies of ML methods and

the comparative studies (within ML methods or between ML and other methods) are

5

included. We summarize the publications according to the ML methods and the DP

techniques applied. In specific, we explore the use of MDT, scaling, FS and CS.

These 48 publications are presented in Table 1. It is shown that most publications

have employed certain DP techniques. 12 works [6, 11, 14, 43-51] only mention single

step of DP. Table 1 also shows that many studies use combined DPs. For examples,

there are 7 of totally 48 works combined only scaling and FS/CS [20, 27, 34, 52-55],

and 7 of 48 works combined only MDTs and FS/CS [19, 23, 36, 56-59]. FS and CS

have been considered as a necessary step for CBR in several studies [6, 14, 23, 26, 33,

37, 47, 48, 52, 55-57, 60-63]. However, there is no systematic study to investigate the

DPs and their combinations.

Table 1

Data preprocessing techniques used by ML methods for SCE

Source Reference Methods FS
a
/CS

b
 Scaling

c
MDT

d

IEEE TSE

Pendharkar et al. (2005) [49] ANN, BBN, CART FS

Auer et al. (2006) [50] CBR [0, 1]

Keung et al. (2008) [26] CBR FS, CS [0, 1] LD

Kocaguneli et al. (2012) [14] CBR FS, CS

Kocaguneli et al. (2012) [41] CART, SVM FS [0, 1] MI

Kocaguneli et al. (2013) [64] CBR, CART FS [0, 1] MI

Menzies et al. (2013) [51] CBR FS

Mittas and Angelis (2013) [65] ANN, CART, CBR FS LD

JSS

Chiu and Huang (2007) [17] ANN, CART, CBR [0, 1] LD

de Barcelos Tronto et al. (2008) [11] ANN [0, 1]

Vinary et al. (2008) [27] ANN FS [0, 1]

Li et al. (2009) [28] ANN, CART, CBR, SVM CS [0, 1] LD

Azzeh et al. (2011) [15] CBR [0, 1] LD

Bou et al. (2013) [6] ANN FS, CS

IST

Huang and Chiu (2006) [18] ANN, CART, CBR FS [0, 1] LD

Mittas et al. (2008) [44] ANN [0, 1]

Oliveira et al. (2010) [20] SVM, GP FS [0, 1]

Minku and Yao (2013) [61] ANN, CART, CBR FS, CS [0, 1] MI

ESE

Li et al. (2007) [38] CBR FS [0, 1] LD

Li and Ruhe (2008) [19] CBR FS LD

Azzeh et al. (2009) [36] CBR, ANN FS LD

Li et al. (2009) [54] ANN FS [0, 1]

Mittas and Angelis (2010) [37] CBR FS, CS [0, 1] LD

Lopez-Martin et al. (2011) [66] ANN CS

Azzeh (2012) [62] CBR FS, CS [0, 1] LD

Corazza et al. (2013) [59] CBR, SVM FS LD

Kocaguneli et al. (2013) [16] CBR FS [0, 1] MI

Seo and Bae (2013) [33] CBR FS, CS [-1, 1] LD

SQJ

Liu et al. (2008) [57] CART, CBR FS, CS LD

Bakır et al. (2009) [67] SVM, CBR FS [0, 1] LD

Hsu and Huang (2010) [63] ANN, CART, CBR FS, CS [0, 1] LD

Bakır et al. (2011) [68] CART, CBR FS [0, 1] LD

Khatibi et al. (2013) [58] CBR FS LD

ICSE Ramasubbu and Balan (2012) [69] CBR CS

6

ESEM

Li et al. (2007) [45] CBR MI

Mendes (2007) [46] BBN, CBR, CART FS

Keung (2008) [47] CBR FS, CS

Corazza et al. (2009) [43] SVM, CBR, BBN CS

Kocaguneli and Menzies (2011) [53] CBR CS [0, 1]

PROMISE

Li and Ruhe (2007) [60] CBR FS, CS MI

Brady and Menzies (2010) [52] CBR FS, CS [0, 1]

Corazza et al. (2010) [42] ANN, SVM, CBR, BBN CS [0, 1]

Minku and Yao [23] ANN, CART FS, CS k-NN

Tsunoda et al. (2011) [34] CBR CS [0, 1] LD

Borges and Menzies (2012) [55] CBR, RI FS, CS [0, 1]

Ferrucci et al. (2012) [48] CBR FS, CS

Kocaguneli et al. (2012) [56] CART, CBR FS, CS MI

Kosti et al. (2012) [70] CBR CS [0, 1] LD

ANN: Artificial Neural Networks, BBN: Bayesian Belief Network, CART: Classification and

Regression Trees, CBR: Case-Based Reasoning, GP: Genetic Programming, RI: Rule Induction, SVM:

Support Vector Machine
a
FS/

 b
CS: if Feature Selection

or/and Case Selection are used;

c
Scaling: [0, 1], [-1, 1], or in blank (Not specific);

d
MDT: which Missing-Data Treatment is used, LD (Listwise Deletion), MI (Mean Imputation), k-NN

imputation or in blank (Not specific).

The following section presents an overview on the four types of DP methods and

summarizes the evidence and arguments in the literature that lead to the research

questions of this study and serve as the foundation for the empirical work.

2.2 Data preprocessing techniques

2.2.1 Missing-data treatments

Due to the high cost of gathering and reporting data from projects, development

teams are less focused on data collection [31]. The incomplete datasets also frequently

appear across the SCE datasets (e.g. the ISBSG database and PROMISE datasets) [16,

24, 31, 32, 37, 58, 71]. The missing values have significant impacts on ML estimation

performances, as reported by [22, 31, 45].

There are many MDTs in the literature. They often include: deletion methods

(listwise deletion and pairwise deletion [31, 49, 70, 71]), and imputation methods

(mean imputation, k-NN imputation, hot-deck imputation, cold-deck imputation,

regression imputation and multiple imputation methods) [16, 23, 38, 55, 56, 60]. It is

noted that the deletion methods, especially listwise deletion (LD), widely used as a

default approach dealing with missing-values, can result in discarding large

7

proportions of datasets in cases and introducing biasness [31, 37]. As another solution

of MDT, imputation requires more extensive and complicated statistical and

computational analysis [29, 31] and also includes natural prediction error [37]. Mean

imputation (MI) imputes each missing value with the mean of observed values and

preserves the information of data. However, as the simplest imputation method it may

cause to diminish the variance of variables [29].

According to results of our survey in Table 1, LD is the most popular method

followed by MI. Particularly, several works [15, 18, 19, 24, 34, 36, 37, 57-59, 63, 65,

67] regarded LD as the default DP method for missing values. However, some studies

show that MI or k-NN imputations are better than LD [29-31, 72-74]. In this study, we

will validate the superiority of MI over LD.

2.2.2 Scaling

Scaling generally refers to measurements or assessments conducted under exact,

specified and repeatable conditions. In ML, scaling transforms feature values

according to a defined rule so that all scaled features have the same degree of

influence [40] and thus the method is immune to the choice of units [70], which is a

major stage for ML methods [75]. Normally, the intervals of [0, 1] and [-1, 1] are used

to be the target of scaling, as shown in Eq. (1).

min()
[0,1] interval =

max() min()

(max() min()) / 2
[1,1] interval =

(max() min()) / 2

actualValue allValues

allValues allValues

actualValue allValues allValues

allValues allValues

 (1)

Z-score standardization is also used for scaling [29], which makes the unit of the

variables the sample standard deviation. Scaling is essential since every sub-

sequential process is dependent upon the choice of unit for each feature. For example,

it will be improper to let Lines of Code (LOC) be a thousand times more influential

than KLOC. In SCE context, scaling is the most popular preprocessing technique.

As shown in Table 1, most of the studies that consider scaling use [0, 1] and only

8

one study uses [-1, 1]. The survey also revealed that [0, 1] scheme is used by most

researchers by default without questioning whether it is truly effective or not, and

many studies do not even consider or mention any type of scaling during the

estimation processes. For example, in [76] the scaling scheme of [0, 1] was conducted

without reasoning.

2.2.3 Feature selection

FS, also known as attribute selection or feature subset selection, is the process of

selecting a subset of features that have significant or similar impacts onto the

evaluation target as using all features [63, 77]. It assumes the data contains irrelevant

or/and redundant features [78] that might decrease the model performance. FS was

initially proposed to increase the accuracy of induced classifier in supervised learning

algorithm [78]. Later, Mendes et al. [79] and Chen et al. [77] introduced FS to SCE.

An exhaustive search for all possible subsets of features is calculated by 2 1N , in

which N is the total number of project features. Take ISBSG dataset [80] as example,

since n=15 (See in Section 3.1.1), there are 32767 possible subsets. Obviously,

exhaustively exploring all the subsets will not be cost-effective.

More intelligent FS techniques have been developed. They can be classified as

wrappers and filters. The former often convolves with predictors, using cross-

validation to predict the benefits of adding or removing a feature from the feature

subset used [78]. In SCE literature, wrapper methods utilize random searching, hill

climbing, forward sequential selection [13, 26] and reduce research method [19] to

guide the search process. As the predictors (i.e. ML methods) are often expensive to

run, the wrappers are generally time-consuming and possibly leads to over-fitting [26,

78]. The latter selects features by evaluating some preset criteria independently prior

to training the ML methods, which has much lower time complexity than the former

does. For example, variable ranking with the correlation coefficient is a filter method:

it is independent of the choice of the predictor [81]. However, the selected features

often yield considerable prediction errors [82].

9

In SCE literature, there are a number of studies that propose new FS techniques or

investigate the effectiveness of the existing ones. In general, majority of the

researchers [13, 19, 20, 26, 36, 77, 83] support the use of FS with ML methods. In this

study, we will check the validity of applying FS technique. Our survey also reveals

that FSS is the most popular FS algorithm, due to its simplicity and the ease of

adaptation to various ML methods. There are 19 of 48 publications (shown in Table 1)

using this strategy [14, 19, 36-38, 41, 46-48, 54-57, 60, 62, 64-66, 68].

2.2.4 Case selection

Similar to the features of a dataset, not all the historical cases are useful for estimating

the present project. CS aims to identify and remove redundant and irrelevant cases

[84]. By reducing the entire dataset into a smaller subset that consist only of

representative cases, this method could save computing time and produce prediction

results comparable to those using all the cases. Searching techniques for FS are also

applicable to CS, e.g. random search, hill climbing, simulated annealing, forward and

backward sequential selection [60, 84], genetic algorithm [28], and filters [81, 82]. On

contrary to the selection of useful cases, the abnormal cases detection [33, 34] is also

regarded as one type of CS. Compared to FS, the CS treatment is relatively infrequent

but with a rising trend in the recent literature. In the first CS study, Kirsopp and

Shepperd [84] presented a conservative backward sequential selection (BSS) and

proved its effectiveness. In this study we will implement this technique since

discarding a large number of projects at the initiate stage of FSS could result in loss of

useful information.

2.3 Research questions

Based upon the above bibliographic analysis the following 5 research questions (RQs)

are raised for the empirical study:

RQ1: Is MDT effective? Which commonly used MDT is preferred?

RQ2: Is scaling effective? [0, 1] scheme or [-1, 1], which is preferred?

10

RQ3: Is FS effective? Shall we consider it for all ML methods?

RQ4: Is CS effective? Shall we consider it as well?

RQ5: Is any combination of DP techniques effective? How do we select the DP

techniques for each ML method and each dataset?

The above questions are answered in Section 4: Experimental results.

3. Experiment Design

In this section, we describe the datasets, error metrics and experiment procedures for

our empirical studies.

3.1 Dataset description

In this study, we have selected the ISBSG database, Desharnais dataset, and

Kitchenham dataset from PROMISE datasets for empirical tests.

3.1.1 ISBSG dataset

ISBSG has developed and refined its data collection standard over 10 years based

on the metrics that have proven to be most useful in helping to improve software

development management and processes. In this study, we adopted the ISBSG R10

data repository [80], which contains totally 6000 projects (with 105 features) coming

from 24 countries and various organizations. Due to the heterogeneous nature and

large size of the entire repository, ISBSG recommends extracting a suitable subset for

any SCE practice [80]. In this study, we follow ISBSG‟s suggestion to select a subset

with 14 features including 7 numerical project size features, and the following

categorical features: „development type‟, „primary programming language‟,

„development platform‟, „organization type‟, „business area type‟, „application type‟,

and „development techniques‟ [80]. As suggested by [71, 85] that data in ISBSG needs

to be appropriately prepared for further usage, the following steps are taken to remove

the cases with minor significance to our analysis:

11

1. Select the project with A or B rating in data quality as well as A rating in UFP as

suggested by ISBSG [80] and related published papers [37, 57, 65, 86, 87] . The

rest with lower rating are excluded.

2. Filter out the projects with normalized ratio larger than 1.2, as it is suggested by

ISBSG that the ratio up to 1.2 is more acceptable [80]. The normalized ratio

defined as normalized effort divided by summary effort, is constructed by ISBSG

for the refinement of project subset.

3. Select the project with resource level equal to „1‟. As shown in ISBSG dataset [80],

a resource level of „1‟ means that only the effort of development team is recorded;

the levels above add peripheral efforts. Similar to related studies [33, 66, 71, 88],

this study is only interested in the work effort of development team.

4. Select the project using IFPUG as the functional sizing method. The functional

sizing method is used to compute the number of AFP (Adjusted Function Points),

an essential feature in most SCE study. The projects in ISBSG repository sized

using 4 types of functional sizing methods: IFPUG, NESMA, MARK II,

COSMIC-FFP, among which IFPUG gains the highest popularity [37, 61, 63, 66].

Furthermore, ISBSG suggests users do not mix the projects sized using pre-

IFPUG with the ones sized using IFPUG V4/V4+. Therefore, we only keep the

projects sized using IFPUG V4/V4+.

After these four procedures, we obtain a subset of 446 projects with a considerable

amount of missing values. Among all features, „NorEffort‟ is to be estimated. The

descriptive statistics of the numerical features are summarized in Table 2. It shows

that the ISBSG subset is of high order non-normality. Note that in Table 2, w/o

indicates that the statistics in the column are obtained by excluding the missing values.

Table 2

Descriptive statistics of numeric features of ISBSG dataset

Features
Mean Std Dev Min Max Skewness Kurtosis

w/* w/o* w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o

DevType 1.4 1.8 0.5 0.5 1 1 3 3 1.0 -0.3 -0.1 0.3

OrgType 4.7 5.9 4.6 4.0 -1 1 17 16 1.0 1.0 0.2 -0.1

BusType 0.3 3.0 2.0 1.4 -1 1 7 7 1.4 1.4 1.2 1.2

AppType 5.0 5.3 5.1 5.6 -1 1 19 19 1.0 1.4 0.0 0.8

DevPlat 0.9 1.6 1.3 1.0 -1 1 4 4 0.2 1.7 0.2 1.7

12

PriProLan 4.8 7.7 4.9 6.6 -1 1 19 19 1.2 0.4 0.4 -1.5

DevTech 0.1 2.3 1.8 1.8 -1 1 7 6 1.8 1.0 3.2 -0.6

InpCont 58.7 243.7 452.8 1082.1 -1 0 9404 9404 19.9 8.4 410.4 72.1

OutCont 27.2 112.4 83.2 169.0 -1 0 1221 1221 8.3 4.4 101.5 25.3

EnqCont 23.3 71.8 67.6 116.9 -1 0 893 893 6.6 5.0 67.3 33.1

FileCont 28.1 120.7 149.4 345.0 -1 0 2955 2955 17.2 7.7 333.2 63.7

IntCont 4.5 16.9 17.2 27.5 -1 0 160 135 5.1 2.4 31.1 6.0

AFP 348.9 627.0 980.3 2014.9 6 43 17518 17518 13.5 8.2 220.0 69.3

NorEffort 5165.6 3531.9 10140.5 6647.1 91 300 134211 54620 7.1 6.5 70.4 48.4

*
w/: with missing values (missing values are denoted as ‘-1’);

*
w/o: without missing values

3.1.2 Desharnais dataset

The Desharnais dataset [12, 89] has been used in many research works [12, 25,

41], due to its scalability and availability. It includes 81 projects (4 with missing

values) and 11 features. The features include „TeamExp‟, „ManagerExp‟, „YearEnd‟,

„Length‟, „Transactions‟, „Entities‟, „PointsAdjust‟, „Envergure‟, „PointsNonAjust‟,

„Language‟ and „Effort‟, among which the dependent value „Effort‟ will be estimated.

Table 3 shows the statistics of the numerical features in details.

Table 3

Descriptive statistics of numeric features of Desharnais dataset

Features
Mean Std Dev Min Max Skewness Kurtosis

w/* w/o* w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o

TeamExp 2.2 2.3 1.4 1.3 -1 0 4 4 -0.2 -0.1 -1.0 -1.3

ManagerExp 2.5 2.6 1.6 1.5 -1 0 7 7 0.0 0.2 0.1 0.1

YearEnd 85.8 85.8 1.1 1.1 83 83 88 88 -0.2 -0.2 0.0 0.1

Length 11.7 11.3 7.4 6.8 1 1 39 36 1.6 1.5 3.1 2.7

Language 1.6 1.6 0.7 0.7 1 1 3 3 0.9 0.9 -0.5 -0.5

Transactions 179.9 177.5 143.3 146.1 9 9 886 886 2.4 2.4 7.7 7.7

Entities 122.3 120.5 84.9 86.1 7 7 387 387 1.3 1.4 1.5 1.5

PointsAdjust 302.2 298.0 179.7 182.3 73 73 1127 1127 1.8 1.8 4.9 5.1

Envergure 27.6 27.5 10.6 10.5 5 5 52 52 -0.1 -0.2 -0.3 -0.4

PointsNonAdjust 287.0 282.4 185.1 186.4 62 62 1116 1116 1.7 1.7 4.2 4.4

Effort 5046.3 4833.9 4418.8 4188.2 546 546 23940 23940 2.0 2.0 4.7 5.3

*
w/: with missing values (missing values are denoted in as ‘-1’);

*
w/o: without missing values

3.1.3 Kitchenham dataset

The Kitchenham dataset includes 145 projects of a software development

company. There are only three features to be recommended as independent variables,

which are Project type, Actual duration, and AFP, plus the dependent attribute Actual

effort [34]. Table 4 shows the statistics of the numerical features in details.

Table 4

Descriptive statistics of numeric features of Kitchenham dataset

Features
Mean Std Dev Min Max Skewness Kurtosis

w/* w/o* w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o

13

Project type 1.4 1.5 0.9 0.7 -1 1 4 -0.3 1.5 5.0 5.5

Actual duration 527.7 527.8 1522 1572.9 15.4 18.9 181400 10.8 10.5 125.3 118.1

AFP 206.7 201 134.1 130.6 37 37 950 1.9 2.1 8.9 10.5

Actual effort 3113.1 3169.1 9598 9333.6 219 219 113930 10.8 10.4 124.3 116.2

*
w/: with missing values (missing values are denoted in as ‘-1’);

*
w/o: without missing values

3.1.4 USPFT dataset

The USPFT (University Student Projects developed in 2005) dataset includes 76

projects, which were collected from student projects on web and client/server

applications. As referred from Li, Ruhe, Al-Emran and Richter‟s work in [38], the

projects with a feature (FT, a set of requirements) as objective type are used as USPFT.

Table 5 shows the statistics of the numerical features in details.

Table 5

Descriptive statistics of numeric features of USPFT dataset

Features
Mean Std Dev Min Max Skewness Kurtosis

w/* w/o* w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o

Internal Process 19.9 19.9 17.5 17.5 0 0 100 1.6 1.6 7.6 7.6

Data E/M/D 26.2 26.2 13.8 13.8 0 0 80 0.9 0.9 7.5 7.5

Output form 21.5 21.5 17.2 17.2 0 0 100 2.5 2.5 12.4 12.4

Data Query 22.5 22.5 11.6 11.6 0 0 54 -0.1 -0.1 3.0 3.0

Printing 1.6 1.6 5.0 5.0 0 0 30 3.5 3.5 17.0 17.0

Report 2.3 2.3 4.8 4.8 0 0 20 2.2 2.2 7.3 7.3

Other 5.6 5.6 13.3 13.3 0 0 100 4.9 4.9 34.2 34.2

IntComplx 1.9 1.9 1.2 1.2 1 1 5 1.1 1.1 3.1 3.1

DataFile 3.3 3.3 3.3 3.3 0 0 18 2.0 2.0 7.4 7.4

DataEn 17.4 17.4 48.3 48.3 0 0 314 4.6 4.5 25.4 25.4

DataOut 1.9 2.0 6.1 6.2 -1 0 50 6.6 6.6 50.3 49.3

UFP 11.7 12.1 26.0 26.3 -1 0 180 4.0 3.9 24.2 23.6

Lang 2.6 2.7 0.8 0.6 -1 1 4 -2.1 -1.2 8.6 4.5

Tools 2.7 2.8 0.8 0.5 -1 1 4 -2.7 -1.4 12.5 6.8

ToolExpr 10.7 11.0 11.6 11.6 -1 0 52.5 1.8 1.8 5.4 5.3

AppExpr 2.5 2.5 1.4 1.4 1 1 5 0.4 0.4 1.7 1.7

TeamSize 1.7 1.7 0.7 0.7 1 1 4 1.4 1.3 4.8 4.8

DBMS 1.5 1.8 1.1 0.5 -1 1 3 -1.3 0.0 3.9 2.7

Method 2.2 2.9 1.7 0.8 -1 1 4 -1.0 -0.9 2.5 3.6

AppType 2.6 2.8 1.1 0.6 -1 1 4 -2.3 -1.3 8.2 5.7

Effort 5.5 5.5 8.7 8.7 0.5 0.5 40 2.4 2.4 8.5 8.5

*
w/: with missing values (missing values are denoted in as ‘-1’);

*
w/o: without missing values

3.2 Machine learning methods in study

In SCE literature, ML methods receive increasing attention in the recent years

according to a comprehensive review done by Jorgensen and Shepperd [90].

Additionally, Section 2.1 shows that ANN, CBR, and CART are mostly applied in

recent studies. We therefore select them for experiments.

Case-based reasoning CBR has been extensively studied and implemented due to its

14

simplicity and effectiveness [9, 17, 18, 40, 50, 79, 91]. Generally, a CBR consists of

the following three steps:

1. Collect the measurements of past projects and prepare the historical projects

dataset.

2. Select the relevant features, and then calculate the distances of the selected

features between the project x being estimated and the i-th historical projects
ix ,

and retrieve K nearest neighbors. The Euclidean distance,

1

, (,)
p

i ij jj
D x x Dis x x

 , and Manhattan distance,

1

, (,)
p

i ij jj
D x x Dis x x

 , are considered in this study. (,)ij jDis x x is defined

as follows,

2

for Euclidean distance, if feature and are numeric or ordinal,

for Manhattan distance, if feature and are numeric or ordinal,
,

if feature and 1,

0,

ij j
ij j

ij j
ij j

ij j

ij j

x xx x

x xx x
Dis x x

x x

are nominal and

if feature and are nominal and

ij j

ij j ij j

x x

x x x x

 (2)

3. Compute the final prediction for the new project x based on the selected K

nearest neighbors. We use mean, median and inverse distance weighted mean

(IDWM) as adaptation techniques in this study. The mean is the classical measure

of central tendency and treats all analogies as being equally influential on the cost

estimates. The median is more robust statistic when the number of neighbors

increases [40]. IDWM [10] allows more close neighbors to have more influence

than less close ones.

Artificial neural network Due to the capability of good approximation, ANN has

become a frequently applied methodology in the context of SCE [7, 8, 92]. A typical

feed-forward ANN architecture consists of a number of neurons connected through

the input layer, hidden layer(s), and output layer. A typical three layer ANN has the

following mathematical form

1 1

ˆ() (())
J p

j j ij i jj i
y f x f w f v x

 (3)

15

where px R , ()f is the transfer function, J is the number of hidden nodes,
ijv is the

connection weight between the i-th input node and j-th hidden node,
j is the bias of

the j-th hidden node,
jw is the weight on the link between the j-th hidden node and

the output neuron, and is the bias. The classical back-propagation algorithm is

commonly used [66] to update the weights and biases with the attempt to minimize

the predictive error [20, 92]. The user-defined parameters in ANN, i.e. the number of

hidden layers, the number of hidden nodes and the type of transfer function, have

significant impacts on ANN prediction performance. In this study, only one hidden

layer is used since multiple layers may lead to an over parameterized ANN structure

which is often prone to over-fitting.

Classification and regression trees CART is capable of dealing with both numerical

and categorical features to identify major subsets [7]. The construction of CART

involves recursively splitting the data set into relatively homogeneous subsets until

the terminate conditions are satisfied. The algorithm starts with all the training

instances in the root node and then selects an independent feature Ai that best divides

the training set into disjoint subsets. The partition is determined by minimizing the

Mean Square Error (MSE) of the dependent feature (e.g., project cost). Suppose the

feature fi partition the entire training data set X into subsets Xij where each sample

takes the same value for feature fi. The MSE of any subset Xij with the dependent

value yk is

 2() /
ij

ij k ij

k T

MSE X y y X

 (4)

where y is the mean of the yk values exhibited in Xij and ijX is the size of the set Xij.

The feature that minimizes iji
MSE X is selected for partition. This process is

repeated until each node reaches a user-specified minimum tree size. The primary

control parameter in CART, level of tree pruning, is optimized by the cross-validation

scheme.

16

3.3 Error metrics

Error evaluation criteria are essential to the evaluation of prediction. Three

popular error metrics: Mean of Balanced Relative Error (MBRE), PRED(0.25), and

Median of Balanced Relative Error (MdBRE) are also used in this study. Their

building block: Balanced Relative Error (BRE) of the estimated i-th project is defined

as

ˆ

ˆmin(,)
i

i i

i i

BRE
y y

y y

 (5).

Based on Eq. (5), MBRE is defined as

1

/
n

i

i

MBRE BRE n

 (6)

and MdBRE is defined as

()iMdBRE median BRE (7)

MBRE is a balanced symmetric error metric [93]. MdBRE, exhibiting a pattern

similar to that of MBRE but less sensitive to extreme outliers, is more likely to select

the true model especially in the underestimation cases [94, 95]. PRED(0.25) is the

percentage of predictions that fall within 25 percent of the actual cost. It is defined as

1

0.25

0,

1, 1
(0.25)

n
i

i

if BRE
PRED

otherwisen

 (8)

PRED(0.25) identifies the SCE methods that are generally accurate.

MBRE has been widely used for accuracy measuring due to its advantages:

applicability to all kinds of prediction models across all datasets, independence to

measurement units and scales [29, 91]. Compared with MBRE and MdBRE, PRED

exhibits an opposite pattern. These three evaluation criteria are widely used in recent

SCE studies [37, 54, 61, 74, 96, 97]. In our experiments, we consider MBRE as the

guidance for the parameter optimization of the ML methods on validating datasets.

The analysis in Section 3.5 shows that it is significantly correlated with both

PRED(0.25) and MdBRE, which confirms that MBRE could be a representative error

17

metric for parameter optimization.

3.4 Experiment setting

For each testing dataset, we generate 24 processed versions by using different

combinations of DP techniques. The FS, CS, scaling and MDT introduced in Section

2.2 are regarded as four main factors in our experiment design. First, for missing

values we include the MDTs discussed in the review: listwise deletion (LD) and mean

imputation (MI). Then, for scaling we employ two scaling schemes, [0, 1] and [-1, 1],

to evaluate possible effects of scaling into different intervals. Finally, as Kirsopp and

Shepperd [84] suggested (see in Section 2.2.4), we adopt forward sequential selection

(FSS) search strategy for FS and backward sequential selection (BSS) search strategy

for CS. Under each of the main factors except MDTs, we setup the alternative „Null‟

as control, which means no corresponding preprocessing is performed. Consequently,

24 processed datasets are generated by this design. Table 6 presents the details of the

design.

Table 6

Generation of processed datasets

Preprocessing

techniques

FS Null FSS

CS Null BSS Null BSS

MDT Scaling

LD

Null #1 #7 #13 #19

[0, 1] #2 #8 #14 #20

[-1, 1] #3 #9 #15 #21

MI

Null #4 #10 #16 #22

[0, 1] #5 #11 #17 #23

[-1, 1] #6 #12 #18 #24

MDT: missing-data treatment; LD: listwise deletion; MI: mean imputation; FS: feature selection; CS:

case selection; FSS: forward sequential selection; BSS: backward sequential selection; Null: no DP is

used.

It should be noted that the processing techniques are applied on only the project

features (independent variables). The cost values (dependent variable) are scaled into

the range [0, 1] regardless of the type of processing technique applied on features.

18

3.5 Cross-validation

As discussed in the overview of ML methods, the predefined parameters have

large impacts on their performances. A systematic way of determining the predefined

parameters should be considered in the experiments. A simple but effective way for

parameter tuning is the so-called cross-validation scheme. In this scheme, the entire

dataset is randomly split into three equally sized and mutually exclusive subsets:

training subset, validating subset and testing subset. The training subset is used to

construct models with specified parameter settings. The validating subset is used for

parameter tuning and to prevent over-fitting problem of ML methods. The testing

subset is used to evaluate the prediction abilities of training methods with optimal

parameters. The above validation scheme is performed three times on each processed

dataset to eliminate the biases from different split, similarly to [79].

Table 7

Predefined parameters in meta-modeling techniques

Methods Predefined parameters Range

 1. Distance functions {Euclidean distance, Manhattan distance}

CBR 2. Number of nearest neighbors {k | k = 1, 2, 3, 4, 5}

 3. Adaptation functions {Mean, Median, Inverse distance weighted mean}

ANN
1. Number of hidden neurons {n | n = 1, 3, 5, 7, 9, 11, 13}

2. Hidden layer transfer function {Linear, Tan-Sigmoid, Log-Sigmoid}

CART Level of tree pruning {l | l = 1, 2, 3, 4, 5}

19

Fig. 1 Experiment process

Table 7 summarizes the predefined parameters of each method and their ranges for

tuning. The CBR parameters ranges cover most existing ones appeared in CBR

studies. For ANN, the maximal number of hidden neurons is set to 13 because too

many hidden neurons may lead to an over-parameterized ANN structure. The three

types of hidden layer transfer functions are most frequently used in ANN models.

ANN is trained by the back-propagation algorithm. The training stops when the MSE

drops below the specified threshold (0.0001 in this study). For CART, the level of tree

pruning is in the range from 1 to 5, to balance modeling accuracy and over-fitting.

The training stops when its MSE is below 0.0001. Note that all the methods in this

study are implemented via MATLAB programming. Fig. 1 illustrates the overall

experiment procedures. After MDT and scaling steps, the cross-validation scheme

starts. At each fold, FS is applied with ML methods on the training and the validation

20

sets followed by CS treatment, then the parameters are tuned on validation set and

finally the methods are tested on the testing set. After 3 times of repetitions, the

testing results across all data splits are aggregated to compute MBRE, PRED and

MdBRE.

4. Experiment Results

Experiment results are first analyzed by investigating the marginal impact of each

individual preprocessing technique on the ML performances. As discussed in section

2.2, the techniques considered in this study are: FS (Null/FSS), CS (Null/BSS),

Scaling (Null/[0, 1]/[-1, 1]), and MDT (LD/MI). First, the means and standard

deviations of the error metrics (MBRE, PRED(0.25) and MdBRE) across the testing

subsets (i.e. three random splits of each dataset) by each technique are collected and

analyzed. The mean values of error metrics indicate one method‟s average accuracy

on a group of processed datasets. The standard deviations of error metrics reflect the

robustness of one method across different datasets. The „PC‟ column in tables refers to

the percentage of change between comparisons. Then, ANOVA is conducted to

examine the significance of each preprocessing technique and their combinations.

Finally, the overall performances of ML methods are compared and analyzed.

4.1 Performance under MDT scheme

The marginal means and standard deviations of the testing errors under two MDT

schemes are shown in

Table 8. For ISBSG dataset with relatively large number of missing values, MI

could enlarge MBRE of all ML methods. The testing error of ANN has some outliers

under MI, as the mean MBREs are not consistent with mean PREDs and MdBREs.

For Desharnais dataset with a small amount of missing values, only ANN has slightly

decreased MBRE value by MI. Furthermore, MI generally performs worse than LD in

terms of accuracy and robustness of CBR and CART under MBRE. However, the

testing errors of CBR and CART have outliers under MI as well. For Kitchenham

21

dataset with also a small amount of missing values, only CBR has increased MBRE

by MI. The testing errors in terms of PRED and MdBRE are consistent with the result

of MBRE. MI could generally enhance the robustness of ANN and CART on

Kitchenham dataset. On USPFT dataset with a medium number of missing values, the

results are similar to that on ISBSG data. The testing error of CART has outliers under

MI in terms of the results of PREDs and MdBREs are not consistent with the MBREs.

The results indicate that the effectiveness of MI compared with LD depend on the

datasets as well as the ML methods. CBR is consistently negatively influenced by MI.

CART is sensitive to outliers, and ANN is less sensitive to small amount of missing

values. The answers to RQ1 from the results are the following: 1) it might not be

correct to apply the same LD or MI to all ML methods on all datasets (as most of the

previous studies did); 2) the MDT needs to be carefully selected for each ML method

on each dataset. To the knowledge of the authors, none of the existing studies have

made such discoveries.

Table 8

Average accuracy and robustness under MDT scheme

Testing

Error

Metrics

ML

Methods

Mean Std. Mean Std.

LD MI
*
PC (%) LD MI

*
PC (%) LD MI

*
PC (%) LD MI

*
PC (%)

Dataset ISBSG Kitchenham

MBRE

CBR 0.365 6.79 +1762 0.0623 4.13 +6535 2.39 2.62 +9.70 0.306 0.344 +12.5

ANN 0.531 9.39 +1668 0.749 2.36 +215 12.9 12.7 -1.55 10.3 7.82 -24.5

CART 0.349 5.96 +1606 0.0242 0.912 +3658 2.72 2.50 -8.27 0.441 0.262 -40.6

PRED

CBR 0.487 0.477 -2.05 0.0831 0.0390 -53.0 0.243 0.218 -10.6 0.0461 0.0552 +19.8

ANN 0.544 0.563 +3.47 0.0746 0.0302 -59.4 0.198 0.206 +4.03 0.0435 0.0426 -2.31

CART 0.520 0.497 -4.27 0.0440 0.0376 -14.5 0.212 0.241 +13.3 0.0181 0.0110 -39.2

MdBRE

CBR 0.269 0.274 +1.82 0.0598 0.0333 -44.2 0.736 0.847 +15.1 0.113 0.245 +116

ANN 0.231 0.215 -6.84 0.0419 0.0171 -59.3 0.947 0.912 -3.70 0.287 0.252 -11.8

CART 0.237 0.254 +7.25 0.0364 0.0304 -16.4 0.807 0.771 -4.58 0.0618 0.0502 -18.8

Dataset Desharnais USPFT

MBRE

CBR 11.7 16.3 +39.0 1.28 12.1 +847 138 222 +60.5 74.8 124 +65.9

ANN 51.2 51.0 -0.391 20.1 17.5 -12.9 330 352 +6.81 165 194 +17.3

CART 23.9 27.8 +16.0 14.9 20.4 +36.5 140 160 +14.1 48.5 53.2 +9.79

PRED

CBR 0.467 0.475 +1.66 0.0418 0.0558 +33.5 0.656 0.564 -13.9 0.0671 0.0907 +35.0

ANN 0.507 0.513 +1.16 0.0333 0.0465 +39.6 0.422 0.354 -16.2 0.0981 0.102 +4.28

CART 0.461 0.506 +9.78 0.0311 0.0353 +13.6 0.431 0.500 +16.0 0.167 0.0651 -60.8

MdBRE

CBR 0.282 0.266 -5.63 0.0451 0.0395 -12.1 0 0.135 +∞ 0 0.138 +∞

ANN 0.252 0.249 -1.23 0.0271 0.0323 +19.3 0.431 0.528 +22.4 0.167 0.254 +52.6

CART 0.281 0.252 -10.3 0.0153 0.0162 +5.94 0.328 0.282 -13.8 0.0843 0.0555 -34.1

*PC (%) is the percentage of change between LD and MI.

22

4.2 Performance under Scaling scheme

The marginal means and marginal standard deviations of the testing errors under

different scaling schemes are shown in Table 9. The results exhibit diverse patterns in

each dataset. On all datasets, the scaling scheme has no impact on CART. The result

of ISBSG dataset shows the testing errors are not consistent with MBREs although

scaling schemes generally improve the accuracy and robustness of MBREs. On

Desharnais dataset, the scaling schemes reduce testing error and improve robustness

of ANN method. CBR, instead, is impacted by outliers. On Kitchenham dataset with a

small number of features, CBR is uniquely negatively impacted by scaling schemes.

On USPFT dataset, the [0, 1] scheme improves the accuracy and robustness of CBR

and ANN. The [0, 1] scheme outperforms [-1, 1] scheme consistently in terms of ANN.

Table 9

Average accuracy and robustness under scaling scheme

Dataset

Testing

Error

Metrics

ML

Methods

Mean Std.

Null [0, 1]
*
PC (%) [-1, 1]

*
PC (%) Null [0, 1]

*
PC (%) [-1, 1]

*
PC (%)

ISBSG

MBRE

CBR 4.47 3.14 -29.8 3.13 -30.0 6.05 3.51 -42.1 3.47 -42.6

ANN 5.26 4.51 -14.1 5.11 -2.61 4.73 4.54 -4.12 5.79 +22.4

CART 3.15 3.15 0 3.15 0 3.07 3.07 0 3.07 0

PRED

CBR 0.495 0.479 -3.13 0.473 -4.38 0.0837 0.0508 -39.2 0.0586 -29.8

ANN 0.558 0.560 +0.358 0.548 -1.77 0.0676 0.0629 -6.97 0.0437 -35.2

CART 0.508 0.508 0 0.508 0 0.0435 0.0435 0 0.0435 0

MdBRE

CBR 0.269 0.271 +0.631 0.274 +1.92 0.0594 0.0432 -27.3 0.0443 -25.3

ANN 0.221 0.219 -0.905 0.226 +2.69 0.0365 0.0358 -1.92 0.0253 -30.6

CART 0.246 0.246 0 0.246 0 0.0355 0.0355 0 0.0355 0

Desharnais

MBRE

CBR 18.8 11.4 -39.2 11.8 -37.0 14.5 1.15 -92.1 0.948 -93.4

ANN 56.9 42.6 -25.1 53.6 -5.75 24.8 14.3 -42.2 13.1 -47.3

CART 25.8 25.8 0 25.8 0 18.4 18.4 0 18.4 0

PRED

CBR 0.500 0.462 -7.56 0.451 -9.62 0.0564 0.0301 -46.5 0.0462 -18.1

ANN 0.491 0.531 +7.85 0.507 +3.18 0.0479 0.0302 -36.9 0.0333 -30.4

CART 0.483 0.483 0 0.483 0 0.0417 0.0417 0 0.0417 0

MdBRE

CBR 0.243 0.286 +17.9 0.294 +21.0 0.0363 0.0306 -15.7 0.0431 +18.5

ANN 0.265 0.234 -11.7 0.253 -4.48 0.0317 0.0226 -28.8 0.0267 -15.7

CART 0.267 0.267 0 0.267 0 0.0225 0.0225 0 0.0224 0

Kitchenham

MBRE

CBR 2.22 2.65 +19.5 2.66 +19.5 0.0866 0.339 +292 0.338 +290

ANN 15.6 13.0 -17.1 8.89 -43.2 9.02 10.3 +14.5 7.11 -21.1

CART 2.59 2.59 0 2.59 0 0.374 0.374 0 0.374 0

PRED

CBR 0.265 0.213 -19.5 0.214 -19.2 0.0319 0.0541 +69.6 0.0527 +65.1

ANN 0.191 0.219 +14.7 0.196 +2.53 0.0635 0.0222 -65.1 0.0289 -54.4

CART 0.227 0.227 0 0.227 0 0.0223 0.0223 0 0.0223 0

MdBRE

CBR 0.643 0.867 +34.8 0.866 +34.7 0.0289 0.208 +621 0.208 +619

ANN 1.13 0.788 -30.3 0.868 -23.3 0.351 0.132 -62.2 0.124 -64.7

CART 0.782 0.782 0 0.782 0 0.0640 0.0640 0 0.0640 0

USPFT MBRE
CBR 171 140 -18.1 229 +33.7 124 122 -1.80 61.7 -50.4

ANN 321 289 -9.85 414 +29.0 169 99.8 -41.1 233 +37.8

23

CART 150 150 0 150 0 53.2 53.2 0 53.2 0

PRED

CBR 0.619 0.626 +1.12 0.585 -5.57 0.0765 0.0668 -12.7 0.125 +64.3

ANN 0.385 0.440 +14.2 0.339 -11.7 0.104 0.0765 -26.9 0.114 +8.82

CART 0.465 0.465 0 0.465 0 0.134 0.134 0 0.134 0

MdBRE

CBR 0.0643 0.0337 -43.7 0.104 +210 0.0906 0.0551 -39.1 0.178 +222

ANN 0.436 0.389 -10.9 0.614 +40.5 0.149 0.136 -8.83 0.284 +89.8

CART 0.305 0.305 0 0.305 0 0.0770 0.0770 0 0.0770 0

*PC (%) is the percentage change between the [0, 1] and NULL or the [-1, 1] and NULL.

The results reveal that [0, 1] scheme of appears to be less effective to highly-

skewed ISBSG and Kitchenham datasets (described in Section 3.1) than to the less-

skewed Desharnais and USPFT datasets. The influences of both [0, 1] and [-1, 1]

schemes for CART are ignorable for all datasets. This might be attributed to the fact

that the scaling does not change the distributions of the original data and consequently

does not impact the splitting results of CART. Additionally, the [0, 1] scheme is more

suitable than [-1, 1] scheme for ANN in all datasets. For CBR, only the results

obtained from USPFT dataset are improved by [0, 1] scheme consistently. The

discussions in this paragraph provide answers to RQ2.

4.3 Performance under FS scheme

Table 10 illustrates the marginal means and standard deviations of the three error

metrics on testing subsets classified by FS scheme: Null/FSS. The results show that

FSS could generally reduce the testing error and improve robustness for CBR method.

In addition, FS is more efficient on Desharnais dataset in terms of reducing testing

error and enhancing robustness of CBR and ANN methods. For ISBSG dataset, ANN

and CART appear to reduce prediction accuracy and robustness in terms of MBRE.

However, for CART method on all datasets, FS generally has a negative impact. For

Kitchenham dataset with relative small number of features, FSS also shows negative

impact on ANN method. On USPFT dataset, the prediction accuracy and robustness

of CBR and ANN in terms of MBRE have been improved; however, the testing errors

are not consistent.

This analysis shows that FS generally improve CBR method (especially for

ISBSG, Desharnais and Kitchenham data) and it should be used with care for ANN.

24

Applying FS for CART might not be a good choice. For datasets with small number

of features, applying FS for ANN could overall reduce the number of hidden nodes

and therefore hinder its approximation ability. Nevertheless, these might attribute to

the limitation of specific FS approach used in this study. The discussions in this

paragraph provide answers to RQ3.

Table 10

Average accuracy and robustness under FS scheme

Testing

Error

Metrics

ML

Methods

Mean Std. Mean Std.

Null FSS
*
PC (%) Null FSS

*
PC (%) Null FSS

*
PC (%) Null FSS

*
PC (%)

Dataset ISBSG Kitchenham

MBRE

CBR 5.11 2.05 -59.7 5.52 2.03 -63.1 2.67 2.35 -11.8 0.362 0.236 -34.8

ANN 4.79 5.13 +7.16 4.36 5.46 +25.2 11.8 13.2 +11.7 7.47 10.5 +41.7

CART 2.78 3.53 +27.0 2.53 3.36 +33.1 2.55 2.67 +4.40 0.409 0.341 -16.4

PRED

CBR 0.467 0.498 +6.87 0.0649 0.0608 -6.32 0.211 0.250 +18.4 0.0536 0.0431 -19.4

ANN 0.531 0.577 +8.60 0.0578 0.0469 -18.7 0.190 0.215 +12.9 0.0391 0.0434 +11.1

CART 0.506 0.511 +0.812 0.0297 0.0522 +75.7 0.219 0.233 +6.71 0.0185 0.0206 +11.2

MdBRE

CBR 0.282 0.261 -7.51 0.0473 0.0470 -0.759 0.879 0.705 -19.7 0.238 0.0843 -64.5

ANN 0.237 0.209 -11.6 0.0346 0.0239 -31.1 1.02 0.839 -17.7 0.237 0.269 +13.3

CART 0.247 0.243 -1.88 0.0261 0.0414 +59.2 0.820 0.757 -7.64 0.0512 0.0482 -6.02

Dataset Desharnais USPFT

MBRE

CBR 14.8 13.2 -10.4 11.7 4.61 -60.7 242 118 -51.1 94.8 86.5 -8.75

ANN 60.8 41.3 -32.1 18.0 13.2 -26.3 367 315 -13.9 198 156 -21.2

CART 23.4 28.3 +20.6 14.4 20.6 +42.1 136 164 +20.8 51.8 47.7 -7.77

PRED

CBR 0.454 0.488 +7.48 0.0498 0.0427 -14.4 0.599 0.621 +3.67 0.0389 0.124 +220

ANN 0.490 0.529 +8.12 0.0401 0.0288 -28.0 0.413 0.363 -12.1 0.0666 0.129 +95.1

CART 0.487 0.480 -1.39 0.0240 0.0522 +116 0.500 0.431 -13.9 0.175 0.0340 -80.5

MdBRE

CBR 0.278 0.271 -2.16 0.0475 0.0380 -19.9 0.0388 0.0965 +148 0.0632 0.152 +141

ANN 0.266 0.236 -11.2 0.0275 0.0232 -15.6 0.418 0.541 +29.5 0.109 0.278 +153

CART 0.267 0.265 -0.758 0.0179 0.0252 +40.5 0.303 0.307 +1.52 0.0966 0.0443 -54.1

*PC (%) is the percentage change between FSS and NULL.

4.4 Performance under CS scheme

Table 11 presents the performance of the ML methods under CS scheme:

Null/BSS. On ISBSG dataset, CS appears to lead to diverse results: for ANN, the

testing error is reduced and robustness is improved for all metrics; for CBR and

CART, the situation is the opposite to that of ANN. On Desharnais dataset, CS could

increase testing error and reduce robustness of ANN, and reduce the testing error of

CART. As to CBR on Desharnais dataset, the result shows the testing error is not

consistent with the MBRE. On Kitchenham dataset, CS appears to lead to negative

impact on CART and positive impact on ANN. For CBR, the MBRE is slightly

25

reduced but the testing errors are not consistent. On USPFT dataset, only CART is

consistently improved by CS. For ANN and CBR, MBREs are not consistent with the

testing errors. It is possibly due to the outliers inside the dataset.

Table 11

Average accuracy and robustness under CS scheme

Testing

Error

Metrics

ML

Methods

Mean Std Mean Std

Null BSS
*
PC (%) Null BSS

*
PC (%) Null BSS

*
PC (%) Null BSS

*
PC (%)

Dataset ISBSG Kitchenham

MBRE

CBR 2.89 4.26 +47.5 3.36 5.23 +55.6 2.52 2.50 -0.817 0.413 0.266 -35.4

ANN 5.31 4.60 -13.3 5.31 4.52 -14.8 12.6 12.4 -1.82 8.71 9.65 +10.7

CART 3.09 3.22 +4.04 2.87 3.12 +8.61 2.34 2.88 +23.1 0.332 0.144 -56.5

PRED

CBR 0.501 0.463 -7.58 0.0465 0.0742 +59.5 0.252 0.209 -17.1 0.0322 0.0592 +84.0

ANN 0.551 0.556 +0.915 0.0579 0.0576 -0.431 0.185 0.218 +17.7 0.0398 0.0396 -0.502

CART 0.510 0.507 -0.658 0.0338 0.0497 +47.1 0.231 0.221 -4.18 0.0215 0.0193 -10.2

MdBRE

CBR 0.255 0.288 +12.7 0.0341 0.0544 +59.3 0.738 0.845 +14.4 0.121 0.243 +101

ANN 0.224 0.222 -0.571 0.0349 0.0310 -11.1 1.01 0.849 -16. 1 0.306 0.196 -36.1

CART 0.244 0.246 +0.641 0.0300 0.0388 +29.3 0.776 0.801 +3.14 0.0468 0.0677 +44.5

Dataset Desharnais USPFT

MBRE

CBR 16.8 11.2 -32.8 11.9 1.30 -89.1 164 196 +19.4 100 119 +18.3

ANN 49.2 53.1 +7.96 13.5 22.8 +68.0 309 373 +20.6 181 174 -3.70

CART 42.16 9.601 -77.2 8.28 0.0716 -99.1 160 140 -12.1 53.4 48.4 -9.44

PRED

CBR 0.477 0.465 -2.33 0.0532 0.0447 -15.9 0.604 0.616 +2.05 0.115 0.0634 -44.8

ANN 0.505 0.515 +2.05 0.0341 0.0456 +34.0 0.384 0.392 +2.16 0.119 0.0917 -23.1

CART 0.455 0.512 +12.5 0.0299 0.0258 -13.4 0.406 0.524 +29.2 0.131 0.0984 -24.9

MdBRE

CBR 0.273 0.275 +0.826 0.0411 0.0452 +9.89 0.101 0.0344 -65.8 0.146 0.0722 -50.7

ANN 0.253 0.248 -1.99 0.0247 0.0341 +37.7 0.481 0.478 -0.765 0.251 0.186 -25.6

CART 0.281 0.252 -10.3 0.0167 0.0155 -7.22 0.346 0.263 -23.9 0.0841 0.0218 -74.1

*PC (%) is the percentage change between BSS and NULL.

The results show different patterns across the datasets in the study. CBR unlikely

benefit from CS. CART may benefit from CS on within-company datasets, like

Desharnais and USPFT datasets, whereas CS might have negative impacts to CART

on cross-company datasets, such as ISBSG and Kitchenham datasets. CS could be

used by ANN for cross-company datasets. However, it is not always effective when

attached to CART or ANN, possibly due to the loss of information for training. The

discussions in this paragraph provide answers to RQ4.

4.5 ANOVA test

To further quantify the impact and significance of each preprocessing technique as

well as the interactions between them, we conduct Analysis of Variance (ANOVA) for

this purpose. MBRE is used as the sole response (or dependable variable) for ANOVA.

26

We analyze Spearman‟s rho non-parametric correlations between the individual error

metrics (MBRE, PRED(0.25) and MdBRE) across all testing datasets. The analysis

reveals a significant positive correlation at the level of 0.01 between MBRE and

MdBRE, and a negative correlation at the level of 0.01 between MBRE and

PRED(0.25). Consequently, the use of MBRE as response solely appears to be

feasible. On top of the significance testing, the non-linear interactions between the

main effects are also investigated. The factors of ANOVA including “Method” (CBR,

ANN or CART), MDT (LD/MI), Scaling (Null/[0, 1]/[-1, 1]), FS (Null/FSS) and CS

(Null/BSS), are all transformed to dummy variable and regarded as fixed factors. The

interactions in this study include ten 2-ways, ten 3-ways, and five 4-ways. The

factors/interactions are regarded as influential only if they have the significance level

of 0.05 at least. Prior to the ANOVA, the logarithmic transformation is performed in

response to reducing the skewness and the heterogeneity of the variances of different

groups of MBRE values.

The ANOVA results are presented separately in Table 12, which lists all the main

effects and significant interactions. The main effects and their interactions to explain a

proportion of the total variance is measured by the partial eta squared statistic (2

p)

with larger values related to higher relative importance. For ISBSG dataset, the main

effects of „Method‟, FS and MDT are proven to be significant at the level of 0.01.

Moreover, Scaling is only significant at the level of 0.05. It confirms our finding from

previous individual analysis that MDT, scaling, forward sequential feature selection

appear to have strong influence on testing performances on ISBSG dataset. With

respect to the interactions, two 2-way interactions: „MDT × CS‟, „Scaling × FS‟, three

3-way interactions: „MDT × Scaling × CS‟, „Method × Scaling × FS‟, and „Method ×

MDT × FS‟, and two 4-way interaction: „Method × MDT × FS × CS‟ and „Method ×

Scaling × FS × CS‟ are significant at the level of 0.05.

For Desharnais dataset, only the main effects of „Method‟ and CS are shown to be

significant at the level of 0.01. With respect to the interactions, a 2-way interactions

27

and a 3-way interaction are significant at the level of 0.05, which are „MDT × CS‟ and

„MDT × Scaling × CS‟, respectively. Furthermore, on Desharnais dataset, MDT

appears to have strong interactions with CS.

For Kitchenham dataset, all main effects except the FS and CS are shown to be

significant at the level of 0.05. It also confirms the findings that the preprocessing

methods of FS and CS have less consistent influence on the prediction results. For

USPFT dataset, all the main effects are shown to be significant at the level of 0.05 at

least. Many interactions are shown to be significant at the level of 0.05.

In general, the analysis recognizes the single DP methods of MDT, FS and scaling

significantly could impact the final prediction results for the most datasets or ML

methods.

Table 12

ANOVA results of main effects and relevant interactions

Dataset
Factors/

Interactions
d.f.

Type III

Sum Sq.
Mean Sq. F p-value

2

p

ISBSG

Method 2 1.028 .514 27.510 .005
**

.932

MDT 1 155.101 155.101 8303.128 .000
**

 .999

Scaling 2 .238 .119 6.365 .050
*
 .761

FS 1 1.228 1.228 66.740 .001
**

 .943

CS 1 .007 .007 .374 .574 .086

MDT× CS 1 .208 .208 11.160 .029
*
 .736

Scaling × FS 2 .423 .211 11.320 .023
*
 .850

MDT × Scaling × CS 2 .336 .168 8.992 .033
*
 .818

Method × Scaling × FS 4 .462 .115 6.182 .050
*
 .861

Method × MDT × FS 2 1.651 .825 44.190 .002
**

 .957

Method × MDT × FS × CS 2 .518 .259 13.864 .016
*
 .874

Method × Scaling × FS × CS 4 .500 .125 6.694 .046
*
 .870

Desharnais

Method 2 21.409 10.701 208.600 .000
**

 .991

MDT 1 .144 .144 2.814 .169 .413

Scaling 2 .409 .205 3.989 .112 .666

FS 1 5.189 5.189 93.682 .050
*
 .879

CS 1 5.978 5.978 116.500 .000
**

 .967

MDT × CS 1 .386 .386 7.524 .050
*
 .653

MDT × Scaling × CS 2 .546 .273 5.318 .050
*
 .727

Kitchenham

Method 2 28.695 14.348 94.024 .000
**

 .979

MDT 1 .479 .479 7.549 .043
*
 .716

Scaling 2 .244 .122 .799 .050
*
 .685

FS 1 .006 .006 .038 .856 .009

CS 1 .065 .065 .428 .549 .097

USPFT

Method 2 9.549 4.774 238.819 .000
**

 .992

MDT 1 .870 .870 43.538 .003
**

 .916

Scaling 2 1.908 .954 47.726 .002
**

 .960

FS 1 2.050 2.050 102.564 .001
**

 .962

CS 1 .145 .145 7.270 .050
*
 .645

28

FS × CS 1 1.476 1.476 73.829 .001
**

 .949

Scaling × FS 2 2.979 1.489 74.496 .001
**

 .974

Method × FS × CS 2 .545 .272 13.623 .016
*
 .872

Scaling × FS × CS 2 .340 .170 8.501 .036
*
 .810

Method × MDT × CS 2 .711 .356 17.789 .010
**

 .899

Method × MDT × FS 2 .477 .239 11.937 .021
*
 .857

Method × Scaling × FS 4 3.164 .791 39.567 .002
**

 .975

Method × Scaling × FS × CS 2 .587 .294 14.682 .014
*
 .880

*
Significant at the 0.05 level (2-tailed)

**
Highly significant at the 0.01 level (2-tailed)

4.6 Overall performance

Table 13 summarizes the testing results across of all experiments. The data shows

that CBR and CART generally achieve the best overall performance in terms of

average accuracy, followed by ANN, which could be better in terms of PRED(0.25) or

MdBRE. All the methods seem very close to each other under the error metric

PRED(0.25) and MdBRE in most cases.

Table 13

Overall averages and standard deviations of error values

Dataset ISBSG Desharnais Kitchenham USPFT

Testing

Error

Metrics

ML

Methods
Mean Std. Mean Std. Mean Std. Mean Std.

MBRE
CBR 3.582 4.358 14.1 8.78 2.51 0.340 180 109
ANN 4.964 4.842 51.1 18.4 12.5 8.99 341 177
CART 3.159 2.938 25.8 17.6 2.61 0.373 150 50.8

PRED
CBR 0.482 0.0637 0.471 0.0484 0.230 0.0515 0.611 0.0911
ANN 0.554 0.0566 0.510 0.0397 0.202 0.0423 0.388 0.104
CART 0.508 0.0417 0.483 0.0399 0.226 0.0206 0.465 0.128

MdBRE
CBR 0.271 0.0474 0.274 0.0423 0.792 0.196 0.0676 0.118
ANN 0.223 0.0324 0.251 0.0292 0.930 0.265 0.480 0.216
CART 0.245 0.0340 0.266 0.0215 0.789 0.0583 0.305 0.0735

To further analyze the error metrics in testing phase, we draw out the boxplots of

MBRE, PRED(0.25), and MdBRE on three datasets in Fig. 2, Fig. 3, Fig. 4 and Fig. 5.

The boxplots confirm the findings from Table 13. CBR and CART appear to obtain

either lowest medians or shortest inter-quartiles range among all methods in the plots

of MBRE, PRED and MdBRE. In general, ANN has the largest inter-quartiles range,

especially happens when MBRE is the testing error metric, and what is more, it has

long ranges. The performance of CBR is slightly influenced by outliers, so the mean

results in Table 13 cannot generally outperform CART. Although boxplots are useful

graphical tool for visually comparing predictions, they cannot statistically confirm

29

whether one technique is significant better than another. Therefore, we perform the

significant tests on the error values.

Fig. 2 Boxplots of error metric values of ISBSG dataset

Fig. 3 Boxplots of error metric values of Desharnais dataset

0.2

3.6

7

10.4

13.8

17.2

CBR ANN CART

M
B

R
E

0.36

0.42

0.48

0.54

0.6

0.66

CBR ANN CART

P
R

E
D

(0
.2

5
)

0.17

0.21

0.25

0.29

0.33

CBR ANN CART

M
d

B
R

E

9.3

26.6

43.9

61.2

78.5

CBR ANN CART

M
B

R
E

0.4

0.44

0.48

0.52

0.56

0.6

CBR ANN CART

P
R

E
D

(0
.2

5
)

0.18

0.21

0.24

0.27

0.3

0.33

CBR ANN CART

M
d

B
R

E

30

Fig. 4 Boxplots of error metric values of Kitchenham dataset

Fig. 5 Boxplots of error metric values of USPFT dataset

Because the boxplots show that the results distributions are highly skewed and do

not satisfy the requirements of the classical t-test, the assumption free test: Wilcoxon

2

8.7

15.4

22.1

28.8

CBR ANN CART

M
B

R
E

0.13

0.16

0.19

0.22

0.25

0.28

CBR ANN CART

P
R

E
D

(0
.2

5
)

0.61

0.77

0.93

1.09

1.25

1.41

CBR ANN CART

M
d

B
R

E

27.4

183.7

340

496.3

652.6

CBR ANN CART

M
B

R
E

0.12

0.24

0.36

0.48

0.6

0.72

CBR ANN CART

P
R

E
D

(0
.2

5
)

0

0.23

0.46

0.69

0.92

1.15

CBR ANN CART

M
d

B
R

E

31

sign-rank test (significance level α = 0.05 and α = 0.01 with two tails) is chosen to test

the method pairs. The p-values of the Wilcoxon tests are presented in Table 14. The

entry in the upper triangle range contains the p-value of the test between methods

located in its corresponding row and column. From the results of three testing error

metrics in Fig. 2 and Fig. 4, we can tell that CBR is generally better than ANN, but

not always better than CART. The only obvious exception happens in the plots of

PRED and MdBRE of Desharnais and ISBSG dataset as shown in Fig. 2 & 3. ANN

appears to perform better than the other two ML methods in terms of both PRED and

MdBRE. Observing from Table 13, CBR and ANN are obviously significantly

different in terms of all testing error metrics. For Desharnais dataset, CBR and CART

are significantly different in terms of MBRE; for ISBSG and USPFT datasets, they are

only different in terms of PRED and MdBRE; and for Kitchenham dataset, they are

very the same. These findings imply that CBR and CART could be the best choice

among the three ML methods on all datasets. CBR obviously outperforms CART on

Desharnais and USPFT datasets. On ISBSG and Kitchenham datasets, the

performance of CART and CBR are not significantly different.

Table 14

Results of Wilcoxon sign-rank tests

Dataset ISBSG Desharnais Kitchenham USPFT

Testing

Error

Metrics

ML

Methods
ANN CART ANN CART ANN CART ANN CART

MBRE
CBR .457

.819 .000

**
.049

*
 .000

**
 .209 .000

**
 .049

*

ANN - .010
**

 - .000
**

 - .000
**

 - .000
**

PRED
CBR .000

**
 .003

**
 .014

*
 .413 .134 .697 .000

**
 .002

**

ANN - .000
**

 - .050
*
 - .015

*
 - .043

*

MdBRE
CBR .000

**
 .000

**
 .050

*
 .317 .110 .607 .000

**
 .000

**

ANN - .003
**

 - .050
*
 - .046

*
 - .002

**

*
Highly significant at the 0.01 level (2-tailed)

**
Significant at the 0.05 level (2-tailed)

One drawback of the above analysis is that the testing error metrics used are all

based on BRE. Because BRE is relative error metric [94], we also consider Absolute

Residuals (AR) as the alternative testing error metric for further analysis. We apply

two-tailed Wilcoxon signed-rank test (α=0.05) to investigate the significance of

32

methods under BRE and AR across three random data splits on 24 generated datasets

for preprocessing (totally 24 × 3 = 72). Table 15 presents the summary of the testing

results. The symbols „=‟, „<‟, and „>‟ represent the relationships of „equal‟, „smaller

than‟, and „larger than‟ between the ML methods located in column and in row. The

table entry denotes how many significance tests report the relationship represented by

the symbol. The entries in the upper triangle range represent the results from

significant tests on AR values whilst the entries in the lower triangle range are for the

tests on BRE values. For instance, the entry with value „16‟ under column „CBR‟ and

the sub-column „>‟ means that there are totally 16 out 72 tests reported that ANN is

significantly larger than CBR in terms of BRE in ISBSG dataset.

Table 15

Summary of Wilcoxon sign-rank tests for AR and BRE of each experiment

ML

Methods

CBR ANN CART CBR ANN CART

= < > = < > = < > = < > = < > = < >

Dataset ISBSG Kitchenham

CBR - - - 53 19 0 68 3 1 - - - 60 12 0 66 5 1

ANN 56 0 16 - - - 59 0 13 60 0 12 - - - 55 3 14

CART 66 2 4 57 15 0 - - - 68 1 3 58 14 0 - - -

 Desharnais USPFT

CBR - - - 67 5 0 63 9 0 - - - 51 21 0 59 13 0

ANN 68 0 4 - - - 67 0 5 34 5 33 - - - 62 1 9

CART 61 0 11 61 11 0 - - - 48 3 21 56 11 5 - - -

It is seen that both CBR and CART stand a fair chance to outperform ANN on

ISBSG dataset. For instance, 16/72 significance tests report that ANN‟s BRE values

are larger than those of CBR and 15/72 tests confirm that CART‟s BRE values are

smaller than those of ANN. For AR, 19/72 significance tests confirm that CBR‟s AR

values are smaller than those of ANN and 3/72 tests confirm that CBR‟s AR are

smaller than those of CART. Note that the result of CART method in Table 13 is

influenced by the outliers. On Desharnais dataset, the three methods are generally

equal. In specific, CBR is slightly better than ANN or CART on both datasets. On

Kitchenham dataset, the results are similar to that on ISBSG dataset. On USPFT

dataset, CBR obviously outperforms ANN and CART. For instance, 21/72 tests

confirm that CART‟s BRE values are larger than those of CBR. In summary, CBR

appears to be a better alternative compared with ANN and CART in terms of all kinds

33

combinations of DP methods used in this study.

At the last, we analyze the performance of the combinations of DP techniques. We

rank the DP combination according to the value of testing error metrics. From the

experiment design, there are 24 processed datasets. Therefore, we have 24 sets of

results for MBRE, PRED and MdBRE. We only keep the best 33% of the ranked

results, i.e. 8 minimal MBREs, 8 maximal PREDs and 8 minimal MdBREs, and their

corresponding DP methods. As expected, we did not find an overall dominant DP

combination for all the four datasets and three ML methods. However, we do obtain

results that could provide meaningful suggestion for other research works. The results

are organized in Table 16.

Table 16

Summary of recommended DP combinations under different datasets and ML methods

Dataset
ML

Methods

CBR ANN CART

Error

value in

order

DP combination Error

value in

order

DP combination Error

value in

order

DP combination

MDT *Sca FS CS MDT *Sca FS CS MDT *Sca FS CS

ISBSG

MBRE

.2808 1 3 2 2 .2500 1 3 2 1 .3128 1 1 2 2

.2986 1 3 2 1 .2517 1 3 2 2 .3128 1 2 2 2

.3214 1 1 2 1 .2548 1 1 2 1 .3128 1 3 2 2

.3214 1 2 2 1 .2843 1 2 2 2 .3506 1 1 2 1

.3425 1 1 2 2 .3050 1 1 2 2 .3506 1 2 2 1

.3425 1 2 2 2 .3145 1 2 2 1 .3506 1 3 2 1

.3563 1 1 1 1 .3491 1 2 1 2 .3590 1 1 1 1

.3613 1 2 1 1 .3516 1 1 1 2 .3590 1 2 1 1

PRED

.6133 1 3 2 2 .6773 1 3 2 2 .5733 1 1 2 2

.6000 1 3 2 1 .6333 1 1 2 1 .5733 1 2 2 2

.5381 2 3 1 1 .6266 1 3 2 1 .5733 1 3 2 2

.5333 1 1 2 1 .6147 2 1 1 1 .5466 1 1 2 1

.5333 1 2 2 1 .6132 2 2 1 2 .5466 1 2 2 1

.5224 2 1 1 1 .5920 1 2 2 2 .5466 1 3 2 1

.5200 1 1 2 2 .5874 2 1 1 2 .5358 2 1 1 1

.5200 1 2 2 2 .5710 2 3 1 2 .5358 2 2 1 1

MdBRE

.1925 1 3 2 2 .1693 1 3 2 2 .2007 1 1 2 2

.1992 1 3 2 1 .1784 1 3 2 1 .2007 1 2 2 2

.2256 1 1 2 1 .1794 1 1 2 1 .2007 1 3 2 2

.2256 1 2 2 1 .1902 2 2 1 2 .2065 1 1 2 1

.2285 2 3 1 1 .1906 2 1 1 1 .2065 1 2 2 1

.2380 2 1 1 1 .1995 1 2 2 2 .2065 1 3 2 1

.2399 1 1 2 2 .2008 2 1 1 2 .2188 2 1 1 2

.2399 1 2 2 2 .2032 2 3 2 1 .2188 2 2 1 2

Desharnais

MBRE

9.380 2 3 1 2 16.36 2 3 2 2 9.528 2 1 1 2
9.590 1 1 2 2 27.07 1 1 2 2 9.528 2 2 1 2
9.660 1 2 1 2 28.25 1 1 2 1 9.528 2 3 1 2
9.668 1 1 1 2 34.32 2 1 2 2 9.539 2 1 2 2
11.83 2 3 2 2 38.47 2 1 1 1 9.539 2 2 2 2
11.85 2 2 1 2 38.84 1 1 1 1 9.539 2 3 2 2
11.85 2 2 2 1 39.92 1 2 2 2 9.647 1 1 2 2
11.86 2 1 1 1 42.90 2 2 1 2 9.647 1 2 2 2

PRED

.6049 2 3 1 1 .5948 2 3 2 2 .5555 2 1 2 1

.5308 2 2 1 2 .5822 2 1 2 2 .5555 2 2 2 1

.5194 1 3 2 1 .5528 2 1 2 1 .5555 2 3 2 1

.5185 2 3 1 2 .5472 1 2 2 1 .5185 2 1 1 1

.5064 1 1 2 1 .5451 1 1 2 1 .5185 2 2 1 1

.5064 1 3 2 2 .5433 1 2 2 2 .4935 2 3 1 2

.4938 2 2 2 2 .5387 2 2 1 2 .4935 2 2 1 2

.4935 1 1 1 1 .5376 1 1 2 2 .4935 2 1 1 2

MdBRE
.1760 2 3 1 1 .1953 2 1 2 2 .2287 2 1 2 1
.2018 1 3 2 2 .2039 2 3 2 2 .2287 2 2 2 1

34

.2131 2 2 1 2 .2196 2 1 2 1 .2287 2 3 2 1

.2438 1 3 2 1 .2227 1 1 2 1 .2475 2 1 1 1

.2484 1 1 2 1 .2252 1 2 2 2 .2475 2 2 1 1

.2484 2 3 1 2 .2256 1 2 2 1 .2635 2 3 1 2

.2583 1 1 1 1 .2262 1 1 2 2 .2635 2 2 1 2

.2583 1 3 1 1 .2296 2 2 1 2 .2635 2 1 1 2

Kitchenham

MBRE

2.118 1 3 2 2 3.040 1 1 1 1 2.060 2 1 1 1
2.156 1 1 2 1 3.317 2 3 2 2 2.060 2 2 1 1
2.156 1 2 2 1 3.480 1 2 2 2 2.060 2 3 1 1
2.163 2 3 1 1 4.624 2 2 1 1 2.129 2 1 2 1
2.165 2 3 2 1 4.722 1 2 1 2 2.129 2 2 2 1
2.201 1 3 1 1 5.084 1 1 2 1 2.129 2 3 2 1
2.203 1 3 2 1 5.274 1 2 2 1 2.316 1 1 1 1
2.237 1 1 2 2 5.499 1 2 1 1 2.316 1 2 1 1

PRED

.2962 1 1 2 2 .2824 2 3 1 2 .2551 2 1 2 1

.2962 1 2 2 2 .2711 1 3 2 2 .2551 2 1 2 2

.2896 2 3 1 1 .2619 1 2 2 2 .2551 2 2 2 1

.2896 2 3 2 1 .2533 2 1 2 1 .2551 2 3 2 1

.2888 1 3 1 1 .2470 2 3 2 2 .2551 2 3 2 2

.2888 1 3 2 1 .2407 1 1 2 1 .2482 2 1 1 1

.2758 2 3 1 2 .2318 2 1 2 2 .2482 2 2 1 1

.2592 1 1 2 1 .2313 1 1 1 1 .2482 2 3 1 1

MdBRE

.6170 2 3 1 2 .6088 2 1 2 1 .7130 1 1 2 2

.6175 2 3 1 1 .6201 1 2 2 2 .7130 1 3 2 2

.6253 1 3 1 1 .6406 2 3 2 2 .7220 2 1 2 2

.6253 1 3 2 1 .6560 1 1 2 1 .7220 2 3 2 2

.6293 2 3 2 1 .7019 2 1 2 2 .7246 2 1 2 1

.6682 1 3 2 2 .7342 2 3 1 2 .7246 2 2 2 1

.6690 1 1 2 1 .7598 1 3 2 2 .7246 2 3 2 1

.6690 1 1 2 2 .7608 1 2 2 1 .7400 2 1 1 1

USPFT

MBRE

27.44 1 1 2 1 138.1 2 3 2 1 93.47 2 1 1 1
27.45 1 1 2 2 149.3 1 1 2 2 93.47 2 2 1 1
27.47 1 3 2 1 169.2 2 1 1 1 93.47 2 3 1 1
34.80 2 1 2 2 177.0 1 3 2 1 103.6 1 1 1 2
52.47 2 1 2 1 177.7 1 2 1 1 103.6 1 2 1 2
95.83 2 3 2 2 186.3 2 3 2 2 103.6 1 3 1 2
95.87 2 3 2 1 221.8 1 2 2 2 110.3 1 1 2 2
97.96 1 3 2 2 228.6 1 1 2 1 110.3 1 2 2 2

PRED

.7413 1 3 2 1 .5410 1 1 2 1 .6724 1 1 1 2

.7241 1 1 2 1 .5375 1 3 1 1 .6724 1 2 1 2

.7241 1 3 2 2 .5162 1 3 1 2 .6724 1 3 1 2

.7068 1 1 2 2 .5006 1 1 2 2 .5789 2 1 1 1

.7068 1 2 2 1 .4844 2 1 2 2 .5789 2 2 1 1

.6724 1 2 2 2 .4837 1 1 1 1 .5789 2 3 1 1

.6551 1 1 1 1 .4521 2 1 2 1 .5263 2 1 1 2

.6447 2 1 1 2 .4362 1 2 1 2 .5263 2 2 1 2

MdBRE

0 1 1 1 2 .2447 1 3 1 1 .2495 1 1 1 2
0 1 1 2 1 .2467 1 1 2 1 .2495 1 2 1 2
0 1 1 2 2 .2536 1 3 1 2 .2495 1 3 1 2
0 1 2 1 2 .2681 1 1 2 2 .2498 2 1 1 1
0 1 2 2 1 .3023 2 1 2 2 .2498 2 1 1 2
0 1 2 2 2 .3081 1 1 1 1 .2498 2 2 1 1
0 1 3 2 2 .3704 2 1 2 1 .2498 2 2 1 2
0 1 3 2 1 .3838 1 2 1 1 .2498 2 3 1 1

 MDT, 1 – Listwise deletion; 2 – Mean imputation
*Sca: Scaling, 1 – [0, 1], 2 – [-1, 1], 3 – Null
FS, 1 – FSS, 2 – Null;
CS, 1 – BSS, 2 – Null.

All the repeated DP combinations inside a particular data under a specific ML

method are marked in bold. For example, in dataset of ISBSG, under CBR method,

the DP combination of 1-3-2-2 (Listwise deletion, Null scaling, without FSS for FS or

BSS for CS) is marked in bold since it exists in MBRE, PRED and MdBRE

simultaneously.

For specific ML method, we can see that 1-1-2-1 is a stable choice for ANN since

it shows up in bold for all the three datasets used in this study. For CBR, the

35

performance of DP combinations for datasets varies. Only 1-1-2-1, 1-3-2-1 and 1-1-2-

2 have stable performances on ISBSG, Kitchenham and USPFT datasets. As for

CART, the results further identifies that it is totally immune to [0, 1] scaling or [-1, 1]

scaling. Whatever the scaling scheme is, once the rest DP combination is the same, the

prediction results of CART are the same as well. The performance of DP

combinations in CART varies a lot, only 2-X-1-1 (X is denoted as [0, 1] or [-1, 1] or

Null) performs relatively stable for both USPFT and Kitchenham datasets and the

corresponding estimation accuracy is promising. We could only suggest using the DP

combination of 1-X-2-2 for ISBSG dataset and 2-X-1-2 for Desharnais dataset when

SCE is based on CART algorithm.

Further observation from Table 16 provides more useful knowledge of

implementation of DP combinations. The DP combination should be carefully used

according to the characteristics of data and the estimation method as well. All the

recommendations in terms of using data preprocessing for corresponding datasets or

ML-based methods in the context of SCE are listed in Table 17. Notice that in Table

16, only the best DP combinations are selected from the rankings in Table 16. The

criterion for selection is based on the ranking of the average value of MBRE, -PRED,

and MdMER, shown in the 3
rd

 column of Table 17. Note that the recommended DP

combinations in Table 17 are denoted in the same way Table 16 presents. The ANOVA

shows that certain DPs and DP combinations could be overall significantly effective

to SCE. The result showing in Table 17 further shows which DP combinations are the

most positively effective to different datasets and different ML methods. It gives us

the answer to RQ5 in terms of DP techniques selection.

Table 17

Recommended DP Combinations

Dataset ML method (MBRE-PRED+MdBRE)/3
Recommended DP

combinations

ISBSG

CBR -0.0467 1-3-2-2

ANN -0.0854 1-3-2-2

CART -0.0199 1-X*-2-2

Desharnais

CBR 3.04 2-3-1-2

ANN 5.32 2-3-2-2

CART 3.10 2-X*-1-2

36

Kitchenham

CBR 0.830 2-3-1-1

ANN 1.24 2-3-2-2

CART 0.851 2-X*-1-1

USPFT

CBR 8.91 1-1-2-1

ANN 49.7 1-1-2-2

CART 31.0 2-X*-1-1

X* - [0, 1] or [-1, 1] or Null (scaling has no impact on CART)

The results in Table 16 and Table 17 show that for Desharnais, Kitchenham and

USPFT datasets, all the best DP combinations include MI. For the dataset with high

percentage of missing values, e.g. ISBSG dataset, MI may not provide accurate

estimation of the missing data. In Desharnais, Kitchenham and USPFT datasets, the

issue of missing values is not as critical as that in ISBSG data. MI may be a good

choice for ANN based SCE in these three datasets.

Further observation from Table 17 shows that most of the best DP combinations

contain Null scaling scheme, except on USPFT data, the scaling scheme of [0, 1] is

preferred. Observing that the most SCE studies adopt [0, 1] scheme intuitively, we

recommend researchers to consider Null scaling alternatively to see if results are

improved. The scaling scheme of [-1, 1] is less suggested since it does not appear in

any recommended DP combinations.

Although applying FS for ANN could be overall beneficial on Desharnais data as

Table 10 presents, the result in Table 17 shows that all the best DP combinations for

ANN method in four datasets do not include FSS for FS. Similar situation happens

when applying CS for ANN. Weigh repeatedly, we suggest not conducting FS or CS

for ANN based SCE.

CS should be very carefully regarded when using it into a DP combination.

Observing from Table 16, all the well-performed DP combinations for ISBSG, USPFT

and Kitchenham data under CART contains BSS for CS. But if we take a look at the

results in Table 11, the prediction accuracy of CART based estimation in Kitchenham

data is in average reduced by CS. From the results, we found that certain DP

combinations with BSS for CS could seriously lower the accuracy of CART based

SCE; therefore, the mean testing error in Table 11 becomes more unsatisfied. The

37

similar situation applies to ISBSG data as well. The result in Table 17 shows that most

of the best DP combinations in four datasets do not include BSS for CS. In conclusion,

CS might only be useful for better prediction results of CBR or CART on specific

datasets, and it should be conducted more carefully.

5. Threats to Validity

The threats to validity could be distributed into four groups in this study, including

conclusion, internal, construct, and external validity. The conclusion validity is related

to the ability to draw significant correct conclusions; in regard to which, we carefully

applied the statistical tests, showing statistical significance for the obtained results.

Moreover, we used medium-sized datasets to mitigate the threats related to the

number of observations composing the datasets.

 As this study focuses on the structured investigations on DP techniques, we

discuss the internal validity in terms of threats to our experiments designs. There are

several aspects: firstly, different numbers of pre-defined parameters are considered for

each ML method in this study. For example, CBR has three parameters while CART

has only one parameter. We observed that CBR is generally not significantly different

from CART and both of them are more accurate than ANN method. However CBR‟s

accuracy may be due to the extra parameters of CBR. Therefore, the sensitivity

analysis of parameters is of interest to identify which parameter is important and how

does the parameter affect the prediction performances. In addition, more sophisticated

parameter tuning schemes can be explored because ML methods performances

heavily depend on these parameters and the cross-validation plus grid search scheme

is time-consuming to select parameters with large ranges. Moreover, this study

chooses MBRE to guide parameter optimization of ML methods. However, MBRE is

only one type of balanced relative error metric, other types of balanced error metrics

such as Mean Square Error (MSE) could be considered as the error metric for

parameter selection.

38

 The construct validity refers to the agreement between a theoretical concept and a

specific measurement. It has to establish correct operational measures for the concepts

being studied. As to the assessment of different combinations of DP techniques, we

made use of three performance measures and four public datasets in our study. All the

performance measures are used with statistical test as suggested by Kitchenham et al.

[98]. The datasets in our study have been previously used in many other empirical

studies carried out to evaluate effort estimation.

 The external validity represents the possibility of generalizing the findings of this

study. The threats to external validity are as follows. Firstly, the limited datasets cause

some difficulties to generalize our conclusions. The ISBSG dataset is very large and

regarded as a benchmarking dataset in SCE literature, but it is multi-organizational in

nature and with heterogeneous properties. There are no commonly accepted data

refinement criteria to the knowledge of the authors. Nevertheless, we refer to works of

[37, 66, 85] and refine the ISBSG data. In real world estimation procedures, many

project managers prefer to use the data from one company to ensure data consistency.

Therefore, our results based on the four datasets might be difficult to generalize to

those estimations obtained from single and homogeneous company data. Recently,

some research works [99, 100] have been conducted to investigate to what extent a

cross-company cost model can be successfully employed to estimate single company

projects. Nevertheless, the experiment design proposed in our study can be easily

extended to other single company datasets.

 In addition, missing data is a common situation in software engineering datasets.

Many studies [29, 31, 39, 74] have proposed different imputation techniques to

recover missing data by estimating replacement values. But our study is mainly

focusing on the LD and MI. More advanced methods of imputation could be adopted

to deal with missing data. Moreover, limited DP techniques and ML methods are

explored in our study. There might be some difficulties to extend our conclusions to

other ML methods to select appropriate DP scheme. Furthermore, in the experiment

39

the 3-fold cross-validation scheme, though it is the most widely used one in the

literature, might not produce sufficiently stable estimation of the prediction accuracy.

More advanced scheme as 10-fold cross-validation or even leave-one-out cross-

validation could be considered. The side effect of these schemes is mainly the high

computational expense.

6. Conclusion and Future Works

 Data preprocessing is a fundamental stage of ML method and has large impact on

the accuracy of ML methods. However, there is still lack of systematic study in the

SCE context for DP techniques despite of their importance. In this study, a structured

literature survey of DP techniques is first conducted. Subsequently, a systematic

empirical study is conducted to analyze the effectiveness of the four DP techniques,

i.e. MDT, Scaling, FS and CS. In addition, the interactions between the preprocessing

techniques and ML methods‟ predictive accuracies are also studied. ANOVA test is

conducted to quantify the significance of each preprocessing technique and the

interactions between them and ML methods. In the end, the recommendation of using

DP combination for different datasets and different ML methods is summarized (See

Table 17). For example, the best DP combination for Kitchenham data in the context

of CBR based SCE is MI, Null scaling, FSS for FS, and BSS for CS. Seven findings

are noteworthy:

1. The effectiveness of an ML method used for SCE (e.g. CBR, ANN and CART)

can be significantly altered by single DP steps and their combinations (especially,

the MDT, scaling, FS), which further extends the findings found by Keung et al.

[35].

2. The performance of DP methods is generally dependent on the characteristics of

data and the ML methods.

40

3. The percentage of missingness inside data is an important matter when we

consider using MDT for ML-based SCE. Compared with MI, LD is preferred for

datasets with a large number of missing values in terms of improving prediction

accuracy and robustness. For datasets with a small number of missing values,

ANN is less sensitive to MI and CART could benefit from MI.

4. No need to use [0, 1] or [-1, 1] scaling for CART based SCE. The scaling scheme

of Null scaling could be better than [0, 1] under certain circumstance. Scaling

appears to be less significant to large and highly-skewed dataset.

5. FS is more appropriate for CBR based SCE rather than for ANN or CART. For

ANN and CART, the impact of FS is dependent on the characteristics of data,

such as the number of features. CS could be effective, but it is not recommended

using CS for ANN.

6. ANN performs worse than other two ML methods in our study (e.g. CBR and

CART), similar to the results obtained by Keung et al. [35]. CBR and CART

could be better methods for SCE according to our experiments. CART is

negatively impacted by FS and more sensitive to CS. An appropriate strategy of

DP is necessary for CART.

7. The selection of DP combination is dependent on datasets and ML methods. We

suggest the SCE research works that utilize any ML method consider fine-tuning

the DP techniques so that the performance of ML method can be improved. This

finding conveys a meaningful message to the majority of the completed or

ongoing SCE research works where the DP techniques have been or are being

used without sufficient attentions.

As for the future works, 1) more extensive experiments on various datasets will be

considered to generalize the findings of this study; 2) more advanced ML methods can

be involved in the experiment, for example the more complicated tree model of CART,

such as multiple additive regression trees (MART) and multivariate adaptive

41

regression splines (MARS); 3) use unbiased novel performance measure, such as

standardized accuracy [101], for comparison of DPs.

References

[1] J. Wen, S. Li, Z. Lin, Y. Hu, C. Huang, Systematic literature review of machine learning based

software development effort estimation models, Inf Softw Technol, 54 (2012) 41-59.

[2] R.T. Hughes, Expert judgement as an estimating method, Inf Softw Technol, 38 (1996) 67-75.

[3] M. Jørgensen, A review of studies on expert estimation of software development effort, J Syst Softw,

70 (2004) 37-60.

[4] B.W. Boehm, Software engineering economics, IEEE Trans Softw Eng, SE-10 (1984) 4-21

[5] L.H. Putnam, W. Myers, Measures for excellence: reliable software on time, within budget, Prentice

Hall Professional Technical Reference, 1991.

[6] A. Bou, D. Ho, L. Fernando, Towards an early software estimation using log-linear regression and a

multilayer perceptron model, J Syst Softw, 86 (2013) 144-160.

[7] K. Srinivasan, D. Fisher, Machine learning approaches to estimating software development effort,

IEEE Trans Softw Eng, 21 (1995) 126-137.

[8] A. Heiat, Comparison of artificial neural network and regression models for estimating software

development effort, Inf Softw Technol, 44 (2002) 911-922.

[9] M. Shepperd, C. Schofield, Estimating software project effort using analogies, IEEE Trans Softw

Eng, 23 (1997) 736-743.

[10] C. Mair, G. Kadoda, M. Lefley, K. Phalp, C. Schofield, M. Shepperd, S. Webster, Investigation of

machine learning based prediction systems, J Syst Softw, 53 (2000) 23-29.

[11] I.F. de Barcelos Tronto, J.D.S. da Silva, N. Sant'Anna, An investigation of artificial neural

networks based prediction systems in software project management, J Syst Softw, 81 (2008) 356-367.

[12] G.R. Finnie, G.E. Wittig, J.M. Desharnais, A comparison of software effort estimation techniques:

Using function points with neural networks, case-based reasoning and regression models, J Syst Softw,

39 (1997) 281-289.

[13] Y.F. Li, M. Xie, T.N. Goh, A study of mutual information based feature selection for case based

reasoning in software cost estimation, Expert Syst Appl, 36 (2009) 5921-5931.

[14] E. Kocaguneli, S. Member, T. Menzies, Exploiting the essential assumptions of analogy-based

effort estimation, IEEE Trans Softw Eng, 38 (2012) 425-439.

[15] M. Azzeh, D. Neagu, P.I. Cowling, Analogy-based software effort estimation using fuzzy numbers,

J Syst Softw, 84 (2011) 270-284.

[16] E. Kocaguneli, T. Menzies, J.W. Keung, Kernel methods for software effort estimation: Effects of

different kernel functions and bandwidths on estimation accuracy, Empirical Softw Eng, 18 (2013) 1-24.

[17] N.H. Chiu, S.J. Huang, The adjusted analogy-based software effort estimation based on similarity

distances, J Syst Softw, 80 (2007) 628-640.

[18] S.J. Huang, N.H. Chiu, Optimization of analogy weights by genetic algorithm for software effort

estimation, Inf Softw Technol, 48 (2006) 1034-1045.

42

[19] J. Li, G. Ruhe, Analysis of attribute weighting heuristics for analogy-based software effort

estimation method AQUA+, Empirical Softw Eng, 13 (2008) 63-96.

[20] A.L.I. Oliveira, P.L. Braga, R.M.F. Lima, M.L. Cornélio, GA-based method for feature selection

and parameters optimization for machine learning regression applied to software effort estimation, Inf

Softw Technol, 52 (2010) 1155-1166.

[21] S. Zhang, C. Zhang, Q. Yang, Data preparation for data mining, Appl Artif Intell, 17 (2003) 375-

381.

[22] B. Twala, M. Cartwright, Ensemble missing data techniques for software effort prediction, Intell

Data Analysis, 14 (2010) 299-331.

[23] L.L. Minku, X. Yao, A principled evaluation of ensembles of learning machines for software effort

estimation, in: the 7th International Conference on Predictive Models in Software Engineering

(PROMISE'11), Banff, Canada, 2011, pp. 1-10.

[24] M. Azzeh, Software effort estimation based on optimized model tree, in: the 7th International

Conference on Predictive Models in Software Engineering (PROMISE'11), Banff, Canada, 2011.

[25] M. Shepperd, G. Kadoda, Comparing software prediction techniques using simulation, IEEE Trans

Softw Eng, 27 (2001) 1014-1022.

[26] J.W. Keung, B.A. Kitchenham, D.R. Jeffery, Analogy-X: Providing statistical inference to

analogy-based software cost estimation, IEEE Trans Softw Eng, 34 (2008) 471-484.

[27] K. Vinay Kumar, V. Ravi, M. Carr, N. Raj Kiran, Software development cost estimation using

wavelet neural networks, J Syst Softw, 81 (2008) 1853-1867.

[28] Y.F. Li, M. Xie, T.N. Goh, A study of project selection and feature weighting for analogy based

software cost estimation, J Syst Softw, 82 (2009) 241-252.

[29] K. Strike, K.E. Emam, N. Madhavji, Software cost estimation with incomplete data, IEEE Trans

Softw Eng, 27 (2001) 890-908.

[30] J. Van Hulse, T.M. Khoshgoftaar, A comprehensive empirical evaluation of missing value

imputation in noisy software measurement data, J Syst Softw, 81 (2008) 691-708.

[31] I. Myrtveit, E. Stensrud, U.H. Olsson, Analyzing data sets with missing data: An empirical

evaluation of imputation methods and likelihood-based methods, IEEE Trans Softw Eng, 27 (2001)

999-1013.

[32] P. Sentas, L. Angelis, Categorical missing data imputation for software cost estimation by

multinomial logistic regression, J Syst Softw, 79 (2006) 404-414.

[33] Y.-S. Seo, D.-H. Bae, On the value of outlier elimination on software effort estimation research,

Empirical Softw Eng, 18 (2013) 659-698.

[34] M. Tsunoda, T. Kakimoto, A. Monden, K.-i. Matsumoto, An empirical evaluation of outlier

deletion methods for analogy-based cost estimation, in: the 7th International Conference on Predictive

Models in Software Engineering (PROMISE '11), Banff, Canada, 2011, pp. 1-10.

[35] J. Keung, E. Kocaguneli, T. Menzies, Finding conclusion stability for selecting the best effort

predictor in software effort estimation, Automated Software Engineering, 20 (2013) 543-567.

[36] M. Azzeh, D. Neagu, P.I. Cowling, Fuzzy grey relational analysis for software effort estimation,

Empirical Softw Eng, 15 (2009) 60-90.

[37] N. Mittas, L. Angelis, LSEbA: least squares regression and estimation by analogy in a semi-

parametric model for software cost estimation, Empirical Softw Eng, 15 (2010) 523-555.

[38] J. Li, G. Ruhe, A. Al-Emran, M.M. Richter, A flexible method for software effort estimation by

analogy, Empirical Softw Eng, 12 (2007) 65-106.

43

[39] Q. Song, M. Shepperd, A new imputation method for small software project data sets, J Syst Softw,

80 (2007) 51-62.

[40] L. Angelis, I. Stamelos, A simulation tool for efficient analogy based cost estimation, Empirical

Softw Eng, 5 (2000) 35–68.

[41] E. Kocaguneli, S. Member, T. Menzies, On the value of ensemble effort estimation, IEEE Trans

Softw Eng, 38 (2012) 1403-1416.

[42] A. Corazza, S.D. Martino, F. Ferrucci, C. Gravino, F. Sarro, E. Mendes, How effective is Tabu

search to configure support vector regression for effort estimation?, in: the 6th International

Conference on Predictive Models in Software Engineering (PROMISE'10), Timisoara, Romania, 2010,

pp. 1-10.

[43] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, E. Mendes, Applying support vector regression

for Web effort estimation using a cross-company dataset, in: the 3rd International Symposium on

Empirical Software Engineering and Measurement (ESEM'09), Lake Buena Vista, Florida, USA, 2009,

pp. 191-202.

[44] N. Mittas, M. Athanasiades, L. Angelis, Improving analogy-based software cost estimation by a

resampling method, Inf Softw Technol, 50 (2008) 221-230.

[45] J. Li, A. Al-Emran, G. Ruhe, Impact analysis of missing values on the prediction accuracy of

analogy-based software effort estimation method AQUA, in: the 1st International Symposium on

Empirical Software Engineering and Measurement (ESEM'07), Madrid, Spain, 2007, pp. 126-135.

[46] E. Mendes, A comparison of techniques for web effort estimation, in: the 1st International

Symposium on Empirical Software Engineering and Measurement (ESEM'07), Madrid, Spain, 2007,

pp. 334 - 343.

[47] J. Keung, Empirical evaluation of analogy-X for software cost estimation, in: the 2nd ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement (ESEM'08),

Kaiserslautern, Germany, 2008, pp. 294-296.

[48] F. Ferrucci, E. Mendes, F. Sarro, Web effort estimation: the value of cross-company data set

compared to single-company data set, in: the 8th International Conference on Predictive Models in

Software Engineering (PROMISE'12), Lund, Sweden, 2012, pp. 29-38.

[49] P.C. Pendharkar, G.H. Subramanian, J.A. Rodger, A probabilistic model for predicting software

development effort, IEEE Trans Softw Eng, 31 (2005) 615-624.

[50] M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, S. Biffl, Optimal project feature weights in

analogy-based cost estimation: Improvement and limitations, IEEE Trans Softw Eng, 32 (2006) 83-92.

[51] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull, B. Turhan, T. Zimmermann,

Local versus global lessons for defect prediction and effort estimation, IEEE Trans Softw Eng, 39

(2013) 822-834.

[52] A. Brady, T. Menzies, Case-based reasoning vs Parametric models for software quality

optimization, in: the 6th International Conference on Predictive Models in Software Engineering

(PROMISE'10), Timisoara, Romania, 2010, pp. 1-10.

[53] E. Kocaguneli, T. Menzies, How to Find Relevant Data for Effort Estimation?, in: the 5th

International Symposium on Empirical Software Engineering and Measurement (ESEM'11), Banff,

Canada, 2011, pp. 255-264.

[54] Y.F. Li, M. Xie, T.N. Goh, A study of the non-linear adjustment for analogy based software cost

estimation, Empirical Softw Eng, 14 (2009) 603-643.

[55] R. Borges, T. Menzies, Learning to change projects, in: the 8th International Conference on

44

Predictive Models in Software Engineering (PROMISE'12), Lund, Sweden, 2012, pp. 11-18.

[56] E. Kocaguneli, T. Menzies, J. Hihn, B.H. Kang, Size doesn't matter? On the value of software size

features for effort estimation, in: the 8th International Conference on Predictive Models in Software

Engineering (PROMISE'12), Lund, Sweden, 2012, pp. 89-98.

[57] Q. Liu, W.Z. Qin, R. Mintram, M. Ross, Evaluation of preliminary data analysis framework in

software cost estimation based on ISBSG R9 Data, Softw Qual J, 16 (2008) 411-458.

[58] V. Khatibi Bardsiri, D.N.A. Jawawi, S.Z.M. Hashim, E. Khatibi, A PSO-based model to increase

the accuracy of software development effort estimation, Softw Qual J, 21 (2013) 501-526.

[59] A. Corazza, S. Martino, F. Ferrucci, C. Gravino, F. Sarro, E. Mendes, Using tabu search to

configure support vector regression for effort estimation, Empirical Softw Eng, 18 (2013) 506-546.

[60] J. Li, G. Ruhe, Decision support analysis for software effort estimation by analogy, in: the 3rd

International Conference on Predictor Models in Software Engineering (PROMISE'07), Minneapolis,

MN, USA, 2007, pp. 6-16.

[61] L.L. Minku, X. Yao, Ensembles and locality: Insight on improving software effort estimation, Inf

Softw Technol, 55 (2013) 1512-1528.

[62] M. Azzeh, A replicated assessment and comparison of adaptation techniques for analogy-based

effort estimation, Empirical Softw Eng, 17 (2012) 90-127.

[63] C.-J. Hsu, C.-Y. Huang, Comparison of weighted grey relational analysis for software effort

estimation, Softw Qual J, 19 (2010) 165-200.

[64] E. Kocaguneli, T. Menzies, J. Keung, D. Cok, R. Madachy, Active learning and effort estimation:

Finding the essential content of software effort estimation data, IEEE Trans Softw Eng, 39 (2013)

1040-1053.

[65] N. Mittas, L. Angelis, Ranking and clustering software cost estimation models through a multiple

comparisons algorithm, IEEE Trans Softw Eng, 39 (2013) 537-551.

[66] C. Lopez-Martin, C. Isaza, A. Chavoya, Software development effort prediction of industrial

projects applying a general regression neural network, Empirical Softw Eng, 17 (2011) 738-756.

[67] A. Bakir, B. Turhan, A.B. Bener, A new perspective on data homogeneity in software cost

estimation: A study in the embedded systems domain, Softw Qual J, 18 (2009) 57-80.

[68] A. Bakir, B. Turhan, A. Bener, A comparative study for estimating software development effort

intervals, Softw Qual J, 19 (2011) 537-552.

[69] N. Ramasubbu, R.K. Balan, Overcoming the challenges in cost estimation for distributed software

projects, in: the 34th International Conference on Software Engineering (ICSE'12), Zurich,

Switzerland, 2012, pp. 91-101.

[70] M.V. Kosti, N. Mittas, L. Angelis, Alternative methods using similarities in software effort

estimation, in: the 8th International Conference on Predictive Models in Software Engineering

(PROMISE'12), Lund, Sweden, 2012, pp. 59-68.

[71] D. Rodríguez, M.A. Sicilia, E. García, R. Harrison, Empirical findings on team size and

productivity in software development, J Syst Softw, 85 (2012) 562-570.

[72] Q. Song, M. Shepperd, M. Cartwright, A short note on safest default missingness mechanism

assumptions, Empirical Softw Eng, 10 (2005) 235-243.

[73] J. Moses, M. Farrow, Assessing variation in development effort consistency using a data source

with missing data, Softw Qual J, 13 (2005) 71-89.

[74] J. Van Hulse, T.M. Khoshgoftaar, Incomplete-case nearest neighbor imputation in software

measurement data, Inform Sciences, 259 (2014) 596-610.

45

[75] D. Michie, D.J. Spiegelhalter, C.C. Taylor, Machine learning, neural and statistical classification,

(1994).

[76] S.-J. Huang, N.-H. Chiu, Optimization of analogy weights by genetic algorithm for software effort

estimation, Inf Softw Technol, 48 (2006) 1034-1045.

[77] Z. Chen, T. Menzies, D. Port, B. Boehm, Feature subset selection can improve software cost

estimation accuracy, in: the 2005 International Conference on Predictor Models in Software

Engineering (PROMISE'05), St. Louis, MO, USA, 2005, pp. 1-6.

[78] S. Das, Filters, wrappers and a boosting-based hybrid for feature selection, in: the 18th

International Conference on Machine Learning (ICML'01), Williamstown, MA, USA, 2001, pp. 74-81.

[79] E. Mendes, I. Watson, C. Triggs, N. Mosley, S. Counsell, A comparative study of cost estimation

models for web hypermedia applications, Empirical Softw Eng, 8 (2003) 163-196.

[80] ISBSG, The ISBSG Development & Enhancement project data in: ISBSG (Ed.),

http://www.isbsg.org, 2013.

[81] I. Guyon, A. Elisseeff, An introduction to variable and feature selection, J Mach Learn Res, 3

(2003) 1157-1182.

[82] H. Peng, F. Long, C. Ding, Feature selection based on mutual information: Criteria of max-

dependency, max-relevance, and min-redundancy, IEEE Trans Pattern Anal Mach Intell, 27 (2005)

1226-1238.

[83] P.L. Braga, A.L.I. Oliveira, S.R.L. Meira, A GA-based feature selection and parameters

optimization for support vector regression applied to software effort estimation, in: the 23rd Annual

ACM Symposium on Applied Computing (SAC'08), Fortaleza, Ceara, Brazil, 2008, pp. 1788-1792.

[84] C. Kirsopp, M. Shepperd, Case and feature subset selection in case-based software project effort

prediction, in: M. Bramer, A. Preece, F. Coenen (Eds.) Research and Development in Intelligent

Systems XIX, Springer London, 2003, pp. 61-74.

[85] M. Fernández-Diego, F. González-Ladrón-de-Guevara, Potential and limitations of the ISBSG

dataset in enhancing software engineering research: A mapping review, Inf Softw Technol, XXX.

[86] N. Mittas, L. Angelis, Visual comparison of software cost estimation models by regression error

characteristic analysis, J Syst Softw, 83 (2010) 621-637.

[87] N. Mittas, L. Angelis, A permutation test based on regression error characteristic curves for

software cost estimation models, Empirical Softw Eng, 17 (2011) 34-61.

[88] Y.-S. Seo, D.-H. Bae, R. Jeffery, AREION: Software effort estimation based on multiple

regressions with adaptive recursive data partitioning, Inf Softw Technol, 55 (2013) 1710-1725.

[89] J.M. Desharnais, Analyse statistique de la productivitie des projets informatique a partie de la

technique des point des foncti\ on, in, University of Montreal, 1989.

[90] M. Jørgensen, M. Shepperd, A systematic review of software development cost estimation studies,

IEEE Trans Softw Eng, 33 (2007) 33-53.

[91] F. Walkerden, R. Jeffery, Empirical study of analogy-based software effort estimation, Empirical

Softw Eng, 4 (1999) 135-158.

[92] A.R. Gray, S.G. MacDonell, A comparison of techniques for developing predictive models of

software metrics, Inf Softw Technol, 39 (1997) 425-437.

[93] Y.F. Li, M. Xie, T.N. Goh, Adaptive ridge regression system for software cost estimating on multi-

collinear datasets, J Syst Softw, 83 (2010) 2332-2343.

[94] T. Foss, E. Stensrud, B. Kitchenham, I. Myrtveit, A simulation study of the model evaluation

criterion MMRE, IEEE Trans Softw Eng, 29 (2003) 985-995.

http://www.isbsg.org/

46

[95] I. Myrtveit, E. Stensrud, M. Shepperd, Reliability and validity in comparative studies software

prediction models, IEEE Trans Softw Eng, 31 (2005) 380-391.

[96] M. Ochodek, J. Nawrocki, K. Kwarciak, Simplifying effort estimation based on Use Case Points,

Inf Softw Technol, 53 (2011) 200-213.

[97] M.a. Ahmed, I. Ahmad, J.S. AlGhamdi, Probabilistic size proxy for software effort prediction: A

framework, Inf Softw Technol, 55 (2013) 241-251.

[98] B. Kitchenham, E. Mendes, Why comparative effort prediction studies may be invalid, in: the 5th

International Conference on Predictor Models in Software Engineering (PROMISE'09), ACM,

Vancouver, Canada, 2009, pp. 4.

[99] E. Mendes, C. Lokan, Replicating studies on cross- vs single-company effort models using the

ISBSG Database, Empirical Softw Eng, 13 (2008) 3-37.

[100] E. Mendes, S. Di Martino, F. Ferrucci, C. Gravino, Cross-company vs. single-company web

effort models using the Tukutuku database: An extended study, J Syst Softw, 81 (2008) 673-690.

[101] M. Shepperd, S. MacDonell, Evaluating prediction systems in software project estimation, Inf

Softw Technol, 54 (2012) 820-827.

