Jianglin Huang

Yan-Fu Li
email: yanfu.li@ecp.fr

Min Xie
email: minxie@cityu.edu.hk

 J Huang

 Y F Li

A Systematic Analysis of Data Preprocessing for Machine Learningbased Software Cost Estimation

Keywords: software cost estimation, data preprocessing, missing-data treatments, scaling, feature selection, case selection ESEM Artificial Neural Networks, BBN: Bayesian Belief Network, CART: Classification and Regression Trees, CBR: Case-Based Reasoning, GP: Genetic Programming, RI: Rule Induction, SVM: Support

Context: Due to the complex nature of the software development process, traditional parametric models and statistical methods often appear to be inadequate to model the increasingly complicated relationship between project development cost and the project features (or cost drivers). Machine learning (ML) methods, with several reported successful applications, have gained popularity for software cost estimation in recent years. Data preprocessing has been claimed by many researchers as a fundamental stage of ML methods; however, very few works have been focused on the effects of data preprocessing techniques.

Objective: This study aims for a systematic assessment of the effectiveness of data preprocessing techniques on ML methods in the context of software cost estimation.

Method:

In this work, we first conduct a literature survey of the recent publications using data preprocessing techniques, followed by a systematic empirical study to analyze the strengths and weaknesses of individual data preprocessing techniques as well as their combinations.

Results: Our results indicate that data preprocessing techniques may significantly influence the final prediction. They sometimes might have negative impacts on prediction performance of ML methods.

Conclusion:

In order to reduce prediction errors and improve efficiency, a careful selection is necessary according to the characteristics of machine learning methods, as well as the datasets used for software cost estimation.

Introduction

Software project managers often need to estimate the cost/effort of developing a software system at the early stage of its life-cycle [START_REF] Wen | Systematic literature review of machine learning based software development effort estimation models[END_REF] in order to plan the project management activities. The ability to accurately estimate the development cost plays an important role in the success of software project management. In the past decades, numerous research works have been published on software cost estimation (SCE) methods, which can be classified into the following three main categories.

1. Expert judgment: It requires the consultation of one or more experts to derive the cost estimate [START_REF] Hughes | Expert judgement as an estimating method[END_REF]. With the experience and available information of past projects and the understanding of a new project, the experts could obtain the estimation by a non-explicit and subjective reasoning process. It is the most frequently applied method for software projects in practice [START_REF] Jørgensen | A review of studies on expert estimation of software development effort[END_REF].

2. Parametric models: They often involve the utilization of analytical or statistical equations relating software project cost to a number of project features. The wellknown ones include COCOMO [START_REF] Boehm | Software engineering economics[END_REF] and SLIM Model [START_REF] Putnam | Measures for excellence: reliable software on time, within budget[END_REF].

3. Machine Learning (ML) methods: They involve at least one modeling method, taking a number of project features and producing a cost prediction, making no or minimal assumptions about the form of the relation under study. Thus they can provide higher approximation capabilities to solve complex problems. Recently, they have been adopted as an alternative or together with the first two methods [START_REF] Bou | Towards an early software estimation using log-linear regression and a multilayer perceptron model[END_REF][START_REF] Srinivasan | Machine learning approaches to estimating software development effort[END_REF][START_REF] Heiat | Comparison of artificial neural network and regression models for estimating software development effort[END_REF][START_REF] Shepperd | Estimating software project effort using analogies[END_REF][START_REF] Mair | Investigation of machine learning based prediction systems[END_REF]. Representative ML methods include artificial neural networks (ANN) [START_REF] Heiat | Comparison of artificial neural network and regression models for estimating software development effort[END_REF][START_REF] De Barcelos Tronto | An investigation of artificial neural networks based prediction systems in software project management[END_REF][START_REF] Finnie | A comparison of software effort estimation techniques: Using function points with neural networks, case-based reasoning and regression models[END_REF], case-based reasoning (CBR) [START_REF] Finnie | A comparison of software effort estimation techniques: Using function points with neural networks, case-based reasoning and regression models[END_REF][START_REF] Li | A study of mutual information based feature selection for case based reasoning in software cost estimation[END_REF] (also referred to as analogy-based estimation [START_REF] Kocaguneli | Exploiting the essential assumptions of analogy-based effort estimation[END_REF][START_REF] Azzeh | Analogy-based software effort estimation using fuzzy numbers[END_REF] or estimation by analogy [START_REF] Kocaguneli | Kernel methods for software effort estimation: Effects of different kernel functions and bandwidths on estimation accuracy[END_REF]), and classification and regression trees (CART) [START_REF] Srinivasan | Machine learning approaches to estimating software development effort[END_REF][START_REF] Chiu | The adjusted analogy-based software effort estimation based on similarity distances[END_REF][START_REF] Huang | Optimization of analogy weights by genetic algorithm for software effort estimation[END_REF].

When targeting estimation accuracy, considerable effort has been devoted to improving ML methods [START_REF] Wen | Systematic literature review of machine learning based software development effort estimation models[END_REF][START_REF] Li | Analysis of attribute weighting heuristics for analogy-based software effort estimation method AQUA+[END_REF][START_REF] Oliveira | GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation[END_REF][START_REF] Zhang | Data preparation for data mining[END_REF][START_REF] Twala | Ensemble missing data techniques for software effort prediction[END_REF][START_REF] Minku | A principled evaluation of ensembles of learning machines for software effort estimation[END_REF][START_REF] Azzeh | Software effort estimation based on optimized model tree[END_REF]. For the empirical validations, ML algorithms are routinely tested on the SCE datasets. Data preprocessing (DP) is a fundamental stage of the ML application, which has been reported to have significant impacts onto the performances of ML methods [START_REF] Zhang | Data preparation for data mining[END_REF].

To the knowledge of the authors, there is very few research work focused on the DP techniques in the SCE literature. In many situations the DP techniques, such as feature selection (FS) [START_REF] Mair | Investigation of machine learning based prediction systems[END_REF][START_REF] Shepperd | Comparing software prediction techniques using simulation[END_REF][START_REF] Keung | Analogy-X: Providing statistical inference to analogy-based software cost estimation[END_REF][START_REF] Vinay Kumar | Software development cost estimation using wavelet neural networks[END_REF] and case selection (CS) [START_REF] Bou | Towards an early software estimation using log-linear regression and a multilayer perceptron model[END_REF][START_REF] Kocaguneli | Exploiting the essential assumptions of analogy-based effort estimation[END_REF][START_REF] Azzeh | Analogy-based software effort estimation using fuzzy numbers[END_REF][START_REF] Li | A study of project selection and feature weighting for analogy based software cost estimation[END_REF], have been considered as a necessary step for CBR while for other ML methods, such as ANN and CART, they might be ignored. In the literature some studies focus on analyzing DP techniques. Strike et al. [START_REF] Strike | Software cost estimation with incomplete data[END_REF] simulated various incomplete data and found that the best regression model could be obtained from missing-data imputation with Z-score scaling. The combination of scaling scheme and missing-data treatment (MDT) is firstly analyzed; however, their impacts onto the ML method were not studied. Many studies propose one or more DP techniques to deal with a specific issue in SEC, such as data missingness [START_REF] Van Hulse | A comprehensive empirical evaluation of missing value imputation in noisy software measurement data[END_REF][START_REF] Myrtveit | Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods[END_REF][START_REF] Sentas | Categorical missing data imputation for software cost estimation by multinomial logistic regression[END_REF], redundant or irrelevant features [START_REF] Li | A study of mutual information based feature selection for case based reasoning in software cost estimation[END_REF][START_REF] Li | A study of project selection and feature weighting for analogy based software cost estimation[END_REF], or abnormal cases [START_REF] Seo | On the value of outlier elimination on software effort estimation research[END_REF][START_REF] Tsunoda | An empirical evaluation of outlier deletion methods for analogy-based cost estimation[END_REF]. But they did not study the effectiveness of different DP techniques.

Keung et al. [START_REF] Keung | Finding conclusion stability for selecting the best effort predictor in software effort estimation[END_REF] first time concluded that the performance of a ML method could be significantly altered by a DP technique, such as scaling and FS. But the number of DP techniques they considered is limited and the effectiveness of combined DP techniques are not investigated.

From the analysis above, a systematic study on multiple DP techniques for ML methods is needed to promote much more careful use of the DP techniques rather than taking one or more DP approaches as granted. The empirical results obtained would be beneficial to the following research works who adopt ML methods for SCE.

The rest of this paper is organized as follows: Section 2 presents a literature survey on DP applications; Section 3 presents the four datasets used in this study, an overview on the ML methods (i.e. ANN, CBR and CART), and the experimental design; Section 4 presents the experiment results and analysis; Section 5 discusses the threats to four types of validity; Section 6 concludes this work and points out future research directions.

Related Work

2.1

Literature survey

The application of ML algorithm requires the presence of data in a mathematically feasible format through data preprocessing. DP techniques consist of data reduction, data projection and missing-data treatment. Data reduction aims to decrease the size of the datasets by means of feature selection (FS) or case selection (CS). Data projection intends to transform the appearance of the data, e.g. scaling, which scales all features into a pre-defined same range. Missing-data treatments (MDTs) include deleting missing values [START_REF] Azzeh | Analogy-based software effort estimation using fuzzy numbers[END_REF][START_REF] Huang | Optimization of analogy weights by genetic algorithm for software effort estimation[END_REF][START_REF] Li | Analysis of attribute weighting heuristics for analogy-based software effort estimation method AQUA+[END_REF][START_REF] Azzeh | Fuzzy grey relational analysis for software effort estimation[END_REF][START_REF] Mittas | LSEbA: least squares regression and estimation by analogy in a semiparametric model for software cost estimation[END_REF] and/or replacing them with the estimates [START_REF] Kocaguneli | Kernel methods for software effort estimation: Effects of different kernel functions and bandwidths on estimation accuracy[END_REF][START_REF] Li | A flexible method for software effort estimation by analogy[END_REF][START_REF] Song | A new imputation method for small software project data sets[END_REF]. Moreover, the logarithm transformation [START_REF] Angelis | A simulation tool for efficient analogy based cost estimation[END_REF] is also regarded as one data projection method and is frequently applied for linear regression due to the normality assumption of the linear model. Logarithm is mostly used by regression studies to ensure the normality of the residual. For ML methods, it is not a commonly applied DP technique. In our survey, there are only three publications [START_REF] Keung | Finding conclusion stability for selecting the best effort predictor in software effort estimation[END_REF][START_REF] Kocaguneli | On the value of ensemble effort estimation[END_REF][START_REF] Corazza | How effective is Tabu search to configure support vector regression for effort estimation?[END_REF][START_REF] Corazza | Applying support vector regression for Web effort estimation using a cross-company dataset[END_REF] that used logarithm for ML methods. Considering its relatively infrequent utilization by the researchers, we choose to not include it as a candidate DP method in our experiments which aim to investigate the effectiveness of the popular DP techniques for ML methods.

To The following section presents an overview on the four types of DP methods and summarizes the evidence and arguments in the literature that lead to the research questions of this study and serve as the foundation for the empirical work.

2.2

Data preprocessing techniques

Missing-data treatments

Due to the high cost of gathering and reporting data from projects, development teams are less focused on data collection [START_REF] Myrtveit | Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods[END_REF]. The incomplete datasets also frequently appear across the SCE datasets (e.g. the ISBSG database and PROMISE datasets) [START_REF] Kocaguneli | Kernel methods for software effort estimation: Effects of different kernel functions and bandwidths on estimation accuracy[END_REF][START_REF] Azzeh | Software effort estimation based on optimized model tree[END_REF][START_REF] Myrtveit | Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods[END_REF][START_REF] Sentas | Categorical missing data imputation for software cost estimation by multinomial logistic regression[END_REF][START_REF] Mittas | LSEbA: least squares regression and estimation by analogy in a semiparametric model for software cost estimation[END_REF][START_REF] Bardsiri | A PSO-based model to increase the accuracy of software development effort estimation[END_REF][START_REF] Rodríguez | Empirical findings on team size and productivity in software development[END_REF]. The missing values have significant impacts on ML estimation performances, as reported by [START_REF] Twala | Ensemble missing data techniques for software effort prediction[END_REF][START_REF] Myrtveit | Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods[END_REF][START_REF] Li | Impact analysis of missing values on the prediction accuracy of analogy-based software effort estimation method AQUA[END_REF].

There are many MDTs in the literature. They often include: deletion methods (listwise deletion and pairwise deletion [START_REF] Myrtveit | Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods[END_REF][START_REF] Pendharkar | A probabilistic model for predicting software development effort[END_REF][START_REF] Kosti | Alternative methods using similarities in software effort estimation[END_REF][START_REF] Rodríguez | Empirical findings on team size and productivity in software development[END_REF]), and imputation methods (mean imputation, k-NN imputation, hot-deck imputation, cold-deck imputation, regression imputation and multiple imputation methods) [START_REF] Kocaguneli | Kernel methods for software effort estimation: Effects of different kernel functions and bandwidths on estimation accuracy[END_REF][START_REF] Minku | A principled evaluation of ensembles of learning machines for software effort estimation[END_REF][START_REF] Li | A flexible method for software effort estimation by analogy[END_REF][START_REF] Borges | Learning to change projects[END_REF][START_REF] Kocaguneli | Size doesn't matter? On the value of software size features for effort estimation[END_REF][START_REF] Li | Decision support analysis for software effort estimation by analogy[END_REF]. It is noted that the deletion methods, especially listwise deletion (LD), widely used as a default approach dealing with missing-values, can result in discarding large proportions of datasets in cases and introducing biasness [START_REF] Myrtveit | Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods[END_REF][START_REF] Mittas | LSEbA: least squares regression and estimation by analogy in a semiparametric model for software cost estimation[END_REF]. As another solution of MDT, imputation requires more extensive and complicated statistical and computational analysis [START_REF] Strike | Software cost estimation with incomplete data[END_REF][START_REF] Myrtveit | Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods[END_REF] and also includes natural prediction error [START_REF] Mittas | LSEbA: least squares regression and estimation by analogy in a semiparametric model for software cost estimation[END_REF]. Mean imputation (MI) imputes each missing value with the mean of observed values and preserves the information of data. However, as the simplest imputation method it may cause to diminish the variance of variables [START_REF] Strike | Software cost estimation with incomplete data[END_REF].

According to results of our survey in Table 1, LD is the most popular method followed by MI. Particularly, several works [15, 18, 19, 24, 34, 36, 37, 57-59, 63, 65, 67] regarded LD as the default DP method for missing values. However, some studies show that MI or k-NN imputations are better than LD [START_REF] Strike | Software cost estimation with incomplete data[END_REF][START_REF] Van Hulse | A comprehensive empirical evaluation of missing value imputation in noisy software measurement data[END_REF][START_REF] Myrtveit | Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods[END_REF][START_REF] Song | A short note on safest default missingness mechanism assumptions[END_REF][START_REF] Moses | Assessing variation in development effort consistency using a data source with missing data[END_REF][START_REF] Van Hulse | Incomplete-case nearest neighbor imputation in software measurement data[END_REF]. In this study, we will validate the superiority of MI over LD.

Scaling

Scaling generally refers to measurements or assessments conducted under exact, specified and repeatable conditions. In ML, scaling transforms feature values according to a defined rule so that all scaled features have the same degree of influence [START_REF] Angelis | A simulation tool for efficient analogy based cost estimation[END_REF] and thus the method is immune to the choice of units [START_REF] Kosti | Alternative methods using similarities in software effort estimation[END_REF], which is a major stage for ML methods [START_REF] Michie | Machine learning, neural and statistical classification[END_REF]. Normally, the intervals of [0, 1] and [-1, 1] are used to be the target of scaling, as shown in Eq. (1).

     (1)
Z-score standardization is also used for scaling [START_REF] Strike | Software cost estimation with incomplete data[END_REF], which makes the unit of the variables the sample standard deviation. Scaling is essential since every subsequential process is dependent upon the choice of unit for each feature. For example, it will be improper to let Lines of Code (LOC) be a thousand times more influential than KLOC. In SCE context, scaling is the most popular preprocessing technique.

As shown in Table 1, most of the studies that consider scaling use [0, 1] and only one study uses [-1, 1]. The survey also revealed that [0, 1] scheme is used by most researchers by default without questioning whether it is truly effective or not, and many studies do not even consider or mention any type of scaling during the estimation processes. For example, in [START_REF] Huang | Optimization of analogy weights by genetic algorithm for software effort estimation[END_REF] the scaling scheme of [0, 1] was conducted without reasoning.

Feature selection

FS, also known as attribute selection or feature subset selection, is the process of selecting a subset of features that have significant or similar impacts onto the evaluation target as using all features [START_REF] Hsu | Comparison of weighted grey relational analysis for software effort estimation[END_REF][START_REF] Chen | Feature subset selection can improve software cost estimation accuracy[END_REF]. It assumes the data contains irrelevant or/and redundant features [START_REF] Das | Filters, wrappers and a boosting-based hybrid for feature selection[END_REF] that might decrease the model performance. FS was initially proposed to increase the accuracy of induced classifier in supervised learning algorithm [START_REF] Das | Filters, wrappers and a boosting-based hybrid for feature selection[END_REF]. Later, Mendes et al. [START_REF] Mendes | A comparative study of cost estimation models for web hypermedia applications[END_REF] and Chen et al. [START_REF] Chen | Feature subset selection can improve software cost estimation accuracy[END_REF] introduced FS to SCE.

An exhaustive search for all possible subsets of features is calculated by 21 N  , in which N is the total number of project features. Take ISBSG dataset [START_REF] Isbsg | The ISBSG Development & Enhancement project data in: ISBSG[END_REF] as example, since n=15 (See in Section 3.1.1), there are 32767 possible subsets. Obviously, exhaustively exploring all the subsets will not be cost-effective.

More intelligent FS techniques have been developed. They can be classified as wrappers and filters. The former often convolves with predictors, using crossvalidation to predict the benefits of adding or removing a feature from the feature subset used [START_REF] Das | Filters, wrappers and a boosting-based hybrid for feature selection[END_REF]. In SCE literature, wrapper methods utilize random searching, hill climbing, forward sequential selection [START_REF] Li | A study of mutual information based feature selection for case based reasoning in software cost estimation[END_REF][START_REF] Keung | Analogy-X: Providing statistical inference to analogy-based software cost estimation[END_REF] and reduce research method [START_REF] Li | Analysis of attribute weighting heuristics for analogy-based software effort estimation method AQUA+[END_REF] to guide the search process. As the predictors (i.e. ML methods) are often expensive to run, the wrappers are generally time-consuming and possibly leads to over-fitting [START_REF] Keung | Analogy-X: Providing statistical inference to analogy-based software cost estimation[END_REF][START_REF] Das | Filters, wrappers and a boosting-based hybrid for feature selection[END_REF]. The latter selects features by evaluating some preset criteria independently prior to training the ML methods, which has much lower time complexity than the former does. For example, variable ranking with the correlation coefficient is a filter method:

it is independent of the choice of the predictor [START_REF] Guyon | An introduction to variable and feature selection[END_REF]. However, the selected features often yield considerable prediction errors [START_REF] Peng | Feature selection based on mutual information: Criteria of maxdependency, max-relevance, and min-redundancy[END_REF].

In SCE literature, there are a number of studies that propose new FS techniques or investigate the effectiveness of the existing ones. In general, majority of the researchers [START_REF] Li | A study of mutual information based feature selection for case based reasoning in software cost estimation[END_REF][START_REF] Li | Analysis of attribute weighting heuristics for analogy-based software effort estimation method AQUA+[END_REF][START_REF] Oliveira | GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation[END_REF][START_REF] Keung | Analogy-X: Providing statistical inference to analogy-based software cost estimation[END_REF][START_REF] Azzeh | Fuzzy grey relational analysis for software effort estimation[END_REF][START_REF] Chen | Feature subset selection can improve software cost estimation accuracy[END_REF][START_REF] Braga | A GA-based feature selection and parameters optimization for support vector regression applied to software effort estimation[END_REF] support the use of FS with ML methods. In this study, we will check the validity of applying FS technique. Our survey also reveals that FSS is the most popular FS algorithm, due to its simplicity and the ease of adaptation to various ML methods. There are 19 of 48 publications (shown in Table 1) using this strategy [14, 19, 36-38, 41, 46-48, 54-57, 60, 62, 64-66, 68].

Case selection

Similar to the features of a dataset, not all the historical cases are useful for estimating the present project. CS aims to identify and remove redundant and irrelevant cases [START_REF] Kirsopp | Case and feature subset selection in case-based software project effort prediction[END_REF]. By reducing the entire dataset into a smaller subset that consist only of representative cases, this method could save computing time and produce prediction results comparable to those using all the cases. Searching techniques for FS are also applicable to CS, e.g. random search, hill climbing, simulated annealing, forward and backward sequential selection [START_REF] Li | Decision support analysis for software effort estimation by analogy[END_REF][START_REF] Kirsopp | Case and feature subset selection in case-based software project effort prediction[END_REF], genetic algorithm [START_REF] Li | A study of project selection and feature weighting for analogy based software cost estimation[END_REF], and filters [START_REF] Guyon | An introduction to variable and feature selection[END_REF][START_REF] Peng | Feature selection based on mutual information: Criteria of maxdependency, max-relevance, and min-redundancy[END_REF]. On contrary to the selection of useful cases, the abnormal cases detection [START_REF] Seo | On the value of outlier elimination on software effort estimation research[END_REF][START_REF] Tsunoda | An empirical evaluation of outlier deletion methods for analogy-based cost estimation[END_REF] is also regarded as one type of CS. Compared to FS, the CS treatment is relatively infrequent but with a rising trend in the recent literature. In the first CS study, Kirsopp and Shepperd [START_REF] Kirsopp | Case and feature subset selection in case-based software project effort prediction[END_REF] presented a conservative backward sequential selection (BSS) and proved its effectiveness. In this study we will implement this technique since discarding a large number of projects at the initiate stage of FSS could result in loss of useful information.

Research questions

Based upon the above bibliographic analysis the following 5 research questions (RQs)

are raised for the empirical study:

RQ1: Is MDT effective? Which commonly used MDT is preferred?

RQ2: Is scaling effective? [0, 1] scheme or [-1, 1], which is preferred?

RQ3: Is FS effective? Shall we consider it for all ML methods? RQ4: Is CS effective? Shall we consider it as well?

RQ5: Is any combination of DP techniques effective? How do we select the DP techniques for each ML method and each dataset?

The above questions are answered in Section 4: Experimental results.

Experiment Design

In this section, we describe the datasets, error metrics and experiment procedures for our empirical studies.

Dataset description

In this study, we have selected the ISBSG database, Desharnais dataset, and Kitchenham dataset from PROMISE datasets for empirical tests.

ISBSG dataset

ISBSG has developed and refined its data collection standard over 10 years based on the metrics that have proven to be most useful in helping to improve software development management and processes. In this study, we adopted the ISBSG R10 data repository [START_REF] Isbsg | The ISBSG Development & Enhancement project data in: ISBSG[END_REF], which contains totally 6000 projects (with 105 features) coming from 24 countries and various organizations. Due to the heterogeneous nature and large size of the entire repository, ISBSG recommends extracting a suitable subset for any SCE practice [START_REF] Isbsg | The ISBSG Development & Enhancement project data in: ISBSG[END_REF]. In this study, we follow ISBSG"s suggestion to select a subset with 14 features including 7 numerical project size features, and the following categorical features: "development type", "primary programming language", "development platform", "organization type", "business area type", "application type", and "development techniques" [START_REF] Isbsg | The ISBSG Development & Enhancement project data in: ISBSG[END_REF]. As suggested by [START_REF] Rodríguez | Empirical findings on team size and productivity in software development[END_REF][START_REF] Fernández-Diego | Potential and limitations of the ISBSG dataset in enhancing software engineering research: A mapping review[END_REF] that data in ISBSG needs to be appropriately prepared for further usage, the following steps are taken to remove the cases with minor significance to our analysis:

1. Select the project with A or B rating in data quality as well as A rating in UFP as suggested by ISBSG [START_REF] Isbsg | The ISBSG Development & Enhancement project data in: ISBSG[END_REF] and related published papers [START_REF] Mittas | LSEbA: least squares regression and estimation by analogy in a semiparametric model for software cost estimation[END_REF][START_REF] Liu | Evaluation of preliminary data analysis framework in software cost estimation based on ISBSG R9 Data[END_REF][START_REF] Mittas | Ranking and clustering software cost estimation models through a multiple comparisons algorithm[END_REF][START_REF] Mittas | Visual comparison of software cost estimation models by regression error characteristic analysis[END_REF][START_REF] Mittas | A permutation test based on regression error characteristic curves for software cost estimation models[END_REF] . The rest with lower rating are excluded.

2. Filter out the projects with normalized ratio larger than 1.2, as it is suggested by ISBSG that the ratio up to 1.2 is more acceptable [START_REF] Isbsg | The ISBSG Development & Enhancement project data in: ISBSG[END_REF]. The normalized ratio defined as normalized effort divided by summary effort, is constructed by ISBSG for the refinement of project subset.

3. Select the project with resource level equal to "1". As shown in ISBSG dataset [START_REF] Isbsg | The ISBSG Development & Enhancement project data in: ISBSG[END_REF],

a resource level of "1" means that only the effort of development team is recorded;

the levels above add peripheral efforts. Similar to related studies [START_REF] Seo | On the value of outlier elimination on software effort estimation research[END_REF][START_REF] Lopez-Martin | Software development effort prediction of industrial projects applying a general regression neural network[END_REF][START_REF] Rodríguez | Empirical findings on team size and productivity in software development[END_REF][START_REF] Seo | AREION: Software effort estimation based on multiple regressions with adaptive recursive data partitioning[END_REF],

this study is only interested in the work effort of development team.

4. Select the project using IFPUG as the functional sizing method. The functional sizing method is used to compute the number of AFP (Adjusted Function Points), an essential feature in most SCE study. The projects in ISBSG repository sized using 4 types of functional sizing methods: IFPUG, NESMA, MARK II, COSMIC-FFP, among which IFPUG gains the highest popularity [START_REF] Mittas | LSEbA: least squares regression and estimation by analogy in a semiparametric model for software cost estimation[END_REF][START_REF] Minku | Ensembles and locality: Insight on improving software effort estimation[END_REF][START_REF] Hsu | Comparison of weighted grey relational analysis for software effort estimation[END_REF][START_REF] Lopez-Martin | Software development effort prediction of industrial projects applying a general regression neural network[END_REF].

Furthermore, ISBSG suggests users do not mix the projects sized using pre-IFPUG with the ones sized using IFPUG V4/V4+. Therefore, we only keep the projects sized using IFPUG V4/V4+.

After these four procedures, we obtain a subset of 446 projects with a considerable amount of missing values. Among all features, "NorEffort" is to be estimated. The descriptive statistics of the numerical features are summarized in Table 2. It shows that the ISBSG subset is of high order non-normality. Note that in Table 2, w/o indicates that the statistics in the column are obtained by excluding the missing values.

Desharnais dataset

The Desharnais dataset [START_REF] Finnie | A comparison of software effort estimation techniques: Using function points with neural networks, case-based reasoning and regression models[END_REF][START_REF] Desharnais | Analyse statistique de la productivitie des projets informatique a partie de la technique des point des foncti\ on[END_REF] has been used in many research works [START_REF] Finnie | A comparison of software effort estimation techniques: Using function points with neural networks, case-based reasoning and regression models[END_REF][START_REF] Shepperd | Comparing software prediction techniques using simulation[END_REF][START_REF] Kocaguneli | On the value of ensemble effort estimation[END_REF], due to its scalability and availability. It includes 81 projects (4 with missing values) and 11 features. The features include "TeamExp", "ManagerExp", "YearEnd", "Length", "Transactions", "Entities", "PointsAdjust", "Envergure", "PointsNonAjust", "Language" and "Effort", among which the dependent value "Effort" will be estimated.

Table 3 shows the statistics of the numerical features in details.

Kitchenham dataset

The Kitchenham dataset includes 145 projects of a software development company. There are only three features to be recommended as independent variables, which are Project type, Actual duration, and AFP, plus the dependent attribute Actual effort [START_REF] Tsunoda | An empirical evaluation of outlier deletion methods for analogy-based cost estimation[END_REF]. Table 4 shows the statistics of the numerical features in details. projects, which were collected from student projects on web and client/server applications. As referred from Li, Ruhe, Al-Emran and Richter"s work in [START_REF] Li | A flexible method for software effort estimation by analogy[END_REF], the projects with a feature (FT, a set of requirements) as objective type are used as USPFT.

Table 5 shows the statistics of the numerical features in details.

Machine learning methods in study

In SCE literature, ML methods receive increasing attention in the recent years according to a comprehensive review done by Jorgensen and Shepperd [START_REF] Jørgensen | A systematic review of software development cost estimation studies[END_REF].

Additionally, Section 2.1 shows that ANN, CBR, and CART are mostly applied in recent studies. We therefore select them for experiments.

Case-based reasoning CBR has been extensively studied and implemented due to its simplicity and effectiveness [START_REF] Shepperd | Estimating software project effort using analogies[END_REF][START_REF] Chiu | The adjusted analogy-based software effort estimation based on similarity distances[END_REF][START_REF] Huang | Optimization of analogy weights by genetic algorithm for software effort estimation[END_REF][START_REF] Angelis | A simulation tool for efficient analogy based cost estimation[END_REF][START_REF] Auer | Optimal project feature weights in analogy-based cost estimation: Improvement and limitations[END_REF][START_REF] Mendes | A comparative study of cost estimation models for web hypermedia applications[END_REF][START_REF] Walkerden | Empirical study of analogy-based software effort estimation[END_REF]. Generally, a CBR consists of the following three steps:

1. Collect the measurements of past projects and prepare the historical projects dataset.

2. Select the relevant features, and then calculate the distances of the selected features between the project x being estimated and the i-th historical projects

ij j ij j ij j ij j ij j ij j xx xx xx xx Dis x x xx                
are nominal and if feature and are nominal and

ij j ij j ij j xx x x x x     (2)
3. Compute the final prediction for the new project x based on the selected K nearest neighbors. We use mean, median and inverse distance weighted mean (IDWM) as adaptation techniques in this study. The mean is the classical measure of central tendency and treats all analogies as being equally influential on the cost estimates. The median is more robust statistic when the number of neighbors increases [START_REF] Angelis | A simulation tool for efficient analogy based cost estimation[END_REF]. IDWM [START_REF] Mair | Investigation of machine learning based prediction systems[END_REF] allows more close neighbors to have more influence than less close ones.

Artificial neural network

Due to the capability of good approximation, ANN has become a frequently applied methodology in the context of SCE [START_REF] Srinivasan | Machine learning approaches to estimating software development effort[END_REF][START_REF] Heiat | Comparison of artificial neural network and regression models for estimating software development effort[END_REF][START_REF] Gray | A comparison of techniques for developing predictive models of software metrics[END_REF]. A typical feed-forward ANN architecture consists of a number of neurons connected through the input layer, hidden layer(s), and output layer. A typical three layer ANN has the following mathematical form

ˆ() (()) Jp j j ij i j ji y f x f w f v x        (3)
where p xR  , () f  is the transfer function, J is the number of hidden nodes, ij v is the connection weight between the i-th input node and j-th hidden node, j  is the bias of the j-th hidden node, j w is the weight on the link between the j-th hidden node and the output neuron, and  is the bias. The classical back-propagation algorithm is commonly used [START_REF] Lopez-Martin | Software development effort prediction of industrial projects applying a general regression neural network[END_REF] to update the weights and biases with the attempt to minimize the predictive error [START_REF] Oliveira | GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation[END_REF][START_REF] Gray | A comparison of techniques for developing predictive models of software metrics[END_REF]. The user-defined parameters in ANN, i.e. the number of hidden layers, the number of hidden nodes and the type of transfer function, have significant impacts on ANN prediction performance. In this study, only one hidden layer is used since multiple layers may lead to an over parameterized ANN structure which is often prone to over-fitting.

Classification and regression trees

CART is capable of dealing with both numerical and categorical features to identify major subsets [START_REF] Srinivasan | Machine learning approaches to estimating software development effort[END_REF]. The construction of CART involves recursively splitting the data set into relatively homogeneous subsets until the terminate conditions are satisfied. The algorithm starts with all the training instances in the root node and then selects an independent feature A i that best divides the training set into disjoint subsets. The partition is determined by minimizing the Mean Square Error (MSE) of the dependent feature (e.g., project cost). Suppose the feature f i partition the entire training data set X into subsets X ij where each sample takes the same value for feature f i . The MSE of any subset X ij with the dependent value y k is

  2 () / ij ij k ij kT MSE X y y X    (4
)
where y is the mean of the y k values exhibited in X ij and ij X is the size of the set X ij .

The feature that minimizes

  ij i MSE X
 is selected for partition. This process is repeated until each node reaches a user-specified minimum tree size. The primary control parameter in CART, level of tree pruning, is optimized by the cross-validation scheme.

Error metrics

Error evaluation criteria are essential to the evaluation of prediction. Based on Eq. (5), MBRE is defined as

1 / n i i MBRE BRE n    (6)
and MdBRE is defined as

() i MdBRE median BRE  (7)
MBRE is a balanced symmetric error metric [START_REF] Li | Adaptive ridge regression system for software cost estimating on multicollinear datasets[END_REF]. MdBRE, exhibiting a pattern similar to that of MBRE but less sensitive to extreme outliers, is more likely to select the true model especially in the underestimation cases [START_REF] Foss | A simulation study of the model evaluation criterion MMRE[END_REF][START_REF] Myrtveit | Reliability and validity in comparative studies software prediction models[END_REF]. PRED(0.25) is the percentage of predictions that fall within 25 percent of the actual cost. It is defined as

1 0.25 0, 1, 1 (0.25) n i i if BRE PRED otherwise n        (8)
PRED(0.25) identifies the SCE methods that are generally accurate.

MBRE has been widely used for accuracy measuring due to its advantages: applicability to all kinds of prediction models across all datasets, independence to measurement units and scales [START_REF] Strike | Software cost estimation with incomplete data[END_REF][START_REF] Walkerden | Empirical study of analogy-based software effort estimation[END_REF]. Compared with MBRE and MdBRE, PRED exhibits an opposite pattern. These three evaluation criteria are widely used in recent SCE studies [START_REF] Mittas | LSEbA: least squares regression and estimation by analogy in a semiparametric model for software cost estimation[END_REF][START_REF] Li | A study of the non-linear adjustment for analogy based software cost estimation[END_REF][START_REF] Minku | Ensembles and locality: Insight on improving software effort estimation[END_REF][START_REF] Van Hulse | Incomplete-case nearest neighbor imputation in software measurement data[END_REF][START_REF] Ochodek | Simplifying effort estimation based on Use Case Points[END_REF][START_REF] Ahmed | Probabilistic size proxy for software effort prediction: A framework[END_REF]. In our experiments, we consider MBRE as the guidance for the parameter optimization of the ML methods on validating datasets.

The analysis in Section 3.5 shows that it is significantly correlated with both PRED(0.25) and MdBRE, which confirms that MBRE could be a representative error metric for parameter optimization.

Experiment setting

For each testing dataset, we generate 24 processed versions by using different It should be noted that the processing techniques are applied on only the project features (independent variables). The cost values (dependent variable) are scaled into the range [0, 1] regardless of the type of processing technique applied on features.

Cross-validation

As discussed in the overview of ML methods, the predefined parameters have large impacts on their performances. A systematic way of determining the predefined parameters should be considered in the experiments. A simple but effective way for parameter tuning is the so-called cross-validation scheme. In this scheme, the entire dataset is randomly split into three equally sized and mutually exclusive subsets:

training subset, validating subset and testing subset. The training subset is used to construct models with specified parameter settings. The validating subset is used for parameter tuning and to prevent over-fitting problem of ML methods. The testing subset is used to evaluate the prediction abilities of training methods with optimal parameters. The above validation scheme is performed three times on each processed dataset to eliminate the biases from different split, similarly to [START_REF] Mendes | A comparative study of cost estimation models for web hypermedia applications[END_REF]. Table 7 summarizes the predefined parameters of each method and their ranges for tuning. The CBR parameters ranges cover most existing ones appeared in CBR studies. For ANN, the maximal number of hidden neurons is set to 13 because too many hidden neurons may lead to an over-parameterized ANN structure. The three types of hidden layer transfer functions are most frequently used in ANN models.

ANN is trained by the back-propagation algorithm. The training stops when the MSE drops below the specified threshold (0.0001 in this study). For CART, the level of tree pruning is in the range from 1 to 5, to balance modeling accuracy and over-fitting.

The training stops when its MSE is below 0.0001. Note that all the methods in this study are implemented via MATLAB programming. Fig. 1 illustrates the overall experiment procedures. After MDT and scaling steps, the cross-validation scheme starts. At each fold, FS is applied with ML methods on the training and the validation sets followed by CS treatment, then the parameters are tuned on validation set and finally the methods are tested on the testing set. After 3 times of repetitions, the testing results across all data splits are aggregated to compute MBRE, PRED and MdBRE.

Experiment Results

Experiment results are first analyzed by investigating the marginal impact of each individual preprocessing technique on the ML performances. As discussed in section Finally, the overall performances of ML methods are compared and analyzed.

Performance under MDT scheme

The marginal means and standard deviations of the testing errors under two MDT schemes are shown in The results indicate that the effectiveness of MI compared with LD depend on the datasets as well as the ML methods. CBR is consistently negatively influenced by MI.

CART is sensitive to outliers, and ANN is less sensitive to small amount of missing values. The answers to RQ1 from the results are the following: 1) it might not be correct to apply the same LD or MI to all ML methods on all datasets (as most of the previous studies did); 2) the MDT needs to be carefully selected for each ML method on each dataset. To the knowledge of the authors, none of the existing studies have made such discoveries.

Performance under Scaling scheme

The marginal means and marginal standard deviations of the testing errors under different scaling schemes are shown in Table 9. The results exhibit diverse patterns in each dataset. On all datasets, the scaling scheme has no impact on CART. The result of ISBSG dataset shows the testing errors are not consistent with MBREs although scaling schemes generally improve the accuracy and robustness of MBREs. On Desharnais dataset, the scaling schemes reduce testing error and improve robustness of ANN method. CBR, instead, is impacted by outliers. On Kitchenham dataset with a small number of features, CBR is uniquely negatively impacted by scaling schemes.

On USPFT dataset, the [0, 1] scheme improves the accuracy and robustness of CBR and ANN. The [0, 1] scheme outperforms [-1, 1] scheme consistently in terms of ANN. The results reveal that [0, 1] scheme of appears to be less effective to highlyskewed ISBSG and Kitchenham datasets (described in Section 3.1) than to the lessskewed Desharnais and USPFT datasets. The influences of both [0, 1] and [-1, 1] schemes for CART are ignorable for all datasets. This might be attributed to the fact that the scaling does not change the distributions of the original data and consequently does not impact the splitting results of CART. Additionally, the [0, 1] scheme is more suitable than [-1, 1] scheme for ANN in all datasets. For CBR, only the results obtained from USPFT dataset are improved by [0, 1] scheme consistently. The discussions in this paragraph provide answers to RQ2.

Performance under FS scheme

Table 10 illustrates the marginal means and standard deviations of the three error metrics on testing subsets classified by FS scheme: Null/FSS. The results show that FSS could generally reduce the testing error and improve robustness for CBR method.

In addition, FS is more efficient on Desharnais dataset in terms of reducing testing error and enhancing robustness of CBR and ANN methods. For ISBSG dataset, ANN and CART appear to reduce prediction accuracy and robustness in terms of MBRE.

However, for CART method on all datasets, FS generally has a negative impact. For Kitchenham dataset with relative small number of features, FSS also shows negative impact on ANN method. On USPFT dataset, the prediction accuracy and robustness of CBR and ANN in terms of MBRE have been improved; however, the testing errors are not consistent.

This analysis shows that FS generally improve CBR method (especially for ISBSG, Desharnais and Kitchenham data) and it should be used with care for ANN.

Applying FS for CART might not be a good choice. For datasets with small number of features, applying FS for ANN could overall reduce the number of hidden nodes and therefore hinder its approximation ability. Nevertheless, these might attribute to the limitation of specific FS approach used in this study. The discussions in this paragraph provide answers to RQ3.

Performance under CS scheme

Table 11 presents the performance of the ML methods under CS scheme:

Null/BSS. On ISBSG dataset, CS appears to lead to diverse results: for ANN, the testing error is reduced and robustness is improved for all metrics; for CBR and CART, the situation is the opposite to that of ANN. On Desharnais dataset, CS could increase testing error and reduce robustness of ANN, and reduce the testing error of CART. As to CBR on Desharnais dataset, the result shows the testing error is not consistent with the MBRE. On Kitchenham dataset, CS appears to lead to negative impact on CART and positive impact on ANN. For CBR, the MBRE is slightly reduced but the testing errors are not consistent. On USPFT dataset, only CART is consistently improved by CS. For ANN and CBR, MBREs are not consistent with the testing errors. It is possibly due to the outliers inside the dataset. The results show different patterns across the datasets in the study. CBR unlikely benefit from CS. CART may benefit from CS on within-company datasets, like Desharnais and USPFT datasets, whereas CS might have negative impacts to CART on cross-company datasets, such as ISBSG and Kitchenham datasets. CS could be used by ANN for cross-company datasets. However, it is not always effective when attached to CART or ANN, possibly due to the loss of information for training. The discussions in this paragraph provide answers to RQ4.

ANOVA test

To further quantify the impact and significance of each preprocessing technique as well as the interactions between them, we conduct Analysis of Variance (ANOVA) for this purpose. MBRE is used as the sole response (or dependable variable) for ANOVA. The ANOVA results are presented separately in Table 12, which lists all the main effects and significant interactions. The main effects and their interactions to explain a proportion of the total variance is measured by the partial eta squared statistic (2 p ) with larger values related to higher relative importance. For ISBSG dataset, the main effects of "Method", FS and MDT are proven to be significant at the level of 0.01.

Moreover, Scaling is only significant at the level of 0.05. It confirms our finding from previous individual analysis that MDT, scaling, forward sequential feature selection appear to have strong influence on testing performances on ISBSG dataset. With respect to the interactions, two 2-way interactions: "MDT × CS", "Scaling × FS", three 3-way interactions: "MDT × Scaling × CS", "Method × Scaling × FS", and "Method × MDT × FS", and two 4-way interaction: "Method × MDT × FS × CS" and "Method × Scaling × FS × CS" are significant at the level of 0.05.

For Desharnais dataset, only the main effects of "Method" and CS are shown to be significant at the level of 0.01. With respect to the interactions, a 2-way interactions and a 3-way interaction are significant at the level of 0.05, which are "MDT × CS" and "MDT × Scaling × CS", respectively. Furthermore, on Desharnais dataset, MDT appears to have strong interactions with CS.

For Kitchenham dataset, all main effects except the FS and CS are shown to be significant at the level of 0.05. It also confirms the findings that the preprocessing methods of FS and CS have less consistent influence on the prediction results. For USPFT dataset, all the main effects are shown to be significant at the level of 0.05 at least. Many interactions are shown to be significant at the level of 0.05.

In general, the analysis recognizes the single DP methods of MDT, FS and scaling significantly could impact the final prediction results for the most datasets or ML methods.

4.6

Overall performance

Table 13 summarizes the testing results across of all experiments. The data shows that CBR and CART generally achieve the best overall performance in terms of average accuracy, followed by ANN, which could be better in terms of PRED(0.25) or MdBRE. All the methods seem very close to each other under the error metric PRED(0.25) and MdBRE in most cases. To further analyze the error metrics in testing phase, we draw out the boxplots of MBRE, PRED(0.25), and MdBRE on three datasets in Fig. 2, Fig. 3, Fig. 4 and Fig. 5.

The boxplots confirm the findings from Table 13 ** Significant at the 0.05 level (2-tailed) One drawback of the above analysis is that the testing error metrics used are all based on BRE. Because BRE is relative error metric [START_REF] Foss | A simulation study of the model evaluation criterion MMRE[END_REF], we also consider Absolute Residuals (AR) as the alternative testing error metric for further analysis. We apply two-tailed Wilcoxon signed-rank test (α=0.05) to investigate the significance of methods under BRE and AR across three random data splits on 24 generated datasets for preprocessing (totally 24 × 3 = 72). Table 15 presents the summary of the testing results. The symbols "=", "<", and ">" represent the relationships of "equal", "smaller than", and "larger than" between the ML methods located in column and in row. The table entry denotes how many significance tests report the relationship represented by the symbol. The entries in the upper triangle range represent the results from significant tests on AR values whilst the entries in the lower triangle range are for the tests on BRE values. For instance, the entry with value "16" under column "CBR" and the sub-column ">" means that there are totally 16 out 72 tests reported that ANN is significantly larger than CBR in terms of BRE in ISBSG dataset. 13 is influenced by the outliers. On Desharnais dataset, the three methods are generally equal. In specific, CBR is slightly better than ANN or CART on both datasets. On Kitchenham dataset, the results are similar to that on ISBSG dataset. On USPFT dataset, CBR obviously outperforms ANN and CART. For instance, 21/72 tests confirm that CART"s BRE values are larger than those of CBR. In summary, CBR appears to be a better alternative compared with ANN and CART in terms of all kinds combinations of DP methods used in this study.

At the last, we analyze the performance of the combinations of DP techniques. We rank the DP combination according to the value of testing error metrics. From the experiment design, there are 24 processed datasets. Therefore, we have 24 sets of results for MBRE, PRED and MdBRE. We only keep the best 33% of the ranked results, i.e. 8 minimal MBREs, 8 maximal PREDs and 8 minimal MdBREs, and their corresponding DP methods. As expected, we did not find an overall dominant DP combination for all the four datasets and three ML methods. However, we do obtain results that could provide meaningful suggestion for other research works. The results are organized in Table 16. The results in Table 16

Threats to Validity

The threats to validity could be distributed into four groups in this study, including conclusion, internal, construct, and external validity. The conclusion validity is related to the ability to draw significant correct conclusions; in regard to which, we carefully applied the statistical tests, showing statistical significance for the obtained results.

Moreover, we used medium-sized datasets to mitigate the threats related to the number of observations composing the datasets.

As this study focuses on the structured investigations on DP techniques, we discuss the internal validity in terms of threats to our experiments designs. There are several aspects: firstly, different numbers of pre-defined parameters are considered for each ML method in this study. For example, CBR has three parameters while CART has only one parameter. We observed that CBR is generally not significantly different from CART and both of them are more accurate than ANN method. However CBR"s accuracy may be due to the extra parameters of CBR. Therefore, the sensitivity analysis of parameters is of interest to identify which parameter is important and how does the parameter affect the prediction performances. In addition, more sophisticated parameter tuning schemes can be explored because ML methods performances heavily depend on these parameters and the cross-validation plus grid search scheme is time-consuming to select parameters with large ranges. Moreover, this study chooses MBRE to guide parameter optimization of ML methods. However, MBRE is only one type of balanced relative error metric, other types of balanced error metrics such as Mean Square Error (MSE) could be considered as the error metric for parameter selection.

The construct validity refers to the agreement between a theoretical concept and a specific measurement. It has to establish correct operational measures for the concepts being studied. As to the assessment of different combinations of DP techniques, we made use of three performance measures and four public datasets in our study. All the performance measures are used with statistical test as suggested by Kitchenham et al. [START_REF] Kitchenham | Why comparative effort prediction studies may be invalid[END_REF]. The datasets in our study have been previously used in many other empirical studies carried out to evaluate effort estimation.

The external validity represents the possibility of generalizing the findings of this study. The threats to external validity are as follows. Firstly, the limited datasets cause some difficulties to generalize our conclusions. The ISBSG dataset is very large and regarded as a benchmarking dataset in SCE literature, but it is multi-organizational in nature and with heterogeneous properties. There are no commonly accepted data refinement criteria to the knowledge of the authors. Nevertheless, we refer to works of [START_REF] Mittas | LSEbA: least squares regression and estimation by analogy in a semiparametric model for software cost estimation[END_REF][START_REF] Lopez-Martin | Software development effort prediction of industrial projects applying a general regression neural network[END_REF][START_REF] Fernández-Diego | Potential and limitations of the ISBSG dataset in enhancing software engineering research: A mapping review[END_REF] and refine the ISBSG data. In real world estimation procedures, many project managers prefer to use the data from one company to ensure data consistency.

Therefore, our results based on the four datasets might be difficult to generalize to those estimations obtained from single and homogeneous company data. Recently, some research works [START_REF] Mendes | Replicating studies on cross-vs single-company effort models using the ISBSG Database[END_REF][START_REF] Mendes | Cross-company vs. single-company web effort models using the Tukutuku database: An extended study[END_REF] have been conducted to investigate to what extent a cross-company cost model can be successfully employed to estimate single company projects. Nevertheless, the experiment design proposed in our study can be easily extended to other single company datasets.

In addition, missing data is a common situation in software engineering datasets.

Many studies [START_REF] Strike | Software cost estimation with incomplete data[END_REF][START_REF] Myrtveit | Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods[END_REF][START_REF] Song | A new imputation method for small software project data sets[END_REF][START_REF] Van Hulse | Incomplete-case nearest neighbor imputation in software measurement data[END_REF] have proposed different imputation techniques to recover missing data by estimating replacement values. But our study is mainly focusing on the LD and MI. More advanced methods of imputation could be adopted to deal with missing data. Moreover, limited DP techniques and ML methods are explored in our study. There might be some difficulties to extend our conclusions to other ML methods to select appropriate DP scheme. Furthermore, in the experiment the 3-fold cross-validation scheme, though it is the most widely used one in the literature, might not produce sufficiently stable estimation of the prediction accuracy.

More advanced scheme as 10-fold cross-validation or even leave-one-out crossvalidation could be considered. The side effect of these schemes is mainly the high computational expense.

Conclusion and Future Works

Data preprocessing is a fundamental stage of ML method and has large impact on the accuracy of ML methods. However, there is still lack of systematic study in the SCE context for DP techniques despite of their importance. In this study, a structured literature survey of DP techniques is first conducted. Subsequently, a systematic empirical study is conducted to analyze the effectiveness of the four DP techniques, i.e. MDT, Scaling, FS and CS. In addition, the interactions between the preprocessing techniques and ML methods" predictive accuracies are also studied. ANOVA test is conducted to quantify the significance of each preprocessing technique and the interactions between them and ML methods. In the end, the recommendation of using DP combination for different datasets and different ML methods is summarized (See Table 17). For example, the best DP combination for Kitchenham data in the context of CBR based SCE is MI, Null scaling, FSS for FS, and BSS for CS. Seven findings are noteworthy:

1. The effectiveness of an ML method used for SCE (e.g. CBR, ANN and CART) can be significantly altered by single DP steps and their combinations (especially, the MDT, scaling, FS), which further extends the findings found by Keung et al. [START_REF] Keung | Finding conclusion stability for selecting the best effort predictor in software effort estimation[END_REF].

2. The performance of DP methods is generally dependent on the characteristics of data and the ML methods.

3. The percentage of missingness inside data is an important matter when we consider using MDT for ML-based SCE. Compared with MI, LD is preferred for datasets with a large number of missing values in terms of improving prediction accuracy and robustness. For datasets with a small number of missing values, ANN is less sensitive to MI and CART could benefit from MI. appears to be less significant to large and highly-skewed dataset.

5. FS is more appropriate for CBR based SCE rather than for ANN or CART. For ANN and CART, the impact of FS is dependent on the characteristics of data, such as the number of features. CS could be effective, but it is not recommended using CS for ANN.

6. ANN performs worse than other two ML methods in our study (e.g. CBR and CART), similar to the results obtained by Keung et al. [START_REF] Keung | Finding conclusion stability for selecting the best effort predictor in software effort estimation[END_REF]. CBR and CART could be better methods for SCE according to our experiments. CART is negatively impacted by FS and more sensitive to CS. An appropriate strategy of DP is necessary for CART.

7. The selection of DP combination is dependent on datasets and ML methods. We suggest the SCE research works that utilize any ML method consider fine-tuning the DP techniques so that the performance of ML method can be improved. This finding conveys a meaningful message to the majority of the completed or ongoing SCE research works where the DP techniques have been or are being used without sufficient attentions.

As for the future works, 1) more extensive experiments on various datasets will be considered to generalize the findings of this study; 2) more advanced ML methods can be involved in the experiment, for example the more complicated tree model of CART, such as multiple additive regression trees (MART) and multivariate adaptive regression splines (MARS); 3) use unbiased novel performance measure, such as standardized accuracy [START_REF] Shepperd | Evaluating prediction systems in software project estimation[END_REF], for comparison of DPs.

11

 11

Fig. 1

 1 Fig. 1 Experiment process

2. 2 ,

 2 the techniques considered in this study are: FS (Null/FSS), CS (Null/BSS), Scaling (Null/[0, 1]/[-1, 1]), and MDT (LD/MI). First, the means and standard deviations of the error metrics (MBRE, PRED(0.25) and MdBRE) across the testing subsets (i.e. three random splits of each dataset) by each technique are collected and analyzed. The mean values of error metrics indicate one method"s average accuracy on a group of processed datasets. The standard deviations of error metrics reflect the robustness of one method across different datasets. The "PC" column in tables refers to the percentage of change between comparisons. Then, ANOVA is conducted to examine the significance of each preprocessing technique and their combinations.

 We analyze Spearman"s rho non-parametric correlations between the individual error metrics (MBRE, PRED(0.25) and MdBRE) across all testing datasets. The analysis reveals a significant positive correlation at the level of 0.01 between MBRE and MdBRE, and a negative correlation at the level of 0.01 between MBRE and PRED(0.25). Consequently, the use of MBRE as response solely appears to be feasible. On top of the significance testing, the non-linear interactions between the main effects are also investigated. The factors of ANOVA including "Method" (CBR, ANN or CART), MDT (LD/MI), Scaling (Null/[0, 1]/[-1, 1]), FS (Null/FSS) and CS (Null/BSS), are all transformed to dummy variable and regarded as fixed factors. The interactions in this study include ten 2-ways, ten 3-ways, and five 4-ways. The factors/interactions are regarded as influential only if they have the significance level of 0.05 at least. Prior to the ANOVA, the logarithmic transformation is performed in response to reducing the skewness and the heterogeneity of the variances of different groups of MBRE values.

 that both CBR and CART stand a fair chance to outperform ANN on ISBSG dataset. For instance, 16/72 significance tests report that ANN"s BRE values are larger than those of CBR and 15/72 tests confirm that CART"s BRE values are smaller than those of ANN. For AR, 19/72 significance tests confirm that CBR"s AR values are smaller than those of ANN and 3/72 tests confirm that CBR"s AR are smaller than those of CART. Note that the result of CART method in Table

4 .

 4 No need to use [0, 1] or [-1, 1] scaling for CART based SCE. The scaling scheme of Null scaling could be better than [0, 1] under certain circumstance. Scaling

 We summarize the publications according to the ML methods and the DP techniques applied. In specific, we explore the use of MDT, scaling, FS and CS. These 48 publications are presented in Table1. It is shown that most publications have employed certain DP techniques. 12 works[START_REF] Bou | Towards an early software estimation using log-linear regression and a multilayer perceptron model[END_REF][START_REF] De Barcelos Tronto | An investigation of artificial neural networks based prediction systems in software project management[END_REF][START_REF] Kocaguneli | Exploiting the essential assumptions of analogy-based effort estimation[END_REF][START_REF] Corazza | Applying support vector regression for Web effort estimation using a cross-company dataset[END_REF][START_REF] Mittas | Improving analogy-based software cost estimation by a resampling method[END_REF][START_REF] Li | Impact analysis of missing values on the prediction accuracy of analogy-based software effort estimation method AQUA[END_REF][START_REF] Mendes | A comparison of techniques for web effort estimation[END_REF][START_REF] Keung | Empirical evaluation of analogy-X for software cost estimation[END_REF][START_REF] Ferrucci | Web effort estimation: the value of cross-company data set compared to single-company data set[END_REF][START_REF] Pendharkar | A probabilistic model for predicting software development effort[END_REF][START_REF] Auer | Optimal project feature weights in analogy-based cost estimation: Improvement and limitations[END_REF][START_REF] Menzies | Local versus global lessons for defect prediction and effort estimation[END_REF] only mention single step of DP. Table 1 also shows that many studies use combined DPs. For examples,

	there are 7 of totally 48 works combined only scaling and FS/CS [20, 27, 34, 52-55],
	and 7 of 48 works combined only MDTs and FS/CS [19, 23, 36, 56-59]. FS and CS
	have been considered as a necessary step for CBR in several studies [6, 14, 23, 26, 33,
	37, 47, 48, 52, 55-57, 60-63]. However, there is no systematic study to investigate the
	DPs and their combinations.

reveal the situations of DP technique utilization in the literature, we first conduct a survey of relevant ML papers from 2005 to present published on the following journals: IEEE Transactions on Software Engineering (IEEE TSE), Empirical Software Engineering (ESE), Journal of Systems Software (JSS), Information and Software Technology (IST), and Software Quality Journal (SQJ), and the following major conference proceedings: International Conference on Software Engineering (ICSE), International Symposium on Empirical Software Engineering and Measurement (ESEM), and International Conference on Predictive Models in Software Engineering (PROMISE). Both the individual studies of ML methods and the comparative studies (within ML methods or between ML and other methods) are included.

Table 1

 1 Data preprocessing techniques used by ML methods for SCE

	Source	Reference	Methods	FS a /CS b Scaling c MDT d
		Pendharkar et al. (2005) [49]	ANN, BBN, CART	FS		
		Auer et al. (2006) [50]	CBR		[0, 1]	
		Keung et al. (2008) [26]	CBR	FS, CS	[0, 1]	LD
	IEEE TSE	Kocaguneli et al. (2012) [14] Kocaguneli et al. (2012) [41]	CBR CART, SVM	FS, CS FS	[0, 1]	MI
		Kocaguneli et al. (2013) [64]	CBR, CART	FS	[0, 1]	MI
		Menzies et al. (2013) [51]	CBR	FS		
		Mittas and Angelis (2013) [65]	ANN, CART, CBR	FS		LD
		Chiu and Huang (2007) [17]	ANN, CART, CBR		[0, 1]	LD
		de Barcelos Tronto et al. (2008) [11] ANN		[0, 1]	
	JSS	Vinary et al. (2008) [27] Li et al. (2009) [28]	ANN ANN, CART, CBR, SVM CS FS	[0, 1] [0, 1]	LD
		Azzeh et al. (2011) [15]	CBR		[0, 1]	LD
		Bou et al. (2013) [6]	ANN	FS, CS		
		Huang and Chiu (2006) [18]	ANN, CART, CBR	FS	[0, 1]	LD
	IST	Mittas et al. (2008) [44] Oliveira et al. (2010) [20]	ANN SVM, GP	FS	[0, 1] [0, 1]	
		Minku and Yao (2013) [61]	ANN, CART, CBR	FS, CS	[0, 1]	MI
		Li et al. (2007) [38]	CBR	FS	[0, 1]	LD
		Li and Ruhe (2008) [19]	CBR	FS		LD
		Azzeh et al. (2009) [36]	CBR, ANN	FS		LD
		Li et al. (2009) [54]	ANN	FS	[0, 1]	
	ESE	Mittas and Angelis (2010) [37] Lopez-Martin et al. (2011) [66]	CBR ANN	FS, CS CS	[0, 1]	LD
		Azzeh (2012) [62]	CBR	FS, CS	[0, 1]	LD
		Corazza et al. (2013) [59]	CBR, SVM	FS		LD
		Kocaguneli et al. (2013) [16]	CBR	FS	[0, 1]	MI
		Seo and Bae (2013) [33]	CBR	FS, CS	[-1, 1]	LD
		Liu et al. (2008) [57]	CART, CBR	FS, CS		LD
		Bakır et al. (2009) [67]	SVM, CBR	FS	[0, 1]	LD
	SQJ	Hsu and Huang (2010) [63]	ANN, CART, CBR	FS, CS	[0, 1]	LD
		Bakır et al. (2011) [68]	CART, CBR	FS	[0, 1]	LD
		Khatibi et al. (2013) [58]	CBR	FS		LD
	ICSE	Ramasubbu and Balan (2012) [69]	CBR	CS		

Table 2

 2 Descriptive statistics of numeric features of ISBSG dataset

	Features	w/*	Mean w/o*	Std Dev w/ w/o	w/	Min w/o	w/	Max	w/o	Skewness w/ w/o	Kurtosis w/ w/o
	DevType	1.4	1.8	0.5	0.5	1	1	3		3	1.0	-0.3	-0.1	0.3
	OrgType	4.7	5.9	4.6	4.0	-1	1	17		16	1.0	1.0	0.2	-0.1
	BusType	0.3	3.0	2.0	1.4	-1	1	7		7	1.4	1.4	1.2	1.2
	AppType	5.0	5.3	5.1	5.6	-1	1	19		19	1.0	1.4	0.0	0.8
	DevPlat	0.9	1.6	1.3	1.0	-1	1	4		4	0.2	1.7	0.2	1.7

* w/: with missing values (missing values are denoted as '-1'); * w/o: without missing values

Table 3

 3 Descriptive statistics of numeric features of Desharnais dataset

	Features	w/*	Mean w/o*	Std Dev w/ w/o	w/	Min w/o	w/	Max	w/o	Skewness w/ w/o	Kurtosis w/ w/o
	TeamExp	2.2		2.3	1.4	1.3	-1		0	4			4	-0.2 -0.1 -1.0	-1.3
	ManagerExp	2.5		2.6	1.6	1.5	-1		0	7			7	0.0	0.2	0.1	0.1
	YearEnd	85.8		85.8	1.1	1.1	83		83	88			88	-0.2 -0.2	0.0	0.1
	Length	11.7		11.3	7.4	6.8	1		1	39			36	1.6	1.5	3.1	2.7
	Language	1.6		1.6	0.7	0.7	1		1	3			3	0.9	0.9	-0.5	-0.5
	Transactions	179.9	177.5	143.3	146.1	9		9	886			886	2.4	2.4	7.7	7.7
	Entities	122.3	120.5	84.9	86.1	7		7	387			387	1.3	1.4	1.5	1.5
	PointsAdjust	302.2	298.0	179.7	182.3	73		73	1127			1127	1.8	1.8	4.9	5.1
	Envergure	27.6		27.5	10.6	10.5	5		5	52			52	-0.1 -0.2 -0.3	-0.4
	PointsNonAdjust	287.0	282.4	185.1	186.4	62		62	1116			1116	1.7	1.7	4.2	4.4
	Effort	5046.3	4833.9	4418.8	4188.2	546	546	23940	23940	2.0	2.0	4.7	5.3

* w/: with missing values (missing values are denoted in as '-1'); * w/o: without missing values

Table 4

 4 Descriptive statistics of numeric features of Kitchenham dataset

	Features	w/*	Mean w/o*	Std Dev w/ w/o	w/	Min	w/o	Max w/ w/o	Skewness w/ w/o	Kurtosis w/ w/o

* w/: with missing values (missing values are denoted in as '-1'); * w/o: without missing values 3.1.4 USPFT dataset The USPFT (University Student Projects developed in 2005) dataset includes 76

Table 5

 5 Descriptive statistics of numeric features of USPFT dataset

	Features	w/*	Mean w/o*	Std Dev w/ w/o	w/	Min	w/o	Max w/ w/o	Skewness w/ w/o	Kurtosis w/ w/o
	Internal Process	19.9	19.9	17.5	17.5	0		0	100	1.6	1.6	7.6	7.6
	Data E/M/D	26.2	26.2	13.8	13.8	0		0	80	0.9	0.9	7.5	7.5
	Output form	21.5	21.5	17.2	17.2	0		0	100	2.5	2.5	12.4	12.4
	Data Query	22.5	22.5	11.6	11.6	0		0	54	-0.1 -0.1	3.0	3.0
	Printing	1.6	1.6	5.0	5.0	0		0	30	3.5	3.5	17.0	17.0
	Report	2.3	2.3	4.8	4.8	0		0	20	2.2	2.2	7.3	7.3
	Other	5.6	5.6	13.3	13.3	0		0	100	4.9	4.9	34.2	34.2
	IntComplx	1.9	1.9	1.2	1.2	1		1	5	1.1	1.1	3.1	3.1
	DataFile	3.3	3.3	3.3	3.3	0		0	18	2.0	2.0	7.4	7.4
	DataEn	17.4	17.4	48.3	48.3	0		0	314	4.6	4.5	25.4	25.4
	DataOut	1.9	2.0	6.1	6.2	-1		0	50	6.6	6.6	50.3	49.3
	UFP	11.7	12.1	26.0	26.3	-1		0	180	4.0	3.9	24.2	23.6
	Lang	2.6	2.7	0.8	0.6	-1		1	4	-2.1 -1.2	8.6	4.5
	Tools	2.7	2.8	0.8	0.5	-1		1	4	-2.7 -1.4	12.5	6.8
	ToolExpr	10.7	11.0	11.6	11.6	-1		0	52.5	1.8	1.8	5.4	5.3
	AppExpr	2.5	2.5	1.4	1.4	1		1	5	0.4	0.4	1.7	1.7
	TeamSize	1.7	1.7	0.7	0.7	1		1	4	1.4	1.3	4.8	4.8
	DBMS	1.5	1.8	1.1	0.5	-1		1	3	-1.3	0.0	3.9	2.7
	Method	2.2	2.9	1.7	0.8	-1		1	4	-1.0 -0.9	2.5	3.6
	AppType	2.6	2.8	1.1	0.6	-1		1	4	-2.3 -1.3	8.2	5.7
	Effort	5.5	5.5	8.7	8.7	0.5	0.5	40	2.4	2.4	8.5	8.5

* w/: with missing values (missing values are denoted in as '-1'); * w/o: without missing values

 Three popular error metrics: Mean of Balanced Relative Error (MBRE), PRED(0.25), and

	Median of Balanced Relative Error (MdBRE) are also used in this study. Their
	building block: Balanced Relative Error (BRE) of the estimated i-th project is defined
	as			
	i BRE		ˆmin(,) ii ii yy yy 	(5).

Table 6

 6 Generation of processed datasets

	Preprocessing	FS	Null	FSS	
	techniques	CS Null BSS	Null	BSS
	MDT Scaling				
		Null	#1	#7	#13	#19
	LD	[0, 1]	#2	#8	#14	#20
		[-1, 1]	#3	#9	#15	#21
		Null	#4	#10	#16	#22
	MI	[0, 1]	#5	#11	#17	#23
		[-1, 1]	#6	#12	#18	#24

MDT: missing-data treatment; LD: listwise deletion; MI: mean imputation; FS: feature selection; CS: case selection; FSS: forward sequential selection; BSS: backward sequential selection; Null: no DP is used.

Table 7

 7

	Predefined parameters in meta-modeling techniques	
	Methods	Predefined parameters	Range
		1. Distance functions	{Euclidean distance, Manhattan distance}
	CBR	2. Number of nearest neighbors	{k | k = 1, 2, 3, 4, 5}
		3. Adaptation functions	{Mean, Median, Inverse distance weighted mean}
	ANN	1. Number of hidden neurons 2. Hidden layer transfer function	{n | n = 1, 3, 5, 7, 9, 11, 13} {Linear, Tan-Sigmoid, Log-Sigmoid}
	CART	Level of tree pruning	{l | l = 1, 2, 3, 4, 5}

Table 8 .

 8 For ISBSG dataset with relatively large number of missing values, MI could enlarge MBRE of all ML methods. The testing error of ANN has some outliers under MI, as the mean MBREs are not consistent with mean PREDs and MdBREs. For Desharnais dataset with a small amount of missing values, only ANN has slightly decreased MBRE value by MI. Furthermore, MI generally performs worse than LD in terms of accuracy and robustness of CBR and CART under MBRE. However, the testing errors of CBR and CART have outliers under MI as well. For Kitchenham dataset with also a small amount of missing values, only CBR has increased MBRE by MI. The testing errors in terms of PRED and MdBRE are consistent with the result of MBRE. MI could generally enhance the robustness of ANN and CART on Kitchenham dataset. On USPFT dataset with a medium number of missing values, the results are similar to that on ISBSG data. The testing error of CART has outliers under MI in terms of the results of PREDs and MdBREs are not consistent with the MBREs.

Table 8

 8

		Average accuracy and robustness under MDT scheme		
	Testing Error Metrics	ML Methods	LD	Mean MI * PC (%)	LD	Std. MI * PC (%) LD	Mean MI * PC (%) LD	Std. MI * PC (%)
	Dataset			ISBSG				Kitchenham
		CBR	0.365 6.79 +1762 0.0623 4.13 +6535 2.39 2.62	+9.70 0.306 0.344 +12.5
	MBRE	ANN	0.531 9.39 +1668	0.749 2.36 +215 12.9 12.7	-1.55	10.3	7.82 -24.5
		CART	0.349 5.96 +1606 0.0242 0.912 +3658 2.72 2.50	-8.27	0.441 0.262 -40.6
		CBR	0.487 0.477 -2.05	0.0831 0.0390 -53.0 0.243 0.218 -10.6 0.0461 0.0552 +19.8
	PRED	ANN	0.544 0.563 +3.47 0.0746 0.0302 -59.4 0.198 0.206 +4.03 0.0435 0.0426 -2.31
		CART	0.520 0.497 -4.27	0.0440 0.0376 -14.5 0.212 0.241 +13.3 0.0181 0.0110 -39.2
		CBR	0.269 0.274 +1.82 0.0598 0.0333 -44.2 0.736 0.847 +15.1	0.113 0.245 +116
	MdBRE	ANN	0.231 0.215 -6.84	0.0419 0.0171 -59.3 0.947 0.912 -3.70	0.287 0.252 -11.8
		CART	0.237 0.254 +7.25 0.0364 0.0304 -16.4 0.807 0.771 -4.58 0.0618 0.0502 -18.8
	Dataset			Desharnais				USPFT
		CBR	11.7 16.3	+39.0	1.28 12.1 +847	138	222	+60.5	74.8	124 +65.9
	MBRE	ANN	51.2 51.0 -0.391	20.1 17.5 -12.9	330	352	+6.81	165	194 +17.3
		CART	23.9 27.8	+16.0	14.9 20.4 +36.5 140	160	+14.1	48.5	53.2 +9.79
		CBR	0.467 0.475 +1.66 0.0418 0.0558 +33.5 0.656 0.564 -13.9 0.0671 0.0907 +35.0
	PRED	ANN	0.507 0.513 +1.16 0.0333 0.0465 +39.6 0.422 0.354 -16.2 0.0981 0.102 +4.28
		CART	0.461 0.506 +9.78 0.0311 0.0353 +13.6 0.431 0.500 +16.0 0.167 0.0651 -60.8
		CBR	0.282 0.266 -5.63	0.0451 0.0395 -12.1	0	0.135	+∞	0	0.138 +∞
	MdBRE	ANN	0.252 0.249 -1.23	0.0271 0.0323 +19.3 0.431 0.528 +22.4 0.167 0.254 +52.6
		CART	0.281 0.252 -10.3	0.0153 0.0162 +5.94 0.328 0.282 -13.8 0.0843 0.0555 -34.1

*PC (%) is the percentage of change between LD and MI.

Table 9

 9 Average accuracy and robustness under scaling scheme

	Dataset Null [0, 1] ISBSG Testing ML Error Metrics Methods MBRE CBR 4.47 3.14 ANN 5.26 4.51 CART 3.15 3.15 CBR 0.495 0.479 -3.13 0.473 Mean -29.8 3.13 -14.1 5.11 0 3.15 PRED ANN 0.558 0.560 +0.358 0.548	-30.0 -2.61 0 -4.38 -1.77	Std. -42.1 -4.12 0 0.0837 0.0508 -39.2 6.05 3.51 4.73 4.54 3.07 3.07 0.0676 0.0629 -6.97	3.47 5.79 3.07 0.0586 -29.8 -42.6 +22.4 0 0.0437 -35.2
			CART 0.508 0.508	0	0.508	0	0.0435 0.0435	0	0.0435	0
			CBR	0.269 0.271 +0.631 0.274	+1.92 0.0594 0.0432 -27.3	0.0443 -25.3
		MdBRE	ANN	0.221 0.219 -0.905 0.226	+2.69 0.0365 0.0358 -1.92 0.0253 -30.6
			CART 0.246 0.246	0	0.246	0	0.0355 0.0355	0	0.0355	0
			CBR	18.8	11.4	-39.2	11.8	-37.0	14.5	1.15	-92.1	0.948	-93.4
		MBRE	ANN	56.9	42.6	-25.1	53.6	-5.75	24.8	14.3	-42.2	13.1	-47.3
			CART	25.8	25.8	0	25.8	0	18.4	18.4	0	18.4	0
			CBR	0.500 0.462 -7.56 0.451	-9.62	0.0564 0.0301 -46.5	0.0462 -18.1
	Desharnais	PRED	ANN	0.491 0.531 +7.85 0.507	+3.18 0.0479 0.0302 -36.9	0.0333 -30.4
			CART 0.483 0.483	0	0.483	0	0.0417 0.0417	0	0.0417	0
			CBR	0.243 0.286 +17.9 0.294	+21.0 0.0363 0.0306 -15.7	0.0431 +18.5
		MdBRE	ANN	0.265 0.234 -11.7 0.253	-4.48	0.0317 0.0226 -28.8	0.0267 -15.7
			CART 0.267 0.267	0	0.267	0	0.0225 0.0225	0	0.0224	0
			CBR	2.22	2.65 +19.5	2.66	+19.5 0.0866 0.339 +292	0.338	+290
		MBRE	ANN	15.6	13.0	-17.1	8.89	-43.2	9.02	10.3 +14.5	7.11	-21.1
			CART	2.59	2.59	0	2.59	0	0.374 0.374	0	0.374	0
			CBR	0.265 0.213 -19.5 0.214	-19.2	0.0319 0.0541 +69.6 0.0527 +65.1
	Kitchenham	PRED	ANN	0.191 0.219 +14.7 0.196	+2.53 0.0635 0.0222 -65.1	0.0289 -54.4
			CART 0.227 0.227	0	0.227	0	0.0223 0.0223	0	0.0223	0
			CBR	0.643 0.867 +34.8 0.866	+34.7 0.0289 0.208 +621	0.208	+619
		MdBRE	ANN	1.13 0.788 -30.3 0.868	-23.3	0.351 0.132 -62.2	0.124	-64.7
			CART 0.782 0.782	0	0.782	0	0.0640 0.0640	0	0.0640	0
	USPFT	MBRE	CBR ANN	171 321	140 289	-18.1 -9.85	229 414	+33.7 +29.0	124 169	122 99.8	-1.80 -41.1	61.7 233	-50.4 +37.8

* PC (%) [-1, 1] * PC (%) Null [0, 1] * PC (%) [-1, 1] * PC (%)

Table 10

 10

		Average accuracy and robustness under FS scheme							
	Testing Error Metrics	ML Methods	Mean Null FSS * PC (%)	Null	Std. FSS * PC (%) Null	Mean FSS * PC (%) Null	Std. FSS * PC (%)
	Dataset		ISBSG					Kitchenham		
		CBR	5.11 2.05	-59.7	5.52	2.03	-63.1	2.67	2.35	-11.8	0.362	0.236 -34.8
	MBRE	ANN	4.79 5.13 +7.16	4.36	5.46 +25.2	11.8	13.2 +11.7	7.47	10.5	+41.7
		CART	2.78 3.53 +27.0	2.53	3.36 +33.1	2.55	2.67 +4.40	0.409	0.341 -16.4
		CBR	0.467 0.498 +6.87	0.0649 0.0608 -6.32 0.211 0.250 +18.4 0.0536 0.0431 -19.4
	PRED	ANN	0.531 0.577 +8.60	0.0578 0.0469 -18.7 0.190 0.215 +12.9 0.0391 0.0434 +11.1
		CART	0.506 0.511 +0.812 0.0297 0.0522 +75.7 0.219 0.233 +6.71 0.0185 0.0206 +11.2
		CBR	0.282 0.261 -7.51	0.0473 0.0470 -0.759 0.879 0.705 -19.7	0.238 0.0843 -64.5
	MdBRE	ANN	0.237 0.209 -11.6	0.0346 0.0239 -31.1	1.02 0.839 -17.7	0.237	0.269 +13.3
		CART	0.247 0.243 -1.88	0.0261 0.0414 +59.2 0.820 0.757 -7.64 0.0512 0.0482 -6.02
	Dataset		Desharnais					USPFT		
		CBR	14.8 13.2	-10.4	11.7	4.61	-60.7	242	118	-51.1	94.8	86.5	-8.75
	MBRE	ANN	60.8 41.3	-32.1	18.0	13.2	-26.3	367	315	-13.9	198	156	-21.2
		CART	23.4 28.3 +20.6	14.4	20.6 +42.1	136	164	+20.8	51.8	47.7	-7.77
		CBR	0.454 0.488 +7.48	0.0498 0.0427 -14.4 0.599 0.621 +3.67 0.0389 0.124 +220
	PRED	ANN	0.490 0.529 +8.12	0.0401 0.0288 -28.0 0.413 0.363 -12.1 0.0666 0.129 +95.1
		CART	0.487 0.480 -1.39	0.0240 0.0522 +116 0.500 0.431 -13.9	0.175 0.0340 -80.5
		CBR	0.278 0.271 -2.16	0.0475 0.0380 -19.9 0.0388 0.0965 +148 0.0632 0.152 +141
	MdBRE	ANN	0.266 0.236 -11.2	0.0275 0.0232 -15.6 0.418 0.541 +29.5	0.109	0.278 +153
		CART	0.267 0.265 -0.758 0.0179 0.0252 +40.5 0.303 0.307 +1.52 0.0966 0.0443 -54.1

*PC (%) is the percentage change between FSS and NULL.

Table 11

 11

		Average accuracy and robustness under CS scheme						
	Testing Error Metrics	ML Methods	Mean Null BSS * PC (%) Null	Std BSS * PC (%) Null	Mean BSS * PC (%) Null	Std BSS * PC (%)
	Dataset		ISBSG					Kitchenham	
		CBR	2.89 4.26 +47.5	3.36	5.23	+55.6	2.52	2.50	-0.817 0.413 0.266	-35.4
	MBRE	ANN	5.31 4.60 -13.3	5.31	4.52	-14.8	12.6	12.4	-1.82	8.71	9.65	+10.7
		CART	3.09 3.22 +4.04	2.87	3.12	+8.61	2.34	2.88	+23.1 0.332 0.144	-56.5
		CBR	0.501 0.463 -7.58	0.0465 0.0742 +59.5 0.252 0.209	-17.1 0.0322 0.0592 +84.0
	PRED	ANN	0.551 0.556 +0.915 0.0579 0.0576 -0.431 0.185 0.218 +17.7 0.0398 0.0396 -0.502
		CART	0.510 0.507 -0.658 0.0338 0.0497 +47.1 0.231 0.221	-4.18 0.0215 0.0193	-10.2
		CBR	0.255 0.288 +12.7 0.0341 0.0544 +59.3 0.738 0.845 +14.4 0.121 0.243	+101
	MdBRE	ANN	0.224 0.222 -0.571 0.0349 0.0310 -11.1	1.01	0.849 -16. 1 0.306 0.196	-36.1
		CART	0.244 0.246 +0.641 0.0300 0.0388 +29.3 0.776 0.801 +3.14 0.0468 0.0677 +44.5
	Dataset		Desharnais					USPFT	
		CBR	16.8	11.2 -32.8	11.9	1.30	-89.1	164	196	+19.4	100	119	+18.3
	MBRE	ANN	49.2 53.1 +7.96	13.5	22.8	+68.0	309	373	+20.6	181	174	-3.70
		CART	42.16 9.601 -77.2	8.28 0.0716 -99.1	160	140	-12.1	53.4	48.4	-9.44
		CBR	0.477 0.465 -2.33	0.0532 0.0447 -15.9 0.604 0.616 +2.05 0.115 0.0634 -44.8
	PRED	ANN	0.505 0.515 +2.05	0.0341 0.0456 +34.0 0.384 0.392 +2.16 0.119 0.0917 -23.1
		CART	0.455 0.512 +12.5	0.0299 0.0258 -13.4 0.406 0.524 +29.2 0.131 0.0984 -24.9
		CBR	0.273 0.275 +0.826 0.0411 0.0452 +9.89 0.101 0.0344 -65.8	0.146 0.0722 -50.7
	MdBRE	ANN	0.253 0.248 -1.99	0.0247 0.0341 +37.7 0.481 0.478 -0.765 0.251 0.186	-25.6
		CART	0.281 0.252 -10.3	0.0167 0.0155 -7.22 0.346 0.263	-23.9 0.0841 0.0218 -74.1

*PC (%) is the percentage change between BSS and NULL.

Table 12

 12 ANOVA results of main effects and relevant interactions

	Dataset	Factors/ Interactions	d.f.	Type III Sum Sq.	Mean Sq.	F	p-value		2 p
		Method	2	1.028	.514	27.510 .005 ** .932
		MDT	1 155.101 155.101 8303.128 .000 ** .999
		Scaling	2	.238	.119	6.365 .050 * .761
		FS	1	1.228	1.228	66.740 .001 ** .943
		CS	1	.007	.007	.374	.574	.086
	ISBSG	MDT× CS Scaling × FS	1 2	.208 .423	.208 .211	11.160 .029 * .736 11.320 .023 * .850
		MDT × Scaling × CS	2	.336	.168	8.992 .033 * .818
		Method × Scaling × FS	4	.462	.115	6.182 .050 * .861
		Method × MDT × FS	2	1.651	.825	44.190 .002 ** .957
		Method × MDT × FS × CS	2	.518	.259	13.864 .016 * .874
		Method × Scaling × FS × CS	4	.500	.125	6.694 .046 * .870
		Method	2 21.409	10.701 208.600 .000 ** .991
		MDT	1	.144	.144	2.814	.169	.413
		Scaling	2	.409	.205	3.989	.112	.666
	Desharnais	FS CS	1 1	5.189 5.978	5.189 5.978	93.682 .050 * .879 116.500 .000 ** .967
		MDT × CS	1	.386	.386	7.524 .050 * .653
		MDT × Scaling × CS	2	.546	.273	5.318 .050 * .727
		Method	2 28.695	14.348	94.024 .000 ** .979
		MDT	1	.479	.479	7.549 .043 * .716
	Kitchenham	Scaling	2	.244	.122	.799	.050 * .685
		FS	1	.006	.006	.038	.856	.009
		CS	1	.065	.065	.428	.549	.097
		Method	2	9.549	4.774	238.819 .000 ** .992
		MDT	1	.870	.870	43.538 .003 ** .916
	USPFT	Scaling	2	1.908	.954	47.726 .002 ** .960
		FS	1	2.050	2.050	102.564 .001 ** .962
		CS	1	.145	.145	7.270 .050 * .645

Table 13

 13

	Overall averages and standard deviations of error values				
	Dataset	ISBSG	Desharnais	Kitchenham	USPFT
	Testing Error Metrics	ML Methods	Mean	Std.	Mean	Std.	Mean	Std.	Mean	Std.
		CBR	3.582 4.358	14.1	8.78	2.51	0.340	180	109
	MBRE	ANN	4.964 4.842	51.1	18.4	12.5	8.99	341	177
		CART	3.159 2.938	25.8	17.6	2.61	0.373	150	50.8
		CBR	0.482 0.0637 0.471 0.0484 0.230 0.0515 0.611 0.0911
	PRED	ANN	0.554 0.0566 0.510 0.0397 0.202 0.0423 0.388	0.104
		CART	0.508 0.0417 0.483 0.0399 0.226 0.0206 0.465	0.128
		CBR	0.271 0.0474 0.274 0.0423 0.792 0.196 0.0676 0.118
	MdBRE	ANN	0.223 0.0324 0.251 0.0292 0.930 0.265	0.480	0.216
		CART	0.245 0.0340 0.266 0.0215 0.789 0.0583 0.305 0.0735

 . CBR and CART appear to obtain either lowest medians or shortest inter-quartiles range among all methods in the plots of MBRE, PRED and MdBRE. In general, ANN has the largest inter-quartiles range, especially happens when MBRE is the testing error metric, and what is more, it has long ranges. The performance of CBR is slightly influenced by outliers, so the mean results in Table13cannot generally outperform CART. Although boxplots are useful graphical tool for visually comparing predictions, they cannot statistically confirm whether one technique is significant better than another. Therefore, we perform the significant tests on the error values. Boxplots of error metric values of USPFT dataset Because the boxplots show that the results distributions are highly skewed and do not satisfy the requirements of the classical t-test, the assumption free test: Wilcoxon MdBRE sign-rank test (significance level α = 0.05 and α = 0.01 with two tails) is chosen to test the method pairs. The p-values of the Wilcoxon tests are presented in Table14. The entry in the upper triangle range contains the p-value of the test between methods located in its corresponding row and column. From the results of three testing error metrics in Fig.2and Fig.4, we can tell that CBR is generally better than ANN, but not always better than CART. The only obvious exception happens in the plots of PRED and MdBRE of Desharnais and ISBSG dataset as shown in Fig.2 &3. ANN appears to perform better than the other two ML methods in terms of both PRED and MdBRE. Observing from Table13, CBR and ANN are obviously significantly different in terms of all testing error metrics. For Desharnais dataset, CBR and CART are significantly different in terms of MBRE; for ISBSG and USPFT datasets, they are only different in terms of PRED and MdBRE; and for Kitchenham dataset, they are very the same. These findings imply that CBR and CART could be the best choice among the three ML methods on all datasets. CBR obviously outperforms CART on Desharnais and USPFT datasets. On ISBSG and Kitchenham datasets, the performance of CART and CBR are not significantly different.

					1.41
				0.28	
		17.2 28.8			1.25
				0.66 0.25	
					0.33
	MBRE MBRE	7 8.7 10.4 13.8 15.4 22.1	PRED(0.25)	0.48 0.54 0.16 0.19 PRED(0.25) 0.6 0.22	0.25 0.77 MdBRE 0.29 0.93 1.09 MdBRE
	MBRE MBRE	Fig. 2 Boxplots of error metric values of ISBSG dataset CBR ANN CART 0.36 0.42 CBR ANN CART 0.17 0.21 CBR ANN CART CBR ANN CART 0.4 0.44 0.48 0.52 0.56 0.6 CBR ANN CART PRED(0.25) 0.18 0.21 0.24 0.27 0.3 0.33 CBR ANN CART MdBRE Fig. 4 Boxplots of error metric values of Kitchenham dataset CBR ANN CART 0.13 CBR ANN CART 0.61 CBR ANN CART 0.12 0.24 0.36 0.48 0.6 0.72 PRED(0.25) 0 0.23 0.46 0.69 0.92 1.15 Fig. 5 2 0.2 3.6 9.3 26.6 43.9 61.2 78.5 27.4 183.7 340 496.3 652.6 CBR ANN CART CBR ANN CART CBR ANN CART
			Fig. 3 Boxplots of error metric values of Desharnais dataset

Table 14

 14

	Results of Wilcoxon sign-rank tests						
	Dataset	ISBSG	Desharnais	Kitchenham	USPFT
	Testing Error Metrics	ML Methods	ANN CART	ANN	CART	ANN	CART	ANN	CART
	MBRE	CBR ANN	.457 -	.819 .010 **	.000 ** -	.049 * .000 **	.000 ** -	.209 .000 **	.000 ** -	.049 * .000 **
	PRED	CBR ANN	.000 ** .003 ** -.000 **	.014 * -	.413 .050 *	.134 -	.697 .015 *	.000 ** .002 ** -.043 *
	MdBRE	CBR ANN	.000 ** .000 ** -.003 **	.050 * -	.317 .050 *	.110 -	.607 .046 *	.000 ** .000 ** -.002 **
	* Highly significant at the 0.01 level (2-tailed)					

Table 15

 15 Summary of Wilcoxon sign-rank tests for AR and BRE of each experiment ML Methods

Table 16

 16 Summary of recommended DP combinations under different datasets and ML methodsFurther observation from Table16provides more useful knowledge of implementation of DP combinations. The DP combination should be carefully used according to the characteristics of data and the estimation method as well. All the recommendations in terms of using data preprocessing for corresponding datasets or ML-based methods in the context of SCE are listed in Table17. Notice that in Table16, only the best DP combinations are selected from the rankings in Table16. The criterion for selection is based on the ranking of the average value of MBRE, -PRED, and MdMER, shown in the 3 rd column of Table17. Note that the recommended DP combinations in Table17are denoted in the same way Table16presents. The ANOVA shows that certain DPs and DP combinations could be overall significantly effective to SCE. The result showing in Table 17 further shows which DP combinations are the most positively effective to different datasets and different ML methods. It gives us the answer to RQ5 in terms of DP techniques selection.

				CBR	ANN	CART
	Dataset	ML Methods	Error value in order	DP combination Error value in order MDT *Sca FS CS	DP combination Error value in order MDT *Sca FS CS	DP combination MDT *Sca FS CS

For specific ML method, we can see that 1-1-2-1 is a stable choice for ANN since it shows up in bold for all the three datasets used in this study. For CBR, the

Table 17

 17

	Recommended DP Combinations		
	Dataset	ML method (MBRE-PRED+MdBRE)/3	Recommended DP combinations
		CBR	-0.0467	1-3-2-2
	ISBSG	ANN	-0.0854	1-3-2-2
		CART	-0.0199	1-X*-2-2
		CBR	3.04	2-3-1-2
	Desharnais	ANN	5.32	2-3-2-2
		CART	3.10	2-X*-1-2

Table 10 presents

 10 and Table17show that for Desharnais,Kitchenham and USPFT datasets, all the best DP combinations include MI. For the dataset with high percentage of missing values, e.g. ISBSG dataset, MI may not provide accurate estimation of the missing data. In Desharnais, Kitchenham and USPFT datasets, the issue of missing values is not as critical as that in ISBSG data. MI may be a good choice for ANN based SCE in these three datasets.Further observation from Table17shows that most of the best DP combinations , the result in Table17shows that all the best DP combinations for ANN method in four datasets do not include FSS for FS. Similar situation happens when applying CS for ANN. Weigh repeatedly, we suggest not conducting FS or CS for ANN based SCE.CS should be very carefully regarded when using it into a DP combination.Observing from Table16, all the well-performed DP combinations for ISBSG, USPFT and Kitchenham data under CART contains BSS for CS. But if we take a look at the results in Table11, the prediction accuracy of CART based estimation in Kitchenham data is in average reduced by CS. From the results, we found that certain DP combinations with BSS for CS could seriously lower the accuracy of CART based SCE; therefore, the mean testing error in Table11becomes more unsatisfied. The similar situation applies to ISBSG data as well. The result in Table17shows that most of the best DP combinations in four datasets do not include BSS for CS. In conclusion, CS might only be useful for better prediction results of CBR or CART on specific datasets, and it should be conducted more carefully.

contain Null scaling scheme, except on USPFT data, the scaling scheme of [0, 1] is preferred. Observing that the most SCE studies adopt [0, 1] scheme intuitively, we recommend researchers to consider Null scaling alternatively to see if results are improved. The scaling scheme of [-1, 1] is less suggested since it does not appear in any recommended DP combinations.

Although applying FS for ANN could be overall beneficial on Desharnais data as