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Truth-revealing voting rules for large populations∗

Mat́ıas Núñez† and Marcus Pivato‡

June 23, 2016

Abstract

Deterministic voting rules are notoriously susceptible to strategic voting. We
propose a new solution to this problem for large electorates. For any deterministic
voting rule, we can design a stochastic rule that asymptotically approximates it in
the following sense: for a sufficiently large population of voters, the stochastic voting
rule (i) incentivizes every voter to reveal her true preferences and (ii) produces the
same outcome as the deterministic rule, with very high probability.
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1 Introduction

Strategic voting is a pervasive problem in social choice theory. The Gibbard-Satterthwaite
Theorem (1973, 1975) says that any nontrivial deterministic voting rule is susceptible to
strategic voting.1 However, as Gibbard (1977) noted, we can prevent strategic voting if
we incorporate some randomness into the voting rule. To see this, consider the random
dictatorship rule: each voter is asked to report a preference order, and one of these pref-
erence orders is then selected at random. It is easy to see how this rule prevents strategic
voting: each voter anticipates that, if her vote is selected, she should report her true pref-
erences, whereas in any other case, her vote is simply irrelevant. It is then a dominant
strategy for her to reveal her true preferences. However, the random dictatorship is un-
desirable, because one voter can impose an outcome even if it is the worst outcome for
every other voter. In effect, this rule removes the incentives for misrepresentation at the

∗We thank Arnaud Dellis, Klaus Nehring and M.R. Sanver for useful discussions and the Labex MME-
DII (ANR11-LBX-0023-01) for financial support. This work has also benefited from comments from several
conference and seminar audiences.
†LAMSADE, Université Paris-Dauphine, France
‡THEMA, Université de Cergy-Pontoise, France.
1This assumes an unrestricted domain of preferences. Under reasonable restrictions such as single-

peakedness, incentive-compatible voting rules do exist (see Moulin (1980) among others).
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cost of ignoring social preferences. In contrast, deterministic rules aim to reflect the “will
of the group”. We propose a compromise: a class of randomized mechanisms that ensure,
for large electorates, that the “will of the group” is represented, while at the same time
voters do not have incentives to misrepresent their opinions. How do these randomized
mechanisms work?

To illustrate, consider the Borda rule: each voter ranks each of the different alternatives,
each rank is worth a certain number of points, and the winner is the alternative with the
most points (invoking some tie-breaker rule in the event of a tie). To incentivize sincere
voting, we build a “stochastic” Borda rule as follows. Each voter is asked to declare a
complete preference order over the alternatives. The outcome is now determined through
a lottery (independent of the voters’ announcements). With probability 1 − q, we select
the winner using the (deterministic) Borda rule. However, with probability q, we use the
following random device instead:

1. First randomly choose one of the voters n and any pair of alternatives a and b.

2. If n prefers a to b, then select a. Otherwise, select b.

Consider now the behavior of a rational voter in this stochastic voting rule. Clearly,
when confronted with the random device, she has a unique dominant strategy: reveal
her true ordinal preferences. On the other hand, under the deterministic Borda rule,
she will have an incentive to misrepresent her true preferences only when her vote is
pivotal, meaning that it could modify the outcome of the election. But if the probability
of such a pivotal event is small enough relative to q, then the expected utility gain from
misrepresenting her preferences becomes negligible in comparison with the expected utility
loss of misrepresenting her preferences when confronted with the random device. Hence,
we can adequately calibrate the probability q to ensure that truth-revelation is her strictly
dominant strategy. In fact, we will let q depend on the size of the electorate; we will then
give a sufficient condition which makes pivotal events unlikely enough that truthful voting
becomes strictly dominant while q converges towards zero as the electorate grows large. In
other words, the bigger the electorate, the more probable (i) that a voter reveals her true
preferences and (ii) that the actual outcome coincides with the sincere one under Plurality
rule. Thus, with this stochastic voting rule, the “true” Plurality winner will be selected,
with very high probability.

The basic idea behind our stochastic Borda rule applies to most of the well-known
voting rules, including ordinal voting rules, cardinal voting rules (e.g. evaluative voting),
and approval voting. In each case, we will introduce a random device which is activated
with some relatively small probability. Although unlikely, these random “checks” are
enough to incentivize sincerity as long as the pivot probabilities are not too high. In each
case, we will study the asymptotic performance of the rule as the population of voters
becomes large, and show that, with very high probability, our stochastic rules will select
the same alternative that would win under the original deterministic voting rule, if the
voters had been sincere.
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The rest of this paper is organized as follows. Section 2 reviews previous literature
proposing similar truth-eliciting mechanisms. Section 3 introduces some basic notation
and terminology about voting rules and stochastic voting rules. Section 4 defines a culture
to be (roughly) the set of all beliefs that any voter could reasonably have about the voting
behaviour of the other voters. It also introduces our key hypothesis, regularity, which
states (roughly) that every voter believes that a nearly-tied vote is very unlikely. Section
5 deals with ordinal voting rules, Section 6 deals with approval voting, and Section 7 deals
with cardinal voting rules. Finally, Section 8 applies the previous results to obtain an
implementation in Bayesian Nash equilibrium. All proofs are in the Appendix.

2 Prior literature

In public finance, it is well-known that tax evasion can be reduced through random audits.
The key insight in this paper is analogous: subjecting voters to “random checks”, even
with a tiny probability, can severely curtail strategic voting in large elections. If the voter
misrepresents her preferences and her vote gets checked, then she will surely end up with a
worse outcome than if she had voted honestly. A similar idea is present in the virtual im-
plementation literature. Classical implementation theory observes that many social choice
rules are not Nash implementable, because they violate Maskin monotonicity. Virtual im-
plementation overcomes this difficulty by using random mechanisms, which are arbitrarily
close to the original ones in probability (see Jackson (2001) for a review). This imple-
mentation concept was introduced by Matsushima (1988) and Abreu and Sen (1991) and
achieves remarkable results. For example, if the voters have complete information about
one another, then any social choice rule can be virtually implemented in Nash equilibrium
(Abreu and Sen, 1991) or iterated undominated strategies (Abreu and Matsushima, 1992).
Even with incomplete information, a very large class of social choice rules can be virtually
implemented in Bayesian Nash equilibrium (Serrano and Vohra, 2005), or even robustly
virtually implemented (Artemov et al., 2013). The basic idea of virtual implementation
is that it is sufficient to obtain a very high probability of selecting a socially optimal out-
come, rather than certainty; the present paper shares this idea. But we propose a very
simple device (using “random checks”) to incentivize sincere voting, whereas most papers
in implementation use rather abstract mechanisms to obtain their strong conclusions.

Our contribution also builds on the recent literature studying asymptotic restrictions on
strategic voting as the voting population becomes large. For instance, Ehlers et al. (2004)
and Renault and Trannoy (2007, 2011) focus on the average voting rule in large populations,
while Laslier and Weibull (2013) consider the Condorcet Jury Theorem. McLennan (2011)
states an impossibility result in Poisson games, and Carroll (2013) and Azevedo and Budish
(2015) are concerned with the extent of manipulation in large environments.

Among these papers, Laslier and Weibull (2013) is the most closely related to our work.
It aims to incentivize truth-revelation in an epistemic voting model. In this model, voters
receive independent noisy signals of some unknown binary random variable. If each voter
votes honestly (according to her private signal), then the Condorcet Jury Theorem says that
simple majority vote should identify the true value, with very high probability. However,
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a strategic voter will condition her voting strategy on the event that she is a pivotal voter,
and since such an event may reveal information which is contrary to her private signal, she
may find it optimal to misrepresent her private information. Like us, Laslier and Weibull
are interested in the asymptotic behaviour of the voting rule for large populations, and
incentivize honesty by offering each voter a small probability of being a random dictator.
This probability becomes increasingly small as the population gets larger, but it is still large
enough that it outweighs the aforementioned incentive for dishonesty; thus, everyone votes
sincerely in the unique (Bayesian) Nash equilibrium. In Section 8, we will also obtain
a Bayesian Nash implementation result. However, unlike Laslier and Weibull (and the
aforementioned literature on virtual implementation), we will also consider weaker notions
of implementation which do not depend on any particular equilibrium concept from game
theory (in Sections 5, 6 and 7). In particular, we do not need to assume that each voter
has correct beliefs about the preferences and/or strategic behaviour of the other voters.
Since we intend our model to apply to social choice in very large populations, we think
that this is a much more realistic assumption about the informational environment of the
voters.

For similar reasons, McLennan (2011), Carroll (2013), and Azevedo and Budish (2015)
consider models in which each voter treats the actions of the other voters as indepen-
dent, identically distributed (i.i.d.) random variables. In such an environment, McLennan
(2011) proves a version of Gibbard (1977)’s impossibility theorem, which states that the
only anonymous, strategy-proof, Pareto optimal stochastic voting rule is the random dic-
tatorship. On a more optimistic note, Carroll (2013) argues that, even if voters can gain
by strategic misrepresentation, most of them will act sincerely if the expected gains are
too small.2 He thus proposes to quantitively measure the “susceptibility to manipulation”
of a voting rule as the maximum gain in expected utility a voter could obtain by misrepre-
sentation; he then computes the large-population asymptotics of this measure for several
common voting rules. Meanwhile, Azevedo and Budish (2015) define the “large-market
limit” of a mechanism by taking the limit as the population goes to infinity of the mech-
anism’s behaviour, as seen by a single agent who regards all other agents as independent
identically distributed (i.i.d.) random variables distributed according to some probability
distribution µ. Azevedo and Budish say the mechanism is “strategy-proof in the large”
if this infinite-population limit is strategy-proof for all µ with full support. They present
this as a unifying framework for several classic results in the mechanism design literature.

The present paper differs from the contributions by McLennan (2011), Carroll (2013),
and Azevedo and Budish (2015) in that we allow a voter’s beliefs to take the form of any
probability distribution over the other voters, not just an i.i.d. distribution. In other
words, we allow a voter to believe that the actions of the other voters are correlated. We
further differ from McLennan (2011) in that we only require the asymptotic probability of
strategic voting to become small, whereas he seeks to exclude strategic voting altogether,
and thereby gets an impossibility result. On the other hand, in contrast to Azevedo and

2Partial honesty, recently proposed in implementation by Dutta and Sen (2012), has a similar idea.
A partially honest player is one who has a strict preference for revealing her true type over lying when
truthtelling does not lead to a worse outcome than that which she obtains when lying.
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Budish (2015), we work with finite (but large) populations, rather than only considering
the infinite-population limit.

While the previous papers are in economic theory, a recent branch of the literature
on computer science has focused on similar ideas. Among these papers, Procaccia (2010)
designs strategyproof randomized voting rules that are close, in a standard approxima-
tion sense, to prominent score-based (deterministic) voting rules. His method for eliciting
preferences is quite different from ours: it chooses a voter at random and then selects an
alternative with probability proportional to the alternative’s score in the voter’s vector.
Birrell and Pass (2011) focus on a concept of “ε-strategyproofness” for large populations,
and prove that any deterministic voting can be approximated by some ε-strategyproof
randomized voting rule. Chierichetti and Kleinberg (2014) study similar issues in an in-
complete information setting à la Condorcet Jury Theorem, in which voters have common
value preferences and are uncertain about the true state of the world. Finally, Leung et al.
(2015) study a related problem under a bounded rationality approach assuming that the
voters have coarse i.i.d beliefs over the preferences of the rest of the voters. Our contribu-
tion is hence different from theirs: first, the device that induces truth-telling in our rules is
particularly simple and applies to a very large class of rules and voter beliefs; furthermore,
our main results deal with implementation, and hence are equilibrium results, whereas the
previously mentioned results do not take into account strategic considerations.

3 Voting rules

Let N denote the set of natural numbers. Let V be the set of messages which could be
sent by each voter; V could be finite or infinite. For any N ∈ N, an N -voter profile is
an element v = (vn)Nn=1 of the Cartesian power VN . Let A be a finite set of alternatives

with |A| ≥ 3. Let Ã denote the set of all A-valued random variables. (Formally, an

element of Ã is a measurable function ã : Ω−→A, where Ω is some probability space.) We

will refer to elements of Ã as random alternatives. We will consider two different sorts of
voting rules: deterministic and stochastic. A deterministic voting rule assigns a unique
alternative for every voter profile v, whereas a stochastic rule assigns a lottery over the
different alternatives.

Formally, a deterministic voting rule is a sequence F := (FN)∞N=1 where, for all N ∈ N,
FN : VN−→A is a function which assigns a unique alternative to every profile. Each FN
is assumed to be anonymous: if σ : [1 . . . N ]−→[1 . . . N ] is a permutation, and we define
v′ := (v′n)Nn=1 by setting v′n := vσ(n) for all n ∈ [1 . . . N ], then FN(v′) = FN(v). For
simplicity, we will just call F a voting rule.3 We impose no structure on V ; thus, most of
the standard voting rules are allowed in our model, including the following classes.

Ordinal Rules: Let P be the set of all possible preference orders over A. If V = P , then
we say F is an ordinal voting rule. Most of the voting rules considered in the literature
are ordinal voting rules, including the plurality rule, antiplurality rule, Borda rule, single

3Strictly speaking, F should be called a variable-population, anonymous, deterministic voting rule.
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transferable vote, etc. This class also includes rules where each voter declares her “ideal
point” on a linear domain, and preferences are assumed to be single-peaked; this includes
the median rule and the average rule (Renault and Trannoy, 2007, 2011).

Cardinal Rules: Let U := {u : A−→[0, 1]; mina∈A u(a) = 0 and maxa∈A u(a) = 1}. We
interpret the elements of U as normalized, nonconstant von Neumann-Morgenstern (vNM)
utility functions on A. Any nonconstant vNM utility function has a unique representative
in U . If V = U , then we say that F is a cardinal voting rule. Examples include the
evaluative voting rule (Dhillon and Mertens, 1999; Núñez and Laslier, 2014), the Nash rule
(which maximizes the product of the utilities), and the relative egalitarian rule of Kalai
and Smorodinsky (1975), which maximizes the minimum utility.

Scoring Rules: A scoring rule F is a voting rule where each voter n ∈ [1 . . . N ] assigns
a “score” sna ∈ [0, 1] to each alternative a ∈ A. Let Sa :=

∑N
n=1 s

n
a be the total score for

alternative a; the alternative with the highest total score wins. A well-known example
is the Approval Voting rule (Brams and Fishburn, 1983; Laslier and Sanver, 2010). But
this class also includes many ordinal rules (e.g. plurality, Borda) and cardinal rules (e.g.
evaluative voting).

A stochastic voting rule is a system F̃ := (F̃N)∞N=1 where, for all N ∈ N, F̃N : VN−→Ã is

a function which assigns a random alternative to every profile.4 Again, we assume that F̃N
is anonymous —i.e. invariant under all permutations of [1 . . . N ]. Given a (deterministic)

voting rule F , we might say that a stochastic voting rule F̃ is a good “approximation” of
F if F̃ is very likely to agree with F when the number of voters gets large enough. The
next definition formalizes this idea.

Definition. For any N ∈ N, let PN(F, F̃ ) := inf
v∈VN

Prob
[
F̃N(v) = FN(v)

]
.

We say that F̃ is asymptotically equal to F if lim
N→∞

PN(F, F̃ ) = 1.

Thus, if F̃ and F are asymptotically equal, then in a sufficiently large population, the out-
come of F̃ will be the same as the outcome of F , with very high probability, independently
of the actual profile which occurs.

4 Cultures

Our objective is to design, for every voting rule F , a stochastic rule F̃ which induces
truthful voting when the population is large, and which also delivers the same outcome
as F . To do this, we need some assumptions about what information is available to each
agent in the model.

4Equivalently, if ∆(A) is the set of all probability distributions over A, we could represent F̃N as a
function from VN into ∆(A). But the random variable representation is more convenient.
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Let ∆(A) be the set of probability distributions over A. We assume that each voter
has preferences over ∆(A), given by some vNM utility function in the set U (as defined in
Section 3), which is known only to her. The mechanism designer does not know the true
vNM utility functions of the voters. Let ρ be a probability distribution on U , describing
the designer’s beliefs about the voters: we suppose that the designer regards each voter’s
utility function as a random variable with distribution ρ.5 The designer wishes to design
a mechanism such that, for each voter, there is a high probability that this voter will find
it her optimal strategy to report her true preferences, where this probability is computed
using ρ.

Each voter does not know the preferences or voting behaviour of the other voters,
but she has some beliefs about them, given by a probability distribution on the set VN
of profiles. These beliefs might not be correct, and different voters might have different
beliefs; we do not assume any relationship between a given voter’s beliefs and reality, or
between the beliefs of different voters, or between the beliefs of the voters and those of
the mechanism designer. However, we assume that the beliefs of all voters in a population
of size N are drawn from some common set BN ; this is the set of all beliefs which any
“reasonable” person could have, given publicly available information. The key assumption
in our model can be expressed informally as follows: If N is very large, then every belief
in BN assigns an extremely low probability to a tie or near-tie occuring.

Formally, for each N ∈ N, let ∆(VN) be the set of probability distributions over VN .
Each voter’s beliefs are represented by some element β ∈ ∆(VN).6 Let BN ⊆ ∆(VN) be
the set of all possible beliefs which any voter could have about an N -voter profile. The
sequence B := (BN)∞N=1 is called a culture.

Two profiles v,v′ ∈ VN are adjacent if there exists some m ∈ [1 . . . N ] such that vn = v′n
for all n ∈ [1 . . . N ]\{m}. In other words, the two profiles only differ for voter m. A profile
v ∈ VN is nearly tied for FN if there is some adjacent profile v′ such that FN(v) 6= FN(v′).
In other words, a single voter could change the outcome, by changing her vote. Because
the rule FN is anonymous, this means that any single voter could change the outcome, by
changing her vote.

Definition. For any belief β ∈ BN , let τ(β, FN) be the probability (according to β) that
the profile will be nearly tied for FN . Let τ(BN , FN) := supβ∈BN τ(β, FN). The culture
B is regular for the rule F if lim

N→∞
N · τ(BN , FN) = 0.

Informally, τ(BN , FN) is the highest probability that any voter in a population of size N
could assign to the possibility of a nearly-tied profile (in the culture B). Intuitively, we
would expect that lim

N→∞
τ(BN , FN) = 0, reflecting the idea that, in large societies, everyone

believes that nearly-tied profiles will be extremely rare. Regularity is a slightly stronger

5Note that the designer does not suppose that these random variables are independent; indeed, we do
not assign to the designer any particular probabilistic beliefs about the profile of utility functions across
the entire population.

6We suppose that N is large enough so that the voter’s own preferences make up only a tiny part of
the profile.
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condition: it requires that τ(BN , FN)−−−−N→∞−→0 “faster than 1/N”. Note that whether or not
a culture is regular depends on the precise voting rule being used.

The well-known Impartial Culture (IC) model is obviously not regular for any neutral
voting rule.7 But IC is popular in the literature only because it is simple to define and
easy to analyse, not because it is remotely plausible as a model of a real society. Indeed,
the realism of IC has been questioned by Tsetlin et al. (2003) and Lehtinen and Kuorikoski
(2007), among others. So although our main results do not apply to IC, we do not consider
this to be a real shortcoming. We will now present examples of other, more realistic models
which do satisfy the regularity hypothesis.

Regularity for scoring rules. Let F be any scoring rule, and for any alternative a ∈ A,
recall that Sa denotes its total score. If we regard the profile of votes as a β-random variable
(for some β ∈ BN), then Sa is also a random variable. The profile is nearly tied for F
only if the top two alternatives a and b satisfy |Sa − Sb| ≤ 1, so that a single voter could
tip the balance between a to b by changing her scores. (Recall that the scores assigned to
each candidate are in [0, 1], by assumption.) For any β ∈ BN and any a, b ∈ A, let βa,b
denote the probability density function which β induces over the possible values of Sa−Sb.
Heuristically, the culture B will be regular for F if, as N→∞, the event “|Sa − Sb| ≤ 1”
receives a very small probability from βa,b, for every β ∈ BN and any a, b ∈ A, as illustrated
by the next example.

Example 1. Fix some µ0, ς > 0. For all N ∈ N, suppose that every belief β ∈ BN is such
that, for any two alternatives a, b ∈ A, there is some µ ∈ R with |µ| ≥ Nµ0 such that βa,b
is a normal probability distribution with variance N ς2 and mean N µ ∈ R. For example,
if N is large and β believes that the scores {sna ; n ∈ [1 . . . N ] and a ∈ A} are independent
random variables, then the Central Limit Theorem suggests this is a good approximation.
Then the culture B is regular for F . (This is a consequence of Proposition 2 below.) ♦

Example 1 can be generalized as follows. Let Γ : R−→R+ be any unimodal probability
density function with its mode at zero. Let (σN)∞N=1 be a sequence such that

(1.1) lim
N→∞

σN = ∞ but (1.2) lim
N→∞

σN
N

= 0. (1)

For all N ∈ N, and any µ ∈ R, let γNµ be the probability density function defined by:

γNµ (x) :=
1

σN
Γ

(
x−N µ

σN

)
, for all x ∈ R. (2)

Thus, the mode of γNµ is shifted to N µ, while the horizontal scale of γNµ is stretched by a
factor of σN , relative to Γ.

7A voting rule is neutral if it treats all alternatives the same.
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Proposition 2 Fix µ0 > 0, let (σN)∞N=1 be a sequence satisfying (1), and let (εN)∞N=1 be a
sequence such that

lim
N→∞

NεN = 0. (3)

Let F be a scoring rule, and suppose that, for all N ∈ N, every belief β ∈ BN and all

distinct a, b ∈ A, there is some µa,b ∈ R with |µa,b| ≥ µ0 such that
∥∥∥βa,b − γNµa,b∥∥∥∞ ≤ εN .

Then the culture B is regular for F .

Example 1 is obtained as a special case of Proposition 2, by letting Γ be the standard
normal distribution, and setting σN :=

√
N ς for all N ∈ N. This implies that γNµ is the

normal distribution with mean N µ and variance σ2
N = N ς2. However, Γ could be any

unimodal distribution in Proposition 2, even one with infinite variance such as a Cauchy
distribution. The coefficient σN essentially plays the role of the “standard deviation” of
a random vote distribution for a population of size N . Proposition 2 makes the plausible
assumption that σN grows sub-linearly as N→∞. Indeed, if a voter believes that the other
voters were independent random variables, then she would expect that σN = O(

√
N).

We now propose another sufficient condition for a culture to be regular. Let Γ : R−→R+

be any probability density function with ‖Γ‖∞ < ∞. Given any sequence (σN)∞N=1 and
any µ ∈ R, we define a sequence (γNµ )∞N=1 of probability density functions as in equation
(2).

Proposition 3 Let (εN)∞N=1 be a sequence satisfying condition (3), and let (σN)∞N=1 be a
sequence such that

lim
N→∞

σN
N

= ∞. (4)

Let F be a scoring rule, and suppose that, for all N ∈ N, every β ∈ BN , and all distinct

a, b ∈ A, there is some µa,b ∈ R such that
∥∥∥βa,b − γNµa,b∥∥∥∞ ≤ εN . Then the culture B is

regular for F .

To understand the difference between Propositions 2 and 3, note that Proposition 2
required each voter to believe that there is a clear asymmetry in each two-way race: µa,b
must be bounded away from zero for every pair of distinct alternatives a, b ∈ A. (Indeed, if
µ0 = 0 in Example 1, then B might not be regular for F . For instance, suppose that, for all
N ∈ N, there is some β ∈ BN with βa,b = 0; then τ(BN , FN) will decay to zero no faster than
1√
N

as N→∞.) Proposition 3 relaxes this assumption; a voter could regard all two-way

races as perfectly symmetric (i.e. µa,b could be zero for all a, b ∈ A) without jeopardizing
regularity. Proposition 3 also relaxes the unimodality assumption, but it assumes that
σN grows super-linearly as N→∞ (as in condition (4)), rather than sub-linearly (as in
condition (1.2)). This could occur, for example, if a voter believed that the other voters
were highly correlated due to “information cascades” or “herding behaviour”.

A final example in which the regularity condition involves the scores of the different
candidates being Poisson random variables. This choice is made to ease the computation
of pivot probabilities: as shown by Myerson (2000, 2002), the Poisson assumption is very
convenient since it minimizes the complexity of computing pivot probabilities.
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Example 4. Let F be a scoring rule. For each N , assume that the scores are independent
Poisson random variables and all candidates have a different expected score. Then the
culture B is regular for F (the proof is included in the appendix). ♦

While arguably this example is quite general, a remark is in order. One should note
that in order to prove the existence of a regular culture, we use Myerson’s techniques to
compute magnitudes of pivot outcomes. Yet, the assumption that the scores of the different
candidates are independent need not be satisfied in Myerson’s Poisson games. Indeed,
in Poisson games, the independence applies to the different groups of voters who choose
different ballots. Hence, whenever a voting rule allows to vote for more than one candidate,
correlation arises. This is a possible source of undesirable equilibria in these games as
shown by Núñez (2010). One could use the ballots’ erasing mistakes à la Laslier (2009)
in order to ensure independent scores for the different candidates. Another possibility
to justify this independence is to assume that the voters neglect (or understimate) this
correlation between the candidates as in the recent correlation-neglect literature (see Levy
and Razin (2015)) where some voters have information from different sources and due to
some cognitive bias ignore this correlation. As we show in the appendix, the fact that the
culture is not regular highly depends on three candidates b and c getting exactly the same
expected score. Indeed, if perturbing slightly this assumption and assuming that they get
different expected scores leads to a regular culture.

Example 5. There are three candidates A = {A,B,C} and the voting rule is the runoff
electoral system. Our example is framed in the most recent runoff election model as
suggested by Bouton (2013). It is based on Poisson games as Example 4. More precisely,
we assume that there are three types of voters: those who strictly prefer A to B and B to
C (tAB), those who strictly prefer B to A and A to C (tBA) and those who prefer C to A
and B and ar indifferent between A and C (tC).

The number of voters is drawn from a Poisson distribution and we assume that the share
of voters who rank C last represents a majority of the voters (r(tAB) + r(tBA) > 1/2) and
we let r(tAB) > r(tBA) for the sake of simplicity.

The electoral rules are as follows. In the first round (t = 1), each voter votes for one of the
candidates or abstains so that the action set of the voters is denoted by V1 = {A,B,C, ∅}.
If the candidate who ranks first obtains more than a predefined fraction, δ, of the votes,
she is the winner and no second round is held. We let δ ∈ [1/3, 1/2) but the main results
hold for any δ ≥ 1/3.8 Otherwise, the second round (t = 2) starts and each voter either
votes for one of the participating candidates or abstains. In this round, only the two
candidates who received the most votes in the first round take part. The action set of the
voters is denoted by V2 = {F, S, ∅}, where F and S respectively refer to the candidates
who ranked first and second in the first round. We refer the reader to the original model

8With just three candidates, a runoff electoral system with a threshold below δ is equivalent to plurality
voting. Since at least one candidate receives 1

3 or more of the votes, a second round is never held: the first
round always determines a winner.
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for a whole taxonomy of the different pivot outcomes that might occur on the first round
of this electoral system.

It is clear that there is no incentive problem in the second round so that every voter votes for
his most preferred candidate among the participating ones. Besides, the tC voters abstain
in the second round if C does not take part on it (this is a simplifying assumption). It
follows that the expected score vector ρ2 in the second round for the different candidates
are as follows:

when {F, S} = {A,C}: ρ2(A) = r(tAB) + r(tBA) > ρ2(C) = r(tC),
when {F, S} = {B,C}: ρ2(B) = r(tAB) + r(tBA) > ρ2(C) = r(tC) and
when {F, S} = {A,B}: ρ2(A) = r(tAB) > ρ2(B) = r(tBA).

Now, we focus on one important feature of runoff elections: the coordination problems in
the first round. Indeed, Theorem 1 in Bouton (2013) provides sufficient conditions for the
existence of Duvergerian equilibria in which all majority voters (those with type tAB and
tBA) fully coordinate on either A or B. Note that the existence of such equilibria does not
depend on whether a majority of the voters prefer A to B or B to A.

Assume that all majority voters vote for A in the first round so that ρ1(A) = r(tAB) +
r(tBA) > ρ1(C) = r(tC) (a symmetric argument applies if all coordinate on B). Since tC
voters must vote for C in equilibrium, it follows that among the different pivot outcomes
in the first round, the one which becomes infinitely more likely than the other possible
pivotal outcomes is piv1AC , that is the event in which A and C are tied and both above the
threshold. Moreover its probability equals

P [|S1
A − S1

C | ≤ 1 | Nρ] ≈
exp[N(2

√
ρ1(A)ρ1(C)− ρ1(A)− ρ1(C))]

2
√
πN
√
ρ1(A)ρ1(C)

,

where ≈ indicates that the ratio of both expressions converges to 1 as N →∞. It follows
that the culture is regular in any such Duvergerian equilibrium. ♦

Anonymous cultures. A belief β ∈ ∆(VN) is anonymous if, for any permutation
σ : [1 . . . N ]−→[1 . . . N ], and any profile v ∈ VN , we have β(v) = β(σ∗(v)), where we
define the profile σ∗(v) := (v′n)Nn=1 by setting v′n := vσ(n) for all n ∈ [1 . . . N ]. In effect,
this means that β does not identify any specific voting behaviour with any specific voter;
it only provides aggregate information about the number of voters who are likely to deploy
a particular voting behaviour. This is realistic in a large population, where a voter cannot
be expected to have individual-specific beliefs about every other voter.

In our results, we will not need to assume that voters have anonymous beliefs. However,
we could have made this assumption without loss of generality, in a sense we now explain.
Let SN be the set of all permutations of [1 . . . N ]; this set contains N ! elements. For any
belief β ∈ ∆(VN), its anonymization is the belief β∗ ∈ ∆(VN) defined as follows:

β∗(v) :=
1

N !

∑
σ∈SN

β[σ∗(v)], for all v ∈ VN .

11



It is easy to verify two things: first, β∗ is an anonymous belief, and second, τ(β∗, FN) =
τ(β, FN) (because FN is also invariant under all permutations in SN). Now, given any
culture B = (BN)∞N=1, we define its anonymization to be the culture B∗ = (B∗N)∞N=1, where,
for all N ∈ N, we set B∗N := {β∗; β ∈ BN}. It follows that τ(B∗N , FN) = τ(BN , FN) for all
N ∈ N (because the rule F is anonymous, by definition). Thus, the culture B∗ is regular
for F if and only if B is regular for F . Thus, in all the results which follow, we could have
assumed without loss of generality that we were dealing with anonymous cultures. But we
will not require this assumption.

5 Truth-revealing ordinal voting rules

Consider an election held under an ordinal voting rule F . As usual, we assume that each
voter is endowed with a vNM utility function in U , which determines a preference order
over A in the obvious way. Each voter knows her own utility function, but not those
of other voters. The mechanism designer does not know any of their utility functions.
The designer’s problem is that voters might not disclose their true ordinal preferences
when participating in F . We will now design a stochastic ordinal voting rule F̃ which
is asymptotically equal to F , but which is also asymptotically ordinally truth-revealing.
Roughly speaking, this means that, according any beliefs that a designer could entertain
about the utility functions of the voters, it is highly likely that any voter in a sufficiently
large population will find optimal to reveal her true preferences over A, regardless of her
beliefs about the other voters.

To be precise, let ρ ∈ ∆(U) be a probability measure, describing the beliefs of the
designer. This designer does not know the true vNM utility function of the voters, so
she regards them as ρ-random variables (not necessarily independent). For simplicity, we

will say they are ρ-random voters. Let F̃ be a stochastic ordinal voting rule, and let B =
(BN)∞N=1 be a culture. For any N ∈ N and any β ∈ BN , let Tr(β, ρ, F̃N) be the ρ-probability
that a ρ-random voter will find it optimal, in sense of maximizing expected utility, to
reveal her true preference order over A in the voting rule F̃ . Finally, let Tr(BN , ρ, F̃N) :=

inf
β∈BN

Tr(β, ρ, F̃N).

Definition. For any culture B = (BN)∞N=1, the rule F̃ is asymptotically ordinally truth-

revealing for B if lim
N→∞

Tr(BN , ρ, F̃N) = 1 for all ρ ∈ ∆(U).

Note that the probability Tr(β, ρ, F̃N) describes the beliefs of a mechanism designer (not

a voter), since it is computed using the designer’s probability distribution ρ. If the rule F̃
is asymptotically ordinally truth-revealing, then any designer will believe that each voter
in a large enough population will, with very high probability, find it optimal to reveal
her true ordinal preferences, regardless of her beliefs about the other voters. Thus, with
very high probability, most of the voters in a large population will vote honestly. A small
number of voters might vote dishonestly (either because they are irrational or because
this is actually their optimal strategy), but this small number is unlikely to be enough to
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change the outcome of the vote. Our first main result says that, for any regular culture,
any ordinal voting rule can be asymptotically approximated by a stochastic ordinal voting
rule which is asymptotically ordinally truth-revealing.

Theorem 6 Let F be any ordinal voting rule. Let B be any regular culture for F . Then
there is a stochastic ordinal voting rule F̃ which is asymptotically equal to F , and which is
asymptotically ordinally truth-revealing with respect to B.

The rule F̃ in Theorem 6 works roughly as follows. With a very high probability, F̃N
yields exactly the same outcome as FN . However, with a tiny probability qN , the rule
F̃N instead selects a random voter n and two random alternatives a and b, and makes n
the “dictator” in the choice between a and b. If voter n stated that she prefers a over
b, then a is chosen; otherwise, b is chosen. Obviously, such a “random dictatorship” will
likely produce a socially suboptimal outcome. But since qN is tiny (and becomes smaller
as N gets large), the probability of such a suboptimal outcome occuring is very small; with

very high probability (i.e. 1− qN), the rule F̃N will agree with FN . Nevertheless, the tiny
possibility that she might be the random dictator is enough to incentivize voter n to express
her true ordinal preferences. The reason is that her optimal voting strategy is determined
only by the cases where her vote could make a difference: namely, the case where the
profile is nearly tied, and the case where she is the random dictator. If N is large, then the
probability that n is chosen as a random dictator, although tiny, is still much larger than
the probability of a nearly-tied profile according to her beliefs (as specified by the culture
B). Thus, n’s optimal strategy is driven by the “random dictatorship” case (where it is
best for her to be honest), rather than the “nearly tied” case (where it might be optimal
to be dishonest).

The next example illustrates in a Poisson game the notion of regular culture and the
stochastic rule that the previous Theorem allows us to design.

A Numerical Example. Let A = {a, b, c} and assume that the voters are divided
into two groups: the A-voters ones who prefer a to b and b to c and the rest (B-voters)
who prefer a to c and c to b so that

Type Utility Electorate Share

A (10,x,0) α
B (10,0,y) 1− α

with 0 < x, y < 10. This example is used in Myerson (2002) to show the vulnerability
of Plurality voting to focal manipulation. Assume that the number of voters is a Poisson
random variable of parameter N (where N denotes the expected siez of the electorate), it
follows that the number of A-voters (resp. B-voters ) is drawn from a Poisson distribution
of parameter Nα (resp. n(1− α)).

When the voting rule is Plurality, there is an equilibrium in which the A-voters vote
for b and the B-voters for c so that in expectation both b and c are expected to tie for first
place. In this equilibrium, the most likely pivot arises between candidates b and c.
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Note that if α = 1/2, then the probability of this pivot event is equivalent to

1

2

√
πN
√

1
4

whenN →∞,

applying Myerson (2000)’s estimation for these probabilities (formula 5.3 p.25). Therefore,
the culture is not regular since lim

N→∞
N ·τ(BN , FN) = +∞. On the contrary, when α 6= 1/2,

the culture is regular. Since, the previous formulas are limit estimations of this probability
for N large enough, for a precise N , one needs to derive the precise probabilities of the
pivot outcome. But this is rather simple in Poisson games as shown by Myerson (1998).

Indeed, for each given N , the probability pc that an additional vote for c changes the
outcome (by creating a tie or by breaking it) equals

∞∑
k=0

(
e−Nα(Nα)k

k!
)(
e−N(1−α)(N(1− α))k

k!
)(1 +

Nα

k + 1
)(

1

2
),

whereas the probability pb of having the same impact when voting for b equals

∞∑
k=0

(
e−Nα(Nα)k

k!
)(
e−N(1−α)(N(1− α))k

k!
)(1 +

N(1− α)

k + 1
)(

1

2
),

Set α = 0.45, the following formula shows the probabilities for several values of n

N pc pb

1000 8×10−5 8× 10−5

10000 6.47× 10−25 7.16× 10−25

100000 2.44× 10−221 2.7× 10−221

1000000 4.49× 10−2181 4.96× 10−2181

whereas when α = 1/3,

N pc pb

1000 1.61×10−27 2.27× 10−27

10000 1.47× 10−251 2.08× 10−251

100000 1.87× 10−2487 2.65× 10−2487

1000000 6.71× 10−24842 9.5× 10−24842

Now, in order to build the stochastic rule F̃ that is asymptotically equal to F and
asymptotically ordinally-truth revealing, it suffices to set qN = min{1,

√
N ∗ sup{pb, pc}}

to do so (as argued in the proof of the Theorem). It is therefore clear that that the
probabilities of applying the device are infinitesimal when the population size is relatively
small. For instance, with N = 10000 and α = 0.45, it follows that qN = 8.46 × 10−11

whereas when α = 1/3, qN is as low as 4.56× 10−124.
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6 Truth-revealing approval voting rules

Now that we have shown how to elicit honesty ordinal voting rules, we will apply a similar
technique to approval voting. But first we need some notation. Let V0 := {v : A−→{0, 1};
v(a) = 0 and v(b) = 1 for some a, b ∈ A} be the set of all “binary utility functions”. A
binary voting rule is a sequence F = (FN)∞N=1, where FN : VN0 −→A for all N ∈ N. Likewise,

a stochastic binary voting rule is a sequence F̃ = (F̃N)∞N=1, where F̃N : VN0 −→Ã, for all N ∈
N. The most well-known binary voting rule is the approval voting rule, which simply selects
the alternative a having the highest approval score

∑N
n=1 vn(a), with some tie-breaking rule

in the event of a tie (Brams and Fishburn, 1983). There is no universally agreed definition
of “honesty” in approval voting, beyond the minimal criterion that v(a) ≥ v(b) whenever
the voter prefers a over b. We will adopt the following criterion. Given a cardinal utility
function u ∈ U , a binary signal v ∈ V0 is truthful for u if it endorses only alternatives whose
utilities are above average, according to u. Formally:

For all a ∈ A,
(
u(a) > u

)
=⇒

(
v(a) = 1

)
(5)

while
(
u(a) < u

)
=⇒

(
v(a) = 0

)
, where u :=

1

|A|
∑
a∈A

u(a).

Note that, if u(a) = u, then both v(a) = 0 and v(a) = 1 are considered truthful.
The definition of sincerity under approval voting is far from obvious, because there is no

natural way of transforming each possible utility function for a voter into a unique signal
in V , as with most other voting rules such as plurality or Borda. Merill and Nagel (1987)
discuss several notions of sincerity in approval voting (see Núñez (2014) for a strategic
analysis of these concepts in a Poisson game). Among these definitions, the least restrictive
one is no-skipping sincerity, which requires that if a voter approves of some alternative x,
then he also approves of all the alternatives that he prefers to x. All the definitions
suggested by Merill and Nagel (1987) respect no-skipping sincerity, and so does ours. In
particular, the one we have chosen (approving of all the alternatives better than the average
utility) is called Pure Sincerity by Merill and Nagel. This choice is made only for simplicity
and illustration purposes. By a slight modification of the design, we can also construct
asymptotically truth-revealing voting rules which implement of Expansive and Restrictive
Sincerity.9

Let ρ be the probability distribution over U describing the designer’s beliefs about the
utility functions of the voters. Our goal is to construct a stochastic binary voting rule
such that it is highly probable (according to ρ) that any voter will find optimal to vote
truthfully in the sense of definition (5), regardless of her beliefs about the other voters.

Let F̃ be a stochastic binary voting rule, and let B = (BN)∞N=1 be a culture. Let
ρ ∈ ∆(U) be a probability distribution (representing the possible beliefs of a mechanism

designer). For any N ∈ N, and any β ∈ BN , let Tr(β, ρ, F̃N) be the ρ-probability that a
ρ-random voter with beliefs β will find it optimal (in the sense of maximizing expected

9In Merill and Nagel’s terminology, Expansive (resp. Restrictive) Sincerity requires a voter to approve
of a strict superset (resp. subset) of the Pure Sincerity set, while still satisfying the no-skipping condition.
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utility) to vote truthfully in the voting rule F̃ , given that her vNM utility function is a

ρ-random variable. Let Tr(BN , ρ, F̃N) := inf
β∈BN

Tr(β, ρ, F̃N).

Definition. For any culture B = (BN)∞N=1, the rule F̃ is asymptotically binarily truth-

revealing for B if lim
N→∞

Tr(BN , ρ, F̃N) = 1 for all ρ ∈ ∆(U).

Our next result says: for any regular culture, we can asymptotically approximate approval
voting by a stochastic binary voting rule which is asymptotically binarily truth-revealing.

Theorem 7 Let B be any regular culture for approval voting. There is a stochastic binary
voting rule F̃ which is asymptotically equal to approval voting, and which is asymptotically
binarily truth-revealing for B.

7 Truth-revealing cardinal voting rules

Let F be a cardinal voting rule. We want to design a stochastic cardinal voting rule
which asymptotically approximates F , and such that for any voter in a large population,
it is highly probable that this voter will find it optimal to reveal her true utility function,
regardless of her beliefs about the other voters. First, we need some notation. Let F̃
be a stochastic cardinal voting rule, and let B = (BN)∞N=1 be a culture. Let ρ ∈ ∆(U)
be a probability distribution (representing the beliefs of a mechanism designer). For any

N ∈ N, any belief β ∈ BN , and any ε > 0 let Trε(β, ρ, F̃N) be the ρ-probability that a voter
with beliefs β and a ρ-random utility function ũ will find it optimal (in the sense that it
maximizes her expected utility) to declare a vNM function u′ such that ‖ũ− u′‖∞ < ε.

Let Trε(BN , ρ, F̃N) := inf
β∈BN

Trε(β, ρ, F̃N).

Definition. For any culture B and ρ ∈ ∆(U), the rule F̃ is asymptotically cardinally

truth-revealing with respect to B and ρ if lim
N→∞

Trε(BN , ρ, F̃N) = 1 for all ε > 0.

If F̃ is asymptotically cardinally truth-revealing, then the designer believes that any voter
in a large enough population will, with very high probability, find it optimal to reveal
something very close to her true vNM utility function, regardless of her beliefs about the
other voters. Thus, with very high probability, most of the voters in a large population
will vote honestly (modulo an ε-sized error, which can be made arbitrarily small).

We will also need to introduce a weakened notion of “asymptotic equality”. Let F =
(FN)∞N=1 and G = (GN)∞N=1 be two cardinal voting rules. For any ε > 0 and N ∈ N,
we will say that GN is ε-similar to FN if, for any utility profile u ∈ UN , there is some
profile u′ ∈ UN with ‖u′ − u‖∞ < ε such that GN(u) = FN(u′). In other words, applying
the rule GN to the profile u is equivalent to applying FN to some profile u′ which is an
“ε-perturbation” of u. Heuristically, this means that FN and GN will agree “most of the
time” (i.e. unless the profile u is ε-close to a boundary between two outcomes). We will
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say that G is asymptotically similar to F if, for any ε > 0, there is some Nε ∈ N such that
GN is ε-similar to FN for all N ≥ Nε. This means that, for large populations, F and G
will almost always produce the same outcome. (Indeed, in practice, the utility functions
of the voters can only be recorded with finite precision anyways; thus, in a large enough
population, it would be practically impossible to distinguish between F and G.) Finally,

let F̃ = (F̃N)∞N=1 be a stochastic cardinal voting rule. We say that F̃ is asymptotically

similar to F if there is some (deterministic) cardinal voting rule G = (G)∞N=1 such that F̃
is asymptotically equal to G, and G is asymptotically similar to F .

We will also need to slightly strengthen the regularity requirement on the culture. Let
ε > 0, and let ṽ, ũ be two random utility profiles in UN ; we will say that ṽ is an ε-distortion
of ũ if ‖ṽ − ũ‖∞ < ε almost surely. Given two probabilistic beliefs β, β′ ∈ ∆(UN), we
say that β and β′ are ε-close if β is the probability distribution of a random utility profile
ũ, and β′ is the probability distribution of another random utility profile ṽ which is an
ε-distortion of ũ. Finally, let B = (BN)∞N=1 be a culture. For any ε > 0 and any N ∈ N,
we define

B(ε)
N :=

{
β′ ∈ ∆(UN) ; β′ is ε-close to some β ∈ BN

}
. (6)

In other words, B(ε)
N is the set of all probabilistic beliefs which a voter could have about the

voting behaviour of the other voters, if her belief about the true profile of utility functions
was some β ∈ BN , but she also believed that the profile of utility functions actually
reported would be some ε-distortion of the true profile of utility functions. Finally, define
B(ε) := (B(ε)

N )∞N=1. We will say that the culture B is robustly regular there is some ε > 0 such
that the culture B(ε) is regular for the voting rule F . This means that, if any voter in a
large population expects that the profile of utility functions actually reported by the other
voters will be an ε-distortion of the true profile of utility functions, then she will estimate
the probability of a near-tie to be extremely small. Note that any robustly regular culture
is regular (because BN ⊆ B(ε)

N for all N ∈ N and ε > 0). Our next result says that for any
beliefs ρ and any robustly regular culture, any cardinal voting rule can be approximated by
an asymptotically similar stochastic cardinal voting rule which is asymptotically cardinally
truth-revealing.

Theorem 8 Let F be any cardinal voting rule, let ρ be any probability distribution on
U , and let B be any robustly regular culture for F . Then there is a stochastic cardinal
voting rule F̃ which is asymptotically similar to F , and which is asymptotically cardinally
truth-revealing with respect to B and ρ.

Remark: We could extend Theorem 8 to the case where ρ is replaced by some finite
(or even countable) set of priors.

The rule in Theorem 8 is somewhat more complicated than the rule in Theorems 6
and 7. For any ε > 0, we first construct a stochastic cardinal voting rule F̃ ε which is
“asymptotically ε-similar” to F and “asymptotically ε-truth revealing”, in the sense that
it incentivizes each voter to reveal something within ε of her true utility function. To
construct F̃ ε, we approximate the set ∆(A) of all lotteries over A with a finite set Aε,
consisting of all lotteries involving exactly two alternatives and probabilities which are
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integer multiples of ε.10 A voter’s vNM utility function on A is determined, up to an
ε-sized error, by her ordinal preferences over Aε. We can then elicit the voters’ ordinal
preferences over Aε by constructing an asymptotically ordinally truth-revealing voting rule
F̃ ε = (F̃ ε

N)∞N=1, using Theorem 6. Finally, let {εm}∞m=1 be a sequence tending to zero; we

define the stochastic rule F̃ = (F̃N)∞N=1 by constructing a suitable diagonal sequence of the

two-dimensional array (F̃ εm
N )∞N,m=1.

8 Asymptotic Bayesian Nash implementation

Theorems 6, 7, and 8 assumed that the voters’ beliefs were drawn from a “culture” B but
they did not endogenize these beliefs as part of an equilibrium; thus, they were not standard
implementation results. However, we will now show how special cases of these theorems
yield truth-revealing Bayesian Nash equilibrium implementations in large populations. To
do so, we must first build a Bayesian voting game in our framework.

Types. We will assume that each voter has a type, which is known only to her, and
which determines both her utility function and her beliefs about the other voters. A voter
of type t will simply be called a t-voter. For all N ∈ N, and all m ∈ [1 . . . N ], let T Nm be
the set of possible types for the mth voter in a population of size N . These sets could be
finite or infinite. For simplicity, we will assume that the type-sets of different voters are
disjoint —i.e. T Nn ∩T Nm = ∅ for any distinct n,m ∈ [1 . . . N ]. (This simplifies notation but
does not alter our results.) For all m ∈ [1 . . . N ], and all t ∈ T Nm , let ut ∈ U be the vNM
utility function of a t-voter.

Let T N :=
∏N

m=1 T Nm . An element t = (tn)Nn=1 ∈ T N will be called a type profile for a
population of size N . Given any type profile t ∈ T N , we define the corresponding utility
profile ut := (utn)Nn=1 ∈ UN .

Beliefs. Let N ∈ N. For any voter m ∈ [1 . . . N ], the set

T N
−m :=

N∏
n=1
n 6=m

T Nn

represents the set of possible type-profiles of all the other voters. For any t ∈ T Nm , let πt ∈
∆(T N

−m), be a probability distribution, representing the beliefs of a t-voter about the pos-
sible types of all the other voters. The data sN :=

[
(t, ut, πt); m ∈ [1 . . . N ] and t ∈ T Nm

]
will be called a community of size N . The sequence S := (sN)∞N=1 will be called a society.11

10For example, if ε = 1
5 , then these would be lotteries over some pair {a, b} of alternatives, where

p(a) ∈ {0, 15 ,
2
5 ,

3
5 ,

4
5 , 1}, and p(b) = 1− p(a).

11In most Bayesian game models, all players share a common prior probability π ∈ ∆(T N ), and the
type-t belief πt is obtained by Bayesian updating of π conditional on t. But we do not need to assume
this. Also, since we are interested only in anonymous voting rules on very large populations, it would be
reasonable to suppose that the community sN is invariant under all permutations of [1 . . . N ], so that all
voters are, in effect, ex ante indistinguishible. But we do not need to assume this, either.
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Bayesian Game. Let F̃ = (F̃N)∞N=1 be a stochastic voting rule using some set V of

signals. Thus, for all N ∈ N, we have a function F̃N : VN−→Ã. The ordered pair
GN := (F̃N , s

N) defines an N -player Bayesian game: each voter’s strategy space is V ,

the outcome is determined by applying F̃N to obtain a random alternative in Ã, and the
possible types, beliefs, and utility functions the voters are determined by sN . For any
m ∈ [1 . . . N ], a (pure) voting strategy for voter m in GN is a function Vm : T Nm −→V . A
strategy profile in GN is an N -tuple V = (Vn)Nn=1. Given any strategy profile V and type
profile t = (tn)Nn=1 ∈ T N , we obtain a vote profile V(t) := (vn)Nn=1 by setting vn := Vn(tn)
for all n ∈ [1 . . . N ].

Given a strategy profile V, each voter-type can compute the probability that any
particular profile of votes will occur. For any voter m ∈ [1 . . . N ] and type tm ∈ T Nm ,
let ptm ∈ ∆(VN) describe the beliefs of a tm-voter about the vote profile that will occur
given V. Formally, for any possible vote profile v ∈ VN , if vm = Vm(tm), then we define

ptm(v | V) := πtm
{
t−m ∈ T N

−m ; Vn(tn) = vn, for all n ∈ [1 . . . N ] \ {m}
}
, (7)

whereas ptm(v | V) := 0 if vm 6= Vm(tm). In other words, ptm(· | V) represents the beliefs
of a tm-voter that the vote profile equals v given her beliefs πtm over the types of the rest
of the voters and the strategy profile V. For short, we write simply ptm(v).

Equilibrium. A strategy profile V is a (pure strategy) Bayesian Nash Equilibrium for the
game GN if, for all m ∈ [1 . . . N ] and all types tm ∈ T Nm , the vote Vm(tm) is type tm’s best
response, in the sense that it maximizes the expected value of utm given the beliefs ptm
defined by (7). In other words: each voter-type’s strategy is optimal given her beliefs, while
at the same time, her beliefs correctly account for the strategies of the other voter-types.
For all N ∈ N, let VN be a strategy profile for F̃N . The sequence V := (VN)∞N=1 is an
eventual Bayesian Nash equilibrium for the sequence (GN)∞N=1 if there is some N0 ∈ N such
that, for all N ≥ N0, the strategy profile VN is a Bayesian Nash equilibrium of the game
GN .

Asymptotic implementation. Let F = (FN)∞N=1 be a voting rule, and let F̃ = (F̃N)∞N=1

be a stochastic voting rule. We will now define what it means for F̃ to implement F in
Bayesian Nash equilibrium, for sufficiently large populations. The definitions for ordinal
voting rules and cardinal voting rules are slightly different, so we treat them separately.

First, suppose F is a cardinal voting rule. Let N ∈ N, and fix a community s of size N .
For any strategy profile VN for F̃N , and any type profile t ∈ T N , let Pt(F̃N , FN , s,V

N) be

the probability that F̃N [VN(t)] = FN(ut).
Now suppose F is an ordinal voting rule. Thus, V is the set of all possible preference

orders over A. Let N ∈ N, and fix a community s of size N . For any type profile t ∈ T N ,
let v∗t ∈ VN be the profile of preference orders defined by the utility profile ut. For any

strategy profile VN for F̃N , we now define Pt(F̃N , FN , s,V
N) to be the probability that

F̃N [VN(t)] = FN(v∗t).
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Finally, when F is either ordinal or cardinal, and VN is a strategy profile for F̃N , we
define

P (F̃N , FN , s,V
N) := inf

t∈T N
Pt(F̃N , FN , s,V

N). (8)

Definition. Let S = (sN)∞N=1 be a society. The rule F̃ asymptotically implements F
in Bayesian Nash equilibrium for the society S if there is an eventual Bayesian Nash
equilibrium V = (VN)∞N=1 for the pair (F̃ ,S) such that lim

N→∞
P (F̃N , FN , s

N ,VN) = 1.

First, we will give a sufficient condition for the asymptotic implementation of ordinal voting
rules; then we will turn to cardinal rules. For any voter m ∈ [1 . . . N ] and any possible
type tm ∈ T Nm , let v∗tm ∈ V denote the preference order induced by the utility function utm .
Then define the probability distribution βtm ∈ ∆(VN), as follows: for any other preference
profile v = (vn)Nn=1 ∈ VN

βtm(v) :=

{
πtm
{
t ∈ T N

−m ; v∗tn = vn for all n ∈ [1 . . . N ] \ {m}
}

if v∗tm = vm;
0 otherwise

(9)

In other words, βtm is the probabilistic beliefs of a type-tm voter about the true preference
profile of the whole population (including herself). For all N ∈ N, let

BN :=
{
βt ; t ∈ T Nm for some m ∈ [1 . . . N ]

}
⊆ ∆(VN). (10)

Then define BS := (BN)∞N=1. In other words, BS is the (ordinal) culture determined by all
possible beliefs which could be held by any voter of any type in the society S, about the
true preference profile of the other voters.

Meanwhile, let US := {ut; t ∈ T Nm for some N ∈ N and some m ∈ [1 . . . N ]}. In other
words, US is the set of all possible vNM utility functions for any voter of any type, in
any size of population. For any utility function u ∈ US, define γ(u) := min{|u(a)− u(b)|;
a, b ∈ A and u(a) 6= u(b)}. We say that the society S is F -regular if the culture BS is
regular for F , and there exists some ε > 0 such that, for any u ∈ US, we have γ(ut) > ε.
For example, if the set of voter types is finite (a common assumption in the literature) and
all voter types have strict preferences, then the condition on γ is automatically true.

Theorem 9 Let S be a society. Let F be an ordinal voting rule, and let F̃ be the stochastic
voting rule from Theorem 6. If S is F -regular, then F̃ asymptotically implements F in
Bayesian Nash equilibrium for the society S.

We will now give a sufficient condition for the asymptotic implementation of a cardinal
voting rule. Fix a society S. For any voter m ∈ [1 . . . N ] and any possible type tm ∈ T Nm ,
define the probability distribution βtm ∈ ∆(UN), as follows: for any utility profile w ∈ UN

βtm(w) :=

{
πtm
{
t ∈ T N

−m ; utn = wn for all n ∈ [1 . . . N ] \ {m}
}

if wm = utm ;
0 otherwise

(11)
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In other words, βtm is the probabilistic beliefs of a type-tm voter about the true utility
profile of the whole population (including herself). For all N ∈ N, let

BN :=
{
βt ; t ∈ T Nm for some m ∈ [1 . . . N ]

}
⊆ ∆(UN). (12)

Then define BS := (BN)∞N=1. In other words, BS is the culture determined by all possible
beliefs which could be held by any voter of any type in the society S, about the true utility
profile of the other voters. We will say that the society S is F -regular if:

(R1) US is finite;

(R2) The culture BS is robustly regular for the voting rule F ; and

(R3) There is some ε > 0 and N0 ∈ N such that, for any N ≥ N0 and any type profile
t ∈ T N , we have FN(v) = FN(ut) for all v ∈ UN with ‖v − ut‖∞ < ε.

The meanings of (R1) and (R2) are clear. Condition (R3) says that, in a large population,
the outcome of the voting rule will be robust under ε-distortions, for any type profile.

Theorem 10 For any cardinal voting rule F , and F -regular society S, there is a stochastic
voting rule that asymptotically implements F in Bayesian Nash equilibrium for S.

Through similar techniques, we can state and prove an asymptotic Bayesian Nash
implementation result for approval voting, using the definition of “truthful” given in Section
6. We leave the details to the reader.

9 Concluding Remarks

A well-known shortcoming of (deterministic) voting rules is that they fail to incentivize
the voters to reveal their true preferences. Indeed, the existence of pivot events in which a
single voter might determine the winner’s identity combined with the voters’ anticipations
inevitably leads to situations in which the rational voter is forced to lie about his true
preferences in order to achieve his most preferred outcome.

This work proposes to solve this incentives’ problem by allowing for randomization.
More precisely, it designs for each deterministic voting rule, a stochastic version of it.
Asymptotically, this stochastic rule coincides with the deterministic voting rule with an
arbitrarily large probability whereas with some arbitrarily low but positive probability,
a truthtelling device is activated that selects a pair of alternatives and implements the
preferred one for some randomly selected voter. When the number of voters is large
enough, this stochastic rule both incentivizes the voters to reveal their true type and
ensures that the sincere outcome under the deterministic voting rule occurs almost surely.
This stochastic rule achieves both objectives provided that the culture (or the beliefs) is
regular so that pivot events are not too likely.

A fair criticism that can be made to our approach is that with some probability, the
outcome coincides with the one of a random dictatorship. First, it should be noted that
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this event can occur with some arbitrarily low probability so that it almost never occurs.
Second, if we use a ”random oligarchy” rather than a ”random dictator” device, then the
outcome has more democratic legitimacy. Indeed, if the device selects a pair of alternatives
and a (moderately large) sample of voters, then this sample would (with high probability)
be a statistically representative sample of the society, so the outcome would probably
agree with the majority choice (at least, over the selected pair of alternatives). This
stochastic rule would also depend on a culture, which describes each voter’s beliefs about
the likelihood of being pivotal in the large election. With the ”random oligarchy” approach,
one needs to expand the data stored in this culture, to also include the voter’s beliefs about
her chances of being pivotal in a random oligarchy (the voter needs to estimate both her
(small) chance of being pivotal in the oligarchy, in addition to her (small) chance of being
part of the oligarchy at all). Since they would require additional layers of complexity while
leaving most of the intuition unchanged, we prefer to leave the random oligarchy idea for
future research.

Appendix: Proofs

Proof of Proposition 2. We are interested in the asymptotic behaviour of N · τ(BN , FN) as
N→∞. So we can assume without loss of generality that N ≥ 1

µ0
. Let β ∈ BN ; thus, β is

a probability distribution over VN , the set of N -voter profiles. Let s̃ := (s̃na ; n ∈ [1 . . . N ]

and a ∈ A) be a β-random profile of N voters. For all a ∈ A, let S̃a :=
∑N

n=1 s̃
n
a be the

total score of alternative a in this profile; this is a random number. Fix some alternatives
a, b ∈ A. Without loss of generality, suppose µa,b > 0 (the other case is analogous). Thus,
N µa,b ≥ N µ0 ≥ 1 (because N ≥ 1

µ0
by assumption). Let τa,b(β, FN) be the β-probability

that s̃ is a nearly-tied profile having a and b as its two top candidates. Then

τa,b(β, FN) ≤ Prob
[
|S̃a − S̃b| ≤ 1

]
=

∫ 1

−1
βa,b(x) dx (A1)

≤ 2
∥∥∥βa,b − γNµa,b∥∥∥∞ +

∫ 1

−1
γNµa,b(x) dx

≤ 2εN +

∫ 1

−1
γNµa,b(x) dx = 2εN +

1

σN

∫ 1

−1
Γ

(
x−N µa,b

σN

)
dx

≤ 2εN +
2

σN
sup

x∈[−1,1]
Γ

(
x−N µa,b

σN

)
≤
(∗)

2εN +
2

σN
Γ

(
1−N µ0

σN

)
.

Here, (∗) is because Γ is unimodal with its mode at zero, and hence, nondecreasing on
(−∞, 0], while 0 ≥ 1 − N µ0 ≥ x − N µa,b for all x ∈ [−1, 1], because µ0 ≤ µa,b and
N ≥ 1

µ0
. Summing inequality (A1) over all pairs {a, b} ⊆ A, we obtain

τ(β, FN) ≤
∑
a,b∈A
a6=b

τa,b(β, FN) ≤ A(A− 1)

2

[
2εN +

2

σN
Γ

(
1−N µ0

σN

)]
. (A2)
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Let K := A(A−1). Taking the supremum of inequality (A2) over all β ∈ BN , we obtain:

τ(BN , FN) ≤ K

(
εN +

1

σN
Γ

(
1−N µ0

σN

))
.

Thus, lim
N→∞

N · τ(BN , FN) ≤ K lim
N→∞

NεN + K lim
N→∞

N

σN
Γ

(
1−N µ0

σN

)
(a)

0 + K lim
N→∞

(
N

1−N µ0

)(
1−N µ0

σN

)
Γ

(
1−N µ0

σN

)
= K

(
lim
N→∞

N

1−N µ0

)
·
(

lim
N→∞

1−N µ0

σN
Γ

(
1−N µ0

σN

))
(b)

−K
µ0

· lim
x→−∞

x · Γ(x)
(c)

0,

as desired. Here, (a) is by hypothesis (3). Meanwhile, (b) is the change of variables

x := 1−N µ0
σN

, using condition (1.2) to obtain lim
N→∞

1−N µ0

σN
= −∞. Finally, (c) is

because Γ is integrable, so that lim
x→−∞

x · Γ(x) = 0, concluding the proof. 2

Proof of Proposition 3. Let G := ‖Γ‖∞; then G <∞ by hypothesis. Let β ∈ BN , and let
a, b ∈ A. We have

τa,b(β, FN) ≤
(∗)

2εN +
2

σN
sup

x∈[−1,1]
Γ

(
x−N µa,b

σN

)
≤ 2εN +

2G

σN
.

where the proof of (∗) is exactly the same as the first few steps in inequality (A1). Thus,
as in inequality (A2), we obtain

τ(β, FN) ≤
∑
a,b∈A
a6=b

τa,b(β, FN) ≤ A(A− 1)

2

(
2εN +

2G

σN

)
. (A3)

Let K := A(A−1). Taking the supremum of inequality (A3) over all β ∈ BN , we obtain:

τ(BN , FN) ≤ K

(
εN +

G

σN

)
.

Thus, lim
N→∞

N · τ(BN , FN) ≤ K lim
N→∞

NεN + K lim
N→∞

NG

σN (∗)
0 + 0 = 0,

as desired. Here, (∗) is by hypotheses (3) and (4). 2
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Proof of Theorem 6. For any utility function u ∈ U , let γ(u) := min{|u(a) − u(b)|;
a, b ∈ A and u(a) 6= u(b)}. In other words, γ(u) is the minimum utility gap between two
nonindifferent alternatives.

For any preference order p ∈ P , let g(p) ∈ ∆(A) be the probability distribution
describing the outcome of the following random procedure:

1. Choose two distinct alternatives a, b ∈ A uniformly at random.

2. If a �p b, then select a. Otherwise select b.

This defines a function g : P−→∆(A). Our first claim says that g is “truth-revealing”
in the following sense: if a single voter is told that the outcome will be decided by the
preference order she feeds into g, then honesty is the unique policy which maximizes her
expected utility.

Claim 1: Let u ∈ U be any utility function, with ordinal preferences p ∈ P . Then for
any other preference order p′ ∈ P , we have Eu[g(p)]− Eu[g(p′)] ≥ 2

A(A−1)γ(u).

Proof. Let L(p′) be the set of all pairs {a, b} for which p′ disagrees with p. Let {a, b}
be the pair randomly chosen in Step 1 of the procedure defining g. If {a, b} 6∈ L(p′),
then p and p′ yield the same outcome in Step 2. (Unless both p and p′ are indifferent
between a and b, in which case they might yield different outcomes, but with the same
utility.) But if {a, b} ∈ L(p′), then p and p′ yield opposite outcomes in Step 2, and
the outcome-utility of p′ is at least γ(u) less than the outcome-utility of p. There are
A(A−1)

2
pairs, so the probability of any particular pair being chosen is 2

A(A−1) . Thus,

Eu[g(p)]− Eu[g(p′)] = 2
A(A−1)

∑
{a,b}∈L(p′) |u(a)− u(b)| ≥ 2

A(A−1)γ(u). 3 Claim 1

We now define a stochastic voting rule G̃ through the following random procedure. For
any N ∈ N, and any ordinal preference profile p = (pn)Nn=1 ∈ PN :

1. Let ñ ∈ [1 . . . N ] be a uniformly distributed random voter.

2. Randomly select an alternative according to the distribution g(pñ).

From Claim 1, it is easy to see that G̃ is truth-revealing. Let (qN)∞N=1 be a sequence

of real numbers in the interval [0, 1]. Consider the stochastic voting rule F̃ defined as
follows. For any N ∈ N, and any ordinal profile p ∈ PN :

• With probability 1− qN , set F̃ (p) := F (p).

• With probability qN , let F̃ (p) := G̃(p).

Claim 2: If lim
N→∞

qN = 0, then F̃ is asymptotically equal to F .

Proof. Clearly, PN(F, F̃ ) ≥ 1− qN . The claim follows. 3 Claim 2
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Claim 3: If lim
N→∞

N · τ(BN , FN)

qN
= 0, then F̃ is asymptotically ordinally truth-

revealing for B.

Proof. Let u ∈ U be a utility function, and let p ∈ P be the corresponding preference
order. Let β ∈ BN . For any preference order p′ ∈ P and any voting rule F , let
Eu(F, p′, β) be the expected utility of declaring the preference p′ in the voting rule F ,
given beliefs β. Then for any p′ ∈ PN \ {p}, Claim 1 says that

Eu[g(p)]− Eu[g(p′)] ≥ 2

A(A− 1)
γ(u),

and thus, Eu(G̃, p, β)− Eu(G̃, p′, β)
(∗)

1

N

(
Eu[g(p)]− Eu[g(p′)]

)
=

2

N A (A− 1)
γ(u), (A4)

where (∗) is because each voter has a 1/N probability of getting picked in Step 1 of the

procedure defining G̃. Meanwhile, given any profile p of the other N − 1 voters in the
population, even if (p,p) is a nearly-tied profile, we have u[F (p′,p)]− u[F (p,p)] ≤ 1,
by the definition of U . (This is any voter’s maximum possible benefit from voting
strategically.) Thus,

Eu(F, p′, β)− Eu(F, p, β) ≤ Probβ

(
the profile is nearly tied

)
= τ(β, F ) ≤ τ(B, F ). (A5)

Thus,

Eu(F̃ , p, β)− Eu(F̃ , p′, β)

= qN ·
[
Eu(G̃, p, β)− Eu(G̃, p′, β)

]
+ (1− qN) · [Eu(F, p, β)− Eu(F, p′, β)]

≥
(∗)

qN
N A (A− 1)

γ(u) − (1− qN) · τ(BN , FN),

where (∗) is by inequalities (A4) and (A5). A rational voter will vote honestly if and
only if this expression is nonnegative. But(

qN
N A (A− 1)

γ(u) − (1− qN)τ(BN , FN) ≥ 0
)

⇐⇒
(
γ(u) ≥ εN

)
,

where εN := A (A− 1) (1− qN)
N τ(BN , FN)

qN
.

Thus, if γ(u) ≥ εN , then the voter will vote honestly. Note that the hypothesis of
Claim 3 implies that lim

N→∞
εN = 0.

Now, let ρ be any probability distribution on U . If ũ is a random utility function
drawn from the distribution ρ, then

lim
ε↘0

Probρ[γ(ũ) > ε] = 1, (A6)
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because γ(ũ) is almost-surely nonzero, by definition. Thus,

Tr(β, ρ, F̃N) ≥ Prob [γ(ũ) ≥ εN ] −−−−(∗)
N→∞−→ 1,

as desired. Here, (∗) is by equation (A6), because lim
N→∞

εN = 0. 3 Claim 3

Now, if B is regular, then lim
N→∞

N · τ(BN , FN) = 0. Then it is always possible to

find a sequence {qN}∞N=1 which simultaneously satisfies the condition of Claims 2 and 3.
For example, define qN := min{1,

√
N · τ(BN , FN)}. Then clearly lim

N→∞
qN = 0, because

lim
N→∞

N · τ(BN , FN) = 0; thus, Claim 2 says that F̃ is asymptotically equal to F . But

also,

lim
N→∞

N · τ(BN , FN)

qN
= lim

N→∞

√
N · τ(BN , FN) = 0.

Thus, Claim 3 says that F̃ is asymptotically ordinally truth-revealing for B. 2

Proof of Theorem 7. For any u ∈ U , let u :=
1

|A|
∑
a∈A

u(a), and then define

Su := {a ∈ A ; u(a) > u},
Iu := {a ∈ A ; u(a) < u},

and Cu := {a ∈ A ; u(a) = u}.

Mnemonically, Su and Iu are the “superior” and “inferior” alternatives, according to u
(in the sense that they are above average and below average, respectively), while Cu is
the “cutoff” set (the exactly average alternatives). The set Cu might be empty, but the
sets Su and Iu must be nonempty, because u is non-constant (by definition of U). Now
define

γ(u) := min
s∈Su

u(s) − u and β(u) := u − max
i∈Iu

u(i).

Both of these values are strictly positive. Thus, if we define α(u) := min{β(u), γ(u)},
then α(u) > 0, for any u ∈ U . Thus if ũ is a random utility function drawn from the
distribution ρ, then

lim
ε↘0

Probρ[α(ũ) > ε] = 1. (A7)

For any binary signal v ∈ V0, let h̃(v) ∈ Ã be the random alternative obtained from the
following random procedure:

1. Pick an element a ∈ A uniformly at random.

2. If v(a) = 1, then select a.

3. Otherwise, let c ∈ A be random element drawn uniformly from A. Select c.

26



This defines a function h̃ : V0−→Ã. Our first claim says that h̃ is “truth-revealing” in
the following sense: if a single voter is told that the outcome will be decided by the
binary utility function she feeds into h̃, then the unique policy which maximizes her
expected utility is to be truthful in the sense of definition (5).

Claim 1: Let u ∈ U be any utility function. Let v, v′ ∈ V0 denote, respectively, a
truthful and a non-truthful function. Then Eu[h̃(v)]− Eu[h̃(v′)] ≥ α(u)

A
.

Proof. Define

S∗u = {s ∈ Su ; v′(s) = 0} and I∗u = {i ∈ Iu ; v′(i) = 1}.

Since v′ is non-truthful, it violates (5); thus, at least one of S∗u or I∗u is nonempty. Let
ã denote the random alternative chosen in Step 1 of the mechanism. Suppose ã = s
for some s ∈ S∗u. Then Step 2 would yield h̃(v) = s. Meanwhile, Step 3 would yield

h̃(v′) = c, where c is chosen uniformly at random. Thus, E
[
u[h̃(v)]

∣∣∣ ã = s
]

= u(s),

whereas E
[
u[h̃(v′)]

∣∣∣ ã = s
]

= u. Thus, E
[
u[h̃(v)]− u[h̃(v′)]

∣∣∣ ã = s
]

= u(s)− u ≥
γ(u). This holds for all s ∈ S∗u. Thus,

E
[
u[h̃(v)]− u[h̃(v′)]

∣∣∣ ã ∈ S∗u] ≥ γ(u). (A8)

Next, suppose ã = i for some i ∈ I∗u. Then Step 3 would yield h̃(v) = c,

where c is chosen uniformly at random. Meanwhile, Step 2 would yield h̃(v′) =

i. Thus, E
[
u[h̃(v)]

∣∣∣ ã = i
]

= u, whereas E
[
u[h̃(v′)]

∣∣∣ ã = i
]

= u(i). Thus,

E
[
u[h̃(v)]− u[h̃(v′)]

∣∣∣ ã = i
]

= u− u(i) ≥ β(u). This holds for all i ∈ I∗u. Thus,

E
[
u[h̃(v)]− u[h̃(v′)]

∣∣∣ ã ∈ I∗u] ≥ β(u). (A9)

We must now deal with the case when ã is not in S∗u or I∗u. There are three subcases.

If ã = s for some s ∈ Su \ S∗u, then Step 2 yields both E
[
u[h̃(v)]

∣∣∣ ã = s
]

= u(s) and

E
[
u[h̃(v′)]

∣∣∣ ã = s
]

= u(s). If ã = i for some i ∈ Iu \ I∗u, then Step 3 yields both

E
[
u[h̃(v)]

∣∣∣ ã = i
]

= u and E
[
u[h̃(v′)]

∣∣∣ ã = i
]

= u. Finally, if ã = c for some c ∈ Cu,

then we will have E
[
u[h̃(v)]

∣∣∣ ã = c
]

= u by applying either Step 2 (if v(c) = 1) or

Step 3 (if v(c) = 0). Likewise, we have E
[
u[h̃(v′)]

∣∣∣ ã = c
]

= u by applying either

Step 2 (if v′(c) = 1) or Step 3 (if v′(c) = 0). Let A0 := C t (Su \ S∗u)t (Iu \ I∗u). Then
combining the three subcases, we see that

E
[
u[h̃(v)]− u[h̃(v′)]

∣∣∣ ã ∈ A0

]
= 0. (A10)
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Now, clearly A = A0 t S∗u t I∗u. Thus,

E[u[h̃(v)]− u[h̃(v′)]] = E
[
u[h̃(v)]− u[h̃(v′)]

∣∣∣ ã ∈ A0

]
· Prob [ã ∈ A0]

+ E
[
u[h̃(v)]− u[h̃(v′)]

∣∣∣ ã ∈ S∗u] · Prob [ã ∈ S∗u]

+ E
[
u[h̃(v)]− u[h̃(v′)]

∣∣∣ ã ∈ I∗u] · Prob [ã ∈ I∗u]

≥
(∗)

0 · Prob[ã ∈ A0] +
γ(u) · |S∗u]

A
+
β(u) · |I∗u]

A
≥
(†)

α(u)

A
,

as desired. Here, (∗) is by combining equation (A10) with inequalities (A8) and (A9),
while (†) is because ã is uniformly distributed, and either S∗u or I∗u is nonempty,
because v′ violates (5), 3 Claim 1

We now define a stochastic voting rule H̃ through the following random procedure. For
any N ∈ N, and any binary utility profile v = (vn)Nn=1 ∈ UN0 :

1. Let ñ ∈ [1 . . . N ] be a uniformly distributed random voter.

2. Select the random alternative h̃(vñ).

From Claim 1, it is easy to see that H̃ is binarily truth-revealing. Let (qN)∞N=1 be
a sequence of real numbers in the interval [0, 1]. Let F be the approval voting rule.

Consider the stochastic voting rule F̃ defined as follows. For any N ∈ N, and any
ordinal profile v ∈ VN :

• With probability 1− qN , set F̃ (v) := F (v).

• With probability qN , let F̃ (v) := H̃(v).

The rest of the proof proceeds as in the proof of Theorem 6. First, we prove first the
next two claims (the proofs are omitted for the sake for brevity):

Claim 2: If lim
N→∞

qN = 0, then F̃ is asymptotically equal to F .

Claim 3: If lim
N→∞

N · τ(BN , FN)

qN
= 0, then F̃ is asymptotically binarily truth-revealing

for B.

We can now conclude the proof. Take any regular B. Then lim
N→∞

N · τ(BN , FN) = 0.

So it is always possible to find a sequence {qN}∞N=1 which simultaneously satisfies the
condition of Claims 2 and 3, which proves the result. 2

The proof of Theorem 8 depends on a preliminary result. For any ε > 0, we say that a
stochastic cardinal voting rule F̃ = (F̃N)∞N=1 is asymptotically ε-truth-revealing for B if

lim
N→∞

Trε(BN , ρ, F̃N) = 1, for all ρ ∈ ∆(U). (A11)
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Thus, F̃ is asymptotically cardinally truth-revealing for B if it is asymptotically ε-truth-
revealing for all ε > 0. Meanwhile, let F = (FN)∞N=1 be a (deterministic) cardinal voting

rule. We will say that F̃ is asymptotically ε-similar to F if F̃ is asymptotically equal to
some cardinal voting rule H = (HN)∞N=1, and for all N ∈ N, HN is ε-similar to FN .

Proposition A1 Let F be any cardinal voting rule. Let B be any robustly regular culture
for F . Then for any sufficiently small ε > 0, there is a stochastic cardinal voting rule F̃ ε

which is asymptotically ε-similar to F , and which is asymptotically ε-truth-revealing for B.

Proof. Since B is robustly regular for F , there is some ε0 > 0 such that the “ε0-distorted”
culture B(ε0) is regular for F . Thus, for any ε ∈ (0, ε), the culture B(ε) is also regular for

F , because B(ε)
N ⊆ B

(ε0)
N for all N ∈ N.

Let ∆(A) be the set of probability distributions over A. For all a ∈ A, let δa ∈ ∆(A)
be the point mass at a. For any a, b ∈ A and r ∈ [0, 1], let δra,b be the lottery which gives
probability r to a and probability 1− r to b. For any ε > 0, we define

Rε := {mε ; m ∈ N such that 0 ≤ mε ≤ 1}
and Aε :=

{
δra,b ; a, b ∈ A and r ∈ Rε

}
.

(A12)

In other words, Rε is an ε-spaced mesh of points in the interval [0, 1], and Aε is the set
of all two-outcome lotteries in ∆(A) with probabilities drawn from Rε. Each alternative
a ∈ A can be identified with the point mass δa, which is an element of Aε; thus, we can
treat A as a subset of Aε. Note that Aε is finite. Let Pε be the set of all preference
orders over Aε. Any u ∈ U determines a preference order puε ∈ Pε.
Claim 1: Let u, u′ ∈ U . If ‖u− u′‖∞ > ε, then puε 6= pu

′
ε .

Proof. If u and u′ induce different preference orders on A, then we are done (because A
is a subset of Aε). So, assume without loss of generality that they induce the same
preference order on A. Let l and o be, respectively, the u-maximal and u-minimal
elements of A. Since u′ induces the same preference order on A, these elements are
also u′-maximal and u′-minimal. Thus, u(l) = 1 = u′(l) and u(o) = 0 = u′(o). Thus,
for any r ∈ [0, 1], we have Eu[δrl,o] = Eu′[δrl,o] = r.

Now, suppose ‖u− u′‖∞ > ε. Then there is some a ∈ A such that |u(a)−u′(a)| > ε.
Without loss of generality, assume u(a) > u′(a); then there is some r ∈ Rε such that
u(a) > r > u′(a). In other words, Eu(δa) > Eu[δrl,o] while Eu′[δrl,o] > Eu′(δa). Thus,

δa �puε δrl,o, whereas δa ≺pu′ε δrl,o. Thus, puε 6= pu
′
ε . 3 Claim 1

For each preference order q ∈ Pε, let us fix some uq ∈ U such that p
uq
ε = q. Finally, for

all u ∈ U , let uε := uq where q := puε .

Claim 2: ‖uε − u‖∞ ≤ ε.

Proof. (by contradiction) Suppose ‖uε − u‖∞ > ε. Then Claim 1 says that puε 6= pu.
This contradicts the definition of uε. 3 Claim 2
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For any N ∈ N, define the function Gε
N : PNε −→A ⊂ Aε by

Gε
N(p1, . . . , pN) := FN(up1 , . . . , upN ) for all (p1, . . . , pN) ∈ PNε . (A13)

Now let Gε = (Gε
N)∞N=1; this is an ordinal voting rule on Aε, which we can regard as an

“ε-approximation” of F . (Note: although Gε is formally an ordinal voting rule on Aε,
its output is always an element of A.)

For any probability distribution β ∈ ∆(UN), we can define a probability distribution
βε ∈ ∆(PNε ) as follows: for any preference profile q := (q1, . . . , qN) ∈ PNε , we set
βε(q) := β{u ∈ UN ; punε = qn, for all n ∈ [1 . . . N ]}. Thus, if ũ = (ũ1, . . . , ũN) is a β-
random utility profile, then (pũ1ε , . . . , p

ũN
ε ) is a random preference profile with distribution

βε. If BN ⊆ ∆(UN) is a set of such distributions, then we define BεN := {βε; β ∈ BN},
which is a subset of ∆(PNε ). Finally, given the culture B = (BN)∞N=1 (concerning U -
profiles), we define the culture Bε := (BεN)∞N=1 (concerning Pε-profiles).

Claim 3: Bε is a regular culture for Gε.

Proof. Let N ∈ N, let β ∈ BN , and let ũ = (ũ1, . . . , ũN) be a β-random utility profile.
Let ũε := (ũε1, . . . , ũ

ε
N); then Claim 2 implies that ũε is an ε-distortion of ũ. Thus, if

β′ denotes the probability distribution of ũε, then β′ is ε-close to β; thus, β′ ∈ B(ε)
N , by

defining formula (6). Now, for all N ∈ N, define B′N := {β′; β ∈ BN}. Then define
the culture B′ := (B′N)∞N=1. By hypothesis, the culture B(ε) is regular for F . Thus,

the culture B′ is also regular for F , because we have B′N ⊆ B
(ε)
N for all N ∈ N.

Now, let p = (p1, . . . , pN) ∈ PNε be a preference profile. From the defining formula
(A13) for the rule Gε, it is clear that(

(p1, . . . , pN) is almost-tied for Gε
N

)
⇐⇒

(
(up1 , . . . , upN ) is almost-tied for FN

)
.

(A14)
Suppose β ∈ BN , so that βε ∈ BεN and β′ ∈ B′N . If p̃ = (p̃1, . . . , p̃N) is a βε-
random preference profile, then (up̃1 , . . . , up̃N ) is a β′-random utility profile. Thus,
from statement (A14), we deduce that

Probβε
(

(p̃1, . . . , p̃N) is almost-tied for Gε
N

)
= Probβ′

(
(up̃1 , . . . , up̃N ) is almost-tied for FN

)
.

In other words, τ(βε, Gε
N) = τ(β′, FN). Taking the supremum over all β ∈ BN (hence,

over all βε ∈ BεN and β′ ∈ B′N), we deduce that τ(BεN , Gε
N) = τ(B′N , FN). However,

as we have already argued, the culture B′ is regular for F . Thus, we conclude that
lim
N→∞

N · τ(BεN , Gε
N) = lim

N→∞
N · τ(B′N , FN) = 0, as desired. 3 Claim 3

Theorem 6 and Claim 3 jointly imply that there is a stochastic ordinal voting rule
G̃ε = (G̃ε

N)∞N=1 on Aε which is asymptotically equal to Gε and asymptotically ordinally

truth-revealing for the culture Bε. For any N ∈ N, define the function F̃ ε
N : UN−→Ã as

follows: for any utility profile u = (u1, . . . , uN) ∈UN , let p := (pu1ε , . . . , p
uN
ε ) ∈ PNε be the

corresponding profile of ordinal preferences over Aε, and let α̃ := G̃ε
N(p); thus, α̃ is an
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random element ofAε —i.e. a random probability distribution overA. Finally, let F̃ ε
N(u)

be an α̃-random alternative. This yields a stochastic cardinal voting rule F̃ ε = (F̃ ε
N)∞N=1

ranging over A. We will now show that F̃ ε is both asymptotically ε-truth-revealing and
asymptotically ε-similar to F .

First, a bit of notation. For any δ > 0, and any random variables x̃ and ỹ, we will

write “x̃
δ
≈ ỹ” to mean “Prob[x̃ = ỹ] > 1− δ”.

Claim 4: F̃ ε is asymptotically ε-similar to F .

Proof. For all N ∈ N, and any utility profile (u1, . . . , uN) ∈ UN , define HN(u1, . . . , uN) :=
FN(uε1, . . . , u

ε
N); this yields a function HN : UN−→A, and whence, a voting rule

H = (HN)∞N=1 on A. Observe that H is ε-similar to F by construction.

We claim that F̃ ε is asymptotically equal to H. To see this, recall that G̃ε is
asymptotically equal to Gε. Thus, for any δ > 0, there is some Nδ ∈ N such that, for
all N ≥ Nδ, we have PN(G̃ε, Gε) > 1− δ. In other words, for any (p1, . . . , pN) ∈ PNε ,

we have G̃ε
N(p1, . . . , pN)

δ
≈ Gε

N(p1, . . . , pN).

Now let u = (u1, . . . , uN) ∈ UN ; then F̃ ε
N(u) is an α̃-random alternative, where

α̃ := G̃ε
N(pu1ε , . . . , p

uN
ε ). But if N ≥ Nδ, then we have

α̃ = G̃ε
N(pu1ε , . . . , p

uN
ε )

δ
≈ Gε

N(pu1ε , . . . , p
uN
ε )

(a)
FN(upu1ε , . . . , upuNε )

(b)
FN(uε1, . . . , u

ε
N)

(c)
HN(u1, . . . , uN),

where (a) is by the defining formula (A13) for the rule Gε
N , (b) is by the definition of

uε1, . . . , u
ε
N , and (c) is by the definition of HN . In other words, with probability greater

than 1− δ, α̃ is the point mass at HN(u), in which case an α̃-random variable must

simply take the value HN(u). Thus, since F̃ ε
N(u) is an α̃-random variable, we have

F̃ ε
N(u)

δ
≈ HN(u).

This holds for all u ∈ UN ; thus PN(F̃ ε, H) > 1− δ. This holds for all N ≥ Nδ, and

we can construct such an Nδ for any δ > 0. Thus, F̃ ε is asymptotically equal to H, as
desired. 3 Claim 4

Claim 5: F̃ ε is asymptotically ε-truth-revealing for the culture B.

Proof. Fix ρ ∈ ∆(U). We must verify the limit (A11). Let N ∈ N, let β ∈ BN ,
and consider a voter with utility function u ∈ U and beliefs β. She participates in
F̃ ε
N by reporting a utility function —say, u′ —in U . Let pu

′
ε be the preference order

that u′ induces on Aε. By definition of F̃ ε
N , the β-expected value of u generated by

reporting the utility function u′ in the rule F̃ ε
N is equal to the βε-expected value of u

generated by reporting the preference order pu
′
ε in the rule G̃ε

N . Thus, if reporting u′

is this voter’s best response for the rule F̃ ε
N (i.e. it maximizes the β-expected value

of u), then reporting pu
′
ε is her best response for the rule G̃ε

N (i.e. it maximizes the
βε-expected value of u) .
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Now suppose that u is a ρ-random variable, and recall that Trε(β, ρ, F̃
ε
N) is the ρ-

probability that ‖u− u′‖∞ < ε, while Tr(βε, ρ, G̃ε
N) is the ρ-probability that pu

′
ε = puε .

If pu
′
ε = puε , then the contrapositive of Claim 1 yields ‖u− u′‖∞ ≤ ε. Thus,

Trε(β, ρ, F̃
ε
N) ≥ Tr(βε, ρ, G̃ε

N). (A15)

This argument applies to any β ∈ BN . Taking the infimum over all β ∈ BN , we get:

1 ≥ Trε(BN , ρ, F̃ ε
N)

(a)
inf
β∈BN

Trε(β, ρ, F̃
ε
N) ≥

(b)

inf
β∈BN

Tr(βε, ρ, G̃ε
N)

(c)
inf

β′∈BεN
Tr(β′, ρ, G̃ε

N)
(d)

Tr(BεN , ρ, G̃ε
N) −−−−(e)

N→∞−→ 1,

which implies limit (A11). Here, (a) is the definition of Trε() (from Section 7), (b) is
by inequality (A15), (c) is by the definition of BεN , and (d) is the definition of Tr()

(from Section 5). Finally, (e) is because G̃ε is asymptotically ordinally truth-revealing
for the culture Bε, by hypothesis.

This argument holds for any ρ ∈ ∆(U); thus, F̃ ε is asymptotically ε-truth-revealing
for the culture B. 3 Claim 5

Claims 4 and 5 together prove the theorem. 2

Proof of Theorem 8. Let (εm)∞m=1 be a decreasing sequence converging to zero. For every

m ∈ N, Proposition A1 says there is a stochastic cardinal voting rule F̃ εm = (F̃ εm
N )∞N=1

which is asymptotically εm-similar to F and asymptotically εm-truth-revealing for B.
Thus, there is a cardinal voting rule Hm = (Hm

N )∞N=1, such that for all N ∈ N, HN is
εm-similar to FN , and such that

lim
N→∞

PN(Hm, F̃ εm) = 1 and lim
N→∞

Trεm(BN , ρ′, F̃ εm
N ) = 1, for all ρ′ ∈ ∆(U).

Thus, for any fixed m ∈ N and ρ ∈ ∆(U), there exists some Nm ∈ N such that

PN(Hm, F̃ εm) ≥ 1− εm, for all N ≥ Nm, (A16)

and Trεm(BN , ρ, F̃ εm
N ) ≥ 1− εm, for all N ≥ Nm. (A17)

Without loss of generality, we can assume that N1 ≤ N2 ≤ N3 ≤ · · · . (Otherwise, just
replace Nm by max{N1, N2, . . . , Nm} for each m ∈ N.) Now define the stochastic cardinal

rule F̃ as follows: for any N ∈ N, F̃N := F̃
εm(N)

N , where m(N) is the largest m ∈ N such
that Nm ≤ N . In particular, for any k ∈ N, if N ≥ Nk, then m(N) ≥ k. Meanwhile,

define the (deterministic) cardinal rule G as follows: for any N ∈ N, GN := H
m(N)
N ,

where (Hm
N )∞N=1 and m(N) are defined as above.

Claim 1: F̃ is asymptotically equal to G.
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Proof. Let ε > 0. Find k ∈ N such that εk ≤ ε. Then for any N ≥ Nk, we have

PN(G, F̃ )
(a)

PN(Hm(N), F̃ εm(N)) ≥
(b)

1− εm(N) ≥
(c)

1− εk ≥ 1− ε,

as desired. Here (a) is by the definitions of F̃ and G, (b) is by inequality (A16),
because N ≥ Nm(N) by the definition of m(N). Finally, (c) is because N ≥ Nk, so
m(N) ≥ k, so that εm(N) ≤ εk. 3 Claim 1

Claim 2: F̃ is asymptotically similar to F .

Proof. Because of Claim 1, it suffices to show that the rule G is asymptotically similar
to F . So, let ε > 0. We must find some Nε such that GN is ε-similar to FN for all
N ≥ Nε. Since limm→∞ εm = 0, there exists some m0 such that 0 < εm < ε for all
m > m0. Now let Nε := Nm0 . Then for any N ≥ Nε, we have m(N) ≥ m0. Thus,
GN = Hm

N for some m ≥ m0. But by hypothesis, Hm
N is εm-similar to FN , and εm < ε.

Thus, GN is ε-similar to FN , as desired. 3 Claim 2

Claim 3: F̃ is asymptotically cardinally truth-revealing for B and ρ.

Proof. Let ε, η > 0. Find k such that εk ≤ min{ε, η}. Then for any N ≥ Nk, we have

Trε(BN , ρ, F̃N)
(a)

Trε(BN , ρ, F̃
εm(N)

N ) ≥
(b)

Trεm(N)
(BN , ρ, F̃

εm(N)

N )

≥
(c)

1− εm(N) ≥
(d)

1− η. (A18)

Here (a) is the definition of F̃ , while (b) is because N ≥ Nk, so m(N) ≥ k, so that
εm(N) ≤ εk ≤ ε, and thus, ε-truth revelation is at least as probable as εm(N)-truth
revelation. Next, (c) by inequality (A17), because N ≥ Nm(N) by the definition of
m(N). Finally, (d) is because m(N) ≥ k, so that εm(N) ≤ εk ≤ η.

Now fix ε > 0. For any η > 0, the argument above shows that there is some Nη

such that inequality (A18) holds for all N > Nη. Thus, lim
N→∞

Trε(BN , ρ, F̃N) = 1.

Repeat this argument for all ε > 0 to conclude that F̃ is asymptotically cardinally
truth-revealing. 3 Claim 3

Claims 2 and 3 together prove the theorem. 2

Proof of Theorem 9. Let F be an ordinal voting rule, and let F̃ be the stochastic voting
rule defined in the proof of Theorem 6. Let S = (sN)∞N=1 be an F -regular society. For

any N ∈ N, we define the N -player Bayesian game GN := (F̃N , sN), and we define BN
as in equation (10). For any voter type t, let v∗t be the preference order induced by the
utility function ut.

Claim 1: There exists an N0 ∈ N such that, for any N ≥ N0, any voter m ∈ [1 . . . N ],
any type tm ∈ T Nm , and any strategy profile V, if ptm is the probabilistic belief which
voter-type t obtains from V via formula (7), and ptm ∈ BN , then her best response to
ptm in the game GN is to set Vm(tm) = v∗tm .
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Proof. As argued in the proof of Theorem 6, a voter with utility function u will vote
honestly in the rule F̃N if only if γ(u) ≥ εN , where εN := A (A−1) (1− qN) N τ(BN ,FN )

qN
.

Now, γ(u) > ε for all u ∈ U , because S is F -regular. Meanwhile, limN→∞ εN = 0,
because the culture BS is regular for F . Thus, there is some N0 such that, if N > N0,
then εN < ε, and thus, εN < γ(u) for all u ∈ US. In particular, for any m ∈ [1 . . . N ]
and tm ∈ T Nm , we have εN < γ(utm). Thus, if ptm ∈ BN , then voter-type tm’s best
response in the game GN is to set Vm(tm) = v∗tm . 3 Claim 1

Suppose that N ≥ N0. For all m ∈ [1 . . . N ] let Vm : T Nm → V be the voting strategy
such that Vm(tm) = v∗tm for all tm ∈ T Nm (the best response defined by Claim 1). Let
VN := (Vn)Nn=1 denote the resulting strategy profile with N players. For all m ∈ [1 . . . N ]
and all tm ∈ T Nm , define ptm ∈ ∆(VN) by applying formula (7) to VN . Then clearly,
ptm = βtm , where βtm is as defined in formula (9). Thus, ptm ∈ BN , by defining formula
(10). Thus, for all m ∈ [1 . . . N ] and t ∈ T Nm , Claim 1 says that Vm(tm) is voter-type tm’s
best response, given her beliefs induced by VN . Therefore, VN defines a Bayesian Nash
equilibrium for GN . Meanwhile, for all N ∈ [1 . . . N0), let VN be an arbitrary strategy
profile. Let V := (VN)∞N=1; then V is an eventual Bayesian Nash equilibrium for the
sequence (GN)∞N=1.

For any N ≥ N0, and any type profile t ∈ T N , if v∗t is the ordinal preference profile

defined by t, then Pt(F̃N , FN , s,V
N) = Prob[F̃N(v∗t) = FN(v∗t)], by the definition of

V N . Thus, formula (8) implies that P (F̃N , FN , s,V
N) ≥ PN(F, F̃ ), where PN(F, F̃ ) :=

inf
v∈VN

Prob
[
F̃N(v) = FN(v)

]
. But lim

N→∞
PN(F, F̃ ) = 1 because F̃ is asymptotically

equal to F , by the construction from Theorem 6. Thus, F̃ asymptotically implements
F , as desired. 2

Proof of Theorem 10. The strategy is the same as the proof of Theorem 9, but the details
are more complicated, so we will break the proof into three steps.

Step 1. (Definition of the stochastic voting rule G̃ε) Let S = (sN)∞N=1 be an F -regular
society, and define BS = (BN)∞N=1 as in equation (12). By hypothesis (R2), the culture
BS is robustly regular for F ; thus, there is some ε1 > 0 such that the “ε1-distorted”
culture B(ε1)

S is regular for F . Meawhile, let ε2 > 0 be the constant satisfying condition
(R3). Let ε := min{ε1, ε2}; then ε satisfies both (R2) and(R3).

Define Rε and Aε as in formula (A12) in the proof of Proposition A1, and let Pε be the
set of all ordinal preferences over Aε. Thus, Pε is finite because Aε is finite. Any utility
function u ∈ U determines a preference order puε in Pε. As in the proof of Proposition

A1, we can obtain a stochastic ordinal voting rule G̃ε = (G̃ε
N)∞N=1 which is asymptotically

ordinally truth-revealing of the voters’ ordinal preferences on Aε in the culture B(ε)
S . For

any N ∈ N, we define the N -player Bayesian game GN := (G̃ε
N , sN).
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Step 2. (Construction of an eventual Bayesian Nash equilibrium) For any p ∈ Pε, fix
some up ∈ U which represents p. Let U ε := {up; p ∈ Pε}; this is a finite subset of U .
There is an obvious bijection between Pε and U ε. Thus, without loss of generality, we
can assume that the voting rule G̃ε uses the signal-set V = U ε. For any u ∈ U , let uε

be the (unique) element of U ε which represents the preference order puε . Claim 2 in the
proof of Proposition A1 implies that

‖uε − u‖∞ < ε, for all u ∈ U . (A19)

Claim 1: There exists an N0 ∈ N such that, for any N ≥ N0, any voter m ∈ [1 . . . N ],
any type t ∈ T Nm , and any strategy profile V, if pt is the probabilistic belief which voter-

type t obtains from V via formula (7), and pt ∈ B(ε)
N , then her best response to pt in the

voting rule G̃ε
N is to set vt = uεt.

Proof. For any u ∈ US, let ρu be the probability measure on U which assigns probability
1 to u. Then lim

N→∞
Tr(B(ε)

N , ρu, G̃
ε
N) = 1, because G̃ε is asymptotically ordinally truth-

revealing with respect to B(ε)
S . Thus, there is some Nu ∈ N such that, for any N ≥ Nu,

we have Tr(B(ε)
N , ρu, G̃

εN
N ) > 0. However, for any β ∈ B(ε)

N , either Tr(β, ρu, G̃
ε
N) = 0 or

Tr(β, ρu, G̃
ε
N) = 1 (because either a voter with utility function u and beliefs β finds it

optimal to reveal her true preferences over Aε, or she does not). Taking the infimum

over all β ∈ B(ε)
N , we deduce that either Tr(B(ε)

N , ρu, G̃
ε
N) = 0 or Tr(B(ε)

N , ρu, G̃
ε
N) = 1.

Thus, if N ≥ Nu, then Tr(B(ε)
N , ρu, G̃

ε
N) = 1. Now define N0 := max

u∈US
Nu. Then N0

is finite, because US is finite by hypothesis (R1), because S is regular. Thus, for

any N ≥ N0 and any u ∈ US, we have Tr(B(ε)
N , ρu, G̃

ε
N) = 1. In particular, for any

m ∈ [1 . . . N ], and any t ∈ T Nm , this implies that Tr(β, ρut , G̃
ε
N) = 1 for any β ∈ B(ε)

N .

In other words, given any beliefs β in B(ε)
N about the behaviour of the other voters,

the unique best response of voter-type t in the rule G̃ε
N will be vt = uεt. In particular,

this holds for β = pt. 3 Claim 1

Suppose N ≥ N0. For all m ∈ [1 . . . N ], we can define a voting strategy Vm : T Nm −→U
by setting Vm(t) := uεt for all t ∈ T Nm (the best response from Claim 1). This yields a
strategy profile VN := (Vn)Nn=1.

Claim 2: For all m ∈ [1 . . . N ] and all tm ∈ T Nm , define ptm ∈ ∆(UN) by applying

formula (7) to VN . Then ptm ∈ B
(ε)
N .

Proof. For any type profile t = (tn)Nn=1 ∈ T N , we have VN(t) = (uεtn)Nn=1, while
ut = (utn)Nn=1. Inequality (A19) implies that∥∥VN(t)− ut

∥∥
∞ < ε. (A20)

Now suppose that t̃ = (t̃n)Nn=1 is a random type profile (distributed, e.g. according
to the beliefs of some voter-type). Then VN (̃t) = (uε

t̃n
)Nn=1 and ut̃ = (ut̃n)Nn=1 are
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two random utility profiles in UN , and inequality (A20) tells us that VN (̃t) is an ε-
distortion of ut̃. In particular, fix m ∈ [1 . . . N ] and tm ∈ T Nm , and suppose that t̃−m
is distributed according to the beliefs πtm of voter-type tm, while Prob[t̃m = tm] = 1.
Then in formula (7), ptm describes tm’s probabilistic beliefs about the random utility
profile V(̃t).12 Meanwhile, let βtm be voter-type tm’s beliefs about the true utility
profile ut̃, as defined by formula (11). As already noted, VN (̃t) is an ε-distortion of
ut̃. Thus, ptm is ε-close to βtm . But βtm ∈ BN , by defining formula (12). Thus, we

conclude that ptm ∈ B
(ε)
N , by defining formula (6). 3 Claim 2

For any N ≥ N0, in the Bayesian game determined by the rule G̃ε
N and the commu-

nity sN , Claims 1 and 2 together imply that the strategy profile VN is the unique
Bayesian Nash equilibrium which is consistent with beliefs in B(ε)

N . Meanwhile, for all
N ∈ [1 . . . N0), let VN be an arbitrary strategy profile. Let V := (VN)∞N=1; then V is an

eventual Bayesian Nash equilibrium for G̃ε and S.

Step 3. (This equilibrium asymptotically implements F ) Let Gε = (Gε
N)∞N=1 be the

ordinal voting rule on Aε defined by formula (A13) the proof of Proposition A1. As

with G̃ε, we can assume that Gε uses the signal-set V = U ε. But with this assumption,
the function Gε

N is just the restriction of the function FN to utility profiles in (U ε)N .
(In other words, Gε

N(u1, . . . , uN) = FN(u1, . . . , uN) for all u1, . . . , uN ∈ U ε.) By the

construction in the proof of Proposition A1, G̃ε is asymptotically equal to Gε; thus, for

any δ > 0, there is some Nδ ∈ N such that Prob
[
G̃ε
N(u) = Gε

N(u)
]
> 1 − δ, for all

N ≥ Nδ and all u ∈ (U ε)N . However, as we have just noted, Gε
N(u) = FN(u) for all

u ∈ (U ε)N . Thus, we obtain:

Prob
[
G̃ε
N(u) = FN(u)

]
> 1− δ, for all N ≥ Nδ and all u ∈ (U ε)N . (A21)

Now, for any type profile t = (tn)Nn=1 in T N , recall that ut := (utn)Nn=1 ∈ UN is the
corresponding profile of vNM utility functions. Define uεt := (uεtn)Nn=1 ∈ (U ε)N . Then for

any N ≥ Nδ and all t ∈ T N , statement (A21) implies that Prob
[
G̃ε(uεt) = F (uεt)

]
>

1 − δ. However, for any type profile t ∈ T N , condition (R3) says that F (uεt) = F (ut),
because ‖uεt − ut‖∞ < ε (because ‖uεt − ut‖∞ < ε for all t ∈ T ). Thus, we obtain

Prob
[
G̃ε(uεt) = F (ut)

]
> 1 − δ. But VN(t) = uεt for all t ∈ T N ; thus, we obtain

Prob
[
G̃ε(VN(t)) = F (ut)

]
> 1−δ, for all t ∈ T N . Taking the infimum over all t ∈ T N

as in formula (8), we get P (G̃ε
N , FN , s

N ,VN) ≥ 1−δ. This holds for all N ≥ Nδ. We can

find such an Nδ for any δ > 0. Thus, we conclude that lim
N→∞

P (G̃ε
N , FN , s

N ,VN) = 1, as

desired. 2

12 To be precise, for each utility profile v = (vn)Nn=1 ∈ VN , if vm = uεtm , then ptm(v) = πtm{t−m ∈ T N
−m;

uεtn = vn for all n ∈ [1 . . . N ] \ {m}}, whereas if vm 6= uεtm , then ptm(v) := 0.
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Regular Cultures with Poisson Random Variables

Let F be any scoring rule, and for any alternative a ∈ A, recall that Sa denotes its total
score. Assume that the scores of the different candidates are independent Poisson random
variables. Candidate a has an expected score of Nρ(a) where N is expected number of
voters so that

∑
i ρ(i) = 1. Thus Nτ equals the vector of expected scores. We assume

that ρ(1) > ρ(2) > . . . > ρ(k) > 0 so that any pair of distinct candidates has a distinct
expected score. Then the Culture B is regular for F .

To prove the regularity of the culture, we define the outcome pivot(Y ) as the collection
of all the possible events in which all the alternatives in some Y ⊆ K are the top #Y
alternatives and are nearly tied so that |Sa − Sb| ≤ 1 for any a, b in Y .

To prove the regularity of the culture we use two main steps.
A.) This step shows that

lim
N→∞

P [pivot(Y ′) | Nρ]

P [pivot(1, 2) | Nρ]
= 0

for any Y ′ ⊆ K and Y ′ 6= {1, 2}. The proof of this step requires the introduction of
techniques of Poisson games and is relegated to the end of this section. This step implies
that, in order to estimate τ(BN , FN), one just needs to focus on P [pivot(1, 2) | Nρ] since
almost all the probability in the nearly-tied events is concentrated on the pivot between
the top-two candidates.

B.) Given Step A., we can directly use Myerson (2000)’s estimation of the tie of two
candidates with independent scores following a Poisson distribution. Indeed, we can show
that

lim
N→∞

P [pivot(1, 2) | Nρ]

P [|S1 − S2| ≤ 1 | Nρ]
= 1

so that the probability of this pivot event equals the one of the almost-tie between these
two main candidates. Moreover, Myerson (2000)’s estimation of the almost-tie of two
candidates (formula (5.3)) implies that

P [|S1 − S2| ≤ 1 | Nρ] ≈
exp[N(2

√
ρ(1)ρ(2)− ρ(1)− ρ(2))]

2
√
πN
√
ρ(1)ρ(2)

,

where≈ indicates that the ratio of both expressions converges to 1 as N →∞. Since, by
assumption ρ(1) > ρ(2), it follows that (2

√
ρ(1)ρ(2)−ρ(1)−ρ(2)) = −(

√
ρ(1)−

√
ρ(2))2 <

0. Therefore, the previous approximation of the probability of the almost-tie implies that

lim
N→∞

N · P [|S1 − S2| ≤ 1 | Nρ] = 0

Therefore, the culture is regular as wanted since P [|S1 − S2| ≤ 1 | Nρ] = τ(BN , FN).

The rest of this section proves step A. To do so, we briefly present the main results in
the computation of magnitudes with Poisson random variables. We let Z(A) denote the
set of vectors z = (z(a))a∈A such that each component z(a) is a nonnegative integer.
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Given the vector of expected scores Nρ, the probability that the outcome is equal to a
vector z ∈ Z(A) is such that

P [z |Nρ] =
∏
j ∈ A

(
e−nz(j)(Nρ(j))z(j)

z(j)!

)
.

An outcome A is a subset of Z with P [A | Nρ] =
∑

x∈A P [x | Nρ]. Given a large
equilibrium sequence {σN}N→∞, the magnitude µ[A] of an outcome A is such that

µ[A] = lim
N→∞

1

N
logP [A |Nρ].

Notice that the magnitude of an outcome must be inferior or equal to zero, since the
logarithm of a probability is never positive.

If one can show that a pivot between one pair of candidates has a magnitude that is
strictly greater than the magnitude of a pivot between another pair of candidates, then the
latter becomes infinitely less likely as the expected number of voters goes to infinity. That
is to say, given two subsets Y and Y

′
of the set of candidates A, for any pair of outcomes

pivot(Y ) and pivot(Y
′
), if

µ[pivot(Y )] > µ[pivot(Y
′
)],

then we know that the pivot outcome between candidates in Y is infinitely more likely
than the pivot outcome between candidates in Y

′
, i.e.

lim
N→∞

P [pivot(Y )
′ | Nρ]

P [pivot(Y ) | Nρ]
= 0.

The magnitude theorem (Myerson (2000)) sets up a method to compute such a limit as
the solution of a maximization problem with a concave and smooth objective function. The
dual magnitude theorem or DMT (Myerson (2002)) gives a method to compute magnitudes
of outcomes that can be defined by linear inequalities involving the scores of the candidates.
Finally, the magnitude equivalence theorem orMET (Núñez (2010)) states a simple manner
of computing the magnitude of pivot outcomes. As a joint application of these results, one
can express the magnitude of pivot(i, j) for any pair of candidates i, j as the solution of
the following minimization problem with

µ[pivot(i, j)] ≡min
x
ρ(i)

∏
l 6=i

xil −
∑
l 6=i

ρ(l)x−1il −
∑
j∈A

ρ(j)

s.t xij > 0 and xil ≥ 1 for any l ∈ A with l 6= j.

The FOC show that the solution to this minimization problem are such that

xij =
( ρ(j)|A|−1∏

h6=j ρ(h)

) 1
|A| and xil = min{

( ρ(l)|A|−1∏
h6=l ρ(h)

) 1
|A| , 1} for any l 6= j.

We are now ready to state the main result in Step A.
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Proposition A2 If the scores of the candidates are independent Poisson random variables
with expected vote distribution Nρ and ρ(1) > ρ(2) > . . . > ρ(|A|), then

lim
N→∞

P [pivot(Y ′) | Nρ]

P [pivot(1, 2) | Nρ]
= 0

for any Y ′ ⊆ K and Y ′ 6= {1, 2}.

Proof of Proposition A2.

Claim 1: If ρ(1) > ρ(2) > . . . > ρ(|A|), then µ[pivot(1, 2)] = −(
√
ρ(1)−

√
ρ(2))2.

Proof. As previously argued, the magnitude µ[pivot(1, 2)] coincides the optimal value of
some minimization problem with respect to x. At its minimum, x satisfies

x12 =
( ρ(2)|A|−1∏

h6=2 ρ(h)

) 1
|A| and x1l = min{

( ρ(l)|A|−1∏
h6=l ρ(h)

) 1
|A| , 1} for any l 6= j.

However, note that ρ(1) > ρ(2) > . . . > ρ(|A|) so that ρ(|A|)|A|−1∏
h 6=|A| ρ(h)

< 1. Therefore,

x1|A| = 1. Applying the same reasoning, one can prove that any x1l = 1 for any
l ∈ {3, . . . ,A}. Therefore, the magnitude of pivot(1, 2) equals the optimal value of

min
x
ρ(1)x12 − ρ(2)x−112 − ρ(1)− ρ(2) s.t. x12 > 0.

Solving the minimization problem leads to the desired result. 3 Claim 1

Claim 2: If ρ(1) > ρ(2) > . . . > ρ(|A|), then µ[pivot(1, 2)] > µ[pivot(1, j)] for any
j > 2.

Proof. By definition, for each expected vote distribution ρ,

µ[pivot(1, j)] ≡min
x
ρ(1)

∏
l 6=1

xil −
∑
l 6=1

ρ(l)x−11l −
∑
j∈A

ρ(j)

s.t x1j > 0 and x1l ≥ 1 for any l ∈ A with l 6= j.

Therefore, µ[pivot(1, j)] equals the minimum of a constrained minimization problem
for any given ρ. Hence the maximum of µ[pivot(1, j)] for any possible ρ is reached
when xil = 1 for any l 6= 1, j. To see why, assume that that for some ρ, µ[pivot(1, j)]
reaches its maximum. We denote it by m. Assume that at µ[pivot(1, j)], there is some

xil > 1. Since ∂µ[pivot(1,j)]
∂ρ(l)

< 0 for any l 6= 1, j, it follows that whenever ρ′(j) < ρ(j),

the magnitude µ[pivot(1, j)] > m, a contradiction with m being the maximum.
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Therefore, we can write that for any ρ,

µ[pivot(1, j)] ≤min
x
ρ(1)x1j − ρ(j)x−11j − ρ(1)− ρ(j) s.t. x1j > 0,

so that
µ[pivot(1, j)] ≤ −(

√
ρ(1)−

√
ρ(j))2.

Due to Claim 1, we know that ρ(1) > ρ(2) > . . . > ρ(|A|) implies that µ[pivot(1, 2)] =
−(
√
ρ(1)−

√
ρ(2))2. This equality combined with the fact that

−(
√
ρ(1)−

√
ρ(j))2 < −(

√
ρ(1)−

√
ρ(2))2,

as long as ρ(j) < ρ(2), it follows that µ[pivot(1, j)] < µ[pivot(1, 2)] for any j > 2 as
wanted. 3 Claim 2

Claim 3: If ρ(1) > ρ(2) > . . . > ρ(|A|), then µ[pivot(i, j)] = µ[pivot(1, i, j)] if
i, j 6= 1.

Proof. By definition, the magnitude of pivot(i, j) equals the optimal value of

min
x
ρ(i)

∏
l 6=i

xil −
∑
l 6=i

ρ(l)x−1il −
∑
j∈A

ρ(j)

s.t xij > 0 and xil ≥ 1 for any l ∈ A with l 6= j.

whereas the one of pivot(1, i, j) equals

min
x
ρ(i)

∏
l 6=i

xil −
∑
l 6=i

ρ(l)x−1il −
∑
j∈A

ρ(j)

s.t xij, xi1 > 0 and xil ≥ 1 for any l ∈ A with l 6= 1, j.

However, since ρ(1) > ρ(2) > . . . > ρ(|A|), it follows that
( ρ(1)|A|−1∏

h 6=1 ρ(h)

) 1
|A| > 1 and

therefore, in both optimization problems we have that

xi|A| =
( ρ(1)|A|−1∏

h6=1 ρ(h)

) 1
|A| ,

so that the magnitudes of pivot(1, i, j) and pivot(i, j) coincide, as wanted. 3 Claim 3

Claim 4: If ρ(1) > ρ(2) > . . . > ρ(|A|), then µ[pivot(1, 2)] > µ[pivot(i, j)] if i, j 6= 1.
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Proof. Claim 3 proves that µ[pivot(i, j)] = µ[pivot(1, i, j)] if i, j 6= 1. However, as
previously noticed µ[pivot(1, i, j)] coincides with the optimal value of

min
x
ρ(i)

∏
l 6=i

xil −
∑
l 6=i

ρ(l)x−1il −
∑
j∈A

ρ(j)

s.t xij, xi1 > 0 and xil ≥ 1 for any l ∈ A with l 6= 1, j.

As in Claim 1, one can prove that the maximum of µ[pivot(1, i, j)] for any possible ρ
is reached when setting xil = 1 for any l ∈ A with l 6= 1, j. Therefore,

µ[pivot(1, i, j)] ≤ min
x

ρ(i)xi1xij − ρ(1)x−1i1 − ρ(j)x−1ij − ρ(1)− ρ(i)− ρ(j)

s.t xij, xi1 > 0.

Note that the optimal value of this minimization problem coincides with µ[S1 =
Si = Sj] and is reached when

xi1 =
( ρ(1)2

ρ(i)ρ(j)

)3
and xij =

( ρ(j)2

ρ(1)ρ(i)

)3
.

Finally, note that the magnitude of pivot(1, i) is such that

µ[pivot(1, i)] = min
x

ρ(i)xi1xij − ρ(1)x−1i1 − ρ(j)x−1ij − ρ(1)− ρ(i)− ρ(j)

s.t xi1 > 0 and xij ≥ 1.

Since ρ(1) > ρ(i) > ρ(j), it follows that µ[pivot(1, i)] = µ[S1 = Si] with xi1 =
( ρ(1)2

ρ(i)ρ(j)

)3
and xij = 1. Therefore, µ[pivot(1, i)] > µ[pivot(1, i, j)].

Now, combining Claims 2 and 3 with the previous inequality, it follows that

µ[pivot(1, 2)] > µ[pivot(1, i)] > µ[pivot(1, i, j)] = µ[pivot(i, j)]

and hence µ[pivot(1, 2)] > µ[pivot(i, j)] if i, j 6= 1, as wanted. 3 Claim 4

Combining the previous Claims, it follows that µ[pivot(1, 2)] > µ[pivot(Y )] as long as
#Y = 2. To see this is enough to conclude Step A, note that µ[pivot(Y )] ≥ µ[pivot(Y ′)]
as long Y ⊂ Y ′ since they are optimal values of identical minimization problems with
different constraints which concludes the proof. 2
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