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Using discriminative motion context
for on-line visual object tracking

Stefan Duffner and Christophe Garcia

Abstract—In this paper, we propose an algorithm for on-line,
real-time tracking of arbitrary objects in videos from uncon-
strained environments. The method is based on a particle filter
framework using different visual features and motion prediction
models. We effectively integrate a discriminative on-linelearning
classifier into the model and propose a new method to collect
negative training examples for updating the classifier at each
video frame. Instead of taking negative examples only from the
surroundings of the object region, or from specific background
regions, our algorithm samples the negatives from a contextual
motion density function in order to learn to discriminate the
target as early as possible from potential distracting image
regions. We experimentally show that this learning scheme
improves the overall performance of the tracking algorithm.
Moreover, we present quantitative and qualitative results on
four challenging public datasets that show the robustness of
the tracking algorithm with respect to appearance and view
changes, lighting variations, partial occlusions as well as object
deformations. Finally, we compare the results with more than 30
state-of-the-art methods using two public benchmarks, showing
very competitive results.

Index Terms—Image sequence analysis, Image motion analysis,
Object detection

I. I NTRODUCTION

We consider the problem of automatically tracking a single
arbitrary object in a video, where the algorithm is initialised
in the first frame from a bounding box around the object
that is to be tracked. No prior knowledge about appearance,
shape, or motion of the objects or the environment is used.
Also, we focus here onon-line tracking, where at each time
step, only past and present but no future information is used.
Applications for on-line visual object tracking are numerous,
including, for example, video indexing, Human-Computer or
Human-Robot Interaction, video-surveillance, traffic monitor-
ing, or autonomous driving.

In real-world scenarios, this problem is challenging as the
object to track may change considerably its appearance, shape,
size, and pose in the image (like the articulated human body
for example). Furthermore, the object can be partially occluded
by itself, other objects, or the environment. The object may
also move abruptly or in unpredictable ways. Finally, the envi-
ronment,i.e. the image background, may change considerably
and rapidly in videos from moving cameras and be affected
by varying illumination.

This weakly constrained setting requires a tracking algo-
rithm that is able, with few data, to build an object (and
possibly a scene) model that can well discriminate the object
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from the background, that copes with complex scene and
object motion, and that is able to adapt to large changes of
the object’s appearance, size, and shape. But this adaptation
also holds the risk of ”drift” (the so-called stability-plasticity
dilemma [1]), when the object model gradually includes in-
formation not belonging to it,i.e. from the background. As a
consequence, the tracking algorithm will not precisely track
the object any more or even lose it completely at some point
in time.

A. Related Work

Numerous methods for on-line tracking of arbitrary objects
have been published over the last years [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15]. Many recent
works [16], [2], [4], [5], [3], [6], [9], [10], [11], [12] propose
a tracking-by-detection framework, where a discriminative de-
tector is trained with object and background image samples.At
each frame of the video, this detector is applied inside a search
window to estimate the current position of the object, and
then the model is updated using this estimate and the current
image. The advantage of this approach is that no specific
motion model needs to be designed and parameterised, and
the output is deterministic. Also the discriminative machine
learning methods that are used are rather well studied in static
settings,e.g. their performance on object detection in still
images.

Another approach is to detect local feature points and
match them from one frame to the next, in order to track
an object [17], [7], [15], [18]. The problem here is to select
and match prominent and discriminative feature points, taking
into consideration the fact that some of them might disappear
and reappear during tracking. Other works,e.g. [19], [20],
[21], [22], [11], use some type of foreground-background
segmentation to track the object. This can be in form of
a parametric or active contour [23], [19], or a pixel-wise
foreground mask [22], [24], [25] of the object, for example.
Naturally, this alleviates the problem of drift, especially with
highly deformable objects.

Classically, the tracking problem has been tackled in a
probabilistic way with recursive Bayesian filters like Kalman
filters or particle filters [26], [27], [28], [21], [29], [30], [31],
[14]. These methods are able to estimate the posterior state
distribution of the tracked object and allow for maintaining
several state hypotheses. Usually, they explicitly integrate
motion models used to predict the next object state by defining
a probabilistic transition function independent from the image
observations. Some particle filter techniques use some more
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advanced motion models, like in Odobezet al. [27]; a dense
parametric motion estimator with an affine model is applied
to propose new state values, as we propose in this paper. Also
similar to this paper, parametric motion models have been used
to estimate background (i.e. camera) motion [32] and segment
the object region from the background [33].

Other recently proposed approaches have also included this
type of contextual motion information. For example, Yang
et al. [34] introduced a method that, throughout a video,
continuously discovers objects that move in the same direction
as the tracked object by performing a motion correlation
analysis. These auxiliary objects help to support and improve
tracking by performing inference in a star-structured graphical
model that includes their state.

Spatial context has also been exploited by using supporters,
i.e. other objects or feature points around the target in the
image. Grabneret al. [35], for example, extended the well-
known Implicit Shape Model by detecting feature points in
the image that have a correlated motion with the target.
These supporters are matched from frame to frame and their
relative displacement vectors are updated on-line. Wenet al.
[36] also proposed a method that detects supporters (here
called contributors) which are interest points within a local
neighbourhood around the target, in order to improve the
tracking performance. In addition, their method makes use
of a longer-term temporal context using an on-line sub-space
learning method that groups together observations from several
frames. Similarly, the approach proposed by Sunet al. [37]
tracks “helper” objects using an on-line Adaboost detector,
initialised manually at the first frame. Their relative position
is learnt on-line and used to predict the target object’s position.

Dinh et al. [38] proposed a method using supporters as
well as distractors, which are objects with similar appearance
to the target. The distractors help to avoid confusion of the
tracker with other similar objects in the scene, and they can
possibly be used to reason about the objects’ mutual occlusion.
Supporters are not used directly for the target’s state estimation
but only to disambiguate between the target and its distractors.
Honget al. [39] recently proposed an approach based on theℓ1
tracker [9] that deals with distractors by automatically learning
a metric not only between positive and negative examples
but also within the collected negative examples, effectively
replacing the originally proposed Euclidean distance.

Finally, Supanc̆ic̆ and Ramanan [40] presented a self-paced
learning tracker that also selects training examples from video
frames in the past to perform long-term tracking, an idea that
has also been used in the recent work of Huaet al. [41].

B. Motivation

The disadvantage with using supporting and distracting
objects is that several objects need to be detected and tracked,
which can be computationally expensive especially with a
larger number of objects. Moreover, the success or failure of
data association or, in some methods, matching local features
points in successive video frames, heavily depends on the
type of object to track and the surrounding background. This
process can be error-prone and, in some situations, may rather

harm the overall tracking performance. Finally, modellingthe
spatial, temporal, or appearance-based pairwise relationships
between objects and/or interest points can lead to a combi-
natorial explosion and make the inference on the state space
difficult.

To alleviate this problem, in this work, we propose a prob-
abilistic method that dynamically updates the foreground and
background model depending on distracting objects or image
regions in the scene background. This contextual appearance
information is extracted from moving image regions and used
to train on-line a discriminative binary classifier that, ineach
video frame, detects the image region corresponding to the
object to track.

Traditionally, these discriminative on-line classifiers used
in tracking-by-detection approaches [16], [6], [10], [11], [12],
[9] learn negative examples extracted from the image region
surrounding the current target object region. This choice is
motivated by the fact that the object will move only slightly
from one frame to the other w.r.t. the background or other
objects, and by computational speed. In contrast, our method
uses a stochastic sampling process to extract negative examples
from image regions that move. We call these:contextual
motion cues(see Fig. 1). In that way, regions that correspond to
possibly distracting objects are detected efficiently and early,
i.e. without them having to be inside a search window and
without scanning the whole image at each point in time. More
precisely, the contributions of this paper are the following:

• a method for on-line learning of a discriminative classifier
using stochastic sampling of negative examples from
contextual motion cues in videos,

• the integration of this incremental discriminative model in
an efficient adaptive particle filter framework combining
effectively several visual cues,

• a thorough evaluation on difficult public benchmarks
experimentally showing the performance increase from
this type of on-line learning as well as an improvement
over state-of-the-art tracking methods.

Compared to our previous work [42], we performed more ex-
tensive experiments, including the recent tracking benchmark
VOT 2014 [43], and we validated our approach by evaluating
it with different discriminative on-line tracking algorithms:
Multiple Instance Learning (MIL) Tracker in addition to On-
line Adaboost.

The paper is organised as follows. In Section II, we describe
the overall tracking algorithm. Section III explains how the
motion context is used to update the appearance models in
the tracker. Experimental results are presented in SectionIV,
and conclusions are drawn in the last section.

II. T RACKING ALGORITHM

In order to be able to handle more complex, multi-modal
state distributions in a computationally efficient way, we
propose a tracking algorithm based on a recursive Bayesian
framework. Assuming we have the observationsY1:t from
time 1 to t, we want to estimate the posterior probability
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distribution over the stateXt at time t:

p(Xt|Y1:t) =
1

C
p(Yt|Xt)

×

∫

Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1) dXt−1 , (1)

whereC is a normalisation constant. As closed-form solu-
tions are usually not available in practice, this estimation is
implemented using a particle filter,i.e. sampling importance
resampling (SIR) or bootstrapping. We refer to [44], [45] for
more details on particle filters and only explain the main
elements in the following sections.

A. Object state representation and inference

The stateX = (x, y, vx, vy, s, e) ∈ R
6 of the object to

track is described by an upright bounding box defined by
the object’s centre position (x, y) in the image, its 2D speed
(vx, vy) in the image plane, scale (s), and eccentricity (e),
i.e. the ratio of height and width. The stateX0 is initialised
manually by providing a bounding box around the object
in the first frame. Then, for each video frame, the particle
filter performs its classical steps ofpredicting particlesX(i)

sampled from the proposal distributionq(Xt|Xt−1) and up-
dating their weights according to the observation likelihood
p(Yt|Xt), state dynamicspm(Xt|Xt−1) and proposal (see
Section II-B):wi = p(Yt|Xt)

pm(Xt|Xt−1)
q(Xt|Xt−1)

, for each particle
i ∈ 1..N . At the end of each iteration, the observation
likelihood model parameters are updated using the mean of
the posterior distributionp(Xx|Y1:t). And finally, systematic
resampling is performed.

B. State dynamics and proposal function

In order to cope with fairly complex motion of arbitrary
objects in videos from a possibly moving camera, we use a
proposal function composed of a mixture of three distributions:

q(Xt|Xt−1) = βmpm(Xt|Xt−1)

+ βfpf (Xt|Xt−1)

+ βdpd(Xt|Xt−1) ,

(2)

where βm, βf and βd define the mixture weights, and
pm(Xt|Xt−1) is the state dynamics model defined by Eq. 3
and 4, pf(Xt|Xt−1) is an optical flow-like motion-based
proposal function, andpd(Xt|Xt−1) proposes states coming
from a discriminative on-line trained detector. In the following,
we will describe each term in more detail.

The state dynamic modelpm(Xt|Xt−1) is defined for
each individual component ofX. The position and speed
components of the object are described by a mixture of a first-
order auto-regressive modelpa with additive Gaussian noise
and a uniform distributionpu. If x̂ = (x, y, vx, vy) denotes a
position and speed component vector, we have:

p(x̂t|x̂t−1) = αpa(x̂t|x̂t−1) + (1− α)pu(x̂t|x̂t−1) , (3)

with pa(x̂t|x̂t−1) = N (x̂t−1; 0, Σ̂), and pu(x̂t|x̂t−1) = c
with c being a constant (defined empirically) allowing for
small “jumps” coming from the proposal function (Eq. 2). A

simple first order model is used for the scale and eccentricity
parameters,s ande. Let x̄ = (s, e). Then:

p(x̄t|x̄t−1) = N (x̄t−1; 0, Σ̄) . (4)

The second term of the proposal function:

pf (Xt|Xt−1) = N (d(Xt−1); 0,Σ
f ) (5)

predicts the new state by performing a parametric robust
motion estimation between the previous and current image
of the region defined byXt like in [46] and similar to
optical flow computation. The output of this estimation is a
set of parameters{dx, dy, ds} defining a affine transformation
d(·) that translates and scales the state vectorXt−1 of the
previous frame to best match the current image. As the motion
estimation is performed on a pyramid of image scales, this
term is very useful to compensate for large camera motion or
abrupt object accelerations.

The last term:

pd(Xt|Xt−1) = N (Xd; 0,Σd) (6)

uses the outputXd of a detector (see Section III) that has been
trained on-line and that is applied in the neighbourhood around
Xt on the current frame to predict the new object position and
scale (as in [47], [29] for example). The variancesΣ

f andΣd

are relatively small compared to the ones in the auto-regressive
model Σ̂ and Σ̄. Note that, to be coherent and to strictly
preserve the probabilistic independence, the detector’s output
for the previousframe could be used as well but represents a
less accurate proposal leading to a higher variance.

See Section IV for a summary of parameter values.

C. Observation likelihood

The observation likelihood functionp(Y|X) that we pro-
pose is designed to be robust against object deformations,
pose and illumination changes as well as partial occlusions.
It is a geometric mean of three distributions correspondingto
different visual cues:

p(Yt|Xt) = (pH(Yt|Xt) pS(Yt|Xt) pT (Yt|Xt))
1/3

, (7)

wherepH computes a local colour histogram likelihood ratio,
pS measures the global colour distribution similarity, andpT
is a texture likelihood. Taking the cube root of the product
ensures that the overall likelihood distribution does not become
too peaked. In the following, we explain each of the likelihood
function in more detail.

1) Histogram likelihood ratio: The histogram likelihood
function is defined as a ratio of foreground and background
likelihoods:

pH(Yt|Xt) =
pFG(Yt|Xt)

pBG(Yt|Xt)
, (8)

where

pFG(Yt|Xt) = exp

(

−λFG

9
∑

r=1

(D2[h∗
t (r), h(r,Xt)])

)

,

(9)
is the foreground likelihood defined over a grid of3 × 3
regionsr. D computes the Bhattacharyya distance between the
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HSV histogramsht extracted from stateXt and the respective
reference histogramsh∗

t initialised from the first frame, and
λFG is a constant. Similarly, the background likelihood:

pBG(Yt|Xt) = exp
(

−λBG(D
2[ĥ∗

t , ĥ(Xt)])
)

, (10)

is defined by a reference histogram̂h∗
t from the first frame

and one depending on the object’s current state:ĥ(Xt). Here,
ĥ∗ and ĥ(Xt) are computed over the image region twice as
large as the object andsurroundingit. All histograms contain
two different quantisation levels, 4 and 8 bins, in the HSV
colour space, using4 × 4, respectively8 × 8, bins for the H
and S channels and 4/8 separate bins for the V channel [26].
The reference modelsh∗ and ĥ∗ are updated linearly at each
iteration using the object’s current bounding box.

2) Global colour segmentation likelihood:In addition to
the more local colour models with one histogram per object
part, we also use a global colour histogram model based on a
pixel-wise colour segmentation of foreground and background.
This further helps to delimit the object boundaries. As with
pH , HSV colour histograms with separate colour and greyscale
bins are extracted – one inside the current bounding box
of the object, and one around it. Then, a probabilistic soft-
segmentation is performed (similar to [24]) computing the
probability p(ci|zi) of each pixeli inside a search window
belonging to the foregroundc = 1 or backgroundc = 0 given
its colourzi.

Then, the likelihood function is defined as:

pS(Yt|Xt) =
exp(−λSSFG(Xt)

2)

exp(−λSSBG(Xt)2)
, (11)

whereλS is a constant,SFG is the proportion of foreground
pixels, i.e. for which p(c = 1|z) > 0.5, inside the object’s
bounding box andSBG is the proportion of foreground pixels
outside the bounding box. Clearly, the better the bounding
box delimits foreground and background of the segmentation
the higher is this likelihood. The foreground and background
histograms used for the segmentation are updated linearly at
each iteration using the current bounding box.

3) Texture likelihood:The likelihood pT (Y|X) is based
on the (greyscale) texture of the object to track. This visual
cue helps to track objects that have little discriminative colour
information (for example in very dark environments) or in
greyscale videos. A discriminative classifier is trained at
the first frame using the object region as positive and the
background regions as negative examples. Then, the classifier
is updated at each iteration collecting positive and negative
examples from the foreground and background respectively
(see Section III). Here, we use the On-line Adaboost classifier
presented by Grabneret al. [16] that uses Haar-like features,
but any other on-line classifier could be used as well.

The likelihood is based on the detector’s confidencecD ∈
[0, 1] for the image patch defined byXt:

pD(Yt|Xt) = exp(−λD(1− cD)2) , (12)

with λD being a constant.

III. M ODEL ADAPTATION WITH CONTEXTUAL CUES

In this section, we will describe the main contribution of
the proposed approach: a method to exploit motion context
effectively for visual object tracking using a discriminative
classifier that is trained on-line on specific parts of the input
video. Our approach is different from previous work, where
motion context or background motion has been integrated
tightly in the tracking process,e.g. in the state dynamics, or
where specific appearance models are used to avoid distrac-
tions in the background.

As mentioned earlier, in the particle filter, we use a binary
discriminative classifier based on the On-line Adaboost (OAB)
algorithm [16] for proposing new particles (Eq. 6) as well
as for evaluating the observation likelihood (Eq. 12). The
classifier is trained with the first video frame using the image
patch inside the object’s bounding box as a positive example
and surrounding patches within a search window as negative
examples. Then, the classifier is updated at each tracking
iteration using the same strategy for extracting positive and
negative examples. We refer to [16] for details on the model
and how it is trained.

A. Background sampling

We propose to sample negative examples from image
regions that contain motion and thus likely correspond to
moving objects (see Fig. 1). The idea is that these regions
may distract the tracker at some point in time. Therefore
it is preferable to learn these negative examples as early
as possible,i.e. as soon as they appear in the scene. One
can see this as a kind of long-term prediction of possible
negative samples, in contrast to the much shorter (frame-by-
frame) time scale of the proposal function. To perform this
negative sampling, we first compensate for camera motion
between two consecutive frames using a classical parametric
motion estimation approach [46]. We apply a three-parameter
model to estimate the translation and scale of the scene, and
then compute the intensity differences for each pixel with its
corresponding pixel in the previous frame. This gives an image
M(x, y) approximating the amount of motion present at each
position (x, y) of the current frame of the video. We then
transform this image into a probability density function (PDF)
m(x, y) over the 2-dimensional image space:

m(x, y) = Z−1
∑

(u,v)∈Ω(x,y)

M(u, v) , (13)

where Ω(x, y) defines an image region of the size of the
bounding box of the object being tracked, centred at(x, y),
andZ is a constant normalising the density function to sum up
to 1. Thus,m(x, y) represents the relative amount of motion
inside the region centred at(x, y). Finally,N− image positions
(x, y) are sampled from this PDF corresponding to rectangles
centred at(x, y), where, statistically, regions with high amount
of motion are sampled more often than static image regions.
This process is illustrated in Fig. 1.
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Fig. 1. Illustration of different sampling strategies of negative examples (blue).
Top: traditional sampling at fixed positions within a search window around
the object (red).Middle: the motion probability density functionm (Eq. 13).
Bottom: the proposed negative sampling fromm.

B. Classifier update

The N− image patches corresponding to the sampled re-
gions as well as the positive example coming from the mean
particle of the tracker are then used to update the classifier.
In this case, the OAB method needs a balanced number of
positives and negatives, thus the positive example is usedN−

times, alternating positive and negative updates.

The advantage of sampling positions from these motion cues
is that we do not need to care about explicitly detecting, ini-
tialising, tracking, and eventually removing a certain number
of distracting objects at each point in time. Note that we could
also sample regions of different scales but as scale does not
change rapidly in most videos the benefit of this would be
relatively small. Note also that the PDF could as well include
appearance similarity with the tracked target. However, this
would considerably increase the computational complexity.

IV. EXPERIMENTS

A. Parameters

The following table summarises the tracking parameters that
have been used for all the experiments:

α c Σ̂ Σ̄ Σf/p

0.5 1

15
(7, 7) (0.001, 0.001) (1, 1, 10−4, 10−4)

βm βf βd λFG λBG λS λD

0.7 0.2 0.1 120 36 0.1 10

The variances forx andy values are scaled byw200 , w being
the current width of the bounding box. The variances fors and
e are relatively small, thus more rapid scale and eccentricity
changes cannot be accommodated easily, but on the other
hand the overall tracking robustness is increased. We should
highlight that only 100 particles have been used throughoutall
experiments. This turns out to be sufficient due to our design
of effective proposal and discriminative likelihood functions.

B. Datasets

We performed a quantitative evaluation on four challenging
public tracking datasets that are described below.

1) Babenko: The first dataset1 has been constructed by
Babenkoet al. [6] from various other publications, and it
has been used by many others afterwards. It contains 8
videos (with more than 5 000 frames) of objects or faces
that undergo mostly rigid deformations and some rather large
lighting variations as well as partial occlusions. Most of these
sequences are actually in grey-scale format (except “David”,
“Girl”, and “Face Occlusions 1”).

2) Non-rigid objects: The second, more challenging
dataset2 is composed of 11 videos (around 2 500 frames)
showing moving objects that undergo considerable rigid and
non-rigid deformations. This dataset has also been used by
[11] and partially by [8] among others.

3) VOT2013: The third dataset3 has been used for the
Visual Object Tracking (VOT) Challenge 2013 [48]. It contains
16 videos that have been automatically selected from a larger
set by maximising the variability in terms of certain crite-
ria, such as camera motion, illumination change, occlusion,
size change, or motion. Four of these sequences (“David”,
“diving”, “face”, “jump”) are also part of the first or second
dataset.

4) VOT2014: This is the 2014 version of the VOT2013
dataset available from the same web site. The dataset contains
25 challenging videos.

Note that similar benchmarks ([49], [50]) are available but
due to limited space, we cannot report all the results here.

C. Evaluation

We performed several experiments with different evaluation
protocols. For the first two datasets we evaluated the robust-
ness of the proposed algorithm by measuring the proportion of
correctly tracked frames. A frame is counted as correct, if the

1http://vision.ucsd.edu/∼bbabenko/projectmiltrack.html
2http://lrs.icg.tugraz.at/research/houghtrack/
3http://votchallenge.net/

http://vision.ucsd.edu/~bbabenko/project_miltrack.html
http://lrs.icg.tugraz.at/research/houghtrack/
http://votchallenge.net/
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fixed fixed+rand. motion fixed+mot.

David 99.9 98.9 99.9 100.0
Sylvester 64.9 60.9 74.3 96.2
Girl 45.7 32.1 59.2 51.9
Face Occlusions 1 69.5 94.6 92.9 95.5
Face Occlusions 2 67.2 73.2 78.1 93.6
Coke 94.7 90.3 94.9 90.5
Tiger 1 51.2 45.0 63.2 56.6
Tiger 2 93.0 97.4 95.9 97.7

average 73.3 74.1 82.3 85.3

TABLE I
BABENKO SEQUENCES: PERCENTAGE OF CORRECTLY TRACKED FRAMES

WITH FIXED NEGATIVE SAMPLING, SAMPLING FROM MOTION, COMBINED
FIXED+RANDOM SAMPLING, AND FIXED+MOTION SAMPLING.

tracking accuracyA = RT∩RGT

RT∪RGT
is greater than a threshold,

whereRT is the rectangle corresponding to the mean particle
from the tracking algorithm, andRGT is the ground truth
rectangle surrounding the object. We set the threshold to0.2
in order not to penalise fixed-size, fixed-ratio trackers in our
comparison. For every experiment and sequence, the proposed
algorithm has been run 5 times and the average result is
reported.

For the VOT datasets, we used the evaluation protocol
of the VOT2013/2014 challenges, which measures accuracy
and robustness. For evaluating the accuracy, the measureA,
defined above, is used. The robustness is measured in terms of
number of tracking failures, where trackers are re-initialised
after failures. Every sequence is evaluated 15 times and the
average results are reported. In addition to this “baseline”
experiment, there are two other experiments using the same
data. In the “region-noise” experiment the initial bounding box
is slightly shifted randomly for each run, and in the “greyscale”
experiment (only in VOT2013), each video is transformed into
greyscale format. See [48] and [43] for more details.

D. Results

In the first experiments, we evaluated different strategies
for the collection of negative examples of the discriminative
OAB classifier, as explained in Section III. We compared four
different strategies:

• fixed: N− negatives are taken from fixed positions
around the positive example inside the search window,
which is twice the size of the object’s bounding box.

• fixed+random: N−/2 examples are taken from fixed po-
sition (as for “fixed”), andN−/2 examples are sampled
from random image positions.

• motion: N− negative examples are sampled from the
contextual motion distributionm (Eq. 13).

• fixed+motion: N−/2 examples are taken from fixed
positions, andN−/2 examples are sampled from the
contextual motion distribution.

In any case, the negative examples do not overlap more than
70% with the positive ones in the image.

Table I and II show the results for the first two datasets in
terms of the percentage of correctly tracked frames. In most
cases, the sampling of negative examples from the contextual
motion PDF, i.e. “motion” and “fixed+motion”, improves
the tracking performance. For the Babenko sequences, the

fixed fixed+rand. motion fixed+mot.

Cliff-dive 1 82.9 89.3 83.2 96.8
Motocross 1 72.4 68.5 88.9 85.7
Skiing 72.2 64.1 75.6 79.2
Mountain-bike 100.0 100.0 100.0 100.0
Cliff-dive 2 76.7 67.7 71.6 51.6
Volleyball 22.5 39.4 81.9 78.1
Motocross 2 80.0 83.3 71.3 98.7
Transformer 84.8 90.2 85.6 89.7
Diving 26.7 30.2 32.2 60.8
High Jump 40.6 43.5 38.3 49.9
Gymnastics 97.0 97.0 88.5 99.1

average 68.7 70.3 74.3 80.9

TABLE II
NON-RIGID OBJECT SEQUENCES: PERCENTAGE OF CORRECTLY TRACKED

FRAMES WITH FIXED NEGATIVE SAMPLING, SAMPLING FROM MOTION,
COMBINED FIXED+RANDOM, AND FIXED+MOTION SAMPLING.

proposal likelihood babenko non-rigid

pm pH 57.7 69.0
pm pH , pS 55.1 71.9
pm pH , pS , pT 83.7 78.1

pm, pf pH , pS , pT 77.9 81.1
pm, pd pH , pS , pT 84.7 79.7

pm, pf , pd pH , pS , pT 85.3 80.9

TABLE III
PERCENTAGE OF CORRECTLY TRACKED FRAMES FOR THEBABENKO AND

NON-RIGID SEQUENCES WITH DIFFERENT COMBINATIONS OF PROPOSAL

AND LIKELIHOOD TERMS (c.f . EQ. 2 AND 7).

improvement is smaller because there are not many other
moving objects that can distract the tracker. On average, the
best strategy is “fixed+motion”, with a relative improvement of
around7.5%. In another experiment, we studied the influence
of each proposal and likelihood term (Eq. 2 and 7) on the
overall tracking performance. Table III summarises the results.
Some terms seem to be complementary, like the motion-based
proposalpf and the detector-based onepd. On average, the
combination of all terms gives the best performance. We
further replaced OAB in our algorithm with the MIL Online
Boosting classifier [6] in order to see if our proposed method
for sampling negatives from motion context depends on the
underlying classifier. The results are summarised in Table IV,
and we can see that for both classifiers OAB and MIL,
the use of motion context outperforms the other sampling
strategies. We use this strategy in combination with OAB
for the following experiments and call the overall tracking
algorithm “Motion Context Tracker” (MCT).

We compared the proposed Motion Context Tracker (MCT),
with other state-of-the-art trackers on the two datasets: Hough-

fixed fixed+rand. motion fixed+mot.

Babenko
OAB 73.28 74.06 82.30 85.25
MIL 70.24 68.19 66.05 70.94

Non-rigid OAB 68.71 70.30 74.29 80.87
objects MIL 74.04 73.78 77.49 75.95

TABLE IV
BABENKO SEQUENCES: AVERAGE PERCENTAGE OF CORRECTLY TRACKED

FRAMES WITH THE PROPOSED METHOD USING DIFFERENT ONLINE

CLASSIFICATION ALGORITHMS.
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HT [11] TLD [7] PixelTrack [25] MIL [6] STRUCK [12] PF MCT

David 44.0 95.3 100.0 76.2 58.0 58.7 100.0
Sylvester 100.0 86.6 49.4 56.9 99.6 96.7 96.2
Girl 60.7 92.0 92.8 97.0 98.6 46.1 51.9
Face Occlusions 1 99.4 99.4 100.0 100.0 100.0 100.0 95.5
Face Occlusions 2 100.0 84.0 51.5 98.8 99.4 97.9 93.6
Coke 33.9 74.6 69.5 49.2 83.1 13.9 90.5
Tiger 1 19.7 76.1 39.4 62.0 98.6 34.9 56.6
Tiger 2 30.1 57.5 24.7 84.9 86.3 70.1 97.7

average 61.0 83.2 65.9 78.1 90.4 64.8 85.3

TABLE V
BABENKO SEQUENCES: PERCENTAGE OF CORRECTLY TRACKED FRAMES WITH VARIOUS TRACKING ALGORITHMS.

HT [11] TLD [7] PixelTrack [25] MIL [6] STRUCK [12] PF MCT

Cliff-dive 1 100.0 94.1 100.0 100.0 97.1 88.4 96.8
Motocross 1 100.0 1.3 40.4 0.0 33.3 36.1 85.7
Skiing 95.9 11.0 100.0 9.6 4.1 84.2 79.2
Mountain-bike 100.0 13.6 38.6 0.5 36.8 100.0 100.0
Cliff-dive 2 90.2 4.9 26.2 13.1 9.8 51.5 51.6
Volleyball 43.1 35.0 86.2 86.0 37.2 85.4 78.1
Motocross 2 100.0 86.7 80.0 80.0 93.3 92.7 98.7
Transformer 36.3 8.1 84.7 33.9 43.5 88.5 89.7
Diving 7.8 14.7 55.0 44.6 46.8 52.3 60.8
High Jump 68.0 6.6 93.4 78.7 47.5 42.0 49.9
Gymnastics 87.9 65.3 98.7 46.3 97.9 98.3 99.1

average 75.4 31.0 73.0 44.8 49.8 74.5 80.9

TABLE VI
NON-RIGID OBJECT SEQUENCES: PERCENTAGE OF CORRECTLY TRACKED FRAMES WITH VARIOUS TRACKING ALGORITHMS.

Track [11], Tracking-Learning-Detection (TLD) [7], Pixel-
Track [25], Multiple-Instance Learning (MIL) Tracker [6],
STRUCK [12], and a pure Particle Filter (PF) method (MCT
without the discriminative detector). For the Babenko se-
quences, STRUCK showed the best average performance
which can be explained by the videos mostly being in grey-
scale, whereas MCT relies on colour information. However,
for the more difficult non-rigid dataset, the average perfor-
mance of MCT is superior to the one of the other methods.
Note that MCT also outperforms STRUCK in the two VOT
benchmarks (see below). Table V and VI show the results.

We further evaluated MCT with the VOT2013 dataset using
the protocol of the VOT challenge and comparing it with
27 other state-of-the-art tracking methods. Table VII lists the
top 7 ranks for the experiments baseline, region-noise, and
greyscale, combining accuracy and robustness. The resultsof
MCT are very competitive, being the second-best method for
baseline and region-noise and the third-best for greyscale.
Only one method, the Pixel-based LUT Tracker (PLT), is
consistently outperforming MCT on this dataset. It is an
optimisation of the tracker called STRUCK [12], currently
unpublished but some explanation can be found in [48]. Note
that, PLT is a single-scale tracker and it uses different feature
sets for greyscale and colour videos. As opposed to PLT,
MCT fails for example in the “Hand” video (2.13 failures
on average), where large appearance changes, motion, and
difficult lighting occur at the same time (see Fig. 3). Other
failures may happen in the “Torus” and “Bolt” videos with
large object deformations and many similar distracting objects.
We also added the method PF (MCT without the detector) to
the VOT2013 evaluation. Its overall ranks for the baseline,
region-noise, and greyscale experiments are 16.1, 14.5, and

baseline region-noise greyscale

PLT 4.96 PLT 3.58 PLT 3.96
MCT 6.62 MCT 5.08 FoT [51] 4.75
FoT [51] 8.25 CCMS 8.33 MCT 6.25
EDFT [52] 9.5 FoT [51] 9.04 EDFT [52] 7.5
CCMS 9.54 LGT++ [53] 9.04 GSDT [54] 9.5
LGT++ [53] 10.2 EDFT [52] 9.08 LGT++ [53] 9.58
DFT [55] 11.1 LGT [14] 10.5 Matrioska [56] 10.7

TABLE VII
OVERALL RANKING RESULT WITH THE VOT2013DATASET. ONLY THE

FIRST 7 OUT OF 28 RANKS ARE SHOWN. THE NUMBERS REPRESENT THE
ACTUAL AVERAGE RANKING .

14.4 respectively. This clearly shows that the benefit of the
motion context-based discriminative classifier.

Figure 2 shows the accuracy-robustness ranking plots for
the VOT2014 dataset as evaluated in the context of the
Visual Object Tracking Challenge 2014 [43]. The plots show
the results on the “baseline” and “region noise” experiments
for 39 different state-of-the-art methods. It can be seen that
MCT (yellow circle) is among the top-performing methods,
its overall rank being four (counting PLT and its extension
PLT 14 as one entry). Table VIII lists the 10 best methods
for VOT2014 and the respective accuracy ranks, robustness
ranks, and overall ranks. Taking the average of accuracy
and robustness ranks, PLT and its extension PLT14 are still
slightly better, as well as the correlation filter-based method
SAMF [57], and the method DGT [58] which relies on graph
matching and super-pixel representations. The method PF,i.e.
MCT without the discriminative classifier, is only slightly
worse on average with this benchmark. This might be due to
the more challenging type of videos with deformable objects
for which the texture-based classifier is not powerful enough.
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Fig. 2. Accuracy-robustness ranking plots for 39 state-of-the-art methods evaluated with the VOT2014 dataset [43]. The more on the top right, the better.
The proposed method MCT (yellow circle) is among the top-performing methods.

accuracy rank robustness rank overall rank

SAMF [57] 8.16 16.49 12.33
PLT 14.28 10.41 12.35
DGT [58] 11.42 13.44 12.43
PLT 14 17.46 10.77 14.12
MCT 13.52 14.76 14.14
PF 13.70 14.74 14.22
DSST [59] 13.51 15.54 14.53
KCF [60] 13.62 16.82 15.22
HMMTxD [43] 13.18 17.57 15.38
MatFlow [56] 16.90 15.29 16.10

TABLE VIII
OVERALL RANKING RESULT WITH THE VOT2014DATASET. ONLY THE

FIRST 10 OUT OF 39 RANKS ARE SHOWN. THE NUMBERS REPRESENT THE

SEQUENCE-NORMALISED AVERAGE RANKING.

accuracy robustness
base- region- grey- base- region- grey-
line noise scale line noise scale

VOT2013 0.60 0.58 0.59 0.46 0.42 0.87
VOT2014 0.54 0.51 – 0.99 1.19 –

TABLE IX
AVERAGE ACCURACY AND ROBUSTNESS OF THE PROPOSED METHOD FOR

THE VOT2013AND VOT2014DATASETS.

Table IX summarises the average accuracy and robustness
values for VOT2013 and VOT2014.

Finally, Fig. 3 shows some qualitative tracking results on
some of the videos. One can see that the algorithm is very
robust to changes in object appearance, illumination, poseas
well as complex motion, and partial occlusions. The algorithm
runs at around 20fps for a frame size of320×240 on an Intel
Xeon 3.4GHz.

V. CONCLUSIONS

We presented a new efficient particle filter-based approach
for tracking arbitrary objects in videos. The method combines

generative and discriminative models, by effectively integrat-
ing an on-line learning classifier. We propose a new method
to train this classifier that samples the position of negative
examples from contextual motion cues instead of a fixed region
around the tracked object. The advantage of MCT compared
to others is that it effectively combines different discriminant
visual cues: colour, shape, texture, and motion. And it further
takes advantage the motion context in the scene, by using
a specific online learning scheme that is independent from
the actual classification algorithm. Our extensive experimental
results show that this procedure improves the overall tracking
performance with different discriminative classificationalgo-
rithms. Further, the proposed tracking algorithm gives state-of-
the-art results on four different challenging tracking datasets,
effectively dealing with large object shape and appearance
changes, as well as complex motion, varying illumination
conditions and partial occlusions.

Possible future extensions to improve the tracking robust-
ness and precision would include the use of more scene
context, for example not only related to motion but also
appearance and the inference of higher-level scene information
related to lighting, shape, and 3D positions.
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Fig. 3. Tracking results of MCT on the sequences “David”, “Motocross1”, “Bolt”, “Sunshade”, “Woman”, “Gymnastics”, and “Hand” (VOT2013). MCT
is very robust to partial occlusions, illumination changes, deformations, pose or other appearance changes. In the “Woman” video, the algorithm has some
problems adapting to the scale change; in the “Gymnastics” example, the aspect ratio is not adapted fast enough althoughthe track is not lost; and in the last
example the algorithm loses track due to deformation, rotation, motion blur, and low lighting.
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[18] T. Voj́ıř and J. Matas, “The enhanced flock of trackers,” in Registration
and Recognition in Images and Videos, ser. Studies in Computational
Intelligence, R. Cipolla, S. Battiato, and G. M. Farinella,Eds. Springer
Berlin Heidelberg, 2014, vol. 532, pp. 113–136.

[19] D. Freedman and T. Zhang, “Active contours for trackingdistributions.”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 518–526,
Apr. 2004.

[20] B. Leibe, A. Leonardis, and B. Schiele, “Combined object categorization
and segmentation with an implicit shape model,” inECCV worksh. on
statist. learning in comp. vis., 2004.

[21] Y. Rathi, N. Vaswani, A. Tannenbaum, and A. Yezzi, “Tracking deform-
ing objects using particle filtering for geometric active contours,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 29,
no. 8, pp. 1470–1475, Aug. 2007.

[22] C. Bibby and I. Reid, “Robust real-time visual trackingusing pixel-wise
posteriors,” inProceedings of the European Conference on Computer
Vision, 2008.

[23] M. Isard and A. Blake, “Contour tracking by stochastic propagation
of conditional density,” inProceedings of the European Conference on
Computer Vision, vol. 2, 1996, pp. 343–356.

[24] C. Aeschliman, J. Park, and A. C. Kak, “A probabilistic framework for
joint segmentation and tracking,” inProceedings of the International
Conference on Computer Vision and Pattern Recognition, Jun. 2010,
pp. 1371–1378.

[25] S. Duffner and C. Garcia, “Pixeltrack: a fast adaptive algorithm for track-
ing non-rigid objects,” inProceedings of the International Conference
on Computer Vision, Dec. 2013, pp. 2480–2487.
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