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Main1

Atmospheric flows are characterized by chaotic dynamics and recurring large-scale pat-2

terns . These two characteristics point to the existence of an atmospheric attractor defined3

by Lorenz as: “the collection of all states that the system can assume or approach again4

and again, as opposed to those that it will ultimately avoid”. The average dimension D5

of the attractor corresponds to the number of degrees of freedom sufficient to describe6

the atmospheric circulation. However, obtaining reliable estimates of D has proved chal-7

lenging . Moreover, D does not provide information on transient atmospheric motions,8

which lead to weather extremes . Using recent developments in dynamical systems theory9

, we show that such motions can be classified through instantaneous rather than aver-10

age properties of the attractor. The instantaneous properties are uniquely determined by11

instantaneous dimension and stability. Their extreme values correspond to specific atmo-12

spheric patterns, and match extreme weather occurrences. We further show the existence13
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of a significant correlation between the time series of instantaneous stability and dimen-14

sion and the mean spread of sea-level pressure fields in an operational ensemble weather15

forecast at steps of over two weeks. We believe this method provides an efficient and prac-16

tical way of evaluating and informing operational weather forecasts.17

18

Dynamical systems analyses led to the crucial notion that atmospheric motions are chaotic and19

settle on an attractor [1]. Estimates of the average dimensions D of atmospheric attractors20

were produced from times series of various meteorological variables [2] because this quan-21

tity roughly indicates the numbers of degrees of freedom sufficient to describe the flow in its22

average, time-stationary configuration. However, many weather phenomena of great societal23

and economic relevance such as extratropical storms, heatwaves and cold-spells are linked to24

transient metastable states of the atmosphere, whose dynamical properties depend on the instan-25

taneous rather than average properties of the attractor [3]. Such local properties are uniquely26

determined by two quantities: the local dimension and stability of the state being considered27

[4].28

The concept of instantaneous dimension is intuitive: for a state ζ of the attractor (an atmo-29

spheric configuration), the instantaneous dimension d(ζ) measures the density of neighbouring30

points (similar configurations). This implies that d can be related to both the entropy and the31

predictability of nearby trajectories [5]. The stability of the state ζ is measured by the stickiness32

θ(ζ) defined as the inverse of the average persistence time of trajectories around ζ . If ζ is a fixed33

point of the dynamics, θ(ζ) = 0. For a point that leaves the neighbourhood of ζ immediately,34

θ = 1. In general, the stickier the point ζ , the longer the previous and subsequent states of the35

system will resemble ζ .36

These instantaneous properties have not been previously computed for atmospheric flows for37

two main reasons: i) until recently the length of high-frequency, geographically extensive me-38
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teorological time series has been insufficient to allow reliable estimates ii) the methodologies39

used to compute the average dimension of the attractor were not suited to the purpose. In this40

paper we compute the distribution in phase space of the instantaneous dimensions 0 < d < ∞41

and the stickiness 0 < θ < 1 for daily sea-level pressure (SLP) fields in the North Atlantic,42

by applying a novel methodology based on the universal behavior of the Poincaré recurrences43

in chaotic systems [4]. This methodology is general, and thus applicable to a wide range of44

dynamical systems beyond climate science. There are two key advances relative to previous45

attempts: first, our methodology removes major uncertainties associated with past estimates46

[6, 2] (see Methods). Second, it yields the full probability distribution of the instantaneous47

dimension of the attractor. The validity of our approach has been successfully tested on the48

idealized Lorenz system [7] and on a number of synthetic fields (Extended Data Figs A.1 and49

A.2).50

We chose SLP as a representative field for the large-scale atmospheric circulation over the51

North Atlantic and Europe (see Methods). To verify the robustness of our results we analyses52

two distinct daily SLP timeseries: the NCEP/NCAR [8] and ERA-Interim data [9]. The average53

dimensions D obtained by averaging d over all ζ , including tests performed on coarse-grained54

NCEP/NCAR data, are shown in Fig. 1-a. If we interpret the resolution, which is of order55

104 grid-points for ERA-Interim and of order 103 grid-points for NCEP/NCAR, as an upper56

bound for D, our results point to the existence of a low dimensional attractor. The values of D57

are comparable across all resolutions, except when the coarse graining degrades the resolution58

to the point where large-scale SLP low and high centers become unrecognizable (resolution59

20◦) and the phase space itself is shrinking. We find that the distribution of d(ζ) for the 2.5◦
60

NCEP/NCAR reanalysis ranges from as low as 3 to as high as 20 (Fig. 1-b). The average value61

D = 13 is only representative of a limited number of daily pressure fields.62

Our estimate of D is not the dimension of the global climate attractor: here we focus on a63
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specific region and we analyse SLP structures with a well defined radius. The large spread64

in the distribution of instantaneous dimensions (3 < d(ζ) < 20) explains why deterministic65

low dimensional models are unable to reproduce the transients between metastable states of66

the atmospheric circulation, such as the transitions between zonal and blocked phases of the67

mid-latitude flow [1, 3].68

Figure 1-c displays the time series of d(ζ). A seasonal cycle is identifiable both from the whole69

time series and from the inset which shows the last three years of instantaneous dimension70

estimates. The troughs occur in summer and the peaks in winter, when the temporal variability71

of the instantaneous dimension is also high. The corresponding results for ERA-Interim are72

shown in Extended Data Fig. A.3.73

We now use d(ζ) and θ(ζ) as probes to investigate the large-scale dynamics and associated74

weather extremes of the North Atlantic. Here we only discuss the results for the highest reso-75

lution NCEP/NCAR data (see Extended Data Figs. A.4 and A.5 for the ERA-Interim results).76

The analysis of idealised systems, such as the one proposed by Lorenz[7], suggests that ex-77

tremes in d and θ trace extremes in phase space (see Extended Data Fig. A.1 and Methods). We78

begin by isolating all the days t such that the instantaneous dimension d and persistence θ are79

beyond the 0.02 and 0.98 quantiles of the respective distributions. The results are insensitive to80

the exact choice of quantile. The North Atlantic SLP experiences a strong seasonal cycle with81

significant changes in the principal atmospheric patterns and modes of variability between the82

winter and summer seasons (e.g. ref. [10]). If extremes in the instantaneous properties have83

a direct correspondence to the large-scale circulation, a similarly pronounced seasonal cycle in84

their occurrence might be expected. Indeed, the dimensional extremes occur almost exclusively85

during the extended boreal winter period, as do the maxima of θ (Fig. 2). The θ minima, on the86

opposite, occur from early summer into winter. Since these are the most persistent patterns, the87

summertime episodes might be linked to the more staid character of the stable dynamics during88
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this season. Fig. 3 displays the pairs (θ, d) for each day.89

The SLP anomaly patterns corresponding to the extremes in the instantaneous dimension d(ζ)90

and persistence θ(ζ) are shown in the four side panels of Fig. 3. As expected, they correspond to91

very large SLP anomalies. More surprisingly, all four composites resemble well-known large-92

scale weather regimes [11, 12, 13]. The persistence of the patterns ranges between three days93

and just over one day (0.3 < θ < 0.8). This should not be compared directly to the persistence94

of the traditional weather regimes, as the requirement that the flow does not leave the neighbour-95

hood of the state ζ is a more restrictive condition than that imposed by clustering algorithms.96

The minima in daily dimension correspond to positive North Atlantic oscillation (NAO) condi-97

tions, which favour the occurrence of cyclones across the North Atlantic [14], and destructive98

surface winds over continental Europe [15]. Indeed, we find a statistically significant match99

between these low instaneous dimensions and historical storms: the names and dates of storms100

corresponding to minima of d(ζ) are reported in Fig. 4 (see also methods). Conversely, minima101

of θ(ζ) match the NAO- regime. Both NAO phases have a strong impact on the downstream102

temperature extremes over Europe [16]. However, we note that there are differences between103

the impacts of the traditional weather regimes and the patterns we identify here (see Extendend104

Data Fig. A.6 and Methods). From the dynamical systems perspective, the negative NAO has105

a systematically longer persistence than the positive phase. Both the largest and the smallest106

NAO values mostly display below-average d(ζ), thus affording good predictability in accor-107

dance with recent analyses of ensemble prediction systems [17]. The maxima of θ(ζ) and d(ζ)108

are both associated with a blocked zonal flow and resemble the Atlantic Ridge and the Block-109

ing regimes, respectively. These are linked to European temperature extremes, although our110

patterns again display some novel connections (see Extendend Data Fig. A.7 and Methods).111

Blocked zonal flows are notoriously difficult to forecast [17]. This is due to the transition from112

persistent low instantaneous dimensions to less persistent, higher dimensions as the atmosphere113
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shifts from a zonal NAO-type flow to a blocked configuration.114

We argue that these results can be used in an operational forecast system. If our dynamical115

indicators are indeed linked to predictability, given a certain state they should correlate with116

the skill of the model in predicting the future states of the field. We test this by correlating117

the values of d and θ for the period 2000-2015 with the output of the 2nd Generation NOAA118

Global Ensemble Reforecast (GER) data set [18]. This is consistent with the current operational119

NCEP Global Ensemble Forecast System (GEFS), and consists of 11 ensemble members. The120

ensemble spread at different forecast hours is defined as: 〈σSLP 〉, where angular brackets indi-121

cate spatial averages over the region considered in the analysis.. The correlation coefficient R is122

significant at all forecast steps at the 0.05 significance level, reaching R(θ, 〈σSLP 〉) = 0.42 and123

R(d, 〈σSLP 〉) = 0.2 (see Extended Data Fig. A.10-a for the complete analysis). While these124

values are not high for forecasts a short time ahead, their persistence at steps of over two weeks125

is noteworthy. Figure 5a), b shows the bivariate histograms of (d, 〈σSLP 〉) and (θ, 〈σSLP 〉) for126

for the forecast step of 384 hours ahead initialized on all days in the data set. There is a strong127

linear relationship between θ and 〈σSLP 〉, although the histogram suggests that the distribution128

is not uniform and peaks at either at low (〈σSLP 〉 ' 400 Pa) or high (〈σSLP 〉 ' 800 Pa) values.129

This latter feature might be dependent on the reforecast product. The analysis further suggests130

that θ is a better proxy of ensemble spread 〈σSLP 〉 than d. The ensemble spread is a generic131

measure of the dispersion of the trajectories whereas d and θ provide different but complemen-132

tary information on how the trajectories spread. d is linked to the entropy and therefore to the133

maximum divergence of the trajectories whereas θ indicates how the trajectories stick together.134

A high stability implies that only few members strongly deviate from the bulk so that 〈σSLP 〉135

is linked to θ (in most of the cases). On the rarer cases when most members strongly deviate136

from each other, we observe a positive correlation between 〈σSLP 〉 and d and a weakened link137

with θ. For illustration, we report two examples of both situations in Fig. 5-c (low spread in the138
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ensemble reforecast), and Figure 5-d (high spread in the ensamble reforecast).139

The daily dimension and persistence therefore have an immediate practical use as proxies for140

predictability, and could be fruitfully used as a time-effective way in which to evaluate and in-141

form operational forecast systems. For example, one could imagine a system which determines142

the resolution and ensemble size for a given initialization step based on the values of d and θ.143

Moreover, the visualization of the trajectory for a given season (see the supplementary video)144

can be used to provide a day-by-day tracking of weather extreme events.145
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Methods212

Attractors are geometrical sets which hosts all the trajectories of a system. To characterize an213

attractor, one wants to know how often the state ζ occurs over a certain time interval and how214

long the dynamics stick to ζ before leaving its neighbourhood. If one is able to specify such215

properties for all the points of the attractor, then the behaviour of the system is entirely known.216

The general problem one faces in reconstructing an attractor is the limited number of trajectories217

that can be observed or simulated [2]. In the case of climate observations we have just one single218

trajectory x(t) (here represented by the time series of SLP daily fields) that we can exploit to219

reconstruct the attractor properties.220

The purpose of our methodology it is to use just a long trajectory x(t) of systems states to221

reconstruct the salient properties of the attractor. The method is based on the link between222
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extreme value theory (where the extremes are the recurrences of the points ζ with respect to223

all the possible states of the system) and the Poincaré theorem of recurrence. The idea is that224

each state of the system x(t) approximates a point ζ on the attractor and its neighbours are225

all the states whose distance with respect to x(t) is small. So at each time t and for each226

state x observed we can define istantaneous properties: the instantaneous dimension d and the227

stickiness θ. For the theoretical details, demonstrations and examples on dynamical systems see228

[4]. These properties are instantaneous because they change at each instant t, but they are also229

local, because states observed at different times but close in the phase space will have similar230

instantaneous properties. We refer to instantaneous dimensions rather than to local dimension231

to avoid ambiguity with the notion of local to indicate a geographic region.232

Instantaneous Dimensions233

The distribution of instantaneous dimension of the attractor of a dynamical system gives use-234

ful information on the predictability of oberved states because it is related to the Lyapunov235

exponents [5]. Therefore, estimating the dimension distribution in phase space helps charac-236

terizing the overall dynamics of the system. The embedding methods developed in the 1980’s237

[19, 20] do not provide instantaneous dimensions but only the average dimension of the attrac-238

tor. Moreover, such computations have proved to be problematic in systems with large numbers239

of degrees of freedom and have given controversial results when applied to atmospheric flows240

[2, 21].241

The method we adopt in the present study results from the application of extreme value theory242

to the field of dynamical systems [22, 4]. In this approach, the points on the attractor are fully243

characterized by parameters of extreme value laws: if one fixes an arbitrary point ζ on a chaotic244

attractor and consider the probability P that a trajectory x(t) returns within a sphere of radius245

ε centered on the point ζ , then the Freitas-Freitas-Todd theorem [22] modified in [23] states246

11



that such probability is a generalized Pareto distribution [24]. The time series of the distance247

between ζ and the other observations along the trajectory is defined by:248

g(x(t)) = − log(δ(x(t), ζ))

δ(x, y) is a distance function between two vectors, which tends to zero when x and y are close to249

each other. Taking the logarithm increases the discrimination of small values of δ(x, y) which,250

as described below, correspond to large values of g(x(t)). The probability of logarithmic returns251

can then be expressed as:252

P (g(x(t)) > q, ζ) ' exp

[
−x− µ(ζ)

σ(ζ)

]

namely an exponential law whose parameters µ and σ depend on the point ζ chosen on the253

attractor. Remarkably, σ(ζ) = 1/d(ζ), where d(ζ) is the dimension around the point ζ . This254

result has been proved theoretically and verified numerically in several studies collected in [4].255

In the above equation, q is a high threshold, and is linked to the radius ε via q = g−1(ε) =256

exp(−ε). In other words, requiring that the trajectory falls within a sphere around the point ζ is257

equivalent to asking that the series of g(x(t)) is over the threshold q, which can be simply set258

as a percentile of the series itself. If this approach is iterated for several different ζ points, the259

attractor dimension is then obtained as:260

D = d(ζ)

where the overbar means averaging over all ζ . This is a powerful result because it provides a261

direct way to compute dimensions on the attractor without the need for embedding.262
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Stickiness (persistence) in phase space263

The previous results hold when the state ζ considered is not in the vicinity of a fixed point of the

attractor. Fixed points are such that x(t+1) = x(t), for all t, i.e. the system is stuck in the same

state for an infinite time. In most natural systems, fixed points are unstable: a trajectory passing

close to a fixed point spends a finite amount of time in its vicinity before leaving. Such time

can also be computed by introducing a further parameter in the previous law. This parameter,

known as extremal index, is indicated with θ and is such that:

P (g(x(t)) > q ' exp

[
−θ

(
x− µ(ζ)
σ(ζ)

)]

We can interpret θ as a measure of the residence time of consecutive iterations in the small264

sphere around the point ζ . In this interpretation, the inverse of θ is precisely the mean residence265

time within the sphere.266

Some idealized examples267

We illustrate the procedure to compute the instantaneous dimension described above by apply-268

ing it to the Lorenz system [7]. This system and its attractor (often referred to as the Lorenz269

butterfly) has been studied extensively in the literature, and therefore allows us to compare the270

results of our approach to those of standard techniques in dynamical systems analysis. We be-271

gin by generating a trajectory ~x(t), using a time step of 0.025. Next, we select approximately272

75,000 locations along the trajectory as our ζ points on the attractor.273

For each ζ: i) the series g( ~x(t), ζ) is computed, ii) a high threshold q is selected (here the 98th274

percentile of the series g), iii) a Generalized Pareto distribution is fitted to the observations275

exceeding the threshold q, iv) an instantaneous dimension of the attractor d(ζ) is then obtained.276

Extended Data Fig. A.1) displays the values of the instantaneous dimension at all points along277

our trajectory, while panel (b) displays the corresponding histogram. It is interesting to observe278
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that the minima and maxima of the instantaneous dimension track the extremes of the Lorenz [7]279

attractor. Maxima of the dimension have a non-trivial structure and are found where recurrences280

are rare — namely in the wings of the butterfly — and where the trajectories diverge the most —281

namely between the two wings. The minima correspond to the centre of the butterfly wings, i.e.282

the fixed points of the Lorenz 63 system. The average value of all the d(ζ) is, by definition, the283

attractor dimensionD. The value we find: D = 2.06, corresponds exactly to the value proposed284

by Grassberger and Procaccia [25]. For this specific example, any q larger that the 95th quantile285

of g yields the same results. The stickiness, measured in terms of θ is instead shown in Extended286

Data Fig. A.1). The Lorenz attractor consists of three unstable fixed points: two at the center of287

the wings and one at the origin of the axes. The three points are well captured by the statistics288

of θ.289

The embedding methodologies adopted in the 1980s were unable to estimate high attractor290

dimensions [2], thus providing artificially low values for complex systems. To verify that our291

methodology does not suffer from the same bias, we have applied it to test fields of the same292

grid-size as the NCEP data set. For completely random fields, we have obtained estimates for293

D larger than 80. Conversely, estimates of D for fields with coherent structures resembling294

pressure centres were lower than 5 (see Extended Data Fig. A.2).295

Sea-level pressure data296

In this study we adopt sea-level pressure (SLP) as the meteorological variable to describe the297

North Atlantic circulation. The major modes of variability affecting the North Atlantic are298

often defined in terms of the empirical orthogonal functions of SLP [13, 11], and a wealth299

of other atmospheric features, ranging from teleconnection patterns to storm track activity to300

atmospheric blocking can be diagnosed from the SLP field [26, 16].301

We base our study on NCEP/NCAR reanalysis data [8] over the period 1948-2015, with a hori-302
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zontal resolution of 2.5◦ and ERA-Interim data [9] over 1979-2011 with horizontal resolutions303

of 0.75◦ and 1.5◦ respectively. We consider a domain spanning the North Atlantic and Europe304

(80◦ W ≤ Long. ≤ 50◦ E, 22.5◦ N≤ Lat. ≤ 70◦ N ). Further tests show that the results are305

linearly insensitive to the exact boundaries chosen (Extended Data Fig. A.8).306

For the NAO, we use daily values computed by NCEP’s Climate Prediction Center. The values307

are based on NAO patterns which vary on a monthly basis, and cover the full year. The data is308

freely available from: http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml309

Statistical significance and robustness of the results310

For general problems where the value of D is not known a priori, the appropriateness of the311

value of q for a given ζ can be tested using a number of statistical approaches. In the present312

study we use the Anderson-Darling test [28] to reject the hypothesis that all g( ~x(t), ζ) > q313

come from a generalized Pareto distribution. The test can be repeated for each ζ to obtain a314

statistical confidence level for the chosen q. All the results displayed in the paper use q = 0.98,315

which satisfies the Anderson-Darling test at the 0.05 confidence level for more than 95% of316

the chosen ζ . We further performed a visual inspection of the results, and found them to be317

stable for 0.99 ≥ q ≥ 0.975. In fact, if a too high threshold is selected, the number of values318

exceeding it is insufficient to successfully fit the generalized Pareto distribution.319

The results presented in Fig. 2 and 3 in the main text for the NCEP/NCAR data have been320

repeated for the ERA-Interim reanalysis, and are shown in Extended Data Figs. A.4 and A.5321

for both the 0.75◦ and 1.5◦ resolutions. It can be seen that both the histograms and the seasonal322

variability of the instantaneous dimensions are very similar across the three data sets.323
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Storm database324

We present a database of historical storms (see Supplementary Information) which affected325

Europe between 1948 and 2015. This database is largely based on the Lamb [29] and the326

Roberts et al. [30] catalogues. Additional storms have been integrated because of their relevance327

in terms of human losses, damages or their profile in the media. This results in a total of 336328

storms. The database is organized in four columns: 1) the day of occurrence in the format329

yyyymmdd, 2) the name(s) of the storm, 3) the countries or the region affected and 4) a reference330

to a peer-reviewed article, a report or a press article describing the importance of the storm.331

As a caveat to our methodology, we note that the increasing coverage of both meteorological332

instruments and technological means of information results in an increasing number of storms333

with time (whereas the minima of the instantaneous dimensions are equally distributed over334

time).335

We use the database to evaluate the correspondence between the minima of the instantaneous336

dimensions, which equates to positive NAO-like SLP anomalies, and storminess. A day is said337

to match a storm if it falls within 2 days of the date specified in the database. Among the 481338

minima (corresponding to the quantile 0.02) identified in the NCEP/NCAR data, 17% (namely339

82 days) match historical storms recorded in our database. This is a very high percentage: if340

an equal number of random days is selected (from the extended winter period over which the341

dimensional extremes occur), statistically only 2.5% will match a historical storm. Examples342

of well-known storms matching dimensional extremes include Dirk and Herta (see Fig. 4).343

Temperature and precipitation extremes344

Weather regimes can explain a large part of the statistical distribution for surface variables, and345

have been linked to anomalies in the frequencies of extreme weather events [12]. Here we show346

that the extremes in phase space we discuss in the main text have a direct link to the occurrence347
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of extreme weather events. At the same time, we note that there are some differences relative348

to previous analyses based on the traditional weather regimes. Extreme events are defined by349

the 0.98 quantile of the distribution of the anomalies for each gridbox and variable during an350

extended winter season (September-April). The latter matches the period of occurrence of the351

vast majority of the phase space extremes. A value of 1 means that the selected days are not352

discriminating for extremes, while 0 means that there is no chance of an extreme occurring on353

those days. A value of 2 indicates that the extreme is twice as likely to occur relative to the354

wintertime climatology. Similarly, a value of 0.5 corresponds to a halved frequency. Statistical355

significance is evaluated at the 5% level using a montecarlo method. This is indicated in the356

figures by the grey shading.357

Extended Data Fig. A.6 displays the relative changes in the frequency of extreme cold events for358

(a) high and (b) low d(ζ). High dimensions show enhanced cold spell frequencies over Scandi-359

navia and northern Europe and the Mediterranean basin. The large signal over Scandinavia is360

not typically associated with blocking [12], and is possibly linked to the more eastern location361

of the high in our pattern. The low dimensions shows very large increases in cold extremes362

over the western North Atlantic and Greenland and south-eastern Europe, matching closely the363

temperature anomaly footprint of the positive NAO. The link with rainfall extremes (Extended364

Data Fig. A.6-c,d is less clear. For the high dimensions, significant changes in Europe are lim-365

ited to regional decreases in extreme wet days over the British Isles and Scandinavia. The low366

dimensions display instead regional increases over Scandinavia and continental Europe.367

Extended Data Fig. A.7 displays the relative changes in the frequency of extreme cold events for368

(a) high and (b) low θ. High θ events correspond to frequency increases over the Mediterranean369

region, in agreement with a similar analysis by Cassou [27]. The low θ match instead a strongly370

enhanced likelihood of cold extremes over the British Isles and Scandinavia, similarly to the371

impact of the negative NAO phase. Extended Data Figs. A.7 c, d displays the results for wet372
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extremes, which again display less significant links. The most robust feature over Europe is a373

decrease in the frequency of extreme wet days over the British Isles and Northern France for374

low θ values. In contrast, previous analyses have highlighted the role of a positive NAO in375

driving wet extremes over these areas[12, 27] .376
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Figure 1: Analysis of the distribution of instantaneous dimensions. a) Box-plots of the
distribution of d(ζ) for different resolutions (in degrees of longitude and latitude). In each box,
the central mark is the median, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered outliers and outliers are plotted
individually. b) Histogram of the daily dimension d(ζ) for the NCEP reanalysis. c) Time series
of the instantaneous dimensions and inset showing the last 3 years.
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Figure 2: Monthly distribution of the instantaneous properties exceeding the 0.02 and 0.98
quantiles of their respective distributions. Maxima of a) d and (b) θ and minima of (c) d and
θ (d) for the NCEP reanalysis. The percentage values indicate the occurrences in each month.
The colourscale refers to the values of the quantities.
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Figure 3: Dynamical systems analysis for the NCEP reanalysis. The scatter plot displays the
daily values of the instantaneous dimension d and the persistence θ of the field. The NAO value
for that day is indicated by the colourscale (increment of four years). The black solid lines mark
the 0.02 and 0.98 quantiles of the d and θ distributions. The composite anomalies in SLP for the
four regions delimited by the black lines are plotted as side panels and can be associated with
known weather regimes: NAO+ (minima of d), NAO- (minima of θ), Atlantic Ridge (maxima
of θ), Blocking (maxima of d). The black lines indicates the region where at least the 2/3 of
extreme pressure anomalies have the same sign.
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Figure 4: Storms matching the minima of the instantaneous dimensions. Instantaneous
dimensions d (x-axis) and persistence θ (y-axis) are plotted along with names and years
(colourscale). The inset shows the full distribution of d, θ values. Repeated names indicate
storms which persist for several days (see supplementary storm database).
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Figure 5: Analysis of the relation between instantaneous properties and NOAA GER re-
forecast. a) and b) bivariate histograms of the ensemble spread 〈σSLP 〉 at step +384h as a
function of the stability θ (a) and the instantaneous dimension d (b) of the initialisation field.
for the period 2000-2015. Colourscale indicates the number of days with the same pair of pa-
rameters. c) and d): case studies on how the Reforecast trajectories diverge from the control run
〈SLPc〉 and their relation with ensemble spread, d and θ. c) Reforecast for the 21/01/2000 cor-
responding to high d ' 18 with a moderate value of θ = 0.56. d) Reforecast for the 12/01/2000
corresponding to high θ = 0.73 and moderate value of d=14.
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