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Local robust estimation of the Pickands dependence

function

Mikael Escobar-Bachp1q, Yuri Goegebeurp1q, Armelle Guilloup2q

University of Southern Denmarkp1q and Université de Strasbourg et CNRSp2q

Abstract: We consider the robust estimation of the Pickands dependence function in the random
covariate framework. Our estimator is based on local estimation with the minimum density power
divergence criterion. We provide the main asymptotic properties, in particular the convergence
of the stochastic process, correctly normalized, towards a tight centered Gaussian process. The
finite sample performance of our estimator is evaluated with a simulation study involving both
uncontaminated and contaminated samples. The method is illustrated on a dataset of air pollution
measurements.

MSC 2010 subject classifications: Primary 62G32, 62G05, 62G20; secondary 60F05, 60G70.
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vergence.

1. Introduction

Modelling dependence among extremes is of primary importance in practical applications where extreme
phenomena occur. To this aim, the copula function can be used as a margin-free description of the depen-
dence structure. Indeed, according to the well-known result of Sklar (1959), the distribution function of a
pair pY p1q, Y p2qq can be represented in terms of the two margins F1 and F2 of Y p1q and Y p2q respectively,
and a copula function C as follows:

P
�
Y p1q ¤ y1, Y

p2q ¤ y2

	
� C pF1py1q, F2py2qq .

This function C characterizes the dependence between Y p1q and Y p2q and is called an extreme value
copula if and only if it admits a representation of the form

Cpy1, y2q � exp

�
logpy1y2qA

�
logpy2q

logpy1y2q




,

where A: r0, 1s Ñ r1{2, 1s is the Pickands dependence function, which is convex and satisfies maxtt, 1�tu ¤
Aptq ¤ 1, see Pickands (1981). Statistical inference on the bivariate function C is therefore equivalent
to the statistical inference on the one-dimensional function A. Estimating this function A has been
extensively studied in the literature. We can mention, among others, Capéraà, Fougères and Genest
(1997), Fils-Villetard, Guillou and Segers (2008) or Bücher, Dette and Volgushev (2011).

In this paper, we extend the above framework to the case where the pair pY p1q, Y p2qq is recorded
along with a random covariate X P Rp. In that context, the copula function together with the marginal
distribution functions depend on the covariate X. In the sequel, we denote by Cx, F1p.|xq and F2p.|xq the
conditional copula function and the continuous conditional distribution functions of Y p1q and Y p2q given
X � x. Our model can thus be written as

P
�
F1pY p1q|xq ¤ y1, F2pY p2q|xq ¤ y2

���X � x
	
� Cxpy1, y2q, (1.1)

where Cx admits a representation of the form

Cxpy1, y2q � exp

�
logpy1y2qA

�
logpy2q

logpy1y2q
���x

 ,
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with Ap.|.q : r0, 1s�Rp Ñ r1{2, 1s is the conditional Pickands dependence function which is again a convex
function satisfying maxtt, 1�tu ¤ Apt|xq ¤ 1 for all x P Rp. From a practical point of view, the considered
family of extreme value distributions has sufficiently large potential for data analysis. Firstly, the family
of extreme value distributions is very rich, and includes among others the logistic, the asymmetric logistic,
the negative logistic, the Hüsler-Reiss, the t extreme value, and Dirichlet model. Secondly, multivariate
extreme value distributions arise naturally as the limiting distributions of properly normalised component-
wise maxima, making them a useful approximation to the true, but typically unknown, distribution of
these component-wise maxima in practice. We refer to Kotz and Nadarajah (2000) and Gudendorf and
Segers (2010) for further motivation and discussion of this class of distributions and additional examples.
As a possible application, we consider modelling extremal dependence between air pollutants, like ground-
level ozone and particulate matter, conditional on location and time; see Section 5 for more details.

Moreover, in addition to the covariate context, we consider the case of contamination and we propose
a robust estimator of the conditional Pickands dependence function Ap.|xq. To reach this goal, we use
the density power divergence method introduced by Basu et al. (1998). In particular, the density power
divergence between two density functions g and h is defined as follows

∆αpg, hq :�

$''&''%
»
R

�
h1�αpyq �

�
1� 1

α



hαpyqgpyq � 1

α
g1�αpyq

�
dy, α ¡ 0,»

R
log

gpyq
hpyqgpyqdy, α � 0.

Here the density function h is assumed to depend on a parameter vector θ, and if Z1, ..., Zn is a sample
of independent and identically distributed random variables according to the density function g, then
the minimum density power divergence estimator (MDPDE) of θ is the point pθ minimizing the empirical
version (up to a constant independent of θ)

p∆αpθq :�

$'''&'''%
»
R
h1�αpyqdy �

�
1� 1

α



1

n

ņ

i�1

hαpZiq, α ¡ 0,

� 1

n

ņ

i�1

log hpZiq α � 0.

We can observe that for α � 0 one recovers the log-likelihood function, up to the sign. A large value of α
allows us to increase the robustness of the estimator, whereas a smaller value implies more efficiency. This
parameter α can thus be selected in order to ensure a trade-off between these two antagonist concepts.

The nonparametric estimation of extremal dependence in presence of random covariates is still in its
infancy, despite the huge potential of such methods for practical data analysis. Gardes and Girard (2015)
introduce an estimator for the tail copula based on a random sample from a distribution in the max-
domain of attraction of an extreme value distribution, and provide a finite dimensional convergence result
for their estimator, when properly normalised. Portier and Segers (2015) considered model (1.1) but under
the simplifying assumption that the dependence between Y p1q and Y p2q does not depend on the value
taken by the covariate, i.e. Cx � C (see also Gijbels, Omelka and Veraverbeke, 2015). In the present paper
we introduce a nonparametric and robust estimator for Ap.|xq which is obtained by an adjustment of the
above introduced density power divergence estimation criterion to the situation of local estimation, and we
study the asymptotic properties of the obtained estimator in terms of stochastic process convergence. To
the best of our knowledge, nonparametric and robust estimation of the conditional Pickands dependence
function has not been considered in the literature.

The remainder of the paper is organized as follows. In Section 2, we simplify the situation to the case
where the two marginal distributions are known, we propose a robust estimator for Ap.|xq and prove its
convergence in terms of a stochastic process. Then, in Section 3, we extend this result to the case of
unknown margins. The efficiency and robustness of the estimator are examined with a simulation study,
described in Section 4. Finally, in Section 5 we illustrate the practical applicability of the method for
modelling extremal dependence between air pollution measurements. Additional simulation results are
available in the online supplementary material. All the proofs are postponed to the Appendix.
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2. Case of known margins

In this section, we restrict our interest to the case where the marginals F1p.|xq and F2p.|xq are known,
and we denote by A0p.|xq the true conditional Pickands dependence function associated to the pair
pY p1q, Y p2qq.

2.1. Construction of the estimator

For convenience we reformulate the model (1.1) into standard exponential margins. After applying the

transformations rY pjq � � logFjpY pjq|xq, j � 1, 2, we obtain the following bivariate survival function

Gpy1, y2|xq :� P
�rY p1q ¡ y1, rY p2q ¡ y2

���X � x
	
� exp

�
�py1 � y2qA0

�
y2

y1 � y2

���x

 ,
for all y1, y2 ¡ 0. Let t P r0, 1s. Considering the univariate random variable

Zt :� min

� rY p1q

1� t
,
rY p2q

t

�
,

it is clear that

PpZt ¡ z|X � xq � e�zA0pt|xq, @z ¡ 0 and x P Rp.

Consequently, the conditional distribution of Zt givenX � x is an exponential distribution with parameter
A0pt|xq.

Let pZt,i, Xiq, i � 1, . . . , n, be independent copies of the random pair pZt, Xq. In the present paper, we
will develop a nonparametric robust estimator for A0pt|xq by fitting this exponential distribution function
locally to the variables Zt,i, i � 1, ..., n, by means of the MDPD criterion, adjusted to locally weighted
estimation, i.e. we minimize for α ¡ 0

p∆α,x,tpaq :� 1

n

ņ

i�1

Khpx�Xiq
"» 8

0

�
ae�az

�1�α
dz �

�
1� 1

α


�
ae�aZt,i

�α*

� aα

n

ņ

i�1

Khpx�Xiq
"

1

1� α
�
�

1� 1

α



e�αaZt,i

*
. (2.1)

Here Khp.q :� Kp.{hq{hp where K is a joint density on Rp and h � hn is a positive non-random sequence

satisfying hn Ñ 0 as nÑ8. The MDPDE pAα,npt|xq for A0pt|xq satisfies the estimating equation

p∆p1q
α,x,tp pAα,npt|xqq � 0, (2.2)

where p∆pjq
α,x,tp.q denotes the derivative of order j of p∆α,x,tp.q. The minimization of p∆α,x,t is here per-

formed without constraints, which means that pAα,np.|xq does not automatically satisfy the conditions
of the Pickands dependence function. In fact, this is the case for several of the estimators proposed in
the literature, see e.g. Pickands (1981), Deheuvels (1991) or Capéraà, Fougères and Genest (1997). To
overcome this, one could follow the idea of Fils-Villetard, Guillou and Segers (2008), and project the
obtained estimator onto the space of Pickands dependence functions.

Our aim in this paper is to show the weak convergence of the stochastic process!?
nhp

� pAα,npt|xq �A0pt|xq
	
, t P r0, 1s

)
, (2.3)

in the space of all continuous functions on r0, 1s, denoted as Cpr0, 1sq, when nÑ8.
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Our starting point is the estimating equation (2.2). By applying a Taylor series expansion around the
true value A0pt|xq, we get

0 � p∆p1q
α,x,tpA0pt|xqq �

� pAα,npt|xq �A0pt|xq
	 p∆p2q

α,x,tpA0pt|xqq � 1

2

� pAα,npt|xq �A0pt|xq
	2 p∆p3q

α,x,tp rApt|xqq
where rApt|xq is a random value between A0pt|xq and pAα,npt|xq. A straightforward rearrangement of the

above display gives

?
nhp

� pAα,npt|xq �A0pt|xq
	
� �

?
nhp p∆p1q

α,x,tpA0pt|xqqp∆p2q
α,x,tpA0pt|xqq � 1

2
p∆p3q
α,x,tp rApt|xqq� pAα,npt|xq �A0pt|xq

	 . (2.4)

Consequently, in order to obtain the convergence of the stochastic process (2.3), we need to study the

properties of the derivatives p∆pjq
α,x,t, j � 1, 2, 3. According to Appendix A.5, these can be expressed as a

linear combination of a key statistic Tn, defined as

TnpK, a, t, λ, β, γ|xq :� aγ

n

ņ

i�1

Khpx�XiqZβt,ie�λaZt,i , (2.5)

for a P r1{2, 1s, t P r0, 1s, λ, β ¥ 0 and γ P R.

2.2. Asymptotic properties of Tn

Due to the regression context, we need some Hölder-type conditions on the density function f of the
covariate X and on the conditional Pickands dependence function A0. Let }.} be some norm on Rp.
Assumption pDq. There exist Mf ¡ 0 and ηf ¡ 0 such that |fpxq � fpzq| ¤ Mf }x � z}ηf , for all
px, zq P Rp � Rp.
Assumption pA0q. There exist MA0 ¡ 0 and ηA0 ¡ 0 such that |A0pt|xq � A0pt|zq| ¤ MA0}x � z}ηA0 ,
for all px, zq P Rp � Rp and t P r0, 1s.
Also a usual condition is assumed on the kernel K.
Assumption pK1q. K is a bounded density function on Rp with support SK included in the unit ball of
Rp.

As a preliminary result, in Lemma 2.1 we prove the convergence in probability of the key statistic Tn.

Lemma 2.1. Assume that for all t P r0, 1s, xÑ A0pt|xq and the density function f are both continuous.
Under Assumption pK1q, if hÑ 0 and nhp Ñ8, then for a P r1{2, 1s, λ, β ¥ 0, γ P R and x P Rp where
fpxq ¡ 0, we have

TnpK, a, t, λ, β, γ|xq PÝÑaγΓpβ � 1q A0pt|xq
pλa�A0pt|xqqβ�1

fpxq,

as nÑ8, where Γ is the gamma function defined as Γprq :� ³8
0
tr�1e�tdt,@r ¡ 0.

Now, our interest is in the rate of convergence in Lemma 2.1 when a is replaced by A0pt|xq. More
precisely, we want to show the weak convergence of the stochastic process"?

nhp
�
TnpK,A0pt|xq, t, λ, β, γ|xq � Γpβ � 1q rA0pt|xqsγ�β

pλ� 1qβ�1
fpxq



, t P r0, 1s

*
.

To establish such a result, we use empirical processes arguments based on the theory of Vapnik-Červonenkis
classes (VC -classes) of functions as formulated in van der Vaart and Wellner (1996). This allows us to
show the following theorem.
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Theorem 2.1. Let γ P R and pλ, βq P p0,8q � R� or pλ, βq � p0, 0q. Under the assumptions of Lemma
2.1 and if pDq and pA0q hold with

?
nhphminpηf ,ηA0

q Ñ 0, then the process"?
nhp

�
TnpK,A0pt|xq, t, λ, β, γ|xq � Γpβ � 1q rA0pt|xqsγ�β

pλ� 1qβ�1
fpxq



, t P r0, 1s

*
weakly converges in Cpr0, 1sq towards a tight centered Gaussian process tBt, t P r0, 1su with covariance
structure given by

CovpBt, Bsq � rA0pt|xqA0ps|xqsγ}K}22 fpxq �
#»

R2
�

gpu, vqGt,spu, v|xqdudv � 1� λ

1� λ
δ0pβq

+
,

for all ps, tq P r0, 1s2, where δ0 is the Dirac measure on 0, and

gpu, vq :� uβ�1pβ � λA0pt|xquqe�λA0pt|xqu vβ�1pβ � λA0ps|xqvqe�λA0ps|xqv,

Gt,spu, v|xq :� G
�

maxpp1� tqu, p1� sqvq,maxptu, svq
���x	 .

We now derive the limiting distribution of a vector of statistics of the form (2.5), when properly
normalized. Let Tn be a pm� 1q vector defined as

Tn :� pTnpK,A0pt1|xq, t1, λ1, β1, γ1|xq, ..., TnpK,A0ptm|xq, tm, λm, βm, γm|xqqT ,
for some positive integer m and let Σ be a pm�mq covariance matrix with elements pσj,kq1¤j,k¤m defined
as

σj,k :� rA0ptj |xqsγj rA0ptk|xqsγk}K}22 fpxq �
#»

R2
�

gj,kpu, vqGtj ,tkpu, v|xqdudv

� δ0pβjq Γpβk � 1q
rλk � 1sβk�1rA0ptk|xqsβk � δ0pβkq Γpβj � 1q

rλj � 1sβj�1rA0ptj |xqsβj � δ0pβjqδ0pβkq
*

(2.6)

where

gj,kpu, vq :� uβj�1 rβj � λjA0ptj |xqus e�λjA0ptj |xqu vβk�1 rβk � λkA0ptk|xqvs e�λkA0ptk|xqv.

The aim of next theorem is to provide the finite dimensional convergence result which will, together
with the tightness, allow us to establish the joint convergence of several processes related to the statistic
Tn.

Theorem 2.2. Under the assumptions of Lemma 2.1, we have
?
nhp pTn � ErTnsq Nm p0,Σq ,

where Nm denotes a m�dimensional normal distribution.

We have now all the needed ingredients for proving the asymptotic properties of the MDPDE pAα,npt|xq.
2.3. Asymptotic properties of pAα,npt|xq
The first result states the existence and uniform consistency of a sequence of solutions to the estimating
equation (2.2).

Theorem 2.3. Let α ¡ 0 and x P Rp such that fpxq ¡ 0. Under the assumptions of Theorem 2.1, with

probability tending to 1, there exists a sequence
� pAα,npt|xq	

nPN
of solutions for the estimating equation

(2.2) such that

sup
tPr0,1s

��� pAα,npt|xq �A0pt|xq
��� � oPp1q.
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Now, we come back to our final goal which is the weak convergence of the stochastic process (2.3).

Theorem 2.4. Let
� pAα,npt|xq	

nPN
be the consistent sequence defined in Theorem 2.3. Under the as-

sumptions of Theorem 2.1, the process!?
nhp

� pAα,npt|xq �A0pt|xq
	
, t P r0, 1s

)
weakly converges in Cpr0, 1sq towards a tight centered Gaussian process tNt, t P r0, 1su with covariance
structure given by

Cov pNt, Nsq � }K}22A0pt|xqA0ps|xq
fpxq

p1� αq2
p1� α2q2 v

T
αΣpt, sqvα,

where

vα :�

���
α

1� α
�p1� αq

1� α

��
 and Σpt, sq :�
��p1� αq2 1� α 1

1� α Σ2,2pt, sq Σ2,3pt, sq
1 Σ2,3ps, tq Σ3,3pt, sq

�

with

Σ2,2pt, sq :� p1 � αqp1 � αq � α2p1 � αq2 A0pt|xqA0ps|xq
»
R2
�

e�αrA0pt|xqu�A0ps|xqvsGt,spu, v|xqdudv

Σ2,3pt, sq :� 1 � αp1 � αq2 A0pt|xqA0ps|xq
»
R2
�

p1 � αA0ps|xqvqe�αrA0pt|xqu�A0ps|xqvsGt,spu, v|xqdudv

Σ3,3pt, sq :� p1 � αq2 A0pt|xqA0ps|xq
»
R2
�

p1 � αA0pt|xquqp1 � αA0ps|xqvqe�αrA0pt|xqu�A0ps|xqvsGt,spu, v|xqdudv.

In particular, for all t P r0, 1s, we have

?
nhp

� pAα,npt|xq �A0pt|xq
	
 N1

�
0,
}K}22rA0pt|xqs2

fpxq
p1 � αq2p1 � 4α� 9α2 � 14α3 � 13α4 � 8α5 � 4α6q

p1 � 2αq3p1 � α2q2


,

as nÑ8.

The asymptotic standard deviation is shown as a function of α in Figure S1 of the supplementary
material. As is clear from this plot, the asymptotic standard deviation is increasing in α. Note that our
results could also be obtained under different assumptions by using the local empirical process results of
Stute (1986) and Einmahl and Mason (1997), combined with the functional delta method.

3. Case of unknown margins

In this section, we consider the general framework where both F1p.|xq and F2p.|xq are unknown conditional
distribution functions. We want to mimic what has been done in the previous section and transform to
standard exponential margins. To this aim, we consider the triplets�

� log
�
Fn,1pY p1q

i |Xiq
	
,� log

�
Fn,2pY p2q

i |Xiq
	
, Xi

	
, i � 1, ..., n,

for suitable estimators Fn,j of Fj , j � 1, 2, and we compute the univariate random variables

qZn,t,i :� min

��� log
�
Fn,1pY p1q

i |Xiq
	

1� t
,
� log

�
Fn,2pY p2q

i |Xiq
	

t

�
, i � 1, ..., n.

Then, similarly as in Section 2, the statistic

qTnpK, a, t, λ, β, γ|xq :� aγ

n

ņ

i�1

Khpx�Xiq qZβn,t,ie�λa qZn,t,i , (3.1)
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is the cornerstone for the MDPDE, denoted qAα,npt|xq, which satisfies the estimating equationq∆p1q
α,x,tp qAα,npt|xqq � 0, (3.2)

where q∆p1q
α,x,tp.q is the first derivative of q∆α,x,tp.q and

q∆α,x,tpaq :� aα

n

ņ

i�1

Khpx�Xiq
"

1

1� α
�
�

1� 1

α



e�αa

qZn,t,i
*
.

The final goal is still the same, that is the weak convergence of the stochastic process!?
nhp

� qAα,npt|xq �A0pt|xq
	
, t P r0, 1s

)
. (3.3)

Again this result relies essentially on the asymptotic properties of the statistic qTn, and so the idea will
be to decompose

?
nhp

�qTn � Er qTns	 pK, a, t, λ, β, γ|xq,
into the two terms!?

nhp pTn � ErTnsq pK, a, t, λ, β, γ|xq
)
�
!?

nhp
�
r qTn � Tns � Er qTn � Tns

	
pK, a, t, λ, β, γ|xq

)
. (3.4)

The first term can be dealt with using the results of Section 2.2, whereas we have to show that the
second term is uniformly negligible.
To achieve this objective, let us introduce the following empirical kernel estimator of the unknown con-
ditional distribution functions

Fn,jpy|xq :�
°n
i�1Kcpx�Xiq1ltY pjq

i ¤yu°n
i�1Kcpx�Xiq , j � 1, 2,

where c :� cn is a positive non-random sequence satisfying cn Ñ 0 as n Ñ 8. Here we kept the same
kernel K as in the previous section, but of course any other kernel function can be used.

Before stating our main results, we need to impose again some assumptions, in particular a Hölder-type
condition on each marginal conditional distribution function Fj similar to the one imposed on the density
function of the covariate.
Assumption pFq. There exist MFj ¡ 0 and ηFj ¡ 0 such that |Fjpy|xq � Fjpy|zq| ¤MFj }x� z}ηFj , for
all y P R and all px, zq P Rp � Rp and j � 1, 2.
Concerning the kernel K a stronger assumption than pK1q is needed.
Assumption pK2q. K satisfies Assumption pK1q and belongs to the linear span (the set of finite linear
combinations) of functions k ¥ 0 satisfying the following property: the subgraph of k, tps, uq : kpsq ¥ uu,
can be represented as a finite number of Boolean operations among sets of the form tps, uq : qps, uq ¥
ϕpuqu, where q is a polynomial on Rp � R and ϕ is an arbitrary real function.
The latter assumption has already been used in Giné and Guillou (2002) or Giné, Koltchinskii and Zinn
(2004). In particular, it allows us to measure the discrepancy between the conditional distribution function
Fj and its empirical kernel version Fn,j .

Lemma 3.1. Assume that there exists b ¡ 0 such that fpxq ¥ b,@x P SX � Rp, the support of f . If pK2q,
pDq and pFq hold and for q ¡ 1

| log c|q
ncp

ÝÑ 0,

as nÑ8, then for any 0   η   minpηf , ηF1
, ηF2

q, we have

E

�
sup

py,xqPR�SX
|Fn,jpy|xq � Fjpy|xq|

�
� o

�
max

�c
| log c|q
ncp

, cη

��
, for j � 1, 2.
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Note that the assumption fpxq ¥ b,@x P SX , for some b ¡ 0, is similar to the one already used in
Portier and Segers (2015).

We are now able to study the second term in (3.4).

Theorem 3.1. Assume pK2q, pDq and pFq and that there exists b ¡ 0 such that fpxq ¥ b,@x P SX � Rp.
Consider two sequences h and c tending to 0, such that for nhp Ñ8 and q ¡ 1

?
nhp rn :�

?
nhp max

�c
| log c|q
ncp

, cη

�
ÝÑ 0,

as nÑ8. Then, for all γ P R and pλ, βq P p0,8q � R� or pλ, βq � p0, 0q, and x P Rp, we have

sup
tPr0,1s,aPr1{2,1s

?
nhp

��� qTn � Tn � E
� qTn � Tn

���� pK, a, t, λ, β, γ|xq � oPp1q.

Finally, the decomposition (3.4) combined with Theorem 3.1 and the results from Section 2.2, yields
the desired theoretical result of this paper.

Theorem 3.2. Let α ¡ 0. Under the assumptions of Theorem 3.1 and pA0q, with probability tending to

1, there exists a sequence
� qAα,npt|xq	

nPN
of solutions for the estimating equation (3.2) such that

sup
tPr0,1s

��� qAα,npt|xq �A0pt|xq
��� � oPp1q.

Moreover, for this consistent sequence, if
?
nhphminpηf ,ηA0

q Ñ 0, the process!?
nhp

� qAα,npt|xq �A0pt|xq
	
, t P r0, 1s

)
weakly converges in Cpr0, 1sq towards the tight centered Gaussian process tNt, t P r0, 1su defined in Theo-
rem 2.4.

4. Simulation study

Our aim in this section is to illustrate the efficiency of the proposed robust estimator for the conditional
Pickands dependence function with a simulation study. We assume that the conditional distribution
function of pY p1q, Y p2qq given X � x is a mixture model of the form

Fεpy1, y2|xq � p1� εqF`py1, y2|xq � εFcpy1, y2|xq,

where ε P r0, 1s represents the fraction of contamination in the dataset. The main distribution F` is the
logistic distribution given by

F`py1, y2|xq :� exp
!
�
�
y
�1{x
1 � y

�1{x
2

	x)
, for y1, y2 ¥ 0

and

A0pt|xq �
�
t1{x � p1� tq1{x

	x
,

where the covariate X is a uniformly distributed random variable on r0, 1s. For this model, complete
dependence is obtained in the limit as x Ó 0, whereas independence can be reached for x � 1. Note also
that the conditional marginal distributions of Y pjq given X, j � 1, 2, under this logistic model are unit
Fréchet distributions. Two completely different types of distributions Fc will be considered throughout
the paper and additional examples will be given in the online supplementary material.
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 First type of contamination: Given X � x, the distribution function Fc is

Fcpy1, y2|xq � 1

2

!
e�y

�1
1 � e�y

�1
2

)
1lty1¥0,y2¥0u.

The mixture based on this distribution Fc is illustrated in Figure S2 of the supplementary material. For
this mixture, the contaminated points are on the axes.

 Second type of contamination: The distribution function Fc has completely dependent unit ex-

ponential margins. Figure S3 in the supplementary material shows an example of a simulated dataset
from this model. This time, the contaminated points are on the diagonal.

To compute the estimator qAα,n, two sequences h and c have to be chosen. Both are determined by
a cross validation criterion. Because of the very high computational burden of the cross validations
for sample sizes n ¥ 1000, a random selection of size nr :� n ^ 1000 from the original observations is

obtained, denoted tpY p1q
i,r , Y

p2q
i,r , Xi,rqui�1,...,nr , and the cross validations are implemented on these random

subsamples. Concerning c, we can use the following cross validation criterion, already used in an extreme
value context by Daouia et al. (2011):

cj :� arg minrcjPC
nŗ

i�1

nŗ

k�1

�
1l!
Y
pjq
i,r ¤Y

pjq
k,r

) � rFnr,�i,jpY pjq
k,r |Xi,rq

�2

, j � 1, 2,

where C is a grid of values of rcj and rFnr,�i,jpy|xq :�
°nr
k�1,k�iKrcj px�Xk,rq1ltY pjq

k,r¤yu°nr
k�1,k�iKrcj px�Xk,rq .

Also the bandwidth parameter h is selected using a cross validation criterion. In particular,

h :� arg minrhPH
1

nrM

nŗ

i�1

M̧

j�1

qAα,n,p�iq ptj |Xi,rqα
�

1

1� α
�
�

1� 1

α



e�α

qAα,n,p�iqptj |Xi,rq qZn,tj,i,r



for α ¡ 0

h :� arg minrhPH
1

nrM

nŗ

i�1

M̧

j�1

� log
� qA0,n,p�iq ptj |Xi,rq e� qA0,n,p�iqptj |Xi,rq qZn,tj,i,r

	
for α � 0

where qAα,n,p�iqpt|xq denotes the estimator of A0pt|xq obtained on all but observation i, qZn,tj ,i,r is asqZn,tj ,i but now calculated for pY p1q
i,r , Y

p2q
i,r , Xi,rq, and

qA0,npt|xq :�
°n
i�1Krhpx�Xiq°n

i�1Krhpx�Xiq qZt,i .
This criterion can be seen as a generalisation of a commonly used cross validation from the context of
local likelihood estimation (see e.g. Abegaz, Gijbels and Veraverbeke, 2012) to the context of local MDPD
estimation.

After extensive simulation studies, we have chosen the grids C � t0.06, 0.12, . . . , 0.3u and H �
t0.02, 0.03, . . . , 0.06u. These choices provide a reasonable trade off between stability of the estimates
and accuracy of approximation by asymptotic results.

Concerning the kernel, each time we use the bi-quadratic function

Kpxq :� 15

16
p1� x2q21lr�1,1spxq.

As an indicator of efficiency, we compute over a grid the L2-error in the estimation of the Pickands
dependence function Ap.|xq as a function of x, i.e.

MISEpε, α|xq :� 1

NM

Ņ

i�1

M̧

m�1

� qApiqα,ε,nptm|xq �A0ptm|xq
�2

.
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Here qApiqα,ε,nptm|xq is our estimator of A0ptm|xq obtained with the i�th sample when the contamination
is ε. We set tm � m{50, m � 1, . . . , 49. Our simulations are based on datasets of sizes n � 1000 and
n � 5000, and the procedure is repeated N � 200 times.

Figure 1 represents the MISEpε, α|xq as a function of ε P t0, 0.025, 0.05, ..., 0.2u for the two types of
contamination (rows 1 and 2, and 3 and 4, respectively). From the left to the right, three positions have
been considered: x � 0.1, 0.3 and 0.5 for the first type of contamination and x � 0.5, 0.7 and 0.9 for the
second type. Also, four different values of α have been reported: 0 (black), 0.1 (blue), 0.5 (green) and
1 (red), and two sample sizes: n � 1000 and n � 5000. Based on these simulations, we can draw the
following conclusions:

• As expected, the MISE curves show less variability for n � 5000 compared to n � 1000;
• If the percentage of contamination ε is very small (in the range 0 - 0.025), the MISE indicators are

typically very similar, whatever the value of α. This result is a nice feature of our method, because
if there is almost no contamination then in principle one does not need a robust procedure, but
as is clear from these figures, the MDPDE performs similarly to the maximum likelihood method
(corresponding to α � 0), which is efficient (but not robust);

• If we increase the percentage of contamination ε, then it is crucial to increase the value of α to
0.5 or 1 in order to have good results. Indeed, for increasing ε a small value of α implies a drastic
increase of the MISE;

• The MISE values are almost constant for α � 0.5 and 1, whatever the percentage of contamination.
This illustrates again the robustness of our method, since it means that the methodology can handle
a quite large percentage of contamination without deterioration of the results;

• For the first type of contamination, the gain in MISE by taking α � 0.5 or 1 over α � 0 or 0.1 is more
important for small x than for large x. In this case the contamination is on the axes (independently),
and this is less disturbing for x close to 1, which corresponds also to independence, than for x close
to 0, which corresponds to complete dependence. For the second type of contamination one can
observe the opposite effect. The gain of taking α � 0.5 or 1 over α � 0 or 0.1 is more important for
x close to 1 than for x close to zero. Indeed, the perfectly dependent contamination is less disturbing
for small x than for large x;

• Figure 1 gives us also some indications about the breakdown point of our estimator, which is
a common concept in the robust framework. Indeed the breakdown point can be interpreted as
the smallest ε where the MISE indicator starts to increase. For α small, in the range 0 - 0.1, the
breakdown point is very small, say ε around 0.025, while for α � 0.5 and 1, one can go to ε � 0.15 or
a larger value, depending on the type of contamination, which illustrates again the nice robustness
property of our method.

Next to the above mentioned MISE indicators, we also used our simulated data to compute the
empirical coverage probabilities of 90% confidence intervals based on the limiting distribution given in
Theorem 2.4. These are given in Tables 1 and 2 for the first and second type of contamination, respectively.
From these tables we can see that

• When ε � 0 then the empirical coverage probabilities are generally larger than 0.90, meaning that
the confidence interval based on the limiting distribution is conservative;

• For increasing ε, the coverage probabilities generally decrease when α is small (0 or 0.1), while for
larger α, especially for α � 1, the coverage probabilities do not seem to be as much affected by the
contamination.

Since the main objective of this paper is to estimate the conditional Pickands dependence function
Ap.|xq, we also provide in the online supplementary material the boxplots of our estimator qAα,np.|xq
based on 200 replications for the two examples of contamination introduced above and two additional
examples. These figures emphasize again the robustness properties of our estimator.
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Fig 1. MISEpε, α|xq as a function of ε P t0, 0.025, 0.05, ..., 0.2u with α � 0 (black), α � 0.1 (blue), α � 0.5 (green) and
α � 1 (red). First type of contamination: rows 1 pn � 1000q and 2 pn � 5000q, x � 0.1, 0.3, 0.5 from the left to the right.
Second type of contamination: rows 3 pn � 1000q and 4 pn � 5000q, x � 0.5, 0.7, 0.9 from the left to the right.
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Table 1
First type of contamination - coverage probabilities of 90% confidence intervals.

t � 0.3 t � 0.5 t � 0.7
x � 0.1 α 0 0.1 0.5 1 0 0.1 0.5 1 0 0.1 0.5 1

ε � 0.0 0.95 0.95 0.96 0.98 0.95 0.96 0.96 0.97 0.95 0.96 0.96 0.98
n � 1000 ε � 0.1 0.69 0.77 0.92 0.93 0.50 0.64 0.88 0.91 0.67 0.78 0.92 0.93

ε � 0.2 0.26 0.41 0.83 0.91 0.11 0.17 0.64 0.79 0.24 0.42 0.81 0.90
ε � 0.0 0.98 0.97 0.96 0.97 0.96 0.97 0.97 0.98 0.95 0.96 0.97 0.97

n � 5000 ε � 0.1 0.14 0.28 0.84 0.90 0.06 0.12 0.69 0.82 0.13 0.29 0.84 0.90
ε � 0.2 0.02 0.05 0.55 0.83 0.00 0.01 0.16 0.51 0.01 0.03 0.56 0.80

t � 0.3 t � 0.5 t � 0.7
x � 0.3 α 0 0.1 0.5 1 0 0.1 0.5 1 0 0.1 0.5 1

ε � 0.0 0.97 0.98 0.93 0.93 0.96 0.96 0.95 0.93 0.94 0.95 0.95 0.94
n � 1000 ε � 0.1 0.70 0.80 0.93 0.96 0.71 0.80 0.93 0.94 0.70 0.82 0.95 0.95

ε � 0.2 0.29 0.45 0.86 0.94 0.20 0.40 0.78 0.85 0.27 0.47 0.84 0.92
ε � 0.0 0.96 0.95 0.94 0.94 0.94 0.94 0.93 0.94 0.96 0.95 0.94 0.94

n � 5000 ε � 0.1 0.14 0.33 0.87 0.93 0.15 0.35 0.81 0.86 0.17 0.41 0.85 0.92
ε � 0.2 0.01 0.04 0.57 0.83 0.01 0.02 0.41 0.63 0.01 0.03 0.55 0.83

t � 0.3 t � 0.5 t � 0.7
x � 0.5 α 0 0.1 0.5 1 0 0.1 0.5 1 0 0.1 0.5 1

ε � 0.0 0.97 0.99 0.98 0.97 0.97 0.97 0.97 0.95 0.96 0.97 0.97 0.98
n � 1000 ε � 0.1 0.77 0.85 0.91 0.95 0.76 0.84 0.91 0.94 0.79 0.83 0.95 0.94

ε � 0.2 0.51 0.69 0.93 0.95 0.53 0.66 0.89 0.92 0.47 0.65 0.92 0.96
ε � 0.0 0.93 0.95 0.95 0.96 0.90 0.92 0.91 0.94 0.94 0.96 0.94 0.94

n � 5000 ε � 0.1 0.30 0.53 0.91 0.95 0.39 0.56 0.90 0.91 0.31 0.54 0.93 0.94
ε � 0.2 0.04 0.10 0.70 0.87 0.06 0.11 0.66 0.80 0.05 0.08 0.69 0.86

Table 2
Second type of contamination - coverage probabilities of 90% confidence intervals.

t � 0.3 t � 0.5 t � 0.7
x � 0.5 α 0 0.1 0.5 1 0 0.1 0.5 1 0 0.1 0.5 1

ε � 0.0 0.96 0.96 0.97 0.96 0.94 0.93 0.96 0.96 0.96 0.97 0.96 0.96
n � 1000 ε � 0.1 0.97 0.96 0.96 0.95 0.91 0.93 0.94 0.93 0.96 0.97 0.98 0.96

ε � 0.2 0.99 0.99 0.96 0.96 0.80 0.88 0.92 0.94 0.99 0.99 0.96 0.95
ε � 0.0 0.93 0.94 0.95 0.96 0.93 0.93 0.95 0.97 0.95 0.96 0.95 0.96

n � 5000 ε � 0.1 0.93 0.98 0.96 0.96 0.48 0.69 0.94 0.96 0.95 0.99 0.99 0.98
ε � 0.2 0.92 0.98 0.96 0.95 0.20 0.33 0.88 0.96 0.87 0.97 0.96 0.94

t � 0.3 t � 0.5 t � 0.7
x � 0.7 α 0 0.1 0.5 1 0 0.1 0.5 1 0 0.1 0.5 1

ε � 0.0 0.97 0.97 1.00 1.00 0.94 0.94 0.96 0.99 0.94 0.96 1.00 1.00
n � 1000 ε � 0.1 0.98 0.98 1.00 1.00 0.76 0.84 0.96 0.98 0.96 0.95 1.00 1.00

ε � 0.2 0.98 0.98 1.00 1.00 0.55 0.70 0.94 0.99 0.98 0.98 1.00 1.00
ε � 0.0 0.92 0.93 0.94 0.94 0.92 0.94 0.95 0.95 0.94 0.95 0.95 0.96

n � 5000 ε � 0.1 0.81 0.89 0.95 0.96 0.24 0.54 0.94 0.95 0.79 0.88 0.95 0.95
ε � 0.2 0.57 0.67 0.90 0.94 0.06 0.11 0.77 0.90 0.60 0.69 0.91 0.93

t � 0.3 t � 0.5 t � 0.7
x � 0.9 α 0 0.1 0.5 1 0 0.1 0.5 1 0 0.1 0.5 1

ε � 0.0 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.98 0.98 0.99 0.99
n � 1000 ε � 0.1 0.91 0.95 0.99 0.99 0.64 0.81 0.97 0.99 0.91 0.93 0.99 0.99

ε � 0.2 0.89 0.92 0.98 1.00 0.40 0.63 0.96 0.98 0.89 0.93 0.99 1.00
ε � 0.0 0.98 0.98 0.99 0.98 0.98 0.97 0.98 0.98 0.97 0.97 0.98 0.98

n � 5000 ε � 0.1 0.61 0.77 0.97 0.98 0.15 0.39 0.95 0.97 0.60 0.82 0.98 0.99
ε � 0.2 0.26 0.44 0.92 0.95 0.01 0.09 0.74 0.91 0.24 0.42 0.91 0.96
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5. Application to air pollution data

In this section we illustrate the practical applicability of our method on a dataset of air pollution measure-
ments. Extreme temperature and high levels of pollutants like ground-level ozone and particulate matter
pose a major threat to human health. We consider the data collected by the United States Environmental
Protection Agency (EPA), publicly available at https:{{aqsdr1.epa.gov{aqsweb{aqstmp{airdata{download files.html.
The dataset contains daily measurements on, among others, maximum temperature, and ground-level
ozone, carbon monoxide and particulate matter concentrations, for the time period 1999 to 2013. These
data are collected at stations spread over the U.S. We focus the analysis on the ground-level ozone and
particulate matter concentrations. In order to estimate the extremal dependence between these, we calcu-
late the component-wise monthly maximum of daily maximum concentrations, and estimate the Pickands
dependence function conditional on the covariates time and location, where the latter is expressed by
latitude and longitude. The estimation method was implemented with the same cross validation criteria
as in the simulation section, including the same choices for C and H, after standardising the covariates
to the interval r0, 1s. As kernel function K� we use the following generalisation of the bi-quadratic kernel
K :

K�px1, x2, x3q :�
3¹
i�1

Kpxiq,

where x1, x2, x3, refer to the covariates time, latitude and longitude, respectively, in standardised form.
Note that K� has as support the unit ball with respect to the max-norm on R3. We report here only the
results for the city of Houston. Similar results can though be obtained for other cities or regions in the U.S.
In the left panel of Figure 2, we show the time plot of the estimates for the conditional extremal coefficient
over the observation period. The conditional extremal coefficient is defined as ηpxq � 2A0p0.5|xq, and is
often used as a summary measure of extremal dependence. Its range is r1, 2s, where 1 corresponds with
perfect dependence and 2 with independence. The time plot shows a seasonal pattern in the extremal
dependence, and moreover the extremal dependence seems to decrease with time. We also observe that
the estimates for α � 0 and 0.1 are similar, but different from those obtained with α � 0.5 and 1 (which
are also similar), indicating that the dataset contains contamination with respect to the dependence
structure. In order to get a better idea about the extremal dependence we show in the right panel of
Figure 2 the estimate of A0pt|xq for a particular month (April 2002). This plot shows again estimates
which are similar for α � 0 and 0.1, but different from those obtained with α � 0.5 and 1 (which are
similar), confirming our earlier observation that there are observations which are contaminating with
respect to the dependence structure.

Appendix A: Proofs of the results

A.1. Proof of Lemma 2.1

Using the fact that the conditional distribution function of Zt given X � x is an exponential distribution
with parameter A0pt|xq and since λa�A0pt|xq ¡ 0, we have

E
�
Zβt e

�λaZt
���X � x

�
� Γpβ � 1q A0pt|xq

pλa�A0pt|xqqβ�1
. (A.1)
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Fig 2. Air pollution data: time plot of the estimate for the conditional extremal coefficient (left) and estimate for the
conditional Pickands dependence function in April 2002 (right), α � 0 (black), α � 0.1 (blue), α � 0.5 (green) and α � 1
(red).

Then

E
�
Khpx�XqZβt e�λaZt

�
� E

�
Khpx�XqΓpβ � 1q A0pt|Xq

pλa�A0pt|Xqqβ�1

�
� Γpβ � 1q

»
Rp
Khpx� yq A0pt|yq

pλa�A0pt|yqqβ�1
fpyqdy

� Γpβ � 1q
»
SK

Kpzq A0pt|x� zhq
pλa�A0pt|x� zhqqβ�1

fpx� hzqdz

� Γpβ � 1q A0pt|xq
pλa�A0pt|xqqβ�1

fpxqp1� op1qq, (A.2)

by the dominated convergence theorem, using the continuity of A0pt|.q and f on x � SK together with
the boundedness of A0pt|.q. Consequently

ErTnpK, a, t, λ, β, γ|xqs � aγΓpβ � 1q A0pt|xq
pλa�A0pt|xqqβ�1

fpxqp1� op1qq.

Also, similar arguments yield

VarpTnpK, a, t, λ, β, γ|xqq � 1

nhp
}K}22A0pt|xq a2γ Γp2β � 1q fpxq

p2λa�A0pt|xqq2β�1
p1� op1qq � op1q,

from which the convergence in probability simply follows.

A.2. Asymptotic covariance matrix of the finite dimensional vector Tn

Our aim in this section is to compute the explicit expression of the elements of the covariance matrix
Σ � pσj,kq1¤j,k¤m given in (2.6). In this section we work under the assumptions of Lemma 2.1. According
to (A.2), we have

E
�
Khpx�XqZβjtj e�λjA0ptj |xqZtj

�
� fpxqΓpβj � 1q
rλj � 1sβj�1rA0ptj |xqsβj p1� op1qq,
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for 1 ¤ j ¤ m. In order to compute the cross expectation, we need to derive the conditional distribution
function of the pair pZtj , Ztkq given X � x. Let u, v ¡ 0

P
�
Ztj ¡ u, Ztk ¡ v|X � x

� � P
�
Y p1q ¡ max pp1 � tjqu, p1 � tkqvq , Y p2q ¡ max ptju, tkvq

���X � x
	

� G
�

max pp1 � tjqu, p1 � tkqvq ,max ptju, tkvq
���x	 .

Hence, for j, k P t1, ...,mu2, we have

E
�
Khpx�XqZβjtj e

�λjA0ptj |xqZtjKhpx�XqZβktk e
�λkA0ptk|xqZtk

�
(A.3)

� E
�
K2
hpx�XqE

�
Z
βj
tj
e
�λjA0ptj |xqZtjZβktk e

�λkA0ptk|xqZtk
���X�� .

We focus now on the conditional expectation. Using (A.1) and the fact that

zβe�aλz � δ0pβq �
»
R�

1ltz¡uuu
β�1pβ � aλuqe�aλudu, (A.4)

we have

E
�
Z
βj
tj e

�λjA0ptj |xqZtjZβktk e
�λkA0ptk|xqZtk

���X�
� E

��
Z
βj
tj e

�λjA0ptj |xqZtj � δ0pβjq
	�

Zβktk e
�λkA0ptk|xqZtk � δ0pβkq

	���X�
� δ0pβjqδ0pβkq

�δ0pβjqE
�
Zβktk e

�λkA0ptk|xqZtk

���X�
� δ0pβkqE

�
Z
βj
tj e

�λjA0ptj |xqZtj

���X�
�

»
R2
�

gj,kpu, vqGtj ,tkpu, v|Xqdudv � δ0pβjqδ0pβkq

� δ0pβjq Γpβk � 1q
rλk � 1sβk�1rA0ptk|Xqsβk � δ0pβkq Γpβj � 1q

rλj � 1sβj�1rA0ptj |Xqsβj . (A.5)

Combining the continuity and boundedness of the functions f , A0pt|.q and Gpu, v|.q, the expression of
σj,k in (2.6) follows.

A.3. Proof of Theorem 2.1

First, remark that to show Theorem 2.1, it is sufficient to look at the weak convergence of the process!?
nhp pTnpK,A0pt|xq, t, λ, β, γ|xq � E rTnpK,A0pt|xq, t, λ, β, γ|xqsq , t P r0, 1s

)
, (A.6)

since

lim
nÑ8

sup
tPr0,1s

?
nhp

����E rTnpK,A0pt|xq, t, λ, β, γ|xqs � Γpβ � 1q rA0pt|xqsγ�β
pλ� 1qβ�1

fpxq
���� � 0.

Indeed, according to (A.2), we have����E rTnpK,A0pt|xq, t, λ, β, γ|xqs � Γpβ � 1q rA0pt|xqsγ�β
pλ� 1qβ�1

fpxq
����

¤ Γpβ � 1qAγ0pt|xq
»
SK

Kpyq
����� A0pt|x� yhq
pλA0pt|xq �A0pt|x� yhqqβ�1

fpx� hyq � A�β0 pt|xq
pλ� 1qβ�1

fpxq
����� dy.
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Now, using Assumptions pDq and pA0q, we deduce that����� A0pt|x� yhq
pλA0pt|xq �A0pt|x� yhqqβ�1

fpx� hyq � A�β0 pt|xq
pλ� 1qβ�1

fpxq
�����

¤ A0pt|x� yhq
pλA0pt|xq �A0pt|x� yhqqβ�1

|fpx� yhq � fpxq| �
����� A0pt|x� yhq
pλA0pt|xq �A0pt|x� yhqqβ�1

� A�β0 pt|xq
pλ� 1qβ�1

����� fpxq
� Ophminpηf ,ηA0

qq

for n large enough such that h ¤ 1, with a bound which is uniform in t.

Then, to show the weak convergence of the stochastic process (A.6), we will use Theorem 19.28 in van
der Vaart (1998). To apply this result, we need to introduce some notations. Define the covering number
NpF , L2pQq, τq as the minimal number of L2pQq-balls of radius τ needed to cover the class of functions
F and the uniform entropy integral as

Jpδ,F , L2q :�
» δ

0

c
log sup

Q
NpF , L2pQq, τ}F }Q,2q dτ,

where Q is the set of all probability measures Q for which 0   }F }2Q,2 :� ³
F 2dQ   8 and F is an

envelope function of the class F .

Let P denote the law of the vector pY p1q, Y p2q, Xq and define the expectation under P , the empirical
version and empirical process as follows

Pf :�
»
fdP, Pnf :� 1

n

ņ

i�1

f
�
Y
p1q
i , Y

p2q
i , Xi

	
, Gnf :� ?

npPn � P qf,

for any real-valued measurable function f .
For any γ P R and pλ, βq P p0,8q � R� or pλ, βq � p0, 0q, we introduce our sequence of classes Fn as

Fn :� tpy1, y2, zq Ñ fn,tpy1, y2, zq, t P r0, 1su
:�

!
py1, y2, zq Ñ

?
hpKhpx� zqrA0pt|xqsγ�βrA0pt|xqZtpy1, y2qsβe�λA0pt|xqZtpy1,y2q, t P r0, 1s

)
,

where Ztpy1, y2q :� min

�
y1

1� t
,
y2

t



. Remark that Zt � Zt

�rY p1q, rY p2q
	

. Denote now by Fn an envelope

function of the class Fn and for any y P Rp, define the bivariate function ρy : r0, 1s2 Ñ R� as

ρypt, sq :� E
��
Aγ0pt|xqZβt e�λA0pt|xqZt �Aγ0ps|xqZβs e�λA0ps|xqZs

	2
����X � y

�
.

Naturally, ρy defines a semimetric on r0, 1s2 and since it is bi-continuous, it makes r0, 1s totally bounded.

Now, according to Theorem 19.28 in van der Vaart (1998), the weak convergence of the stochastic
process (A.6) follows from the four following conditions

sup
ρxpt,sq¤δn

P pfn,t � fn,sq2 ÝÑ 0 for every δn × 0, (A.7)

PF 2
n � Op1q, (A.8)

PF 2
ntFn ¡ ε

?
nu ÝÑ 0 for every ε ¡ 0, (A.9)

Jpδn,Fn, L2q ÝÑ 0 for every δn × 0. (A.10)
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We start to prove (A.7). By definition, we have

P pfn,t � fn,sq2 �
»
Rp
h�pK2

�
x� u

h



ρupt, sqfpuqdu

�
»
SK

K2puqρx�hupt, sqfpx� huqdu

� }K}22fpxqρxpt, sq �
»
SK

K2puqfpx� huqrρx�hupt, sq � ρxpt, sqsdu

�ρxpt, sq
»
SK

K2puqrfpx� huq � fpxqsdu.

By the Assumptions pDq, pK1q and since ρx is bounded, it remains to show that

sup
ρxpt,sq¤δn

|ρx�hupt, sq � ρxpt, sq| Ñ 0. (A.11)

Recall that

ρypt, sq � rA0pt|xqs2γ E
�
Z2β
t e�2λA0pt|xqZt

���X � y
�
� rA0ps|xqs2γ E

�
Z2β
s e�2λA0ps|xqZs

���X � y
�

�2 rA0pt|xqA0ps|xqsγ E
�
Zβt e

�λA0pt|xqZtZβs e
�λA0ps|xqZs

���X � y
�
.

Such expectations have been computed in (A.1) and (A.5). Using the mean value theorem combined
with the boundedness of A0p.|.q and Assumption pA0q, we can easily infer that for all py, y1q P Rp � Rp,
we have

sup
pt,sqPr0,1s2

|ρypt, sq � ρy1pt, sq| ¤ C}y � y1}ηA0 ,

for some positive constant C. This implies (A.11) and thus (A.7) is established.

Now, we move to the proof of (A.8) and (A.9). Since the function xÑ xβe�λx is bounded over R� by

pβ{λqβ e�β and A0pt|xq P r1{2, 1s, Fn admits the natural envelope function

py1, y2, zq Ñ Fnpy1, y2, zq :�
?
hpKhpx� zqM, (A.12)

where M :�
�
β

λ


β
e�β maxp1, 2β�γq. Consequently

PF 2
n �M2

»
Rp
h�pK2

�x� u

h

	
fpuqdu �M2

»
SK

K2puqfpx� huqdu �M2}K}22fpxqp1 � op1qq,

PF 2
ntFn ¡ ε

?
nu �M2

»
tKpuq¡M�1ε

?
nhpu

K2puqfpx� huqdu � 0,

for all ε ¡ 0 and n sufficiently large, since nhp Ñ8, K satisfies Assumption pK1q and f is continuous.

Finally, it remains to prove (A.10). First, we introduce the class of functions W :� tpy1, y2q Ñ
A0pt|xqZtpy1, y2q, t P r0, 1su and its subgraph σt in R2

� � R as

σt :� tpu, v, wq : A0pt|xqZtpu, vq ¡ wu
�

"
pu, v, wq :

A0pt|xq
1� t

u ¡ w

*
X
"
pu, v, wq :

A0pt|xq
t

v ¡ w

*
.

We can show that tσt : t P r0, 1su is a VC -class of sets. Indeed, if we look more generally, at the collection
of sets C :� ttpx, yq : δx ¡ yu, δ ¡ 0u in R��R and if we define two points px1, y1q and px2, y2q such that,
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without loss of generality,
y1

x1
¤ y2

x2
. Then, for any δ ¡ 0, δx2 ¥ y2 implies that δx1 ¥ y1. Thus, C cannot

shatter the set tpx1, y1q, px2, y2qu and by consequence it is a VC -class of sets. Now, the collection of one
set R� is naturally a VC -class of sets. According to Lemma 2.6.17 (vii) in van der Vaart and Wellner
(1996), C � R� is aVC -class of sets as well. Invoking Lemma 2.6.17 (ii), tσt : t P r0, 1su belongs to a
VC -class and as such is VC. Define now for all z P R�

φλ,βpzq :� zβe�λz.

We can easily check that φλ,β is of bounded variation. This implies that φλ,β can be decomposed as the

sum of two monotone functions, say φ
p1q
λ,β and φ

p2q
λ,β . Thus, according to Lemma 2.6.18 (viii) in van der

Vaart and Wellner (1996), φ
p1q
λ,β �W and φ

p2q
λ,β �W are VC. Now, according to Theorem 2.6.7 in van der

Vaart and Wellner (1996), there exists a universal constant C such that for any j � 1, 2 and 0   τ   1

sup
Q
Npφpjqλ,β �W, L2pQq, τ}Wj}Q,2q ¤ CVjp16eqVj

�
1

τ


2pVj�1q

,

where Vj is the VC -index of φ
pjq
λ,β �W and Wj its envelope function. Now, consider the sequence of class

of functions

Fn,j :� tz Ñ
?
hpKhpx� zqu b φ

pjq
λ,β �W,

for j � 1, 2, where b denotes the direct product between the two classes involved. Since we only update the
previous sets with one single function and only one ball is needed to cover the class tz Ñ ?

hpKhpx� zqu
whatever the measure Q, we have

sup
Q
NpFn,j , L2pQq, τ}κFn}Q,2q ¤ CVjp16eqVj

�
1

τ


2pVj�1q

,

where κ is a suitable constant. Moreover since suptPr0,1srA0pt|xqsγ�β � maxp1, 2β�γq, for any 0   τ   1,

the minimal number of balls of radius τ maxp1, 2β�γq needed to cover the interval
�
0,maxp1, 2β�γq� is

r1{2τ s. Hence

sup
Q
N

�trA0pt|xqsγ�β , t P r0, 1su, L2pQq, τ maxp1, 2β�γq� � R
1

2τ

V
¤ 3

2

�
1

τ


2

.

Consequently, we have

sup
Q
NptrA0pt|xqsγ�β , t P r0, 1su b Fn,j , L2pQq, τ maxp1, 2β�γq}κFn}Q,2q ¤ 3C

2
Vjp16eqVj

�
1

τ


2Vj

.

Finally, since our class of interest Fn is included in the class of functionsrFn :� trA0pt|xqsγ�β , t P r0, 1su b Fn,1 � trA0pt|xqsγ�β , t P r0, 1su b Fn,2,
with envelope function 2 maxp1, 2β�γqκFn, using Lemma 16 in Nolan and Pollard (1987), we have

sup
Q
NpFn, L2pQq, 2τ maxp1, 2β�γq}κFn}Q,2q ¤ sup

Q
Np rFn, L2pQq, 2τ maxp1, 2β�γq}κFn}Q,2q

¤ 9C2

4
V1V2p16eqV1�V2

�
4

τ


2pV1�V2q

�: L

�
1

τ


V
.

Thus, (A.10) is established since for any sequence δn × 0 and n large enough, we have

Jpδn,Fn, L2q ¤
» δn

0

b
logpr2κmaxp1, 2β�γqsV Lq � V logpτqdτ � op1q.

This achieves the proof of Theorem 2.1 since the covariance structure follows from (2.6).
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A.4. Proof of Theorem 2.2

To prove this theorem, we will make use of the Cramér-Wold device (see, e.g., Severini, 2005, p. 337),
according to which it is sufficient to show that

Λn :� ξT
?
nhp pTn � ErTnsq N1

�
0, ξTΣξ

�
,

for all ξ P Rm. A straightforward rearrangement of the terms leads to

Λn � 1

n

ņ

i�1

?
nhp

#
m̧

j�1

ξjrA0ptj |xqsγjKhpx�XiqZβjtj ,ie
�λjA0ptj |xqZtj ,i

�E

�
m̧

j�1

ξjrA0ptj |xqsγjKhpx�XiqZβjtj ,ie
�λjA0ptj |xqZtj ,i

�+

�:
1

n

ņ

i�1

Wi.

Since W1, ...,Wn are independent and identically distributed random variables, VarpΛnq � VarpW1q
n

with

VarpW1q � nhp
m̧

j�1

m̧

k�1

ξjξkCj,k,

where

Cj,k :� E
�
pA0ptj |xqqγj pA0ptk|xqqγkK2

hpx�XqZβjtj e�λjA0ptj |xqZtjZβktk e
�λkA0ptk|xqZtk

�
�E

�
pA0ptj |xqqγjKhpx�XqZβjtj e�λjA0ptj |xqZtj

�
E
�
pA0ptk|xqqγkKhpx�XqZβktk e�λkA0ptk|xqZtk

�
.

According to the computations in Appendix A.2, V arpΛnq � ξTΣξp1 � op1qq. Hence, to ensure the
convergence in distribution of Λn to a normal random variable, we have to verify the Lyapounov condition
for triangular arrays of random variables (Billingsley, 1995, p. 362). In the present context this simplifies

to verifying
1

n2
Ep|W1|3q Ñ 0. We have

Ep|W1|3q ¤ n3{2h3p{2

$&%E

��� m̧

j�1

|ξj |pA0ptj |xqqγjKhpx�XqZβjtj e�λjA0ptj |xqZtj

�3
��

�3E

��� m̧

j�1

|ξj |pA0ptj |xqqγjKhpx�XqZβjtj e�λjA0ptj |xqZtj

�2
��

�E
�
m̧

j�1

|ξj |pA0ptj |xqqγjKhpx�XqZβjtj e�λjA0ptj |xqZtj

�

� 4

�
E

�
m̧

j�1

|ξj |pA0ptj |xqqγjKhpx�XqZβjtj e�λjA0ptj |xqZtj

��3
,.- .

A similar treatment as for (A.3) yields for all postive integer q

E

��
m̧

j�1

|ξj |pA0ptj |xqqγjKhpx�XqZβjtj e�λjA0ptj |xqZtj

�q�

� E

�
E

��
m̧

j�1

|ξj |pA0ptj |xqqγjKhpx�XqZβjtj e�λjA0ptj |xqZtj

�q�����X
��

�: E rKq
hpx�XqQpXqs
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where the explicit expression of QpXq can be obtained similarly as for (A.5). Hence

E

��
m̧

j�1

|ξj |pA0ptj |xqqγjKhpx�XqZβjtj e�λjA0ptj |xqZtj

�q�
� 1

hqp

»
Rp
Kq

�
x� u

h



Qpuqfpuqdu

� phpq1�q
»
SK

KqpzqQpx� zhqfpx� zhqdz

� Opphpq1�qq
by continuity and boundedness of the functions. Consequently

1

n2
Ep|W1|3q � O

�
p
?
nhpq�1

	
� op1q.

A.5. The derivatives of p∆α,x,t and their asymptotic properties

Straightforward computations for a P r1{2, 1s, α ¡ 0 and x P Rp, give

p∆p1q
α,x,tpaq � αa�1 p∆α,x,tpaq � aαp1 � αq 1

n

ņ

i�1

Khpx�XiqZt,ie�αaZt,i ,

p∆p2q
α,x,tpaq � αa�1 p∆p1q

α,x,tpaq � αa�2 p∆α,x,tpaq � αpα� 1qaα�1 1

n

ņ

i�1

Khpx�Xiqp1 � aZt,iqZt,ie�αaZt,i ,

p∆p3q
α,x,tpaq � α

�
2a�3 p∆α,x,tpaq � a�1 p∆p2q

α,x,tpaq � 2a�2 p∆p1q
α,x,tpaq

	
�pα� 1qαpα� 1qa

α�2

n

ņ

i�1

Khpx�Xiqp1 � aZt,iqZt,ie�αaZt,i

�αpα� 1qa
α�1

n

ņ

i�1

Khpx�Xiqpαp1 � aZt,iq � 1qZ2
t,ie

�αaZt,i .

The convergence in probability of the two first derivatives of p∆α,x,t is therefore a direct application of
Lemma 2.1, which yields, as nÑ8

p∆p1q
α,x,tpA0pt|xqq PÝÑ `

p1q
α,x,tpA0pt|xqq :� 0,

p∆p2q
α,x,tpA0pt|xqq PÝÑ `

p2q
α,x,tpA0pt|xqq :� 1� α2

p1� αq2 rA0pt|xqsα�2fpxq.

Now the rate of convergence of p∆pjq
α,x,tpA0pt|xqq, j P t1, 2u, to its limit is also useful to study (2.4) and

thus to reach our final goal. The aim of the next corollary is to provide such a rate.

Corollary A.1. Under the assumptions of Theorem 2.1, then for any j P t1, 2u, the process!?
nhp

�p∆pjq
α,x,tpA0pt|xqq � `

pjq
α,x,tpA0pt|xqq

	
, t P r0, 1s

)
weakly converges in Cpr0, 1sq towards a tight centered Gaussian process. In particular, we have

sup
tPr0,1s

��� p∆pjq
α,x,tpA0pt|xqq � `

pjq
α,x,tpA0pt|xqq

��� � oPp1q.

Proof of Corollary A.1. As usual, it is sufficient to show the finite dimensional convergence and
the tightness of the process. Using Theorem 2.2 we directly solve the finite dimensional convergence issue.
Next, Theorem 2.1 combined with (A.6) implies tightness for any process tÑ ?

nhppTn�ErTnsqpK,A0pt|xq, t, λ, β, γ|xq
and similarly as in Lemma 1 in Bai and Taqqu (2013), we have tightness for any multivariate process
with similar coordinates. Corollary A.1 then follows.
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A.6. Proof of Theorem 2.3

To prove the theorem we will adjust the arguments used to prove existence and consistency of solutions
of the likelihood estimating equation, see e.g. Theorem 3.7 and Theorem 5.1 in Chapter 6 of Lehmann
and Casella (1998), to the MDPD framework. Let ζ, b ¡ 0, Cp.|.q : r0, 1s � Rp Ñ r1{2 � ζ, 1 � ζs and
@t P r0, 1s, rptq :� |A0pt|xq � Cpt|xq|. Define in addition the b-level of r as

Tb :� tt P r0, 1s, rptq ¡ bu .
We firstly show that for any b ¡ 0

P
�
@t P Tb, p∆α,x,tpA0pt|xqq   p∆α,x,t pCpt|xqq

	
Ñ 1, (A.13)

as nÑ8, for any function Cp.|xq different from but close enough to A0p.|xq. By applying a Taylor series
expansion, we have

p∆α,x,tpCpt|xqq � p∆α,x,tpA0pt|xqq � pCpt|xq �A0pt|xqqp∆p1q
α,x,tpA0pt|xqq � 1

2
pCpt|xq �A0pt|xqq2 p∆p2q

α,x,tpA0pt|xqq

�1

6
pCpt|xq �A0pt|xqq3 p∆p3q

α,x,tp rCpt|xqq,
where rCpt|xq is an intermediate value between Cpt|xq and A0pt|xq. According to Appendix A.5, as nÑ8

sup
tPr0,1s

��� p∆p1q
α,x,tpA0pt|xqq

��� � sup
tPr0,1s

��� p∆p1q
α,x,tpA0pt|xqq � `

p1q
α,x,tpA0pt|xqq

��� PÝÑ0.

This convergence implies, that for all 0   ε ¤ b2

P
�
@t P Tb, rptq|p∆p1q

α,x,tpA0pt|xqq| ¤ r3ptq
	

¥ P

�
@t P Tb, |p∆p1q

α,x,tpA0pt|xqq| ¤ r2ptq, sup
tPr0,1s

��� p∆p1q
α,x,tpA0pt|xq

��� ¤ ε

�

� P

�
sup
tPr0,1s

��� p∆p1q
α,x,tpA0pt|xq

��� ¤ ε

�
ÝÑ1,

as nÑ8. Now, concerning p∆p2q
α,x,tpA0pt|xqq, we have

sup
tPr0,1s

��� p∆p2q
α,x,tpA0pt|xqq � `

p2q
α,x,tpA0pt|xqq

��� PÝÑ0,

as nÑ8. Consequently, there exists δ1 ¡ 0 such that

@t P r0, 1s, r2ptq
2

p∆p2q
α,x,tpA0pt|xqq ¡ δ1r

2ptq,

with probability tending to 1.
Finally, since xÑ xλe�x is bounded @λ ¥ 1 on R� and by Lemma 2.1

TnpK, a, t, 0, 0, 0|xq � 1

n

ņ

i�1

Khpx�Xiq PÝÑfpxq,

as n Ñ 8, we have for any ε ¡ 0, n�1
°n
i�1Khpx �Xiq ¤ fpxq � ε with probability tending to 1. This

implies that

sup
aPr1{2�ζ,1�ζs,tPr0,1s

��� p∆p3q
α,x,tpaq

��� �: M   8 (A.14)

with probability tending to 1. We can therefore conclude that

@t P r0, 1s, r3ptq
6

��� p∆p3q
α,x,tp rCpt|xqq��� ¤ M

6
r3ptq,
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with probability tending to 1.
Overall, we have shown that

P
�
@t P Tb, p∆α,x,tpCpt|xqq � p∆α,x,tpA0pt|xqq ¡ δ1r

2ptq �
�

1� M

6



r3ptq



ÝÑ1,

as nÑ8, where the right-hand side of the inequality is positive for rptq   δ1{p1�M{6q. Thus, setting

sup
tPr0,1s

rptq   δ1{p1�M{6q,

(A.13) follows.

To complete the proof we adjust the line of argumentation of Theorem 3.7 in Chapter 6 of Lehmann
and Casella (1998). Take 0   δ   ζ and define the event

Snpδq :�
!
@t P r0, 1s, p∆α,x,tpA0pt|xqq   p∆α,x,tpA0pt|xq � δq

)
.

For υ P Snpδq, since p∆α,x,tpaq is differentiable with respect to a, there exists rAα,n,δpt|xq P pA0pt|xq � δ, A0pt|xq � δq
where p∆α,x,tpaq achieves a local minimum, so p∆p1q

α,x,tp rAα,n,δpt|xqq � 0.

By (A.13), PpSnpδqq Ñ 1 for any small enough δ, and hence there exists a sequence δn Ó 0, such that

PpSnpδnqq Ñ 1, as nÑ8. Now, let pAα,npt|xq :� rAα,n,δnpt|xq if υ P Snpδnq and arbitrary otherwise. Since

υ P Snpδnq implies p∆p1q
α,x,tp pAα,npt|xqq � 0, we have that

P
�p∆p1q

α,x,tp pAα,npt|xqq � 0
	
¥ P pSnpδnqq Ñ 1,

as n Ñ 8, which establishes the existence part. Note that the measurability of the local minimum can
be verified in the same way as it is done in the framework of maximum likelihood estimation (see e.g.
Serfling, 1980, p. 147).

Concerning now the uniform consistency of the solution sequence, note that for any ε ¡ 0 and n large
enough such that δn ¤ ε, we have

P

�
sup
tPr0,1s

��� pAα,npt|xq �A0pt|xq
��� ¤ ε

�
¥ P

�
sup
tPr0,1s

��� pAα,npt|xq �A0pt|xq
��� ¤ δn

�
¥ P pSnpδnqq Ñ 1,

as nÑ8, whence the uniform consistency of the estimator sequence.

A.7. Proof of Theorem 2.4

The starting point is (2.4). According to Corollary A.1,
!?

nhp p∆p1q
α,x,tpA0pt|xqq, t P r0, 1s

)
weakly con-

verges, as nÑ8, towards a tight centered Gaussian process and!p∆p2q
α,x,t pA0pt|xqq , t P r0, 1s

)
PÝÑ

!
`
p2q
α,x,tpA0pt|xqq, t P r0, 1s

)
.

Combining these results with (A.14), we have, as nÑ8,#�p∆p2q
α,x,tpA0pt|xqq � 1

2
p∆p3q
α,x,tp rApt|xqqp pAα,npt|xq �A0pt|xqq

��1

, t P r0, 1s
+

PÝÑ
"�
`
p2q
α,x,tpA0pt|xqq

��1

, t P r0, 1s
*
.
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Concerning the covariance structure, it follows from Theorem 2.2 and the fact that

p∆p1q
α,x,tpA0pt|xqq � vTαT

p3q
n pt|xq,

where

T p3qn pt|xq :�
��TnpK,A0pt|xq, t, 0, 0, α� 1|xq
TnpK,A0pt|xq, t, α, 0, α� 1|xq
TnpK,A0pt|xq, t, α, 1, α|xq

�
.
A.8. Proof of Lemma 3.1

We use the following decomposition

Fn,jpy|xq � Fjpy|xq � rfpxqs�1

�
n�1

ņ

i�1

Kcpx�Xiq1ltY pjq
i ¤yu � E

�
Kcpx�Xq1ltY pjq¤yu

	�
�rfpxqs�1

�
E
�
Kcpx�Xq1ltY pjq¤yu

	
� fpxqFjpy|xq

�
�
n�1°n

i�1Kcpx�Xiq1ltY pjq
i ¤yu

n�1
°n
i�1Kcpx�Xiq

1

fpxq

�
n�1

ņ

i�1

Kcpx�Xiq � E pKcpx�Xqq
�

�
n�1°n

i�1Kcpx�Xiq1ltY pjq
i ¤yu

n�1
°n
i�1Kcpx�Xiq

1

fpxq rE pKcpx�Xqq � fpxqs

�:
4̧

k�1

Tkpy|xq.

In order to study T1py|xq and T3py|xq we show that, for q ¡ 1,

E

�
sup

py,xqPR�Rp

�����n�1
ņ

i�1

Kcpx�Xiq1ltY pjq
i ¤yu � E

�
Kcpx�Xq1ltY pjq¤yu

������
�

� o

�c
| log c|q
ncp

�
,(A.15)

E

�
sup
xPRp

�����n�1
ņ

i�1

Kcpx�Xiq � E rKcpx�Xqs
�����
�

� o

�c
| log c|q
ncp

�
.(A.16)

To this aim, let us introduce the class

G :�
"
pu, vq Ñ K

�
x� v

d



1ltu¤yu; y P R, x P Rp, d ¡ 0

*
�

"
K

�
x� .

d



; x P Rp, d ¡ 0

*
b
"

1lt.¤yu; y P R
*

�: G1 b G2.

Under Assumption pK2q, G1 is a uniformly bounded VC -class of measurable functions (see e.g. Giné and
Guillou, 2002). Next, since the collection of all cells tp�8, as, a P Ru is a VC -class of sets, it follows that
G2 is also a uniformly bounded VC -class of measurable functions. Now, using the fact that the covering
number of the direct product of two VC -classes is bounded by the product of the respective covering
numbers,

Gn :�
"
pu, vq Ñ K

�
x� v

c



1ltu¤yu; y P R, x P Rp, c � cn ¡ 0

*
,

admits the same bound for the covering number as G, that is

NpGn, L2pQq, τ}K}8q ¤ C VGp16eqVG

�
1

τ


2pVG�1q

�:

�
AG

τ


νG
,
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where C is a universal constant, τ P p0, 1q and VG is the VC -index of G (see Theorem 2.6.7 in van
der Vaart and Wellner, 1996). Now, according to Proposition 2.1 in Giné and Guillou (2001) (see also
Theorem 2.1 in Giné and Guillou, 2002) for σ2 ¥ supgPGn Varpgq, U ¥ }K}8 and 0   σ ¤ U , there exists
a universal constant B such that

E

�
sup

py,xqPR�Rp

�����n�1
ņ

i�1

Kcpx�Xiq1ltY pjq
i ¤yu

� E
�
Kcpx�Xq1ltY pjq¤yu

������
�

¤ rncps�1B

�
UνG log

�
UAG

σ



�
d
νGnσ2 log

�
UAG

σ


�
.

Since

Var

�
K

�
x�X

c



1ltY pjq¤yu



¤ cp

»
SK

K2puq fpx� cuqdu ¤ cp}f}8}K}22,

the choices σ2 � σ2
n :� cp}f}8}K}22 and U � }K}8 imply that σ2

n ¤ U2 for n large enough. This yields
(A.15). Similar arguments can be used in order to show (A.16). Since fpxq ¥ b,@x P SX

E

�
sup

py,xqPR�SX
|Tkpy|xq|

�
� o

�c
| log c|q
ncp

�
, for k � 1, 3.

Concerning T2py|xq, remark that

E
�
Kcpx�Xq1ltY pjq¤yu

�� fpxqFjpy|xq � E rKcpx�XqFjpy|Xqs � fpxqFjpy|xq

�
»
Rp
Kcpx� uq rFjpy|uq � Fjpy|xqs fpuqdu

�Fjpy|xq
»
Rp
Kcpx� uqrfpuq � fpxqsdu

� opcηq,

by Assumptions pDq and pFq. The same bound can also be obtained for T4py|xq. This achieves the proof
of Lemma 3.1.

A.9. Proof of Theorem 3.1

Let
In :� tgθ,δ,n : θ P Θ, δ P Hu

where for θ :� pt, aq P Θ :� r0, 1s � r1{2, 1s, and δ P H :�  
δ � pδ1, δ2q; δ : R� R� SX Ñ R2

(
,

gθ,δ,npy1, y2, uq :�
?
hpKhpx� uqqθ,δpy1, y2, uq

:�
?
hpKhpx� uqaγrZθ,δpy1, y2, uqsβ exp p�λaZθ,δpy1, y2, uqq

with

Zθ,δpy1, y2, uq :� min

�� log p|δ1py1, y2, uq|q
1� t

,
� log p|δ2py1, y2, uq|q

t



.

For convenience, denote δn :� pFn,1, Fn,2q and δ0 :� pF1, F2q. According to Lemma 3.1, r�1
n |δn � δ0|

converges in probability towards the null function H0 :� t0u in H, endowed with the norm }δ}H :�
}δ1}8 � }δ2}8 for any δ P H. In order to apply Theorem 2.3 in van der Vaart and Wellner (2007), we
have now to show
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Assertion 1: supθPΘ

?
nPGnpθ, bnq ÝÑ 0 for every bn Ñ 0

and
Assertion 2: supθPΘ |GnGnpθ, bq| PÝÑ 0, for every b ¡ 0,

where Gnpθ, bq is the minimal envelope function for the class

Enpθ, bq :� tgθ,δ0�rnδ,n � gθ,δ0,n : δ P H, }δ}H ¤ bu ,
i.e.

Gnpθ, bq :� sup
}δ}H¤b

|gθ,δ0�rnδ,n � gθ,δ0,n|

�
?
hpKhpx� �q sup

}δ}H¤b

|qθ,δ0�rnδ � qθ,δ0 |. (A.17)

Now, remark that @py1, y2, uq P R� R� SX

sup
}δ}H¤b

|qθ,δ0�rnδ � qθ,δ0 |py1, y2, uq � sup
pδ1py1,y2,uq,δ2py1,y2,uqqPB

|qθ,δ0�rnδ � qθ,δ0 |py1, y2, uq,

where B :� tpx, yq P R2 : |x| � |y| ¤ bu. Since B is compact and δ Ñ qθ,δpy1, y2, uq is continuous,
(A.17) reaches its supremum on at least one position δ�θ,bpy1, y2, xq � pδ�1,θ,bpy1, y2, xq, δ�2,θ,bpy1, y2, xqq in
B. Thus, according to Theorem 18.19 in Aliprantis and Border (2006), one can find a measurable function
δ�θ,b bounded by b in H such that

Gnpθ, bq � |gθ,δ0�rnδ�θ,b,n � gθ,δ0,n|.
Proof of Assertion 1. For any positive sequence bn Ñ 0, we have

?
nPGnpθ, bnq �

?
nhp

»
SK

KpuqE
�
|qθ,δ0�rnδ�θ,bn � qθ,δ0 |

���X � x� hu
�
fpx� huqdu.

Note that for any pδ, δ1q P H �H, using (A.4)

|qθ,δ � qθ,δ1 | ¤ aγ
» �8

0

|β � λas|sβ�1e�λas1ltsPrminpZθ,δ,Zθ,δ1 q,maxpZθ,δ,Zθ,δ1 qsu
ds. (A.18)

Consequently

E
�
|qθ,δ0�rnδ�θ,bn

� qθ,δ0 |
���X � x� hu

�
¤ aγ

» �8
0

|β � λas|sβ�1e�λas P
�
s P rminpZθ,δ0�rnδ�θ,bn

, Zθ,δ0q,maxpZθ,δ0�rnδ�θ,bn
, Zθ,δ0qs

���X � x� hu
	
ds.

Remark now that!
s P rminpZθ,δ0�rnδ�θ,bn , Zθ,δ0q,maxpZθ,δ0�rnδ�θ,bn , Zθ,δ0qs

)
�

"
e�s P

�
min

�
max

���F1 � rnδ
�
1,θ,bn

�� 1
1�t ,

��F2 � rnδ
�
2,θ,bn

�� 1t 	 ,max

�
F

1
1�t

1 , F
1
t

2




,

max

�
max

���F1 � rnδ
�
1,θ,bn

�� 1
1�t ,

��F2 � rnδ
�
2,θ,bn

�� 1t 	 ,max

�
F

1
1�t

1 , F
1
t

2



�*
�

"
e�s P

�
min

���F1 � rnδ
�
1,θ,bn

�� 1
1�t , F

1
1�t

1



,max

���F1 � rnδ
�
1,θ,bn

�� 1
1�t , F

1
1�t

1


�*
Y
!
e�s P

�
min

���F2 � rnδ
�
2,θ,bn

�� 1t , F 1
t

2

	
,max

���F2 � rnδ
�
2,θ,bn

�� 1t , F 1
t

2

	�)
�

!
e�p1�tqs P �minp��F1 � rnδ

�
1,θ,bn

�� , F1q,maxp��F1 � rnδ
�
1,θ,bn

�� , F1q
�)

Y  
e�ts P �minp��F2 � rnδ

�
2,θ,bn

�� , F2q,maxp��F2 � rnδ
�
2,θ,bn

�� , F2q
�(

�
!
e�p1�tqs P rF1 � rnbn, F1 � rnbns

)
Y  

e�ts P rF2 � rnbn, F2 � rnbns
(

�: An,1psq YAn,2psq.
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Since for any subsets A and B we have 1ltAYBu ¤ 1ltAu � 1ltBu, we can deduce that

P
�
s P rminpZθ,δ0�rnδ�θ,bn , Zθ,δ0q,maxpZθ,δ0�rnδ�θ,bn , Zθ,δ0qs|X � x� hu

	
¤ P pAn,1psq|X � x� huq � P pAn,2psq|X � x� huq

�
» 1

0

1lte�p1�tqsPrv�rnbn,v�rnbnsudv �
» 1

0

1lte�tsPrv�rnbn,v�rnbnsudv

¤ 2rnbn � 2rnbn � 4rnbn. (A.19)

This implies that

?
nhpE

�
|qθ,δ0�rnδ�θ,bn � qθ,δ0 |

���X � x� hu
�
¤ 4

?
nhprnbn sup

aPr1{2,1s

» 8

0

aγ |β � λas|sβ�1e�λasds.

This achieves the proof of Assertion 1 since K is bounded, supaPr1{2,1s
³8
0
aγ |β� λas|sβ�1e�λasds   �8,?

nhprn Ñ 0 and bn Ñ 0.

Proof of Assertion 2. The idea is to apply Lemma 2.2 in van der Vaart and Wellner (2007). To this
aim, first observe that the class Enpθ, bq admits an envelope function En of the same form as Fn in (A.12),
for some suitable constant M ¡ 0. Thus En satisfies the conditions (A.8) and (A.9), with Fn replaced by
En. Consequently, it remains to show the two following convergences

sup
θPΘ

PG2
npθ, bq ÝÑ 0, (A.20)

Jpdn, tGnpθ, bq : θ P Θu , L2q ÝÑ 0 for all dn × 0. (A.21)

We start to show (A.20). Since

PG2
npθ, bq �

»
SK

K2puqE
�
|qθ,δ0�rnδ�θ,b � qθ,δ0 |2

���X � x� hu
	
fpx� huqdu,

and (A.18), (A.20) follows from the proof of Assertion 1.

Now, to deal with the uniform entropy integral, we can adjust the lines of proof of Theorem 2.1 by
considering the classes of functions defined on R� R� SX

φ
pjq
λ,β �W �Ψ, j � 1, 2,

where Ψ is either the function

py1, y2, uq Ñ p� logpF1py1|uqq,� logpF2py2|uqq

or
py1, y2, uq Ñ

�� log
���F1py1|uq � rnδ

�
1,θ,bpy1, y2, uq

��� ,� log
���F2py2|uq � rnδ

�
2,θ,bpy1, y2, uq

����
which are VC -classes. This allows us to prove that there exist positive constants C and V such that

sup
Q
NptGnpθ, bq : θ P Θu , L2pQq, τ}En}Q,2q ¤ C

�
1

τ


V
,

from which (A.21) follows. This achieves the proof of Theorem 3.1.
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A.10. Proof of Theorem 3.2

One can check that the proof of Theorems 2.3 and 2.4 are mainly due to the asymptotic properties ofp∆pjq
α,x,t, j � 1, 2 and 3. Thus, if we are able to prove that the two key statistics Tn and qTn are sufficiently

close enough, in the sense that

sup
tPr0,1s,aPr1{2,1s

?
nhp

��� qTn � Tn

��� pK, a, t, λ, β, γ|xq � oPp1q, (A.22)

and

sup
tPr0,1s,aPr1{2,1s

?
nhpE

���� qTn � Tn

���� pK, a, t, λ, β, γ|xq � op1q, (A.23)

then we can swap p∆pjq
α,x,t by q∆pjq

α,x,t, j � 1, 2 and 3. According to Theorem 3.1, (A.22) is a direct consequence
of (A.23). So it remains to prove (A.23). Note that

?
nhp E

���� qTn � Tn

���� pK, a, t, λ, β, γ|xq � ?
nE

������ 1n
ņ

i�1

�?
hpKhpx�Xiqaγ qZβn,t,ie�λa qZn,t,i

�
?
hpKhpx�XiqaγZβt,ie�λaZt,i

�����
¤ ?

nE
����gθ,δn,npY p1q, Y p2q, Xq � gθ,δ0,npY p1q, Y p2q, Xq

����
¤ ?

nPGnpθ, bq,
since δn P δ0 � rnBp0, bq where Bp0, bq :� tδ : }δ}H ¤ bu. This implies that

sup
tPr0,1s,aPr1{2,1s

?
nhp E

���� qTn � Tn

���� pK, a, t, λ, β, γ|xq ¤ sup
tPr0,1s,aPr1{2,1s

?
nPGnpθ, bq � op1q

by Assertion 1 since it is clear from its proof that bn Ñ 0 can be replaced by any fixed value b in (A.19)
without changing the conclusion. This achieves the proof of Theorem 3.2.

Acknowledgements

The authors sincerely thank the editor, associate editor and the referees for their helpful comments and
suggestions that led to substantial improvement of the paper.

Supplementary material

Supplementary material to ”Local robust estimation of the Pickands dependence function”.
This document contains additional simulation results.

References

Abegaz, F., Gijbels, I. and Veraverbeke, N. (2012). Semiparametric estimation of conditional cop-
ulas. J. Multivariate Anal. 110 43–73. MR2927509

Aliprantis, C. D. and Border, K. C. (2006). Infinite dimensional analysis, A hitchhiker’s guide, third
edition, Springer, Berlin. MR2378491 (2008m:46001)

Bai, S. and Taqqu, M. S. (2013). Multivariate limit theorems in the context of long-range dependence.
J. Time Series Anal. 34 717–743. MR3127215

http://www.ams.org/mathscinet-getitem?mr=2927509
http://www.ams.org/mathscinet-getitem?mr=MR2378491
http://www.ams.org/mathscinet-getitem?mr=MR3127215


M. Escobar-Bach, Y. Goegebeur and A. Guillou/Local robust estimation of the Pickands dependence function 28

Basu, A., Harris, I. R., Hjort, N. L. and Jones, M. C. (1998). Robust and efficient estimation by
minimising a density power divergence. Biometrika 85 549–559. MR1665873 (2000a:62067)

Billingsley, P. (1995). Probability and measure, third edition, Wiley Series in Probability and Mathe-
matical Statistics. John Wiley & Sons, Inc., New York. MR1324786 (95k:60001)
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Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ.
Paris 8 229–231. MR0125600 (23#A2899)

Stute, W. (1986). Conditional empirical processes. Ann. Statist. 14 638–647. MR0840519
van der Vaart, A. W. (1998). Asymptotic statistics, Cambridge Series in Statistical and Probabilistic

Mathematics, 3, Cambridge University Press, Cambridge. MR1652247 (2000c:62003)
van der Vaart, A. W. and Wellner, J. A. (1996). Weak convergence and empirical processes,

with applications to statistics, Springer Series in Statistics. Springer-Verlag, New York. MR1385671
(97g:60035)

http://www.ams.org/mathscinet-getitem?mr=MR1665873
http://www.ams.org/mathscinet-getitem?mr=MR1324786
http://www.ams.org/mathscinet-getitem?mr=MR2893858
http://www.ams.org/mathscinet-getitem?mr=MR1603985
http://www.ams.org/mathscinet-getitem?mr=MR2834049
http://www.ams.org/mathscinet-getitem?mr=MR1142097
http://www.ams.org/mathscinet-getitem?mr=MR1440134
http://www.ams.org/mathscinet-getitem?mr=MR2456011
http://www.ams.org/mathscinet-getitem?mr=MR3332795
http://www.ams.org/mathscinet-getitem?mr=MR3426313
http://www.ams.org/mathscinet-getitem?mr=MR1876841
http://www.ams.org/mathscinet-getitem?mr=MR1955344
http://www.ams.org/mathscinet-getitem?mr=MR2078551
http://www.ams.org/mathscinet-getitem?mr=MR3051266
http://www.ams.org/mathscinet-getitem?mr=MR1892574
http://www.ams.org/mathscinet-getitem?mr=MR1639875
http://www.ams.org/mathscinet-getitem?mr=MR0888439
http://www.ams.org/mathscinet-getitem?mr=MR0820979
http://www.ams.org/mathscinet-getitem?mr=MR0595165
http://www.ams.org/mathscinet-getitem?mr=MR0595165
http://www.ams.org/mathscinet-getitem?mr=MR2168237
http://www.ams.org/mathscinet-getitem?mr=MR0125600
http://www.ams.org/mathscinet-getitem?mr=MR0840519
http://www.ams.org/mathscinet-getitem?mr=MR1652247
http://www.ams.org/mathscinet-getitem?mr=MR1385671
http://www.ams.org/mathscinet-getitem?mr=MR1385671


M. Escobar-Bach, Y. Goegebeur and A. Guillou/Local robust estimation of the Pickands dependence function 29

van der Vaart, A. W. and Wellner, J. A. (2007). Empirical processes indexed by estimated func-
tions, Asymptotics: Particles, Processes and Inverse Problems, IMS Lecture Notes Monogr. Ser. 55
234–252. MR2459942 (2010b:62137)

http://www.ams.org/mathscinet-getitem?mr=MR2459942

	Introduction
	Case of known margins
	Construction of the estimator
	Asymptotic properties of Tn
	Asymptotic properties of ,n(t|x)

	Case of unknown margins
	Simulation study
	Application to air pollution data
	Proofs of the results
	Proof of Lemma 2.1
	Asymptotic covariance matrix of the finite dimensional vector Tn
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	The derivatives of , x, t and their asymptotic properties
	Proof of Theorem 2.3
	Proof of Theorem 2.4
	Proof of Lemma 3.1
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Acknowledgements
	Supplementary material
	References

