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Abstract

We consider the robust estimation of the Pickands dependence function in the covariate
framework. Our estimator is based on local estimation with the minimum density power di-
vergence criterion. We provide its main asymptotic properties, in particular the convergence
of the stochastic process, correctly normalized, towards a tight centered Gaussian process.
The finite sample performance of our estimator is illustrated on a small simulation study
involving both uncontaminated and contaminated samples.
Keywords: Conditional Pickands dependence function, robustness, stochastic convergence.

1 Introduction

Modelling dependence among extremes is of primary importance in practical applications where
extreme phenomena occur. To this aim, the copula function can be used as a margin-free
description of the dependence structure. Indeed, according to the well-known result of Sklar
(1959), the distribution function of a pair pY p1q, Y p2qq can be represented in terms of the two
margins F1 and F2 of Y p1q and Y p2q respectively, and a copula function C as follows:

P
�
Y p1q ¤ y1, Y

p2q ¤ y2

	
� C pF1py1q, F2py2qq .

This function C characterizes the dependence between Y p1q and Y p2q and is called an extreme
value copula if and only if it admits a representation of the form

Cpy1, y2q � exp

�
logpy1y2qA

�
logpy2q

logpy1y2q




,

where A: r0, 1s Ñ r1{2, 1s is the Pickands dependence function, which is convex and satisfies
maxtt, 1� tu ¤ Aptq ¤ 1, see Pickands (1981). Statistical inference on the bivariate function C
is therefore equivalent to the statistical inference on the one-dimensional function A. Estimating
this function A has been extensively studied in the literature. We can mention, among others,
Capéraà et al. (1997), Fils-Villetard et al. (2008) or Bücher et al. (2011).
In this paper, we extend the above framework to the case where the pair pY p1q, Y p2qq is recorded
along with a random covariate X P Rp. In that context, the copula function together with the
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marginal distribution functions depend on the covariate X. In the sequel, we denote by Cx,
F1p.|xq and F2p.|xq the conditional copula function and the continuous conditional distribution
functions of Y p1q and Y p2q given X � x. Our model can thus be written as

P
�
F1pY p1q|xq ¤ y1, F2pY p2q|xq ¤ y2

���X � x
	
� Cxpy1, y2q, (1)

where Cx admits a representation of the form

Cxpy1, y2q � exp

�
logpy1y2qA

�
logpy2q

logpy1y2q
���x

 ,

with Ap.|.q : r0, 1s�Rp Ñ r1{2, 1s is the conditional Pickands dependence function which is again
a convex function satisfying maxtt, 1�tu ¤ Apt|xq ¤ 1 for all x P Rp. Note that recently, Portier
and Segers (2015) also considered this model (1) but under the simplifying assumption that the
dependence between Y p1q and Y p2q does not depend on the value taken by the covariate, i.e.
Cx � C (see also Gijbels et al., 2015).
Moreover, in addition to the covariate context, we consider the case of contamination and we
propose a robust estimator of the conditional Pickands dependence function Ap.|xq. To reach
this goal, we use the density power divergence method introduced by Basu et al. (1998). In
particular, the density power divergence between two density functions g and h is defined as
follows

∆αpg, hq :�

$''&''%
»
R

�
h1�αpyq �

�
1� 1

α



hαpyqgpyq � 1

α
g1�αpyq

�
dy, α ¡ 0,»

R
log

gpyq
hpyqgpyqdy, α � 0.

Here the density function h is assumed to depend on a parameter vector θ, and if Z1, ..., Zn is
a sample of independent and identically distributed random variables according to the density
function g, then the minimum density power divergence estimator (MDPDE) of θ is the point pθ
minimizing the empirical version

p∆αpθq :�

$'''&'''%
»
R
h1�αpyqdy �

�
1� 1

α



1

n

ņ

i�1

hαpZiq, α ¡ 0,

� 1

n

ņ

i�1

log hpZiq α � 0.

We can observe that for α � 0 one recovers the log-likelihood function, up to the sign. A large
value of α allows us to increase the robustness of the estimator, whereas a smaller value implies
more efficiency. This parameter α can thus be selected in order to ensure a trade-off between
these two antagonist concepts.
The remainder of the paper is organized as follows. In Section 2, we simplify the situation to the
case where the two marginals F1p.|xq and F2p.|xq are known as standard exponential distribution
functions, we propose a robust estimator for Ap.|xq and we prove its convergence in terms of a
stochastic process. Then, in Section 3, we extend this result to the case of unknown margins.
Finally, in Section 4, we illustrate the efficiency of our estimator in a small simulation study.
All the proofs and technical results are postponed to the appendices.
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2 Case of known margins

In this section, we restrict our interest to the case where the marginals F1p.|xq and F2p.|xq
are standard exponential distribution functions and we denote by A0p.|xq the true conditional
Pickands dependence function associated to this pair pY p1q, Y p2qq.

2.1 Construction of our estimator

Under the assumption of standard exponential margins, model (1) can be rewritten as follows

Gpy1, y2|xq :� P
�
Y p1q ¡ y1, Y

p2q ¡ y2

���X � x
	
� exp

�
�py1 � y2qA0

�
y2

y1 � y2

���x

 ,
for all y1, y2 ¡ 0. Let t P r0, 1s. Considering the univariate random variable

Zt :� min

�
Y p1q

1� t
,
Y p2q

t

�
,

it is clear that

PpZt ¡ z|X � xq � e�zA0pt|xq, @z ¡ 0 and x P Rp.

Consequently, the conditional distribution of Zt given X � x is an exponential distribution with
parameter A0pt|xq.
Let pZt,i, Xiq, i � 1, . . . , n, be independent copies of the random pair pZt, Xq. In the present
paper, we will develop a nonparametric robust estimator for A0pt|xq by fitting this exponential
distribution function locally to the variables Zt,i, i � 1, ..., n, by means of the MDPD criterion,
adjusted to locally weighted estimation, i.e. we minimize for α ¡ 0

p∆α,x,tpApt|xqq :� 1

n

ņ

i�1

Khpx�Xiq
"» 8

0

�
Apt|xqe�Apt|xqz

	1�α
dz �

�
1� 1

α


�
Apt|xqe�Apt|xqZt,i

	α*
� rApt|xqsα

n

ņ

i�1

Khpx�Xiq
"

1

1� α
�
�

1� 1

α



e�αApt|xqZt,i

*
. (2)

Here Khp.q :� Kp.{hq{hp where K is a joint density on Rp and h � hn is a positive non-random
sequence satisfying hn Ñ 0 as nÑ8. The MDPDE for Apt|xq satisfies the estimating equation

p∆p1q
α,x,tpApt|xqq � 0, (3)

where p∆pjq
α,x,tp.q denotes the derivative of order j of p∆α,x,tp.q. We denote the estimator in the

sequel as pAα,npt|xq.
Our aim in this paper is to show the weak convergence of the stochastic process!?

nhp
� pAα,npt|xq �A0pt|xq

	
, t P r0, 1s

)
, (4)

in the space of all continuous functions on r0, 1s, denoted as Cpr0, 1sq, when nÑ8.
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Our starting point is the estimating equation (3). By applying a Taylor series expansion of it
around the true value A0pt|xq, we get

0 � p∆p1q
α,x,tpA0pt|xqq �

� pAα,npt|xq �A0pt|xq
	 p∆p2q

α,x,tpA0pt|xqq � 1

2

� pAα,npt|xq �A0pt|xq
	2 p∆p3q

α,x,tp rApt|xqq
where rApt|xq is a random intermediate value between A0pt|xq and pAα,npt|xq. A straightforward
rearrangement of the above display gives

?
nhp

� pAα,npt|xq �A0pt|xq
	
� �?nhp p∆p1q

α,x,tpA0pt|xqqp∆p2q
α,x,tpA0pt|xqq � 1

2
p∆p3q
α,x,tp rApt|xqq� pAα,npt|xq �A0pt|xq

	 . (5)

Consequently, as a preliminary step to obtain the convergence of the stochastic process (4), we

need to study the properties of the derivatives p∆pjq
α,x,t, j � 1, 2, 3. According to Appendix 5.2, all

of them can be expressed as a linear combination of a key statistic Tn, defined as

TnpK, a, t, λ, β, γ|xq :� aγ

n

ņ

i�1

Khpx�XiqZβt,ie�λaZt,i , (6)

for a P r1{2, 1s, t P r0, 1s, λ, β ¥ 0 and γ P R. Thus, we start in the next section by looking at
the main asymptotic properties of this statistic Tn.

2.2 Asymptotic properties of Tn

Due to the regression context, we need some Hölder-type conditions on the density function f
of the covariate X and on the conditional Pickands dependence function A0. Let }.} be some
norm on Rp.
Assumption pDq. There exist Mf ¡ 0 and ηf ¡ 0 such that |fpxq � fpzq| ¤ Mf }x� z}ηf , for
all px, zq P Rp � Rp.
Assumption pA0q. There exist MA0 ¡ 0 and ηA0 ¡ 0 such that |A0pt|xq �A0pt|zq| ¤MA0}x�
z}ηA0 , for all px, zq P Rp � Rp and t P r0, 1s.
Also a usual condition is assumed on the kernel K.
Assumption pK1q. K is a bounded density function on Rp with support included in the unit
hypersphere Sp�1 � Rp.
As a preliminary result, in Lemma 2.1 we prove the convergence in probability of our key statistic
Tn.

Lemma 2.1 Assume that for all t P r0, 1s, x Ñ A0pt|xq and the density function f are both
continuous. Under Assumption pK1q, if h Ñ 0 and nhp Ñ 8, then for a P r1{2, 1s, λ, β ¥ 0,
γ P R and x P Rp where fpxq ¡ 0, we have

TnpK, a, t, λ, β, γ|xq PÝÑaγΓpβ � 1q A0pt|xq
pλa�A0pt|xqqβ�1

fpxq,

as nÑ8, where Γ is the gamma function defined as

Γprq :�
» 8

0
tr�1e�tdt, @r ¡ 0.
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Now, our interest is in the rate of convergence in Lemma 2.1 when a is replaced by A0pt|xq.
More precisely, we want to show the weak convergence of the stochastic process" ?

nhp
�
TnpK,A0pt|xq, t, λ, β, γ|xq � Γpβ � 1qrA0pt|xqsγ�β

pλ� 1qβ�1
fpxq



, t P r0, 1s

*
.

To establish such a result, we use empirical processes arguments based on the theory of Vapnik-
Červonenkis class (VC -class) of functions as formulated in van der Vaart and Wellner (1996).
This allows us to show the following theorem.

Theorem 2.1 Let γ P R and pλ, βq P R�� � R� or pλ, βq � p0, 0q. Under the assumptions of

Lemma 2.1 and if pDq and pA0q hold with
?
nhphminpηf ,ηA0

q Ñ 0, then the process" ?
nhp

�
TnpK,A0pt|xq, t, λ, β, γ|xq � Γpβ � 1qrA0pt|xqsγ�β

pλ� 1qβ�1
fpxq



, t P r0, 1s

*
weakly converges in Cpr0, 1sq towards a tight centered Gaussian process tBt, t P r0, 1su with co-
variance structure given by

CovpBt, Bsq � rA0pt|xqA0ps|xqsγ}K}22 fpxq �
#»

R2
�

gpu, vqGt,spu, v|xqdudv � 1� λ

1� λ
δ0pβq

+
,

for all ps, tq P r0, 1s2, where δ0 is the Dirac measure on 0, and

gpu, vq :� uβ�1pβ � λA0pt|xquqe�λA0pt|xqu vβ�1pβ � λA0ps|xqvqe�λA0ps|xqv,

Gt,spu, v|xq :� G
�

maxpp1� tqu, p1� sqvq,maxptu, svq
���x	 .

We now derive the limiting distribution of a vector of statistics of the form (6), when properly
normalized. Let Tn be a pm� 1q vector defined as

Tn :� pTnpK1, a1, t1, λ1, β1, γ1|x1q, TnpK2, a2, t2, λ2, β2, γ2|x2q, ..., TnpKm, am, tm, λm, βm, γm|xmqqT ,
for some positive integer m and let Σ be a pm�mq covariance matrix with elements pσj,kq1¤j,k¤m
defined as

σj,k :� a
γj
j a

γk
k δ0pxj � xkq}KjKk}1fpxjq �

#»
R2
�

gj,kpu, vqGtj ,tkpu, v|xjqdudv

� δ0pβjq Γpβk � 1qA0ptk|xkq
rλkak �A0ptk|xkqsβk�1

� δ0pβkq Γpβj � 1qA0ptj |xjq
rλjaj �A0ptj |xjqsβj�1

� δ0pβjqδ0pβkq
*

(7)

where

gj,kpu, vq :� uβj�1pβj � λjajuqe�λjaju vβk�1pβk � λkakvqe�λkakv.
Theorem 2.2 Under the assumptions of Lemma 2.1 and with kernel functions K1, ...,Km sat-
isfying pK1q, we have ?

nhp pTn � ErTnsq Nm p0,Σq ,
where Nm denotes a m�dimensional normal distribution.

We have now all the needed ingredients for proving the asymptotic properties of the MDPD
estimator pAα,npt|xq.
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2.3 Asymptotic properties of pAα,npt|xq

The first result states the existence and uniform consistency of a sequence of solutions to the
estimating equation (3).

Theorem 2.3 Let α ¡ 0 and x P Rp such that fpxq ¡ 0. Under the assumptions of Theorem

2.1, with probability tending to 1, there exists a sequence
� pAα,npt|xq	

nPN
of solutions for the

estimating equation (3) such that

sup
tPr0,1s

��� pAα,npt|xq �A0pt|xq
��� � oPp1q.

Now, we come back to our final goal which is the weak convergence of the stochastic process (4).

Theorem 2.4 Let α ¡ 0. Under the assumptions of Theorem 2.1, the process!?
nhp

� pAα,npt|xq �A0pt|xq
	
, t P r0, 1s

)
weakly converges in Cpr0, 1sq towards a tight centered Gaussian process tNt, t P r0, 1su with
covariance structure given by

Cov pNt, Nsq � }K}22A0pt|xqA0ps|xq
fpxq

p1� αq2
p1� α2q2 v

T
αΣpt, sqvα,

where

vα :�

���
α

1� α
�p1� αq

1� α

�� and Σpt, sq :�
��p1� αq2 1� α 1

1� α Σ2,2pt, sq Σ2,3pt, sq
1 Σ2,3ps, tq Σ3,3pt, sq

�
with

Σ2,2pt, sq :� p1� αqp1� αq � α2p1� αq2A0pt|xqA0ps|xq
»
R2
�

e�αrA0pt|xqu�A0ps|xqvsGt,spu, v|xqdudv

Σ2,3pt, sq :� 1� αp1� αq2A0pt|xqA0ps|xq
»
R2
�

p1� αA0ps|xqvqe�αrA0pt|xqu�A0ps|xqvsGt,spu, v|xqdudv

Σ3,3pt, sq :� p1� αq2A0pt|xqA0ps|xq
»
R2
�

p1� αA0pt|xquqp1� αA0ps|xqvqe�αrA0pt|xqu�A0ps|xqvsGt,spu, v|xqdudv.

In particular, for all t P r0, 1s, we have

?
nhp

� pAα,npt|xq �A0pt|xq
	
 N1

�
0,
}K}22rA0pt|xqs2

fpxq
p1� αq2p1� 4α� 9α2 � 14α3 � 13α4 � 8α5 � 4α6q

p1� 2αq3p1� α2q2


,

as nÑ8.
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3 Case of unknown margins

In this section, we consider the general framework where both F1p.|xq and F2p.|xq are unknown
conditional distribution functions. We want to mimic what has been done in the previous section
in case where these conditional distributions are assumed to be standard exponential distribution
functions. To this aim, we consider the triplets�

� log
�
Fn,1pY p1q

i |Xiq
	
,� log

�
Fn,2pY p2q

i |Xiq
	
, Xi

	
, i � 1, ..., n,

for suitable estimators Fn,j of Fj , j � 1, 2, and we compute our univariate random variables

qZn,t,i :� min

��� log
�
Fn,1pY p1q

i |Xiq
	

1� t
,
� log

�
Fn,2pY p2q

i |Xiq
	

t

�, i � 1, ..., n.

Then, similarly as in Section 2, the statistic

qTnpK, a, t, λ, β, γ|xq :� aγ

n

ņ

i�1

Khpx�Xiq qZβn,t,ie�λa qZn,t,i , (8)

is the cornerstone of our MDPDE which satisfies the estimating equation

q∆p1q
α,x,tpApt|xqq � 0, (9)

where

q∆α,x,tpApt|xqq :� rApt|xqsα
n

ņ

i�1

Khpx�Xiq
"

1

1� α
�
�

1� 1

α



e�αApt|xq qZn,t,i

*
.

We denote it by qAα,npt|xq. Our final goal is still the same, that is the weak convergence of the
stochastic process !?

nhp
� qAα,npt|xq �A0pt|xq

	
, t P r0, 1s

)
. (10)

Again this result relies essentially on the asymptotic properties of our statistic qTn, and so the
idea will be to decompose

?
nhp

�qTn � Er qTns	 pK, a, t, λ, β, γ|xq,
into the two terms!?

nhp pTn � ErTnsq pK, a, t, λ, β, γ|xq
)
�
!?

nhp
�
r qTn � Tns � Er qTn � Tns

	
pK, a, t, λ, β, γ|xq

)
.(11)

The first one can be dealt with using the results of Section 2.2 whereas we have to show that
the second term is uniformly negligible.
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To achieve this objective, let us introduce the following empirical kernel estimator of our un-
known conditional distribution functions

Fn,jpy|xq :�
°n
i�1Kcpx�Xiq1ltY pjq

i ¤yu°n
i�1Kcpx�Xiq , j � 1, 2,

where c :� cn is a positive non-random sequence satisfying cn Ñ 0 as n Ñ 8. Here we kept
the same kernel K as in the previous section, but of course any other kernel function can be used.

Before stating our main results, we need to impose again some assumptions, in particular a
Hölder-type condition on each marginal conditional distribution function Fj similar to the one
imposed on the density function of the covariate.
Assumption pFq. There exist MFj ¡ 0 and ηFj ¡ 0 such that |Fjpy|xq � Fjpy|zq| ¤ MFj}x �
z}ηFj , for all y P R and all px, zq P Rp � Rp and j � 1, 2.
Concerning the kernel K a stronger assumption than pK1q is needed.
Assumption pK2q. K satisfies Assumption pK1q and belongs to the linear span (the set of
finite linear combinations) of functions k ¥ 0 satisfying the following property: the subgraph of
k, tps, uq : kpsq ¥ uu, can be represented as a finite number of Boolean operations among sets of
the form tps, uq : qps, uq ¥ ϕpuqu, where q is a polynomial on Rp � R and ϕ is an arbitrary real
function.
This hypothesis has been already used in Giné and Guillou (2002) or Giné et al. (2004). In
particular, it allows us to measure the discrepancy between the conditional distribution function
Fj and its empirical kernel version Fn,j under an additional assumption on the density of the
covariate X, similar to the one already used in Portier and Segers (2015).

Lemma 3.1 Assume that there exists b ¡ 0 such that fpxq ¥ b,@x P SX � Rp, the support of
f . If pK2q, pDq and pFq hold and for q ¡ 1

| log c|q
ncp

ÝÑ 0,

as nÑ8, then for any 0   η   minpηf , ηF1 , ηF2q, we have

E

�
sup

py,xqPR�SX
|Fn,jpy|xq � Fjpy|xq|

�
� o

�
max

�c
| log c|q
ncp

, cη

��
, for j � 1, 2.

We are now able to study the second term in (11).

Theorem 3.1 Assume pK2q, pDq and pFq and that there exists b ¡ 0 such that fpxq ¥ b,@x P
SX � Rp. Consider two sequences h and c tending to 0, such that for nhp Ñ8 and q ¡ 1

?
nhp rn :�

?
nhp max

�c
| log c|q
ncp

, cη

�
ÝÑ 0,

as nÑ8. Then, for all γ P R and pλ, βq P R�� � R� or pλ, βq � p0, 0q, and x P Rp, we have

sup
tPr0,1s,aPr1{2,1s

?
nhp

��� qTn � Tn � E
� qTn � Tn

���� pK, a, t, λ, β, γ|xq � oPp1q.
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Finally, the decomposition (11) combined with Theorem 3.1 and the results from Section 2.2,
yields the desired final goal of this paper.

Theorem 3.2 Let α ¡ 0. Under the assumptions of Theorem 3.1 and pA0q, with probability

tending to 1, there exists a sequence
� qAα,npt|xq	

nPN
of solutions for the estimating equation (9)

such that

sup
tPr0,1s

��� qAα,npt|xq �A0pt|xq
��� � oPp1q.

Moreover, if
?
nhphminpηf ,ηA0

q Ñ 0, the process!?
nhp

� qAα,npt|xq �A0pt|xq
	
, t P r0, 1s

)
,

weakly converges in Cpr0, 1sq towards the tight centered Gaussian process tNt, t P r0, 1su defined
in Theorem 2.4.

4 A small simulation study

Our aim in this section is to illustrate the efficiency of our robust estimator of the conditional
Pickands dependence function on a small simulation study.

We assume that the conditional distribution function of pY p1q, Y p2qq given X � x is the logistic
distribution given by

F py1, y2|xq :� exp
!
�
�
y
�1{x
1 � y

�1{x
2

	x)
, for y1, y2 ¥ 0

and

A0pt|xq �
�
t1{x � p1� tq1{x

	x
,

where the covariate X is a uniformly distributed random variable on r0, 1s. For this model, the
complete dependence is obtained in the limit as x Ó 0, whereas independence can be reached for
x � 1. Note also that the conditional marginal distributions of Y pjq given X, j � 1, 2, under
this logistic model are unit Fréchet distributions.
To compute our estimator qAα,n, two sequences, h and c, have to be chosen. Concerning c, we can
use the following cross validation criterion introduced by Yao (1999), implemented by Gannoun
et al. (2002), and already used in an extreme value context by Daouia et al. (2011, 2013) or
Goegebeur et al. (2015)

cj :� arg min
cPC

ņ

i�1

ņ

k�1

�
1l!

Y
pjq
i ¤Y pjq

k

) � rFn,�i,jpY pjq
k |Xiq

�2

, j � 1, 2,

where C is a grid of values of c and rFn,�i,jpy|xq :�
°n
k�1,k�iKcpx�Xkq1ltY pjq

k ¤yu°n
k�1,k�iKcpx�Xkq .
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It remains to select the sequence h, which can be done from the condition

?
nhp

c
| log c|q
ncp

Ñ 0 (12)

by taking h � c{| log c|ξ, where ξp ¡ q and c :� minpc1, c2q.

The procedure of contamination used in this paper is the following.

1. we simulate n triplets pY p1q
1 , Y

p2q
1 , X1q, ..., pY p1q

n , Y
p2q
n , Xnq, independently according to the

distributions previously mentioned;

2. we simulate independently n0 :� tnεu variables rY p1q and rY p2q, from a unit Fréchet distri-
bution and also n0 variables rX, independently from the same distribution as X;

3. we consider the pn� n0q triplets:

�
Y
p1q
i , Y

p2q
i , Xi

	
:�

$'''&'''%
�
Y
p1q
i , Y

p2q
i , Xi

	
if i � 1, ..., n,�

Y
p1q

1,n ,
rY p2q
i , rXi

	
if i � n� 1, ..., n� tn0{2u,�rY p1q

i , Y
p2q

1,n ,
rXi

	
if i � n� tn0{2u� 1, ..., n� n0,

where Y
pjq

1,n � min1¤i¤n Y
pjq
i , j � 1, 2;

4. we apply our methodology to the resulting univariate variables

qZn,t,i � min

��� log
�
Fn�n0,1

�
Y
p1q
i |Xi

		
1� t

,
� log

�
Fn�n0,2

�
Y
p2q
i |Xi

		
t

�, i � 1, ..., n� n0.

This procedure of contamination is illustrated in Figure 1, where the non-contaminated sample
of 1000 pairs is represented as circles whereas the contaminated pairs are represented as crosses.
Here, the percentage of contamination is 5%. This scatterplot is obtained before the empirical
transformation of the margins into unit exponential distributions on the left panel and after this
transformation on the right panel.

The percentage of contamination is set to ε � 0%, 5% and 10%, while n � 1000 and the
procedure is repeated N � 100 times. Concerning the kernel, each time we use the bi-quadratic
function

Kpxq :� 15

16
p1� x2q21lr�1,1spxq.

In all the settings, C � t0.06, 0.12, 0.18, 0.24, 0.3u and ξ � 1.1 are used, since an extensive simu-
lation study indicates that these choices seem to give always reasonable results.
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Figure 1: Procedure of contamination: on the left before step 4, on the right after the empirical
transformation of the margins into unit exponential distributions. The non-contaminated sample
of 1000 pairs is represented as circles whereas the contaminated pairs are represented as crosses.

As indicators of efficiency we compute the bias and the mean squared error

Biasp qAα,npt|.qq :� 1

MN

M̧

m�1

Ņ

i�1

��� qApiq
α,npt|xmq �A0pt|xmq

��� ,
MSEp qAα,npt|.qq :� 1

MN

M̧

m�1

Ņ

i�1

� qApiq
α,npt|xmq �A0pt|xmq

�2
,

where qApiq
α,npt|xmq is the estimate of A0pt|xmq obtained with the ith sample evaluated at points

t P r0, 1s and xm � m{pM � 1q, m � 1, � � � ,M . Our method is implemented for M � 9 and
t � i{50, i � 1, � � � , 49.

Figures 2 till 4 represent the boxplots of our estimator qAα,np.|xq based on N samples for three
positions: x � 0.3, 0.5 and 0.7, respectively. Three values of α have been reported: 0.1, 0.5,
and 1 corresponding to the different rows on each figure, whereas three different percentages of
contamination have been used: from the left to the right of each figure: 0%, 5% and 10%. Based
on these simulations, we can draw the following conclusions:

• in case of uncontaminated datasets, the best estimator is achieved with α � 0.1, although
there are no big differences. This is not surprising since when α � 0, one recovers the
maximum likelihood estimator which is well-known to be efficient, but not robust;

• in case of contamination, a larger value of α (0.5 or 1) is needed;

• as expected, increasing the percentage of contamination negatively affects the estimator,
whatever the distribution and value of α;
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• for x close to 0, which corresponds to the complete dependence situation, the estimation of
the conditional Pickands dependence function seems to be slightly more difficult in terms
of bias than in case x close to 1, that is, the independent case.

Then, in Figure 5, we show from the top to the bottom, the bias and the mean squared error
of our estimator qAα,npt|.q based on N samples for the three percentages of contamination, from
the left to the right 0%, 5% and 10%. Again the three same values of α have been tried. The
same conclusions can be made, i.e. increasing the percentage of contamination deteriorates the
performance of the estimator. Also, the estimator is not too much sensitive on the value of α in
the uncontaminated case, whereas in the other cases a larger value of α increases significantly
the performance of the estimator. In fact α � 0.5 seems to be almost the best value in all the
settings considered.

Note that we have tried other types of distributions, positions, values of α and kernels, but
still the same conclusions remain. To keep the length of the paper under control, they are not
included.

5 Appendix A: Technical results

5.1 Asymptotic covariance matrix of the finite dimensional vector Tn
Our aim in this section is to compute the explicit expression of the elements of the covariance
matrix Σ � pσj,kq1¤j,k¤m given in (7). According to (17), we have

E
�
Kj,hpxj �X1qZβjtj ,1e

�λjajZtj ,1
�
� fpxjqΓpβj � 1qA0ptj |xjq

pλjaj �A0ptj |xjqqβj�1
p1� op1qq,

for 1 ¤ j ¤ m. In order to compute the cross expectation, we need to derive the conditional
distribution function of the pair pZtj , Ztkq given X � x. Let u, v ¡ 0

P
�
Ztj ¡ u, Ztk ¡ v|X � x

� � P
�
Y p1q ¡ max pp1� tjqu, p1� tkqvq , Y p2q ¡ max ptju, tkvq

���X � x
	

� G
�

max pp1� tjqu, p1� tkqvq ,max ptju, tkvq
���x	 .

Hence, for j, k P t1, ...,mu2, we have

E
�
Kj,hpxj �X1qZβjtj ,1e

�λjajZtj ,1Kk,hpxk �X1qZβktk,1e�λkakZtk,1
�

(13)

� E
�
Kj,hpxj �X1qKk,hpxk �X1qE

�
Z
βj
tj ,1
e�λjajZtj ,1Zβktk,1e

�λkakZtk,1
���X1

��
.

We focus now on the conditional expectation. Using the fact that

zβe�aλz � δ0pβq �
»
R�

1ltz¡uuuβ�1pβ � aλuqe�aλudu, (14)
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Figure 2: Estimation of A0p.|0.3q (full line) for the logistic distribution. From the top to the
bottom: α � 0.1, 0.5, 1 and from the left to the right: 0%, 5% and 10% of contamination.
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Figure 3: Estimation of A0p.|0.5q (full line) for the logistic distribution. From the top to the
bottom: α � 0.1, 0.5, 1 and from the left to the right: 0%, 5% and 10% of contamination.
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Figure 4: Estimation of A0p.|0.7q (full line) for the logistic distribution. From the top to the
bottom: α � 0.1, 0.5, 1 and from the left to the right: 0%, 5% and 10% of contamination.
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Figure 5: Estimation of A0p.|.q for the logistic distribution. From the top to the bottom: bias
and MSE and from the left to the right: 0%, 5% and 10% of contamination. Three values of α:
0.1 (full line), 0.5 (dashed line) and 1 (dotted line).
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we have

E
�
Z
βj
tj ,1
e�λjajZtj ,1Zβktk,1e

�λkakZtk,1
���X1

�
� E

��
δ0pβjq �

»
R�

1ltZtj¡uuu
βj�1pβj � λjajuqe�λjajudu

�

�
�
δ0pβkq �

»
R�

1ltZtk¡vuv
βk�1pβk � λkakvqe�λkakvdv

������X1

�

�
»
R2
�

gj,kpu, vqGtj ,tk
�
u, v

���X1

	
dudv

� δ0pβjq Γpβk � 1qA0ptk|X1q
rλkak �A0ptk|X1qsβk�1

� δ0pβkq Γpβj � 1qA0ptj |X1q
rλjaj �A0ptj |X1qsβj�1

� δ0pβjqδ0pβkq.(15)

In case xj � xk, combining the continuity and boundedness of the functions f , A0pt|.q and
Gpu, v|.q, the expression of σj,k in (7) follows.
In case xj � xk, it is sufficient to observe that, for n large enough,

E
�
Kj,hpxj �X1qKk,hpxk �X1qE

�
Z
βj
tj ,1
e�λjajZtj ,1Zβktk,1e

�λkakZtk,1
���X1

��
� 0,

since for h   }xj � xk}
2

, we clearly have

"
u :

}xj � u}
h

¤ 1

*�"
u :

}xk � u}
h

¤ 1

*
� H.

5.2 The derivatives of p∆α,x,t and their asymptotic properties

Straightforward computations for a P r1{2, 1s, α ¡ 0 and x P Rp, give

p∆p1q
α,x,tpaq � αa�1 p∆α,x,tpaq � aαp1� αq 1

n

ņ

i�1

Khpx�XiqZt,ie�αaZt,i ,

p∆p2q
α,x,tpaq � αa�1 p∆p1q

α,x,tpaq � αa�2 p∆α,x,tpaq � αpα� 1qaα�1 1

n

ņ

i�1

Khpx�Xiqp1� aZt,iqZt,ie�αaZt,i ,

p∆p3q
α,x,tpaq � α

�
2a�3 p∆α,x,tpaq � a�1 p∆p2q

α,x,tpaq � 2a�2 p∆p1q
α,x,tpaq

	
�pα� 1qαpα� 1qa

α�2

n

ņ

i�1

Khpx�Xiqp1� aZt,iqZt,ie�αaZt,i

�αpα� 1qa
α�1

n

ņ

i�1

Khpx�Xiqpαp1� aZt,iq � 1qZ2
t,ie

�αaZt,i .

The convergence in probability of the three first derivatives of p∆α,x,t and of p∆α,x,t itself is

17



therefore a direct application of Lemma 2.1, which yields, as nÑ8

p∆α,x,tpaq PÝÑ `
p0q
α,x,tpaq :� aαfpxq

�
1

α� 1
�
�

1� 1

α



A0pt|xq

αa�A0pt|xq


,

p∆p1q
α,x,tpaq PÝÑ `

p1q
α,x,tpaq :� αa�1`

p0q
α,x,tpaq � p1� αqaαfpxq A0pt|xq

pαa�A0pt|xqq2 ,p∆p2q
α,x,tpaq PÝÑ `

p2q
α,x,tpaq :� αa�1`

p1q
α,x,tpaq � αa�2`

p0q
α,x,tpaq

�αpα� 1qaα�1fpxq
�

A0pt|xq
pαa�A0pt|xqq2 �

2aA0pt|xq
pαa�A0pt|xqq3



,

p∆p3q
α,x,tpaq PÝÑ `

p3q
α,x,tpaq :� α

�
2a�3`

p0q
α,x,tpaq � a�1`

p2q
α,x,tpaq � 2a�2`

p1q
α,x,tpaq

	
�pα� 1qαpα� 1qaα�2fpxq

�
A0pt|xq

pαa�A0pt|xqq2 �
2aA0pt|xq

pαa�A0pt|xqq3
�

�αpα� 1qaα�1fpxq
�
2pα� 1q A0pt|xq

pαa�A0pt|xqq3 � α
6aA0pt|xq

pαa�A0pt|xqq4
�
.

Now the rate of convergence of p∆pjq
α,x,tpA0pt|xqq, j P t1, 2, 3u, to its limit is also useful to study

(5) and thus to reach our final goal. The aim of the next corollary is to provide such a rate.

Corollary 5.1 Under the assumptions of Theorem 2.1, then for any j P t1, 2, 3u, the process!?
nhp

�p∆pjq
α,x,tpA0pt|xqq � `

pjq
α,x,tpA0pt|xqq

	
, t P r0, 1s

)
weakly converges in Cpr0, 1sq towards a tight centered Gaussian process. In particular, we have

sup
tPr0,1s

��� p∆pjq
α,x,tpA0pt|xqq � `

pjq
α,x,tpA0pt|xqq

��� � oPp1q.

Proof of Corollary 5.1. As usual, it is sufficient to show the finite dimensional convergence
and the tightness of the process. Using Theorem 2.2 we directly solve the finite dimensional
convergence issue. Next, Theorem 2.1 combined with (18) implies tightness for any process
t Ñ ?

nhppTn � ErTnsqpK,A0pt|xq, t, λ, β, γ|xq and similarly as in Lemma 1 in Bai and Taqqu
(2013), we have tightness for any multivariate process with similar coordinates. Corollary 5.1
then follows.

6 Appendix B: Proofs of the main results

6.1 Proof of Lemma 2.1

Using the fact that the conditional distribution function of Zt given X � x is an exponential
distribution with parameter A0pt|xq and since λa�A0pt|xq ¡ 0, we have

E
�
Zβt e

�λaZt
���X � x

�
� Γpβ � 1q A0pt|xq

pλa�A0pt|xqqβ�1
. (16)

18



Then

E
�
Khpx�XqZβt e�λaZt

�
� E

�
Khpx�XqΓpβ � 1q A0pt|Xq

pλa�A0pt|Xqqβ�1

�
� Γpβ � 1q

»
Rp
Khpx� yq A0pt|yq

pλa�A0pt|yqqβ�1
fpyqdy

� Γpβ � 1q
»
Sp�1

Kpzq A0pt|x� zhq
pλa�A0pt|x� zhqqβ�1

fpx� hzqdz

� Γpβ � 1q A0pt|xq
pλa�A0pt|xqqβ�1

fpxqp1� op1qq, (17)

by the dominated convergence theorem using the continuity of A0pt|.q and f on x�Sp�1 together
with the boundedness of A0pt|.q. Consequently

ErTnpK, a, t, λ, β, γ|xqs � aγΓpβ � 1q A0pt|xq
pλa�A0pt|xqqβ�1

fpxqp1� op1qq.

Also, similar arguments yield

VarpTnpK, a, t, λ, β, γ|xqq � 1

nhp
}K}22A0pt|xq a2γ Γp2β � 1q fpxq

p2λa�A0pt|xqq2β�1
p1� op1qq � op1q,

from which the convergence in probability simply follows.

6.2 Proof of Theorem 2.1

First, remark that to show Theorem 2.1, it is sufficient to look at the weak convergence of the
process!?

nhp pTnpK,A0pt|xq, t, λ, β, γ|xq � E rTnpK,A0pt|xq, t, λ, β, γ|xqsq , t P r0, 1s
)
, (18)

since

lim
nÑ8 sup

tPr0,1s

?
nhp

����E rTnpK,A0pt|xq, t, λ, β, γ|xqs � Γpβ � 1qrA0pt|xqsγ�β
pλ� 1qβ�1

fpxq
���� � 0.

Indeed, according to (17), we have����E rTnpK,A0pt|xq, t, λ, β, γ|xqs � Γpβ � 1qrA0pt|xqsγ�β
pλ� 1qβ�1

fpxq
����

¤ Γpβ � 1qAγ0pt|xq
»
Sp�1

Kpyq
����� A0pt|x� yhq
pλA0pt|xq �A0pt|x� yhqqβ�1

fpx� hyq � A�β
0 pt|xq

pλ� 1qβ�1
fpxq

����� dy.
Now, using Assumptions pDq and pA0q, we deduce that����� A0pt|x� yhq
pλA0pt|xq �A0pt|x� yhqqβ�1

fpx� hyq � A�β
0 pt|xq

pλ� 1qβ�1
fpxq

�����
¤ A0pt|x� yhq

pλA0pt|xq �A0pt|x� yhqqβ�1
|fpx� yhq � fpxq| �

����� A0pt|x� yhq
pλA0pt|xq �A0pt|x� yhqqβ�1

� A�β
0 pt|xq

pλ� 1qβ�1

����� fpxq
� Ophminpηf ,ηA0

qq
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for n large enough such that h ¤ 1, with a bound which is uniform in t.

Then, to show the weak convergence of the stochastic process (18), we will use Theorem 19.28
in van der Vaart (1998). To apply this result, we need to introduce some notations. Define the
covering number NpF , L2pQq, τq as the minimal number of L2pQq-balls of radius τ needed to
cover the class of functions F and the uniform entropy integral as

Jpδ,F , L2q :�
» δ

0

c
log sup

Q
NpF , L2pQq, τ}F }Q,2q dτ,

where Q is the set of all probability measures Q for which 0   }F }2Q,2 :� ³
F 2dQ   8 and F is

an envelope function of the class F .

Let P denote the law of the vector pY p1q, Y p2q, Xq and define the expectation under P , the
empirical version and empirical process as follows

Pf :�
»
fdP, Pnf :� 1

n

ņ

i�1

f
�
Y
p1q
i , Y

p2q
i , Xi

	
, Gnf :� ?

npPn � P qf,

for any real-valued measurable function f .
For any γ P R and pλ, βq P R�� � R� or pλ, βq � p0, 0q, we introduce our sequence of classes Fn
as

Fn :� tpy1, y2, zq Ñ fn,tpy1, y2, zq, t P r0, 1su
:�

!
py1, y2, zq Ñ

?
hpKhpx� zqrA0pt|xqsγ�βrA0pt|xqZtpy1, y2qsβe�λA0pt|xqZtpy1,y2q, t P r0, 1s

)
,

where Ztpy1, y2q :� min

�
y1

1� t
,
y2

t



. Remark that Zt � Zt

�
Y p1q, Y p2q�. Denote now by Fn an

envelope function of the class Fn and for any y P Rp, define the bivariate function ρy : r0, 1s2 Ñ
R� as

ρypt, sq :� E
��
Aγ0pt|xqZβt e�λA0pt|xqZt �Aγ0ps|xqZβs e�λA0ps|xqZs

	2
����X � y

�
.

Naturally, ρy defines a semimetric on r0, 1s2 and since it is bi-continuous, it makes r0, 1s totally
bounded.

Now, according to Theorem 19.28 in van der Vaart (1998), the weak convergence of the stochastic
process (18) follows from the four following conditions

sup
ρxpt,sq¤δn

P pfn,t � fn,sq2 ÝÑ 0 for every δn × 0, (19)

PF 2
n � Op1q, (20)

PF 2
ntFn ¡ ε

?
nu ÝÑ 0 for every ε ¡ 0, (21)

Jpδn,Fn, L2q ÝÑ 0 for every δn × 0. (22)

20



We start to prove (19). By definition, we have

P pfn,t � fn,sq2 �
»
Rp
h�pK2

�
x� u

h



ρupt, sqfpuqdu

�
»
Sp�1

K2puqρx�hupt, sqfpx� huqdu

� }K}22fpxqρxpt, sq �
»
Sp�1

K2puqfpx� huqrρx�hupt, sq � ρxpt, sqsdu

�ρxpt, sq
»
Sp�1

K2puqrfpx� huq � fpxqsdu.

Due to Assumptions pDq, pK1q and since ρx is bounded, it remains to show that

sup
ρxpt,sq¤δn

|ρx�hupt, sq � ρxpt, sq| Ñ 0. (23)

Recall that

ρypt, sq � rA0pt|xqs2γ E
�
Z2β
t e�2λA0pt|xqZt

���X � y
�
� rA0ps|xqs2γ E

�
Z2β
s e�2λA0ps|xqZs

���X � y
�

�2 rA0pt|xqA0ps|xqsγ E
�
Zβt e

�λA0pt|xqZtZβs e
�λA0ps|xqZs

���X � y
�
.

All these expectations have been already computed in (15) and (16). Using the mean value
theorem combined with the boundedness of A0p.|.q and Assumption pA0q, we can easily infer
that for all py, y1q P Rp � Rp, we have

sup
pt,sqPr0,1s2

��ρypt, sq � ρy1pt, sq
�� ¤ C}y � y1}ηA0 ,

for some positive constant C. This implies (23) and thus (19) is established.

Now, we move to the proof of (20) and (21). Since the function x Ñ xβe�λx is bounded over
R� by pβ{λqβ e�β and A0pt|xq P r1{2, 1s, Fn admits the natural envelope function

py1, y2, zq Ñ Fnpy1, y2, zq :�
?
hpKhpx� zqM, (24)

where M :�
�
β

λ


β
e�β maxp1, 2β�γq. Consequently

PF 2
n �M2

»
Rp
h�pK2

�
x� u

h



fpuqdu �M2

»
Sp�1

K2puqfpx� huqdu �M2}K}22fpxqp1� op1qq,

PF 2
ntFn ¡ ε

?
nu �M2

»
tKpuq¡M�1ε

?
nhpu

K2puqfpx� huqdu � op1q,

for all ε ¡ 0, since nhp Ñ8, K satisfies Assumption pK1q and f is continuous.
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Finally, it remains to prove (22). First, we introduce the class of functions W :� tpy1, y2q Ñ
A0pt|xqZtpy1, y2q, t P r0, 1su and its subgraph σt in R2� � R as

σt :� tpu, v, wq : A0pt|xqZtpu, vq ¡ wu
�

"
pu, v, wq :

A0pt|xq
1� t

u ¡ w

*
X
"
pu, v, wq :

A0pt|xq
t

v ¡ w

*
.

We can show that tσt : t P r0, 1su is a VC -class of sets. Indeed, if we look more generally, at the
collection of sets C :� ttpx, yq : δx ¡ yu, δ ¡ 0u in R��R and if we define two points px1, y1q and

px2, y2q such that, without loss of generality,
y1

x1
¤ y2

x2
. Then, for any δ ¡ 0, δx2 ¥ y2 implies

that δx1 ¥ y1. Thus, C cannot shatter the set tpx1, y1q, px2, y2qu and by consequence it is a
VC -class of sets. Now, the collection of one set R� is naturally a VC -class of sets. According
to Lemma 2.6.17 (vii) in van der Vaart and Wellner (1996), C �R� is aVC -class of sets as well.
Invoking Lemma 2.6.17 (ii), tσt : t P r0, 1su belongs to a VC -class and as such is VC. Define now
for all z P R�

φλ,βpzq :� zβe�λz.

We can easily check that φλ,β is of bounded variation. This implies that φλ,β can be decomposed

as the sum of two monotone functions, say φ
p1q
λ,β and φ

p2q
λ,β. Thus, according to Lemma 2.6.18

(viii) in van der Vaart and Wellner (1996), φ
p1q
λ,β �W and φ

p2q
λ,β �W are VC. Now, according to

Theorem 2.6.7 in van der Vaart and Wellner (1996), there exists a universal constant C such
that for any j � 1, 2 and 0   τ   1

sup
Q
Npφpjqλ,β �W, L2pQq, τ}Wj}Q,2q ¤ CVjp16eqVj

�
1

τ


2pVj�1q
,

where Vj is the VC -index of φ
pjq
λ,β �W and Wj its envelope function. Now, consider the sequence

of class of functions

Fn,j :� tz Ñ
?
hpKhpx� zqu b φ

pjq
λ,β �W,

for j � 1, 2. Since we only update the previous sets with one single function and only one ball
is needed to recover the class tz Ñ ?

hpKhpx� zqu whatever the measure Q, we have

sup
Q
NpFn,j , L2pQq, τ}κFn}Q,2q ¤ CVjp16eqVj

�
1

τ


2pVj�1q
,

where κ is a suitable constant. Moreover, the class of (constant) functions trA0pt|xqsγ�β, t P
r0, 1su is naturally a VC -class and suptPr0,1srA0pt|xqsγ�β � maxp1, 2β�γq. Thus for any 0   τ   1

we can divide the interval
�
0,maxp1, 2β�γq� in at least r1{2τ s balls of radius τ maxp1, 2β�γq.

Hence

sup
Q
N

�
trA0pt|xqsγ�β, t P r0, 1su, L2pQq, τ maxp1, 2β�γq

	
¤

R
1

2τ

V
¤ 3

2

�
1

τ


2

.
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Consequently, we have

sup
Q
NptrA0pt|xqsγ�β, t P r0, 1su b Fn,j , L2pQq, τ maxp1, 2β�γq}κFn}Q,2q ¤ 3C

2
Vjp16eqVj

�
1

τ


2Vj

.

Finally, since our class of interest Fn is included in the class of functions

rFn :� trA0pt|xqsγ�β, t P r0, 1su b Fn,1 � trA0pt|xqsγ�β, t P r0, 1su b Fn,2,

with envelope function 2 maxp1, 2β�γqκFn, using Lemma 16 in Nolan and Pollard (1987), we
have

sup
Q
NpFn, L2pQq, 2τ maxp1, 2β�γq}κFn}Q,2q ¤ sup

Q
Np rFn, L2pQq, 2τ maxp1, 2β�γq}κFn}Q,2q

¤ 9C2

4
V1V2p16eqV1�V2

�
4

τ


2pV1�V2q

�: L

�
1

τ


V
.

Thus, (22) is established since for any sequence δn × 0 and n large enough, we have

Jpδn,Fn, L2q ¤
» δn

0

b
logpr2κmaxp1, 2β�γqsV Lq � V logpτqdτ � op1q.

This achieves the proof of Theorem 2.1 since the covariance structure follows from (7).

6.3 Proof of Theorem 2.2

To prove this theorem, we will make use of the Cramér-Wold device (see, e.g., Severini, 2005, p.
337), according to which it is sufficient to show that

Λn :� ξT
?
nhp pTn � ErTnsq N1

�
0, ξTΣξ

�
,

for all ξ P Rm. A straightforward rearrangement of the terms leads to

Λn � 1

n

ņ

i�1

?
nhp

#
m̧

j�1

ξja
γj
j Kj,hpxj �XiqZβjtj ,ie

�λjajZtj ,i � E

�
m̧

j�1

ξja
γj
j Kj,hpxj �XiqZβjtj ,ie

�λjajZtj ,i
�+

�:
1

n

ņ

i�1

Wi.

Since W1, ...,Wn are independent and identically distributed random variables, VarpΛnq �
VarpW1q

n
with

VarpW1q � nhp
m̧

j�1

m̧

k�1

ξjξkCj,k,
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where

Cj,k :� E
�
a
γj
j Kj,hpxj �X1qZβjtj ,1e

�λjajZtj ,1aγkk Kk,hpxk �X1qZβktk,1e�λkakZtk,1
�

�E
�
a
γj
j Kj,hpxj �X1qZβjtj ,1e

�λjajZtj ,1
�
E
�
aγkk Kk,hpxk �X1qZβktk,1e�λkakZtk,1

�
.

According to Appendix 5.1, V arpΛnq � ξTΣξp1 � op1qq. Hence, to ensure the convergence in
distribution of Λn to a normal random variable, we have to verify the Lyapounov condition for
triangular arrays of random variables (Billingsley, 1995, p. 362). In the present context this

simplifies to verifying
1

n2
Ep|W1|3q Ñ 0. We have

Ep|W1|3q ¤ n3{2h3p{2

$&%E

��� m̧

j�1

|ξj |aγjj Kj,hpxj �X1qZβjtj ,1e
�λjajZtj ,1

�3
��

�3E

��� m̧

j�1

|ξj |aγjj Kj,hpxj �X1qZβjtj ,1e
�λjajZtj ,1

�2
��

�E
�
m̧

j�1

|ξj |aγjj Kj,hpxj �X1qZβjtj ,1e
�λjajZtj ,1

�

� 4

�
E

�
m̧

j�1

|ξj |aγjj Kj,hpxj �X1qZβjtj ,1e
�λjajZtj ,1

��3
,.- .

A similar treatment as in Appendix 5.1 yields for all q P N�

E

��
m̧

j�1

|ξj |aγjj Kj,hpxj �X1qZβjtj ,1e
�λjaZtj ,1

�q�
� Opphpq�q�1q,

and hence 1
n2Ep|W1|3q � O

�
p?nhpq�1

	
� op1q.

6.4 Proof of Theorem 2.3

To prove the theorem we will adjust the arguments used to prove existence and consistency
of solutions of the likelihood estimating equation, see e.g. Theorem 3.7 and Theorem 5.1 in
Chapter 6 of Lehmann and Casella (1998), to the MDPD framework. Let ζ, b ¡ 0, Cp.|.q :
r0, 1s � Rp Ñ r1{2 � ζ, 1 � ζs and @t P r0, 1s, rptq :� |A0pt|xq � Cpt|xq|. Define in addition the
b-level of r as

Tb :� tt P r0, 1s, rptq ¡ bu .

We firstly show that for any b ¡ 0

P
�
@t P Tb, p∆α,x,tpA0pt|xqq   p∆α,x,t pCpt|xqq

	
Ñ 1, (25)
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as n Ñ 8, for any function Cp.|xq different from but close enough to A0p.|xq. By applying a
Taylor series expansion, we have

p∆α,x,tpCpt|xqq � p∆α,x,tpA0pt|xqq � pCpt|xq �A0pt|xqqp∆p1q
α,x,tpA0pt|xqq � 1

2
pCpt|xq �A0pt|xqq2 p∆p2q

α,x,tpA0pt|xqq

�1

6
pCpt|xq �A0pt|xqq3 p∆p3q

α,x,tp rCpt|xqq,
where rCpt|xq is an intermediate value between Cpt|xq and A0pt|xq. According to Appendix 5.2,
as nÑ8

sup
tPr0,1s

��� p∆p1q
α,x,tpA0pt|xqq

��� � sup
tPr0,1s

��� p∆p1q
α,x,tpA0pt|xqq � `

p1q
α,x,tpA0pt|xqq

��� PÝÑ0.

This convergence implies, that for all 0   ε ¤ b2

P
�
@t P Tb, rptq|p∆p1q

α,x,tpA0pt|xqq| ¤ r3ptq
	

¥ P

�
@t P Tb, |p∆p1q

α,x,tpA0pt|xqq| ¤ r2ptq, sup
tPr0,1s

��� p∆p1q
α,x,tpA0pt|xq

��� ¤ ε

�

� P

�
sup
tPr0,1s

��� p∆p1q
α,x,tpA0pt|xq

��� ¤ ε

�
ÝÑ1,

as nÑ8. Now, concerning p∆p2q
α,x,tpA0pt|xqq, we have

sup
tPr0,1s

���� p∆p2q
α,x,tpA0pt|xqq � fpxqrA0pt|xqsα�2 1� α2

p1� αq2
���� PÝÑ0,

as nÑ8. Consequently, there exists δ1 ¡ 0 such that

@t P r0, 1s, r2ptq
2

p∆p2q
α,x,tpA0pt|xqq ¡ δ1r

2ptq,

with probability tending to 1.
Finally, since xÑ xλe�x is bounded @λ ¥ 1 on R� and by Lemma 2.1

TnpK, a, t, 0, 0, 0|xq � 1

n

ņ

i�1

Khpx�Xiq PÝÑfpxq,

as nÑ 8, we have for any ε ¡ 0, n�1
°n
i�1Khpx�Xiq ¤ fpxq � ε with probability tending to

1. This implies that

sup
aPr1{2,1s,tPr0,1s

��� p∆p3q
α,x,tpaq

��� �: M   8 (26)

with probability tending to 1. We can therefore conclude that

@t P r0, 1s, r3ptq
6

��� p∆p3q
α,x,tp rCpt|xqq��� ¤ M

6
r3ptq,
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with probability tending to 1.
Overall, we have shown that

P
�
@t P Tb, p∆α,x,tpCpt|xqq � p∆α,x,tpA0pt|xqq ¡ δ1r

2ptq �
�

1� M

6



r3ptq



ÝÑ1,

as nÑ8, where the right-hand side of the inequality is positive for rptq   δ1{p1�M{6q. Thus,
setting

sup
tPr0,1s

rptq   δ1{p1�M{6q,

(25) follows.

To complete the proof we adjust the line of argumentation of Theorem 3.7 in Chapter 6 of
Lehmann and Casella (1998). Let δ be a positive function such that @t P r0, 1s, A0pt|xq � δptq P
r1{2� ζ, 1� ζs. Define @b ¡ 0, the event

Snpb, δq :�
!
υ P Ω : @t P Tb, p∆α,x,tpA0pt|xqq   p∆α,x,tpA0pt|xq � δptqq

)
,

where we define as previously Tb :� tt P r0, 1s, δptq ¡ bu. Since A0pt|xq P r1{2, 1s and ζ ¡ 0, we
can always find a pair pb, δq such that

0   b ¤ inf
tPr0,1s

δptq.

Thus, assume that b :� inftPr0,1s δptq. For all t P Tb � r0, 1s and υ P Snpb, δq, since p∆α,x,tpaq is

differentiable with respect to a, there exists rAα,n,δptqpt|xq P pA0pt|xq � δptq, A0pt|xq � δptqq wherep∆x,α,tpaq achieves a local minimum, so p∆p1q
α,x,tp rAα,n,δptqpt|xqq � 0.

By (25), PpSnpb, δqq Ñ 1 for any b ¡ 0 and }δ}8 small enough, and hence there exists a sequence
δn with }δn}8 × 0 and bn :� inftPr0,1s δnptq ¡ 0, such that PpSnpbn, δnqq Ñ 1, as n Ñ 8. Now,

let pAα,npt|xq :� rAα,n,δnptqpt|xq if υ P Snpbn, δnq and arbitrary otherwise. Since υ P Snpbn, δnq
implies p∆p1q

α,x,tp pAα,npt|xqq � 0, we have that

P
�p∆p1q

α,x,tp pAα,npt|xqq � 0
	
¥ P pSnpbn, δnqq Ñ 1,

as nÑ8, which establishes the existence part.

Concerning the uniform consistency of the solution sequence, note that for any ε ¡ 0 and n
large enough such that }δn}8 ¤ ε, we have

P

�
sup
tPr0,1s

��� pAα,npt|xq �A0pt|xq
��� ¤ ε

�
¥ P

�
sup
tPr0,1s

��� pAα,npt|xq �A0pt|xq
��� ¤ }δn}8

�

� P

�
sup
tPTbn

��� pAα,npt|xq �A0pt|xq
��� ¤ }δn}8

�
¥ P pSnpbn, δnqq Ñ 1,

as nÑ8, whence the uniform consistency of the estimator sequence.
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6.5 Proof of Theorem 2.4

The starting point is (5). According to Corollary 5.1,
!?

nhp p∆p1q
α,x,tpA0pt|xqq, t P r0, 1s

)
weakly

converges, as nÑ8, towards a tight centered Gaussian process and!p∆p2q
α,x,t pA0pt|xqq , t P r0, 1s

)
PÝÑ

"
`
p2q
α,x,tpA0pt|xqq � fpxqrA0pt|xqsα�2 1� α2

p1� αq2 , t P r0, 1s
*
.

Combining these results with (26), we have, as nÑ8,#�p∆p2q
α,x,tpA0pt|xqq � 1

2
p∆p3q
α,x,tp rApt|xqqp pAα,npt|xq �A0pt|xqq

��1

, t P r0, 1s
+

PÝÑ
"
rfpxqs�1rA0pt|xqs2�α p1� αq2

1� α2
, t P r0, 1s

*
.

Concerning the covariance structure, it follows from Theorem 2.2 and the fact thatp∆p1q
α,x,tpA0pt|xqq � vTαT

p3q
n pt|xq,

where

T p3qn pt|xq :�
��TnpK,A0pt|xq, t, 0, 0, α� 1|xq
TnpK,A0pt|xq, t, α, 0, α� 1|xq
TnpK,A0pt|xq, t, α, 1, α|xq

�.
6.6 Proof of Lemma 3.1

We use the following decomposition

Fn,jpy|xq � Fjpy|xq � rfpxqs�1

�
n�1

ņ

i�1

Kcpx�Xiq1ltY pjq
i ¤yu � E

�
Kcpx�X1q1ltY pjq

1 ¤yu
	�

�rfpxqs�1
�
E
�
Kcpx�X1q1ltY pjq

1 ¤yu
	
� fpxqFjpy|xq

�
�
n�1

°n
i�1Kcpx�Xiq1ltY pjq

i ¤yu
n�1

°n
i�1Kcpx�Xiq

1

fpxq

�
n�1

ņ

i�1

Kcpx�Xiq � E pKcpx�X1qq
�

�
n�1

°n
i�1Kcpx�Xiq1ltY pjq

i ¤yu
n�1

°n
i�1Kcpx�Xiq

1

fpxq rE pKcpx�X1qq � fpxqs

�:
4̧

k�1

Tkpy|xq.

An intermediate result to study T1py|xq and T3py|xq consist in showing that, for q ¡ 1,

E

�
sup

py,xqPR�Rp

�����n�1
ņ

i�1

Kcpx�Xiq1ltY pjq
i ¤yu � E

�
Kcpx�X1q1ltY pjq

1 ¤yu
������
�

� o

�c
| log c|q
ncp

�
,(27)

E

�
sup
xPRp

�����n�1
ņ

i�1

Kcpx�Xiq � E rKcpx�X1qs
�����
�

� o

�c
| log c|q
ncp

�
.(28)
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To this aim, let us introduce the class

G :�
"
pu, vq Ñ K

�
x� v

d



1ltu¤yu; y P R, x P Rp, d ¡ 0

*
�

"
K

�
x� .

d



; x P Rp, d ¡ 0

*
b
"

1lt.¤yu; y P R
*

�: G1 b G2.

Under Assumption pK2q, G1 is a uniformly bounded VC -class of measurable functions (see e.g.
Giné and Guillou, 2002). Next, since the collection of all cells tp�8, as, a P Ru is a VC -class
of sets, it follows that G2 is also a uniformly bounded VC -class of measurable functions. Now,
using the fact that the covering number of the direct product of two VC -classes is bounded by
the product of the respective covering numbers,

Gn :�
"
pu, vq Ñ K

�
x� v

c



1ltu¤yu; y P R, x P Rp, c � cn ¡ 0

*
,

admits the same bound for the covering number as G, that is

NpGn, L2pQq, τ}K}8q ¤ C VGp16eqVG
�

1

τ


2pVG�1q
�:

�
AG
τ


νG
,

where C is a universal constant, τ P p0, 1q and VG is the VC -index of G (see Theorem 2.6.7
in van der Vaart and Wellner, 1996). Now, according to Proposition 2.1 in Giné and Guillou
(2001) (see also Theorem 2.1 in Giné and Guillou, 2002) for σ2 ¥ supgPGn Varpgq, U ¥ }K}8
and 0   σ ¤ U , there exists a universal constant B such that

E

�
sup

py,xqPR�Rp

�����n�1
ņ

i�1

Kcpx�Xiq1ltY pjq
i ¤yu � E

�
Kcpx�X1q1ltY pjq

1 ¤yu
������
�

¤ rncps�1B

�
UνG log

�
UAG
σ



�
d
νGnσ2 log

�
UAG
σ


�
.

Since

Var

�
K

�
x�X1

c



1ltY pjq

1 ¤yu



¤ cp

»
Sp�1

K2puq fpx� cuqdu ¤ cp}f}8}K}22,

the choices σ2 � σ2
n :� cp}f}8}K}22 and U � }K}8 imply that σ2

n ¤ U2 for n large enough.
This yields (27). Similar arguments can be used in order to show (28). Since fpxq ¥ b,@x P SX

E

�
sup

py,xqPR�SX
|Tkpy|xq|

�
� o

�c
| log c|q
ncp

�
, for k � 1, 3.
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Concerning T2py|xq, remark that

E
�
Kcpx�X1q1ltY pjq

1 ¤yu
�
� fpxqFjpy|xq � E rKcpx�X1qFjpy|X1qs � fpxqFjpy|xq

�
»
Rp
Kcpx� uq rFjpy|uq � Fjpy|xqs fpuqdu

�Fjpy|xq
»
Rp
Kcpx� uqrfpuq � fpxqsdu

� opcηq,
by Assumptions pDq and pFq. The same bound can also be obtained for T4py|xq. This achieves
the proof of Lemma 3.1.

6.7 Proof of Theorem 3.1

Let
In :� tgθ,δ,n : θ P Θ, δ P Hu

where for θ P Θ :� r0, 1s � r1{2, 1s, and δ P H :� tδ � pδ1, δ2q; δ : R� R� SX Ñ Ru ,
gθ,δ,npy1, y2, uq :�

?
hpKhpx� uqqθ,δpy1, y2, uq

:�
?
hpKhpx� uqaγrZθ,δpy1, y2, uqsβ exp p�λaZθ,δpy1, y2, uqq

with

Zθ,δpy1, y2, uq :� min

�� log p|δ1py1, y2, uq|q
1� t

,
� log p|δ2py1, y2, uq|q

t



.

For convenience, denote δn :� pFn,1, Fn,2q and δ0 :� pF1, F2q. According to Lemma 3.1, r�1
n |δn�

δ0| converges in probability towards the null function H0 :� t0u in H, endowed with the norm
}δ}H :� }δ1}8 � }δ2}8 for any δ P H. In order to apply Theorem 2.3 in van der Vaart and
Wellner (2007), we have now to show
Assertion 1: supθPΘ

?
nPGnpθ, bnq ÝÑ 0 for every bn Ñ 0

and
Assertion 2: supθPΘ |GnGnpθ, bq| PÝÑ 0, for every b ¡ 0,
where Gnpθ, bq is the minimal envelope function for the class

Enpθ, bq :� tgθ,δ0�rnδ,n � gθ,δ0,n : δ P H, }δ}H ¤ bu ,
i.e.

Gnpθ, bq :� sup
}δ}H¤b

|gθ,δ0�rnδ,n � gθ,δ0,n|

�
?
hpKhpx� �q sup

}δ}H¤b
|qθ,δ0�rnδ � qθ,δ0 |. (29)

Now, remark that @py1, y2, uq P R� R� SX

sup
}δ}H¤b

|qθ,δ0�rnδ � qθ,δ0 |py1, y2, uq � sup
pδ1py1,y2,uq,δ2py1,y2,uqqPB

|qθ,δ0�rnδ � qθ,δ0 |py1, y2, uq,

29



where B :� tpx, yq P R2 : |x|� |y| ¤ bu. Since B is compact and δ Ñ qθ,δpy1, y2, uq is continuous,
(29) reaches its supremum on at least one position δ�θ,bpy1, y2, xq � pδ�1,θ,bpy1, y2, xq, δ�2,θ,bpy1, y2, xqq
in B. Thus, according to Theorem 18.19 in Aliprantis and Border (2006), one can find a mea-
surable function δ�θ,b bounded by b in H such that

Gnpθ, bq � |gθ,δ0�rnδ�θ,b,n � gθ,δ0,n|.
Proof of Assertion 1. For any positive sequence bn Ñ 0, we have

?
nPGnpθ, bnq �

?
nhp

»
Sp�1

KpuqE
�
|qθ,δ0�rnδ�θ,bn � qθ,δ0 |

���X � x� hu
�
fpx� huqdu.

Note that for any pδ, δ1q P H �H, using (14)

|qθ,δ � qθ,δ1 | ¤ aγ
» �8

0
|β � λas|sβ�1e�λas1ltsPrminpZθ,δ ,Zθ,δ1 q,maxpZθ,δ ,Zθ,δ1 qsuds. (30)

Consequently

E
�
|qθ,δ0�rnδ�θ,bn � qθ,δ0 |

���X � x� hu
�

¤ aγ
» �8

0
|β � λas|sβ�1e�λas P

�
s P rminpZθ,δ0�rnδ�θ,bn , Zθ,δ0q,maxpZθ,δ0�rnδ�θ,bn , Zθ,δ0qs

���X � x� hu
	
ds.

Remark now that!
s P rminpZθ,δ0�rnδ�θ,bn , Zθ,δ0q,maxpZθ,δ0�rnδ�θ,bn , Zθ,δ0qs

)
�

"
e�s P

�
min

�
max

���F1 � rnδ
�
1,θ,bn

�� 1
1�t ,

��F2 � rnδ
�
2,θ,bn

�� 1t 	 ,max

�
F

1
1�t

1 , F
1
t

2




,

max

�
max

���F1 � rnδ
�
1,θ,bn

�� 1
1�t ,

��F2 � rnδ
�
2,θ,bn

�� 1t 	 ,max

�
F

1
1�t

1 , F
1
t

2



�*
�

"
e�s P

�
min

���F1 � rnδ
�
1,θ,bn

�� 1
1�t , F

1
1�t

1



,max

���F1 � rnδ
�
1,θ,bn

�� 1
1�t , F

1
1�t

1


�*
Y
"
e�s P

�
min

���F2 � rnδ
�
2,θ,bn

�� 1t , F 1
t

2



,max

���F2 � rnδ
�
2,θ,bn

�� 1t , F 1
t

2


�*
�

!
e�p1�tqs P �minp��F1 � rnδ

�
1,θ,bn

�� , F1q,maxp��F1 � rnδ
�
1,θ,bn

�� , F1q
�)

Y  
e�ts P �minp��F2 � rnδ

�
2,θ,bn

�� , F2q,maxp��F2 � rnδ
�
2,θ,bn

�� , F2q
�(

�
!
e�p1�tqs P rF1 � rnbn, F1 � rnbns

)
Y  

e�ts P rF2 � rnbn, F2 � rnbns
(

�: An,1psq YAn,2psq.
Since for any subsets A and B we have 1ltAYBu ¤ 1ltAu � 1ltBu, we can deduce that

P
�
s P rminpZθ,δ0�rnδ�θ,bn , Zθ,δ0q,maxpZθ,δ0�rnδ�θ,bn , Zθ,δ0qs|X � x� hu

	
¤ P pAn,1psq|X � x� huq � P pAn,2psq|X � x� huq

�
» 1

0
1lte�p1�tqsPrv�rnbn,v�rnbnsudv �

» 1

0
1lte�tsPrv�rnbn,v�rnbnsudv

¤ 2rnbn � 2rnbn � 4rnbn. (31)
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This implies that

?
nhpE

�
|qθ,δ0�rnδ�θ,bn � qθ,δ0 |

���X � x� hu
�
¤ 4

?
nhprnbn sup

aPr1{2,1s

» 8

0
aγ |β � λas|sβ�1e�λasds.

This achieves the proof of Assertion 1 sinceK is bounded, supaPr1{2,1s
³8
0 aγ |β�λas|sβ�1e�λasds  

�8,
?
nhprn Ñ 0 and bn Ñ 0.

Proof of Assertion 2. The idea is to apply Lemma 2.2 in van der Vaart and Wellner (2007).
To this aim, first observe that the class Enpθ, bq admits an envelope function En of the same
form as Fn in (24), for some suitable constant M ¡ 0. Thus En satisfies the conditions (20) and
(21), with Fn replaced by En. Consequently, it remains to show the two following convergences

sup
θPΘ

PG2
npθ, bq ÝÑ 0, (32)

Jpdn, tGnpθ, bq : θ P Θu , L2q ÝÑ 0 for all dn × 0. (33)

We start to show (32). Since

PG2
npθ, bq �

»
Sp�1

K2puqE
�
|qθ,δ0�rnδ�θ,b � qθ,δ0 |2

���X � x� hu
	
fpx� huqdu,

and (30), (32) follows from the proof of Assertion 1.

Now, to deal with the uniform entropy integral, we can adjust the lines of proof of Theorem 2.1
by considering the classes of functions defined on R� R� SX

φ
pjq
λ,β �W �Ψ, j � 1, 2,

where Ψ is either the function

py1, y2, uq Ñ p� logpF1py1|uqq,� logpF2py2|uqq

or

py1, y2, uq Ñ
�� log

���F1py1|uq � rnδ
�
1,θ,bpy1, y2, uq

��� ,� log
���F2py2|uq � rnδ

�
2,θ,bpy1, y2, uq

����
which are VC -classes. This allows us to prove that there exist positive constants C and V such
that

sup
Q
NptGnpθ, bq : θ P Θu , L2pQq, τ}En}Q,2q ¤ C

�
1

τ


V
,

from which (33) follows. This achieves the proof of Theorem 3.1.
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6.8 Proof of Theorem 3.2

One can check that the proof of Theorems 2.3 and 2.4 are mainly due to the asymptotic properties

of p∆pjq
α,x,t, j � 1, 2 and 3. Thus, if we are able to prove that the two key statistics Tn and qTn are

sufficiently close enough, in the sense that

sup
tPr0,1s,aPr1{2,1s

?
nhp

��� qTn � Tn

��� pK, a, t, λ, β, γ|xq � oPp1q, (34)

and

sup
tPr0,1s,aPr1{2,1s

?
nhpE

���� qTn � Tn

���� pK, a, t, λ, β, γ|xq � op1q, (35)

then we can swap p∆pjq
α,x,t by q∆pjq

α,x,t, j � 1, 2 and 3. According to Theorem 3.1, (34) is a direct
consequence of (35). So it remains to prove (35). Note that

?
nhp E

���� qTn � Tn

���� pK, a, t, λ, β, γ|xq � ?
nE

������ 1n
ņ

i�1

�?
hpKhpx�Xiqaγ qZβn,t,ie�λa qZn,t,i

�
?
hpKhpx�XiqaγZβt,ie�λaZt,i

�����
¤ ?

nE
����gθ,δn,npY p1q

1 , Y
p2q

1 , X1q � gθ,δ0,npY p1q
1 , Y

p2q
1 , X1q

����
¤ ?

nPGnpθ, bq,
since δn P δ0 � rnBp0, bq where Bp0, bq :� tδ : }δ}H ¤ bu. This implies that

sup
tPr0,1s,aPr1{2,1s

?
nhp E

���� qTn � Tn

���� pK, a, t, λ, β, γ|xq ¤ sup
tPr0,1s,aPr1{2,1s

?
nPGnpθ, bq � op1q

by Assertion 1 since it is clear from its proof that bn Ñ 0 can be replaced by any fixed value b
in (31) without changing the conclusion. This achieves the proof of Theorem 3.2.
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921.
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