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Abstract

We consider the robust estimation of the Pickands dependence function in the covariate
framework. Our estimator is based on local estimation with the minimum density power di-
vergence criterion. We provide its main asymptotic properties, in particular the convergence
of the stochastic process, correctly normalized, towards a tight centered Gaussian process.
The finite sample performance of our estimator is illustrated on a small simulation study
involving both uncontaminated and contaminated samples.

Keywords: Conditional Pickands dependence function, robustness, stochastic convergence.

1 Introduction

Modelling dependence among extremes is of primary importance in practical applications where
extreme phenomena occur. To this aim, the copula function can be used as a margin-free
description of the dependence structure. Indeed, according to the well-known result of Sklar
(1959), the distribution function of a pair (Y™, Y () can be represented in terms of the two
margins ] and Fy of Y1) and Y® respectively, and a copula function C as follows:

P (Y<1> <y, Y® < ya) = C(Fi(y), Fa(y2)) -

This function C' characterizes the dependence between Y1) and Y2 and is called an extreme
value copula if and only if it admits a representation of the form

C(y1,y2) = exp (log(ylyz)A (%)) :

where A: [0,1] — [1/2,1] is the Pickands dependence function, which is convex and satisfies
max{t,1 —t} < A(t) < 1, see Pickands (1981). Statistical inference on the bivariate function C'
is therefore equivalent to the statistical inference on the one-dimensional function A. Estimating
this function A has been extensively studied in the literature. We can mention, among others,
Capéraa et al. (1997), Fils-Villetard et al. (2008) or Biicher et al. (2011).

In this paper, we extend the above framework to the case where the pair (Y(l), Y(z)) is recorded
along with a random covariate X € RP. In that context, the copula function together with the



marginal distribution functions depend on the covariate X. In the sequel, we denote by C,,
Fi(.|]z) and F»(.|x) the conditional copula function and the continuous conditional distribution
functions of YV and Y given X = 2. Our model can thus be written as

P (R W]2) <y, Fa(YOe) < ol X = 2) = Colyn 1), &

where C, admits a representation of the form

Ca(y1,92) = exp (lOg(?Jl?JZ)A (;ﬁ;ﬁi)‘w)) ,

with A(.|.) : [0,1] xRP — [1/2,1] is the conditional Pickands dependence function which is again
a convex function satisfying max{t,1—t} < A(t|z) < 1 for all z € RP. Note that recently, Portier
and Segers (2015) also considered this model (1) but under the simplifying assumption that the
dependence between Y and Y@ does not depend on the value taken by the covariate, i.e.
Cy = C (see also Gijbels et al., 2015).

Moreover, in addition to the covariate context, we consider the case of contamination and we
propose a robust estimator of the conditional Pickands dependence function A(.|z). To reach
this goal, we use the density power divergence method introduced by Basu et al. (1998). In
particular, the density power divergence between two density functions g and h is defined as
follows

1 1
J [h”a(y) - (1 + ) h*(y)g(y) + g““(y)] dy, a>0,
R (0% «
9(y)
log —===g(y)dy, a=0.
R N(y)
Here the density function h is assumed to depend on a parameter vector @, and if 7y, ..., Z, is
a sample of independent and identically distributed random variables according to the density

function g, then the minimum density power divergence estimator (MDPDE) of 6 is the point
minimizing the empirical version

1\ 1 &
Mreaydy — (1+ =) =Y b2 0
w1+ 1) L S, a0

An(g,h) =

Aa(9) := 0
1
—n;llogh(Zi) a=0.

We can observe that for « = 0 one recovers the log-likelihood function, up to the sign. A large
value of « allows us to increase the robustness of the estimator, whereas a smaller value implies
more efficiency. This parameter o can thus be selected in order to ensure a trade-off between
these two antagonist concepts.

The remainder of the paper is organized as follows. In Section 2, we simplify the situation to the
case where the two marginals Fi (.|z) and F»(.|z) are known as standard exponential distribution
functions, we propose a robust estimator for A(.|z) and we prove its convergence in terms of a
stochastic process. Then, in Section 3, we extend this result to the case of unknown margins.
Finally, in Section 4, we illustrate the efficiency of our estimator in a small simulation study.
All the proofs and technical results are postponed to the appendices.



2 Case of known margins

In this section, we restrict our interest to the case where the marginals Fj(.|x) and Fy(.|x)
are standard exponential distribution functions and we denote by Ag(.|z) the true conditional
Pickands dependence function associated to this pair (Y(l), Y(Q)).

2.1 Construction of our estimator

Under the assumption of standard exponential margins, model (1) can be rewritten as follows

G(y1,y2|z) =P (Y(l) > yl,Y(Q) > yQ‘X = x) = exp (—(yl + y9) Ao <y13-2y2 ‘w)) ,

for all y1,y2 > 0. Let t € [0,1]. Considering the univariate random variable
v y@
Zy:=min [ ——, —— |,
11—t t
it is clear that
P(Z; > 2| X = z) = e=*0W?) vz > 0 and z € R?.

Consequently, the conditional distribution of Z; given X = x is an exponential distribution with
parameter Ag(t|x).

Let (Z;;,X;),i = 1,...,n, be independent copies of the random pair (Z;, X). In the present
paper, we will develop a nonparametric robust estimator for Ag(t|z) by fitting this exponential
distribution function locally to the variables Z;;, i = 1,...,n, by means of the MDPD criterion,
adjusted to locally weighted estimation, i.e. we minimize for o > 0

Aa,x,t(f‘l(ﬂﬂc)) = % Zn: Kp(x — X3) {JOOO (A(t|x)eiA(”x)Z>1+a dz — (1 + ;) (A(ﬂx)ef“(tx)zt,i)a}
i=1

LG i Kp(z — X;) { L (1 + i) e—aA“'“")Ztvi} : (2)
i=1

n 1+«

Here Kj(.) := K(./h)/hP where K is a joint density on R? and h = h,, is a positive non-random
sequence satisfying h,, — 0 as n — c0. The MDPDE for A(t|z) satisfies the estimating equation

AW

a,x,t

(A(t|z)) =0, (3)

where Ag)“

~

sequel as A, p(t]z).
Our aim in this paper is to show the weak convergence of the stochastic process

(.) denotes the derivative of order j of Aamt() We denote the estimator in the

{W (ﬁam(ﬂx) - Ao(t|:r)> telo, 1]} , (4)

in the space of all continuous functions on [0, 1], denoted as C([0, 1]), when n — 0.



Our starting point is the estimating equation (3). By applying a Taylor series expansion of it
around the true value Ay(t|z), we get

~

0= RO, (Ao(tho) + (Aun(tl) — Ao(tl)) BZ, (Ao(tl)) + 5 (Aaon(tle) — Ao(t}e))” AL (A(t}e))

where A(t|z) is a random intermediate value between Ag(t|z) and ﬁa,n(t|x). A straightforward
rearrangement of the above display gives

—nh# AL (Ao (t|2)

AL, ((Ao(tle)) + 3R, ((A(t)) (Aan(tle) = Ao(tla))

Vnhp (ﬁam(ﬂx) _ Ao(t|az)) - (5)

Consequently, as a preliminary step to obtain the convergence of the stochastic process (4), we
need to study the properties of the derivatives A(a]’)m’t, j =1,2,3. According to Appendix 5.2, all
of them can be expressed as a linear combination of a key statistic T,,, defined as

a’ & _ ,
Tu(K,a,t, ), B,7]e) = — 3 Kn(w — X3)Z) e %, (6)
i=1

for a € [1/2,1], t € [0,1], A\, 8 = 0 and v € R. Thus, we start in the next section by looking at
the main asymptotic properties of this statistic 7T,,.

2.2 Asymptotic properties of 7,

Due to the regression context, we need some Holder-type conditions on the density function f
of the covariate X and on the conditional Pickands dependence function Ay. Let ||.|| be some
norm on RP.

Assumption (D). There exist My > 0 and ny > 0 such that | f(x) — f(2)] < M|z — 2|/, for
all (x,z) € RP x RP.

Assumption (Agy). There exist My, > 0 and na, > 0 such that |Ap(t|x) — Ao(t|2)| < Ma, |z —
z||o, for all (x,z) € RP x RP and t € [0, 1].

Also a usual condition is assumed on the kernel K.

Assumption (K1). K is a bounded density function on RP with support included in the unit
hypersphere SP~1 < RP.

As a preliminary result, in Lemma 2.1 we prove the convergence in probability of our key statistic
T,

Lemma 2.1 Assume that for all t € [0,1], z — Ao(t|z) and the density function f are both
continuous. Under Assumption (K1), if h — 0 and nh? — oo, then for a € [1/2,1], A\, = 0,
v €R and x € RP where f(x) > 0, we have

Ap(t]x)
(Aa + Ap(t|x))

as n — o0, where I' is the gamma function defined as

Tu(K, a,t,\, B,7]2)—a'T(8 + 1) /@),

e 0]
I(r) := J tle~tat, vr>0.
0



Now, our interest is in the rate of convergence in Lemma 2.1 when a is replaced by Ao(t|z).
More precisely, we want to show the weak convergence of the stochastic process

e [Ao(t]2)]"—*
{ nh? (Tn(K, Ao(tlz), t, A, B, ylz) = T'(B + 1)Wf($) ;tel0,1]p.
To establish such a result, we use empirical processes arguments based on the theory of Vapnik-

Cervonenkis class (VC-class) of functions as formulated in van der Vaart and Wellner (1996).
This allows us to show the following theorem.

Theorem 2.1 Let v € R and (A, 3) € RL x Ry or (A, ) = (0,0). Under the assumptions of
Lemma 2.1 and if (D) and (Ag) hold with v/nhPh™™5m40) — 0, then the process
Ap(t|z)]—#
{ v (s Aatt), 2 8.rle) = 105+ LS p@)) e o1

weakly converges in C(|0,1]) towards a tight centered Gaussian process {By,t € [0,1]} with co-
variance structure given by

Cou BB = [Ao(tl) Ao(slo)]" |13 f(o) { J 900Gt vl + 353 50(5)} ,

for all (s,t) € [0,1]%, where &y is the Dirac measure on 0, and
glu,v) = uPTHB = ANAg(t]z)u)e Motnu S5 _ X Ag(s|z)v)e Mooy,
Gis(u,vlz) = G (max((l —t)u, (1 — s)v), max(tu, sv)‘x) .

We now derive the limiting distribution of a vector of statistics of the form (6), when properly
normalized. Let T,, be a (m x 1) vector defined as

Tn = (Tn(K17 ai, tla >\17 617 ’}/1|.T1)7 Tn(K27 as, t27 >‘27 627 ’72|5L'2)7 ceey Tn(KTm Amy, tmv Amv ﬁma 7m|xm))T7

for some positive integer m and let X be a (m xm) covariance matrix with elements (0;x)1<jx<m
defined as

ajp = apal*oo(x; — ap)| KK f(x)) {L@ 9,k (u; )Gy 1y, (u, v|w;)dudv

+

(B + 1) Ao(tx|zx)
[)\kak + Ao(tk|xk)]ﬁk+l

P(Bj + 1)A0(tj|:lij)
[Ajaj + Ao(tj]a;)]%

+ 8u() +50(B) - 6o<ﬂj>6o<ﬁk>} )

where
gjk(u,v) = uﬁj_l(ﬁj — )\jaju)e_)‘jaj" U”Bk_l(ﬁk — Akakv)e_)‘kak”.

Theorem 2.2 Under the assumptions of Lemma 2.1 and with kernel functions K1, ..., K., sat-
isfying (K1), we have

Vah? (T, — E[T,]) ~ N (0,%),
where N,, denotes a m—dimensional normal distribution.

We have now all the needed ingredients for proving the asymptotic properties of the MDPD
estimator Aq p(t|x).



2.3 Asymptotic properties of //l\an(t|x)

The first result states the existence and uniform consistency of a sequence of solutions to the
estimating equation (3).

Theorem 2.3 Let a > 0 and x € RP such that f(x) > 0. Under the assumptions of Theorem

~

2.1, with probability tending to 1, there exists a sequence <Aa’n(t|x)> N of solutions for the
ne

estimating equation (3) such that

sup_|Aan(tle) = Ao(tlz)| = 02(1).
te[0,1]

Now, we come back to our final goal which is the weak convergence of the stochastic process (4).

Theorem 2.4 Let a > 0. Under the assumptions of Theorem 2.1, the process
{\/nhﬂ“ (ﬁam(tm - Ao(t|x)> te o, 1]}

weakly converges in C([0,1]) towards a tight centered Gaussian process {Ny,t € [0,1]} with
covariance structure given by

KB Ao(tx) Ao(sl) (1 + )

T
Cov (N, N;) o) (17 a2)? vg 2(t, $)Va,
where
1 i 5 1+a)? 1+a 1
Va = | —(1+ a) and X(t,s):=| 1+a Xoa(t,s) Xas(t,s)
1+« 1 2273(8, t) 2373(@ S)
with
Yoolt,s) = (1—a)(l+a)+a?(l+a)?Ag(t|z)Ag(s|z) J e~elotlurAoCslol q, (u, v|a)dudv
RY
Sos(t,s) = 1—a(l+a)?Ag(tlr)Ao(s|z) J (1 — adg(s|z)v)e elAotiRutAolslorw] G, (o v]z)dudv
R}
S33(t,s) = (1+a)? Ag(t|z)Ao(s|z) f (1 — aAo(t|z)u)(1 — aAg(s|z)v)elAotiRutAosl)l G,y v|z)dudv.
RQ

+

In particular, for all t € [0,1], we have

~ K|I2[ A (¢]2)]? (1 2144 902 + 1402 + 13a* + 8a® + 4ab
Vil (Aualtle) = Aaft) < N (o, LU QL pdawdars b+ Bar +fa tda)),

f(x) (1 +2a)3(1 + a?)?

as n — 0.



3 Case of unknown margins

In this section, we consider the general framework where both Fi(.|x) and F(.|x) are unknown
conditional distribution functions. We want to mimic what has been done in the previous section
in case where these conditional distributions are assumed to be standard exponential distribution
functions. To this aim, we consider the triplets

(— log (Fn,l(Yi(l)|Xi)) ,—log (an(}g@)m)) X) =1,

for suitable estimators F), ; of F}, j = 1,2, and we compute our univariate random variables

y —1og (Fua(V1X0)) —log (Fua(?1X))
Lyt i= min , i=1,..,n.
” 1-t¢ t
Then, similarly as in Section 2, the statistic
- a’ & - >
Tu(K, a1, B,7]e) = — D Kn(w — X)) 2, e 2 Zmti, (8)
i=1

is the cornerstone of our MDPDE which satisfies the estimating equation

XM

o,x,t

(A(t|z)) = 0, (9)

where

1+« leY

Apri(Alt]z)) = Az i Kn(z — X;) { L (1 + 1) eaA(tlm)Zn»w} .

~

We denote it by Aq ,(t|x). Our final goal is still the same, that is the weak convergence of the
stochastic process

{Vihv (A u(tle) = Aotln)) t e [0,1]} (10)

Again this result relies essentially on the asymptotic properties of our statistic Jv’n, and so the
idea will be to decompose

Vak? (T, —EIT.]) (K 0.t A, 8,7]2),

into the two terms

~

{W(Tn CR[TW)) (K, a,t, )\,B,ﬂx)} + {\/W ([Tn T, —E[T, — Tn]) (K, a, 1\, ﬁ,w)} (1)

The first one can be dealt with using the results of Section 2.2 whereas we have to show that
the second term is uniformly negligible.



To achieve this objective, let us introduce the following empirical kernel estimator of our un-
known conditional distribution functions

22;1 Kc(13 - Xi)]l{yi(j)gy}
2?:1 Ke(z — X;)

where ¢ := ¢, is a positive non-random sequence satisfying ¢, — 0 as n — o0. Here we kept
the same kernel K as in the previous section, but of course any other kernel function can be used.

Fn»](ykr) = ) j = 1)2)

Before stating our main results, we need to impose again some assumptions, in particular a
Holder-type condition on each marginal conditional distribution function F; similar to the one
imposed on the density function of the covariate.

Assumption (F). There exist Mg, > 0 and ng; > 0 such that |Fj(y|z) — Fj(y|z)| < Mp;|z —
2|3, for ally € R and all (z,2) € RP x RP and j = 1,2.

Concerning the kernel K a stronger assumption than (K1) is needed.

Assumption (K2). K satisfies Assumption (K1) and belongs to the linear span (the set of
finite linear combinations) of functions k = 0 satisfying the following property: the subgraph of
k, {(s,u) : k(s) = u}, can be represented as a finite number of Boolean operations among sets of
the form {(s,u) : q(s,u) = o(u)}, where q is a polynomial on RP x R and ¢ is an arbitrary real
function.

This hypothesis has been already used in Giné and Guillou (2002) or Giné et al. (2004). In
particular, it allows us to measure the discrepancy between the conditional distribution function
F; and its empirical kernel version F;, ; under an additional assumption on the density of the
covariate X, similar to the one already used in Portier and Segers (2015).

Lemma 3.1 Assume that there exists b > 0 such that f(x) > b,Vx € Sx < RP, the support of
f. If (K2), (D) and (F) hold and for g > 1

| log c|?
ncP

— 0,

as n — 00, then for any 0 < n < min(ns, nr,NF,), we have

| log c|? .
E sup  |Fnj(ylz) — Fj(ylz)| | = o | max —— "), forj=12.
(y,z)eERxSx ncp

We are now able to study the second term in (11).

Theorem 3.1 Assume (K2), (D) and (F) and that there exists b > 0 such that f(x) = b,Vz €
Sx € RP. Consider two sequences h and c tending to 0, such that for nh? — o and g > 1

/ q
vVnhP r, := vVnhP max ( |1(;Lgc;|,c"> — 0,

as n — 0. Then, for all ye R and (X, ) e RL x Ry or (A, ) = (0,0), and x € RP, we have

su nhpfn—Tn—E Tn—Tn K,a,t,\, 3,v|x) = op(1).
p V [ ](,,,7,7

t€[0,1],a€[1/2,1]




Finally, the decomposition (11) combined with Theorem 3.1 and the results from Section 2.2,

yields the desired final goal of this paper.

Theorem 3.2 Let a > 0. Under the assumptions of Theorem 3.1 and (Ag), with probability

tending to 1, there exists a sequence (/vlan(ﬂ:v)) N of solutions for the estimating equation (9)
ne

such that

sup ‘Aa,n(ﬂx) - Ao(t|x)‘ — op(1).
te[0,1]

Moreover, if A/nhPh™™5140) — 0 the process
(Ve (Aan(tlz) = Ao(tle)) st e [0,1]},

weakly converges in C(|0,1]) towards the tight centered Gaussian process {N,t € [0,1]} defined
in Theorem 2.4.

4 A small simulation study

Our aim in this section is to illustrate the efficiency of our robust estimator of the conditional
Pickands dependence function on a small simulation study.

We assume that the conditional distribution function of (Y(l), Y(2)) given X = z is the logistic
distribution given by

F(y1, y2|) = eXp{— (yfl/m + yz_l/my}, for y1,y2 =0
and
Aotle) = (7 + (1= 1)),

where the covariate X is a uniformly distributed random variable on [0, 1]. For this model, the
complete dependence is obtained in the limit as z | 0, whereas independence can be reached for
z = 1. Note also that the conditional marginal distributions of Y given X, j = 1,2, under
this logistic model are unit Fréchet distributions.

To compute our estimator /vla,n, two sequences, h and ¢, have to be chosen. Concerning ¢, we can
use the following cross validation criterion introduced by Yao (1999), implemented by Gannoun
et al. (2002), and already used in an extreme value context by Daouia et al. (2011, 2013) or
Goegebeur et al. (2015)

n o n 2

. - o () _
cj 1= arg l"cﬂelg;;l [H{Yimgyk(j)} — Fn i (V71X |, =12,
1= =

Dot Kol = X)Ly oy

where C is a grid of values of ¢ and F, —ij(ylz) =
e Zz=1,k;ﬁi Ke(z — Xk)




It remains to select the sequence h, which can be done from the condition

log cl4
o gt (12)
ncP

by taking h = ¢/|log c|¢, where &p > ¢ and ¢ := min(cy, ¢2).

The procedure of contamination used in this paper is the following.

1. we simulate n triplets (Yl(l), Y1(2), X1), ey (YTSI), YTEQ), X,,), independently according to the
distributions previously mentioned;

2. we simulate independently ng := |ne| variables Y® and Y@, from a unit Fréchet distri-
bution and also ng variables X, independently from the same distribution as X;

3. we consider the (n + ng) triplets:

v vy® x) ifi=1,...n,

(?51)7?52)7Y1) = Yl(;l,)’i\/;(Z)’ )N(’L ifi=n + 1’ e T + ln0/2J7
}Nfi(l),yl(i)’)z*i ifi:n+ln0/2j+l,...,n+no,

where Yl(Jn) = minj<;<p Yi(j), j=1,2;
4. we apply our methodology to the resulting univariate variables

—log (Fn+n071 (71(-1)|Yi)) —log (Fn+no,2 (Y§2)|yi)>
1—t ’ L

Zpti = min ,2=1,...,mn + nyg.

This procedure of contamination is illustrated in Figure 1, where the non-contaminated sample
of 1000 pairs is represented as circles whereas the contaminated pairs are represented as crosses.
Here, the percentage of contamination is 5%. This scatterplot is obtained before the empirical
transformation of the margins into unit exponential distributions on the left panel and after this
transformation on the right panel.

The percentage of contamination is set to ¢ = 0%, 5% and 10%, while n = 1000 and the
procedure is repeated N = 100 times. Concerning the kernel, each time we use the bi-quadratic
function

15

K(z) := E(l — $2)2]1[_171] ().

In all the settings, C = {0.06,0.12,0.18,0.24,0.3} and £ = 1.1 are used, since an extensive simu-
lation study indicates that these choices seem to give always reasonable results.

10
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Figure 1: Procedure of contamination: on the left before step 4, on the right after the empirical
transformation of the margins into unit exponential distributions. The non-contaminated sample
of 1000 pairs is represented as circles whereas the contaminated pairs are represented as crosses.

As indicators of efficiency we compute the bias and the mean squared error

)

Bias(Ann(t].) : LZZ‘ O (Hrm) — Ao(t]m)

E‘H =

MSE(Aqn(t].))

)

B[ At — Aot

I ME I
i Mz T

where A/,(f?n (t|xm) is the estimate of Ay(t|z,,) obtained with the ith sample evaluated at points
t € [0,1] and z, = m/(M + 1), m = 1,--- , M. Our method is implemented for M = 9 and
t=1i/50,i=1,--- 49,

Figures 2 till 4 represent the boxplots of our estimator Aan(|x) based on N samples for three
positions: x = 0.3,0.5 and 0.7, respectively. Three values of o have been reported: 0.1, 0.5,
and 1 corresponding to the different rows on each figure, whereas three different percentages of
contamination have been used: from the left to the right of each figure: 0%, 5% and 10%. Based
on these simulations, we can draw the following conclusions:

e in case of uncontaminated datasets, the best estimator is achieved with a = 0.1, although
there are no big differences. This is not surprising since when o = 0, one recovers the
maximum likelihood estimator which is well-known to be efficient, but not robust;

e in case of contamination, a larger value of « (0.5 or 1) is needed;
e as expected, increasing the percentage of contamination negatively affects the estimator,

whatever the distribution and value of «;

11



e for x close to 0, which corresponds to the complete dependence situation, the estimation of
the conditional Pickands dependence function seems to be slightly more difficult in terms
of bias than in case x close to 1, that is, the independent case.

Then, in Figure 5, we show from the top to the bottom, the bias and the mean squared error
of our estimator A, ,(t|.) based on N samples for the three percentages of contamination, from
the left to the right 0%, 5% and 10%. Again the three same values of o have been tried. The
same conclusions can be made, i.e. increasing the percentage of contamination deteriorates the
performance of the estimator. Also, the estimator is not too much sensitive on the value of « in
the uncontaminated case, whereas in the other cases a larger value of « increases significantly
the performance of the estimator. In fact & = 0.5 seems to be almost the best value in all the
settings considered.

Note that we have tried other types of distributions, positions, values of o and kernels, but
still the same conclusions remain. To keep the length of the paper under control, they are not
included.

5 Appendix A: Technical results

5.1 Asymptotic covariance matrix of the finite dimensional vector T,

Our aim in this section is to compute the explicit expression of the elements of the covariance
matrix ¥ = (0 k) 1<jk<m given in (7). According to (17), we have

f(x)0(B; + 1) Ao(t;|z;)
(Njaj + Ao(tjlay))Pit

E | Kj(e; = X0)Zye o | = (1+o(1)),

for 1 € j < m. In order to compute the cross expectation, we need to derive the conditional
distribution function of the pair (Z;;, Z;,) given X = x. Let u,v > 0

P(Z, >u,Zy, >v|X =2) = P (Y(l) > max ((1 —t;)u, (1 —tg)v) .Y > max (tju, tkv)‘X = 33)
- G (max (1= t;)u, (1 — tg)v) , max (tju,tku)‘x) .

Hence, for j,k € {1,...,m}?, we have

E| (s = X0) 27 e M7 Ky p(a, — X0)Zpk 001 | (13)

Xl]].

= E [Kj,h(ffj — X1) K n(zp — X1)E [Z,sﬁj{le_Ajathj’lZti’flewakzt’“l

We focus now on the conditional expectation. Using the fact that

Be—arz _ 5o(B) = J ]1{Z>u}u5_1(5 — a)\u)e_“’\udu, (14)
R

+

12
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Figure 2: Estimation of Ag(.|0.3) (full line) for the logistic distribution. From the top to the
bottom: a = 0.1,0.5,1 and from the left to the right: 0%, 5% and 10% of contamination.
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Figure 3: Estimation of Ag(.|0.5) (full line) for the logistic distribution. From the top to the
bottom: a = 0.1,0.5,1 and from the left to the right: 0%, 5% and 10% of contamination.
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Figure 4: Estimation of Ag(.|0.7) (full line) for the logistic distribution. From the top to the
bottom: a = 0.1,0.5,1 and from the left to the right: 0%, 5% and 10% of contamination.
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Figure 5: Estimation of Ag(.|.) for the logistic distribution. From the top to the bottom: bias
and MSE and from the left to the right: 0%, 5% and 10% of contamination. Three values of a:
0.1 (full line), 0.5 (dashed line) and 1 (dotted line).
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we have

E Z/Bj e—AjathjJZBk e*/\kathk,l
tj,l tg,1

Xl]
= [E [ (50(53') + JR ]1{th >u}Uﬁj_1(ﬁj _ )\jazju)e_kjajudu>
+
x (&J(ﬁkz) + JR iz, oo™ (B — Akakv)é’_k’““’“”dv> ‘ X1]
+

= JQ gj7k(u,v)Gt].’tk (u,v
R+

(B + 1) Ao(tr] X1)
[Arar + Ao(tr] X1)]P+1

) dudv

L(B8; + DAo(t;|X1)
[Ajaj + Ao(tj]X1)]% !

+d0(B;) d0(Bk) 0(85)d0(Bk)-(15)

In case x; = xj, combining the continuity and boundedness of the functions f, Ag(t|.) and
G(u,v|.), the expression of ¢; in (7) follows.
In case x; # xy, it is sufficient to observe that, for n large enough,

E [Kj,h(l’j — X1)Kgp(zp — X1)E [ZBJ XaiZ1 g = MeonZi

<)o

since for h < w, we clearly have {u : |:1:]h—u| < 1} N {u : |$kh_u| < 1} = .
5.2 The derivatives of Aaym and their asymptotic properties

Straightforward computations for a € [1/2,1], @ > 0 and z € RP, give

n

N 1
ASL (@) = aa TAy(a) +a®(1 +a)= Z Kp(x — Xi) Zy e 70,

n

=1
Ag,zc,t(a) = OéailAgzct(a) — OéaiZAawt( ) + CV o+ 1 Z Kh €T — 1 —aZ; Z)Zt e aaZtl
AB —3R 2 92 (1
A9 @) = (207 Bausla) +a AL (0) — 2072A0) (o ))
a®— 2 n
“F(Oé — 1) o+ 1 2 Kh $ _ (IZtyi)Ztﬂ'eiaaZ“‘
(o + 1 Z (a1 — Gth) I)Zzie—aazt,i.

The convergence in probability of the three first derivatives of Aa,m and of Aa’m itself is
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therefore a direct application of Lemma 2.1, which yields, as n —

A B gL (1Y A

Bon) S0, 0 = 0t (- (1) )

A1) (1) ._ (0) o Ao(t|r)

Aa,x,t(a) gocxt(a) =oaa 1£a:ct(a’)+(1+a)a f(x)(()[(l“rA()(ﬂx))Q’

AD) (@)D (@) = aa M) (@) — aa2), ()
et Aotl)  20dg(tle)
tafatl) f()<<aa+Ao<t|:c>>2 <aa+Ao<t|x>>3>

AL, /)0 a) = o (207000 (0) + @D, (a) — 20720 ()

Aoltls)  2ado(t)

o= Dala+Da™ () [(aa T A (aat Ao<t|x>>3]
PRI Apltl) _ Gadg(te)
e+ 1) f()[2( D laat A(ti)? <aa+Ao<t|x>)4]

Now the rate of convergence of AY) (Ao(t|z)),j € {1,2,3}, to its limit is also useful to study

a,z,t
(5) and thus to reach our final goal. The aim of the next corollary is to provide such a rate.

Corollary 5.1 Under the assumptions of Theorem 2.1, then for any j € {1,2,3}, the process
{Vinr (B9, (Ao (t]2)) — €5, (Ao(tla)) ) st € [0,1]}
weakly converges in C([0,1]) towards a tight centered Gaussian process. In particular, we have

s A9 (Aotla)) = €2, (Ao(t]))| = or(1).

Proof of Corollary 5.1. As usual, it is sufficient to show the finite dimensional convergence
and the tightness of the process. Using Theorem 2.2 we directly solve the finite dimensional
convergence issue. Next, Theorem 2.1 combined with (18) implies tightness for any process
t — /nh?(T,, — E[T,))(K, Ao(t|z),t, \, B,7|z) and similarly as in Lemma 1 in Bai and Taqqu
(2013), we have tightness for any multivariate process with similar coordinates. Corollary 5.1
then follows.

6 Appendix B: Proofs of the main results

6.1 Proof of Lemma 2.1

Using the fact that the conditional distribution function of Z; given X = x is an exponential
distribution with parameter Ag(t|z) and since Aa + Ay(t|z) > 0, we have

Ao (t|x)
(Aa + Ag(t]|z))Bs+1

E|Z]e %

X = 1:] - T(B+1) (16)
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Then

E [Kh(x - X)Zfe’A“Zt] = E [Kh(:c — X)[(B+1) Aot X) ]

(Aa + Ap(t]|X))B+1

= TG [ Kl =) g sy )

_ Ao(t|lz — zh)
= TOHD | KRt Al — amyPa

(\a —|—Aj(§§|tz|€3;))6+l f(@)(1 +o(1)), (17)

by the dominated convergence theorem using the continuity of Ag(t|.) and f on z—SP~! together
with the boundedness of Ay(t|.). Consequently

f(x —hz)dz

= T+

Ap(t|x)
(Aa + Ap(t|x))

E[T.(K,a,t, X\, B,7|z)] = a"T'(8 + 1) 571 f(z)(1 + o(1)).

Also, similar arguments yield
1 |KJ3 Ao(tlz) a® T'(28 + 1) f(=)
nhp (2Xa + Aog(t]x))2P+1

from which the convergence in probability simply follows.

Var(T,, (K, a,t,\, B,7|r)) =

(1+0(1)) = o(1),

6.2 Proof of Theorem 2.1

First, remark that to show Theorem 2.1, it is sufficient to look at the weak convergence of the
process

{Vih? (T,(K, Ao(t|x). £, X, B,112) = E[Tu(K, Ao(tla), 1A, B,9a)]) te 0,11}, (18)

[Ao(t]2)]"~"

lim sup vVnhP W (ﬂf)‘ = 0.

=% ¢ef0,1]

E[T(K, Ao(tz), £, A, B, 7la)] — T(8 + 1)

Indeed, according to (17), we have

[Ao(t]a)]"~"

BIT, (K Aot .1 .2 fo)] = 16+ DR (o)

Ap(t|z — yh) A_ﬁ(ﬂx)
T+ DA | K0 | G ey — ) = Gy )| do
Now, using Assumptions (D) and (Ap), we deduce that
Ao(tlz — yh) Ay (t)

(\Aaltfa) + Aol — )Pt &~ M)~ Gy (x)‘

Ao (tl — yh) o Ao(ta — yh) A )
S DAy (il) + Aot — i)t O Y = SO R Gy Aol — )P T Ok 1P
= O(h™n(15:m40))
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for n large enough such that h < 1, with a bound which is uniform in ¢.

Then, to show the weak convergence of the stochastic process (18), we will use Theorem 19.28
in van der Vaart (1998). To apply this result, we need to introduce some notations. Define the
covering number N(F, Lo(Q),7) as the minimal number of Ly(Q)-balls of radius 7 needed to
cover the class of functions F and the uniform entropy integral as

)
J(3.F. L) = f \/logsgpr, L2(Q). 7| Fllg.) dr,
0

where Q is the set of all probability measures @) for which 0 < ||F HQQQ = {F2dQ < oo and F is
an envelope function of the class F.

Let P denote the law of the vector (Y)Y X) and define the expectation under P, the
empirical version and empirical process as follows

Pfi= ffdP, P,f = ii F(FOYP X)) Gaf =P, - P/,
=1

for any real-valued measurable function f.
For any v € R and (A, 8) € RE x Ry or (A, ) = (0,0), we introduce our sequence of classes F,
as

]:71 = {(yl,yg,z)—>fn7t(y1,y2,z),te[0,1]}
= {(yhyz, 2) = VIPKy(x — 2)[Ao(t2)]" P[Ao(t2) Zi(yr, yo)| e Mot Zluns) e o, 1]} :

Y1 Y2
11—t t
envelope function of the class F,, and for any y € R?, define the bivariate function p, : [0, 112 -
Ry as

where Z;(y1,y2) := min < ) Remark that Z; = Z; (Y(l), Y(2)). Denote now by F;, an

2
Py(t, s) = E [ (Ag(ﬂx)ztﬂef)\Ao(t\x)Zt _ Ag(su)zsﬁef/\Ao(SM)Zs) ‘X — y] )

Naturally, p, defines a semimetric on [0, 1]? and since it is bi-continuous, it makes [0, 1] totally
bounded.

Now, according to Theorem 19.28 in van der Vaart (1998), the weak convergence of the stochastic
process (18) follows from the four following conditions

sup  P(for — fas)? — 0 for every 8, \, 0, (19)
pz(t,8)<dn

PF2 = 0(1), (20)

PF2{F, > ey/n} —> 0 for every € > 0, (21)

J(0n, Fn,La) —> 0 for every d, \, 0. (22)
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We start to prove (19). By definition, we have

r—u

Pl = fu? = [ 00w (U5 ) putt )

K2(u)pz—hu(ta S)f(l’ - hu)du

Sp—1

|K[3f(x)pa(t,s) + Lp_l K2(u) f (& = hu)[po—nu(t, ) = pa(t, s)|du

#oulte) | R = ) = f (@)
o
Due to Assumptions (D), (K1) and since p, is bounded, it remains to show that

sup | pa—nu(t,s) — pz(t,s)| — 0. (23)
pa(t,8)<0n

Recall that

putss) = [Ao(tln)]T E [ 777e Mot

X = y] + [A0(3|;E)]2'Y E [ZgﬁefQAAo(s\z)Zs

X:y].

X =y

—2[Ao(t]a) Ao(s|a)]" E | 27 oltle) 2 iAok} 2

All these expectations have been already computed in (15) and (16). Using the mean value
theorem combined with the boundedness of Ag(.|.) and Assumption (Ap), we can easily infer
that for all (y,y’) € RP x RP, we have

sup  |py(t,8) — py(t,8)] < Clly — o[,
(t,5)€[0,1]2

for some positive constant C'. This implies (23) and thus (19) is established.

Now, we move to the proof of (20) and (21). Since the function x — z°e=** is bounded over

R, by (8/A)7 e # and Ao(t|z) € [1/2,1], F,, admits the natural envelope function
(y17y27z) _)Fn(ylng,Z) = VhpKh(x_Z)Mv (24)

B
where M := (f) e P max(1,2°7). Consequently

PF2 = M? N hPK? ("’" - “) Fu)du = M? - K2(u) f(z — hu)du = M2|K|2f(2)(1 + o(1)),

PF2{F, > ey/n} = MQJ K?(u) f(z — hu)du = o(1),
{K(u)>M—1ev/nhr}

for all ¢ > 0, since nh? — oo, K satisfies Assumption (K1) and f is continuous.
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Finally, it remains to prove (22). First, we introduce the class of functions W := {(y1,y2) —
Ao(t|z) Z(y1,92),t € [0,1]} and its subgraph oy in R2 x R as

o0 = {(wviw) : Ag(te) Zi(u) > )
_ {(u,v,w) : Af(_tf)u > w} a {(u,v,w) : AO(:“”)U > w}.

We can show that {0y : ¢t € [0,1]} is a VC-class of sets. Indeed, if we look more generally, at the

collection of sets C := {{(x,y) : dz > y},d > 0} in Ry xR and if we define two points (z1,y;) and

(z2,y2) such that, without loss of generality, LS Then, for any § > 0, dxo > yo implies
X i)

that éx1 > y1. Thus, C cannot shatter the set {(z1,y1), (x2,y2)} and by consequence it is a
VC-class of sets. Now, the collection of one set R, is naturally a V(C-class of sets. According
to Lemma 2.6.17 (vii) in van der Vaart and Wellner (1996), C x Ry is aVC-class of sets as well.
Invoking Lemma 2.6.17 (ii), {0} : t € [0, 1]} belongs to a VC-class and as such is VC. Define now
for all z € R+

drp(2) = Pz

We can easily check that ¢y g is of bounded variation. This implies that ¢, g can be decomposed
as the sum of two monotone functions, say QSE\l)ﬁ and gbg?/)g Thus, according to Lemma 2.6.18
(viii) in van der Vaart and Wellner (1996), qbg\% oW and gbg\% oW are VC. Now, according to

Theorem 2.6.7 in van der Vaart and Wellner (1996), there exists a universal constant C' such
that forany j =1,2and 0 <7 < 1

| 2(V;—1)
sup N (0, 0 W, La(@).71Wjl2) < OV (160) () |

T

where V; is the VC-index of <Z5E\]23 oW and W; its envelope function. Now, consider the sequence
of class of functions

Fug =z = VIPEy(x — 2)} @65, o W,

for j = 1,2. Since we only update the previous sets with one single function and only one ball
is needed to recover the class {z — VhPKp(x — z)} whatever the measure @), we have

2(V;—1)
up N(Fog L2(Q),rliFul2) < CVi(160)" () ,

where # is a suitable constant. Moreover, the class of (constant) functions {[Ag(t|2)]7 7t €
[0, 1]} is naturally a VC-class and supyepo 1) [Ao(t]2)]"~# = max(1,2°~7). Thus forany 0 < 7 < 1
we can divide the interval [0, max(1,2°77)] in at least [1/27] balls of radius 7max(1,2577).
Hence

sup N ({TAo(tl)) 7t € [0,1]}, (@), 7 max(1,2777)) < [2” < g (i)g
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Consequently, we have

3C 1\
sup VLA)] 2.0 € 10,11} © 7, . L) 7 max(1,2° DlF o) < % (1600 (1)
Finally, since our class of interest JF;, is included in the class of functions
F = {[Ao(t|2)] 7.t € [0,1]} @ Fu1 + {[Ao(t[2)]" 7, 1 € [0, 1]} ® Fz,

with envelope function 2max(1,2°~7)kF,, using Lemma 16 in Nolan and Pollard (1987), we
have

supN(fn,Lg(Q),27max(1,2577)|\nFn||Q72) < supN(]?n,LQ(Q),27max(1,2ﬁ77)\|nFn|Qg)
Q Q

2 2(V1+Va)
« s (2)

o)

Thus, (22) is established since for any sequence §, N\, 0 and n large enough, we have

dn
J (0, Fn, L2) < f \/log([2n max(1,2°-7)|V L) — Vlog(r)dr = o(1).
0
This achieves the proof of Theorem 2.1 since the covariance structure follows from (7).

6.3 Proof of Theorem 2.2

To prove this theorem, we will make use of the Cramér-Wold device (see, e.g., Severini, 2005, p.
337), according to which it is sufficient to show that

Ay i= ET/nhp (T, — E[T,]) ~ N (0,675¢),

for all £ € R™. A straightforward rearrangement of the terms leads to

v 4 )« . C NaiZe i . C NeaiZe
o = 2 Vi {Z &0y Kinlej — X0)2, e V985 —E| 3 607 Kinla; = X0)Z, e M]ZW]}
i=1 j=1 j=1
1 n
= E;Wi.
Since Wi, ...,W,, are independent and identically distributed random variables, Var(A,) =
Var(Wy) .
——— with
n

Var(W1) = nh? ' " &6Cjx,
j=1k=1
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where
C. — EldK. (1: X )Zﬁj —XjajZi; 1 037 ( _X )Zﬁk —XeakZiy, 1
gk VAR R 1)4¢1€ g B, h\ Tk 1)4, 1€
-E [a}jKth(xj — Xl)Zgj;lei)\jathj’l] E [aZkKk,h(xk - Xl)Zi]ile_Akathk’l] .
According to Appendix 5.1, Var(A,) = €'S€(1 + o(1)). Hence, to ensure the convergence in

distribution of A, to a normal random variable, we have to verify the Lyapounov condition for
triangular arrays of random variables (Billingsley, 1995, p. 362). In the present context this

1
simplifies to verifying EEOWH?)) — 0. We have
3
E(WiY) < oY B (Z 107 K X1>zfiilewztﬁ>

2
+3E (Z |‘fj|a77K X1)ZZ{1eAjathﬂ'*l>

m
i Bi —AjajZi. 1
[Z §J|a s — X0)Zy e

13

[ <Z |§]|a7]K Xl)ZtBjj,le)\jathj,l>

A similar treatment as in Appendix 5.1 yields for all ¢ € N*

q
[(Z |£J|(I’YJK X1)Zt€-{1e)‘jaztj’l>

and hence ZE(|W1[*) = O ((\/W)*l) =o(1).

= O((h")~1),

6.4 Proof of Theorem 2.3

To prove the theorem we will adjust the arguments used to prove existence and consistency
of solutions of the likelihood estimating equation, see e.g. Theorem 3.7 and Theorem 5.1 in
Chapter 6 of Lehmann and Casella (1998), to the MDPD framework. Let (,b > 0, C(.|.) :
[0,1] x RP — [1/2 —(,1 + (] and V¢ € [0,1], r(t) := |Ao(t|x) — C(t|z)|. Define in addition the
b-level of r as

Ty :={te[0,1], r(t) > b}.
We firstly show that for any b > 0

P (w €Ty, Aaws(Ao(t|r)) < Mg (C(t|x))> S, (25)
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as n — o0, for any function C(.|z) different from but close enough to Ay(.|z). By applying a
Taylor series expansion, we have

RanaCO11) = Baas(Aoltle)) = () — Aoftle)) AL, (Ao(tle)) + 5(Cltle) — Ao(t}) B o(Ao(t]))

+5(Cltle) = Ao(tl)* Y (C(tl)),

where C(|z) is an intermediate value between C(t|z) and Ag(t|z). According to Appendix 5.2,
as n — o

sup |AL, (Ao(tla))| = sup [AL) (Ao(t]a)) = 45, (Ao(t]))| 0.
te[0,1] te[0,1]

This convergence implies, that for all 0 < & < b?

P(vie Ty, r(t)AL, (Ao(tle) <t P(VteTb, AL (Ao(tlz)] < v (1) ) sup AL (Aotl)| < )
€
P ( sup Ao(t|a:)‘ ) —1,
teOl

as n — o0. Now, concerning Ag’;’t(Ao(ﬂx)), we have

2
a2 1+ a
2

sup |AD) (Ao(tlx)) — f(2)[Ao(t]2)] %50,

[0}

tef0,1]1 (1+a)

as n — . Consequently, there exists §; > 0 such that

r’(t)

5 A (Ao(tl)) > 817 (1),

vt e [0, 1],

with probability tending to 1.
Finally, since z — 2*e¢~? is bounded VA > 1 on R and by Lemma 2.1

1 n
To(K,a,8,0,0,012) = — 3 Ky(x — Xi)—f(2).
=1

as n — o0, we have for any € > 0, n ' 3" | Kj(z — X;) < f(x) + £ with probability tending to
1. This implies that

sup ‘A(g a)‘ =M< (26)
ae[1/2,1],te[0,1]

with probability tending to 1. We can therefore conclude that

vt € [0, 1],

D180, @] < Mo,
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with probability tending to 1.
Overall, we have shown that

P (w €Ty, Aawi(C(t|z)) — Aaai(Ao(tlz)) > 617%(t) — (1 + Ag) r3(t)) 1,

as n — o, where the right-hand side of the inequality is positive for r(t) < §;1/(1+ M /6). Thus,
setting

sup r(t) < é1/(1+ M/6),
te[0,1]

(25) follows.

To complete the proof we adjust the line of argumentation of Theorem 3.7 in Chapter 6 of
Lehmann and Casella (1998). Let ¢ be a positive function such that V¢ € [0, 1], Ao(t|z) £I(¢) €
[1/2 — ¢,1 4 (]. Define Vb > 0, the event

Su(0,0) = {v e Qi Ve e Th, Aar(Ao(tl) < B Ao(tl) £ 5(8) ),

where we define as previously Tj, := {t € [0,1], (t) > b}. Since Ay(t|x) € [1/2,1] and ¢ > 0, we
can always find a pair (b, ) such that

0<b< inf 6(t).
te[0,1]

~

Thus, assume that b := infe[o1)6(). For all t € Ty, = [0,1] and v € S, (b, ), since Aq 4 ¢(a) is
differentiable with respect to a, there exists A, , 5 (t|) € (Ao(t]r) — 6(t), Ao(t|z) + 6(t)) where
Ax,aﬂg(a) achieves a local minimum, so As’;t(ﬁa’n’g(t) (t|z)) = 0.

By (25), P(S,,(b,0)) — 1 for any b > 0 and [|0||ec small enough, and hence there exists a sequence
n, With [[0pllec 0 and by, := infye[o1) 0n(t) > 0, such that P(Sy(bn,dn)) — 1, as n — c0. Now,
let Apn(tlr) == Agps, @ (tlz) if v € Sp(bn,dr) and arbitrary otherwise. Since v € Sy (bn, 6n)
implies AW (ﬁan(t|x)) = 0, we have that

ozt
P (&%)

a,z,t

(Agn(tlz)) = o) > P (Sy(bn, 0n)) — 1,

as n — oo, which establishes the existence part.

Concerning the uniform consistency of the solution sequence, note that for any € > 0 and n
large enough such that |6, [0 < €, we have

P ( sup |Aan(tlz) = Ao(t]o)| < s> > P ( sup |An(tlz) = Ao(t]o)| < |5n|oo>
te[0,1] te[0,1]

= P sup
tETbn

as n — o0, whence the uniform consistency of the estimator sequence.

~

Aa,n(ﬂx) - AO(t|$)‘ < |5n||00) = P (Sy(bn, 6n)) — 1,
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6.5 Proof of Theorem 2.4
The starting point is (5). According to Corollary 5.1, {\/nhpﬁgl’t(/lo(ﬂx)),t € [0, 1]} weakly

converges, as n — 00, towards a tight centered Gaussian process and
~ 1 2
(A0, (o(tl)) e e 0,1} 5 {f&%;tmo(ﬂx)) = J@) Aot o € 0 1]} .

Combining these results with (26), we have, as n — o0,

-1
{[A&L(Aow» + 5B, (Al A (tl2) - Ao<t|x>>] telo, 1]}

o (1+a)?

5 ,te[O,l]}.

1+«

P - _
S U@ (o
Concerning the covariance structure, it follows from Theorem 2.2 and the fact that

AL (Ag(tlz)) = I TP (t]),

a,z,t

Th(K, Ap(t|z),t,0,0, — 1|x)
TON(t)x) := | To(K, Ao(t]z), t, @, 0,a — 1]z) |.

where

TTL( 7A0(t|x)7t7a7]‘7a|x)

6.6 Proof of Lemma 3.1

We use the following decomposition
Fn,j(y|$) - Fj(y|x) = B [ - Z Kc Y(J)<y} E (KC(‘T - Xl)]l{Yl(j)gy})]

)] [E (Kc<a: - X1>n{yl<j><y}) ~ f@)F;(yl)
n—1 2;;1 Kc(x — Xi)]l{Yi(j)éy} 1 . n

o n—1 Z;Ll Kc(l'—Xi) f(l‘) [TL ;Kc(x_Xi) _E(Kc(x _Xl))]
n—1 Z?:l Kc(:c — Xi)]l{yi(j)éy} 1

nTt Y Ke(z = Xi)  f(=)
4
=: Z k(y|x).

An intermediate result to study 71 (y|x) and T3(y|x) consist in showing that, for ¢ > 1,

[E (Ke(z — X1)) — f(2)]

-1 z v , _ B . B | log |4
S e | R (= Iy
v log c|?
E|s "N'K(z— X)) —E[K.(z — X = | 2
[5315 n ; (z = Xi) ~ E[Ke(x 1)]‘] o( o >( )
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To this aim, let us introduce the class

r—v

g := {(u,v)ﬁK( 7 )ﬂ{uéy};yER,$€RP,d>O}

xr —.
= {K (d);xeRp,d>0}®{ﬂ{.<y};yeR}

=: G1 ®0.

Under Assumption (Ks), G; is a uniformly bounded VC-class of measurable functions (see e.g.
Giné and Guillou, 2002). Next, since the collection of all cells {(—o0,a],a € R} is a VC-class
of sets, it follows that Gy is also a uniformly bounded VC'-class of measurable functions. Now,
using the fact that the covering number of the direct product of two VC-classes is bounded by
the product of the respective covering numbers,

r —v

)ﬂ{uéy};yeR7$€RP,C:Cn>0},
&

Gy = {(u,v)—>K<

admits the same bound for the covering number as G, that is

2(Vg—1) Ag vg
NG Lo(Q). 7 K ]e) < € V5(160)"% () - () ,

T

where C' is a universal constant, 7 € (0,1) and Vg is the VC-index of G (see Theorem 2.6.7
in van der Vaart and Wellner, 1996). Now, according to Proposition 2.1 in Giné and Guillou
(2001) (see also Theorem 2.1 in Giné and Guillou, 2002) for o2 > Supgeg, Var(g), U = |K |
and 0 < o < U, there exists a universal constant B such that
nilch(x—Xi)]l ) —E[Kc(a}—Xl)]l o ]
~ (Y <y} (Y1 <y}

A A
< [n]7'B [Ul/g log <Ug) + \/ugn02 log <Ug>
o o

x—X
var (8 (P 10, ) < [ R G - cdu < @K,

Sp—1

n

E sup
(y,x)eERXRP

Since

the choices 0% = 02 := | f||lw|K||? and U = ||K | imply that 02 < U? for n large enough.
This yields (27). Similar arguments can be used in order to show (28). Since f(z) > b,Vx € Sx

log |4
E [ sup |Tk(y|x)|] =0 ( |ogc|> , for k =1,3.

(y,x)eERxSx ncP
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Concerning Ty (y|x), remark that

E [KC(CU - Xl)ll{yl(j)gy}] — f(x)F(y|x) E[Ke(z — X1)F(y[X1)] = f(2)F;(y|x)

o Kc(z —u) [Fj(ylu) — Fj(y|z)] f(u)du

+Fle) [ Kolo =)l () = f(@)]du
p
= o(c"),
by Assumptions (D) and (F). The same bound can also be obtained for Ty(y|xz). This achieves
the proof of Lemma 3.1.
6.7 Proof of Theorem 3.1

Let
Z, := {g9757n:966,5EH}

where for 0 € © :=[0,1] x [1/2,1], and § € H := {6 = (61,02); 6 : R x R x Sx — R},

96,6,n (y17 Y2, U) = \ hpKh ($ - u)qe,(s (yb Y2, U)
= VWK (z —u)a?[Zys(y1, y2,u)]” exp (—AaZg s (y1, Y2, u))

with

—log (|61 (y1, y2, u)|) —log(|52(y1,y2,u)|)).

Z = i
9,6(y17 Y2, U) min ( 1—¢ ) t

For convenience, denote 6,, := (Fy, 1, Fy,2) and &g := (F1, F3). According to Lemma 3.1, |6, —
Jdp| converges in probability towards the null function Hy := {0} in H, endowed with the norm
0]l := [|01]c0 + |02]|c0 for any 6 € H. In order to apply Theorem 2.3 in van der Vaart and
Wellner (2007), we have now to show

Assertion 1: supg.g v/nPGy(0,b,) — 0 for every b, — 0

and

Assertion 2: supyeg |GnGr(6,0)] 250, for every b > 0,

where G,,(0,b) is the minimal envelope function for the class

gn(ea b) = {99,5o+rn(5,n —90,60,n ¢ o€ H, H(SHH < b} y

i.e.
Gn(ea b) = sup |99,60+7‘n5,n - 99,50,n|
6] r<<b
=V hpl{h(‘r - ) Sup |q0760+rn5 - q'9,50|' (29)
6]z <b

Now, remark that V(y1,y2,u) € R x R x Sx

SUP  [G0.60+mm0 — 40,601 (Y1, Y2, 1) = sup |40.50-+rn6 — 90,60 |(Y1, Y2, w),
0]l <b (01(y1,y2,u),02(y1,y2,u))€B

29



where B := {(z,y) € R? : |z| +|y| < b}. Since B is compact and § — gy 5(v1, y2,u) is continuous,
(29) reaches its supremum on at least one position 6 ,(y1, y2, %) = (87 g, (y1,Y2, %), 65 o, (Y1, Y2, T))
in B. Thus, according to Theorem 18.19 in Alipraﬁtis and Border 7(27()06), one can find a mea-
surable function (5;‘,,) bounded by b in H such that

Gn(0,b) = |99,50+rn5;b,n = 90,60,n-

Proof of Assertion 1. For any positive sequence b, — 0, we have

VAPGo(0,by) = Vol | K(u)E [|q6,50+m5;=bn | g hu] (& — hu)du.

Sp—1

Note that for any (0,0") € H x H, using (14)

+00
96,6 — ao.57 < a”fo 18— Aas|s” e Wsemin(Zy 5,2, ) max(Zo 5.2, 45 (30)

Consequently
X=x— hu]

E [Iq9,50+rnagjbn — 40,60 |
e 1A

< a”f |8 — Aas|s" e P (8 € [min(Zp 51 r,5%, > Z0.50), 0ax(Zg 50 41, 6%, 729,60)]‘)( =T — hu) ds.
0 »yn »un

Remark now that

{3 € [min(Zo,(sown&;;’bn » 26.60)5 maX(Ze,(sown&;‘,bn ’ ZG,éo)]}
1 41
{es € [min <max (‘Fl + Tn(sfe,bn t) , nax <F11—t : th)> ,
1 A1
F+ rn5§797bn‘t) , max (Ff—t , F;))] }
1 1 1 1
c {e‘s € [min (‘Fl + Tnéikﬁ,bn‘ -t ,Fllt) , max (‘Fl + rn(sfg,bn‘lft Fy t)]}
11 11
v {es € [min <|F2 + 700504, | ,F2t> , max (|F2 + 700504, | ,F;)]}

,Fl)]}

, )]}

c {e_(l_t)s € [F1 — rpbn, F1 + rnbn]} V) {e_ts € [Fo — rpby, Fo + rnbn]}
=: Ap1(s) uApa(s).

Since for any subsets A and B we have ;4 py < {4y + lyp}, we can deduce that

1
1—t
)

FQ + 7’”5;9’%

2
max (max (‘Fl + rnéiabn‘lﬁ :

c {ef(lft)s € [min(|F1 + rn(sfﬁbn , 1), max(|F1 + rn(sf@,bn

o{e™ € min(|Fy + 7005, | Fo). max(|Fy + 700,

P (8 € [min(Zp 51,67, +26.60)s 08X (Zg 5041, 5%, +Z0.50)[|X =2 — hu)

SP(An1(s)|X =2 — hu) + P (A, 2(5)|X = 2 — hu)
1

1
- Jo e - 0sefomrybpvsraba ]} 40 + L Wfe=teeforybuwotraba]} 40
< 2rby, + 2rpby, = 4rpby,. (31)
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This implies that

o0
X = — hu] < 4VahPrab, sup J 15 — Aas|s® le s ds.

Vnh?E [|QG750+7~”5§,) — 40,50
;0n aE[l/?,l] 0

This achieves the proof of Assertion 1 since K is bounded, sup,erq /2,11 SSO a¥|B—Aas|s? e ds <
400, vVnhPr, — 0 and b, — 0.

Proof of Assertion 2. The idea is to apply Lemma 2.2 in van der Vaart and Wellner (2007).
To this aim, first observe that the class &,(6,b) admits an envelope function E, of the same
form as F,, in (24), for some suitable constant M > 0. Thus E,, satisfies the conditions (20) and
(21), with F), replaced by E,,. Consequently, it remains to show the two following convergences

sup PG%(0,b) — 0, (32)
0e©
T(dn, (G (60,5) : 0€ O}, Ly) —> 0 for all dy \, 0. (33)

We start to show (32). Since

PG2(6,b) = J K2WE (1do,304r,53, — 000 2|X = @ = hu) f(z = hu)du,

Sp—1

and (30), (32) follows from the proof of Assertion 1.

Now, to deal with the uniform entropy integral, we can adjust the lines of proof of Theorem 2.1
by considering the classes of functions defined on R x R x Sx

oo Wol, j=1,2,
where W is either the function

(Y1592, u) = (= log(Fi1(y1|w)), —log(Fa(yz2|u))

or

(yla Y2, U) - (_ log (‘Fl(y1|u) + Tnéi@,b(yh Y2, U) ) y 1Og (‘FQ(y2|u) + rn(s;@,b(ylv Y2, U)D)

which are VC-classes. This allows us to prove that there exist positive constants C' and V' such
that

14
sup N((G(0.0):0 € O Lo(Q) 71 Eulo) < € (1)

from which (33) follows. This achieves the proof of Theorem 3.1.
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6.8 Proof of Theorem 3.2
One can check that the proof of Theorems 2.3 and 2.4 are mainly due to the asymptotic propertles

of Aﬁj)z +J = 1,2 and 3. Thus, if we are able to prove that the two key statistics T}, and T, are
sufﬁc1ently close enough, in the sense that
sup nhp n| (K, a,t, A, B,7]x) = op(1), (34)
te[0,1],a€(1/2,1]
and
sup vVnhPE [ I, — T, ] (K,a,t,\ B,v]x) = o(1), (35)

te[0,1],ae(1/2,1]

then we can swap Ag)ﬂ by Aglt, j = 1,2 and 3. According to Theorem 3.1, (34) is a direct

consequence of (35). So it remains to prove (35). Note that

vVnh? E [ Tv’n 2 [«/hPKh T — )avzﬁ —XaZn 1,

n,t, i€
=1
—\/ﬁK}l(IL‘ - Xi)CLVZfie_)\aZt’i] ]
VIE | [96.5,.0 (Y YD, X0) = g5 (0, 1, X1)|
< V/nPGyL(0,b),
since d,, € 69 + r,B(0,b) where B(0,b) := {0 : |d|x < b}. This implies that

sup vVnh? E [ vn —

t€[0,1],a€[1/2,1]

T | (K,a,t,0,8.412) = ViE

3\'—‘

N

o] (at A BAle) < sup VnPGa(0,5) = of1)
te[0,1],a€[1/2,1]

by Assertion 1 since it is clear from its proof that b, — 0 can be replaced by any fixed value b
in (31) without changing the conclusion. This achieves the proof of Theorem 3.2.
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