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ONE-DIMENSIONAL ELASTIC COLLISIONS IN A PLATONIC QUADRIDIMENSIONAL SPACE 
 

CHOCS ÉLASTIQUES FRONTAUX DANS UN ESPACE QUADRIDIMENSIONNEL PLATONICIEN 

 

Alain Jégat 

 

Abstract 

From the concepts presented in the articles entitled " Towards a modeling of De Broglie 

waves in a platonic quadridimensional space" and " An idea of the mass of a particle in a platonic 

quadridimensional space" is here developed the study, in this Platonic model, of the simple case 

of elastic collision of two relativistic particles during a frontal impact. 

By proposing the introduction of some additional absolute concepts and their application 

to this study, this article also aims to enrich the toolbox available for analysis of relativistic 

phenomena in this geometrical framework. 

 

Résumé 

À partir des concepts exposés dans les articles intitulés « Vers une modélisation de l’onde 

de phase de De Broglie dans un espace quadridimensionnel platonicien» et «Une idée de la 

masse d’une particule dans un espace quadridimensionnel platonicien»,  est développée ici 

l’étude, dans le cadre du modèle platonicien, du cas simple de la collision élastique de deux 

particules relativistes lors d’un choc frontal. 

En proposant l’introduction complémentaire de quelques notions absolues et leur 

application à cette étude, cet article vise aussi à enrichir la palette d’outils  disponible pour 

l’analyse, dans ce cadre géométrique, des phénomènes relativistes. 

 

1. The geometrical framework  
 

This modeling is based on the Platonic space outlined in the following articles: 

« UN MODÈLE PLATONICIEN (EUCLIDIEN-PROJECTIF) POUR LA THÉORIE DE LA 

RELATIVITÉ RESTREINTE » (pré-publication hal-01081576, version 1). 

« A PLATONIC (EUCLIDEAN-PROJECTIVE) MODEL FOR THE SPECIAL THEORY OF 

RELATIVITY » (pre-publication hal-01165196, version 1). 

 , , , ,O i j k h  is a frame for the four-dimensional Euclidean space whose axes are denoted

 OX ,  OY ,  OZ ,  Ow ; the direction of the projection is that of the vector h . 

Following the hal-01207447 v1 and hal-01213447 v1 articles, the notion of relativistic 

mass of a particle is described here as a result of its interaction with a stratification of the 

four-dimensional Platonic space by a sequence of hyperplanes  ( )nH  which are orthogonal 

to the direction of the projection h , regularly spaced by a distance
0 0w  . 
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2. Introduction of some absolute concepts 

This section is intended to introduce some concepts, described as absolute, which are 

independent of any moving reference frame in the Platonic space. 

The application of these absolute concepts will allow us to obtain the relations between 

the initial and final trajectories of two relativistic particles after a one-dimensional elastic 

collision. 

 

2.1. Absolute time concept 

Given the regular motion of the objects observed in the Platonic universe (« between two 

events, the distances traveled by all the observed objects are equal, regardless of their 

trajectory »), we can introduce a notion of absolute time in the following terms : 

« Absolute time between two events is the distance traveled by (all) the mobiles between 

these two events .» 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, in the above diagram, if the event E1 occurs while the mobiles M, N and P are 

respectively at M1, N1 and P1 and if the event E2 occurs while the mobiles M, N and P are 

respectively at M2, N2 and P2, we can define the absolute time T  between these two events 

by the relation T r   . 

Note that in this Platonic space, one can thus introduce a notion of absolute time which is 

measured in meters. 
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2.2. Absolute velocity 

Into the frame  , ,O i h , let us consider a ponctual mobile M whose straight trajectory is 

directed by a vector i , with  ,i i   and two distinct lines X a  and X b .  

 

 

 

 

 

 

 

 

 

 

 

 

With X b a   , we can define the absolute velocity of M  by : 

cos
cosabs

X r
v

T r




 
  
 

. 

Note that here the absolute velocity of M  is a dimensionless quantity. 
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2.3. Absolute frequency of De Broglie waves 

Let us consider a ponctual particle P moving along a straight line led by a vector i , with 

 ,i i  , linked to a stratification of the Platonic space whose distance is 
0w  .  

To this particle may be associated De Broglie waves (see the articles cited in reference). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider a line whose equation is X a . 

We can define the absolute frequency of these De Broglie waves considering two of its 

successive occurrences 
( )

1

nE  and 
( 1)

2

nE 
  at X a  (see above diagram). 

The absolute time separating these two occurrences being 
0 sinT r w      , the 

absolute frequency of the De Broglie waves can be given by :  
0

1 1

sin
abs

T w



 
 

. 

Note that this absolute frequency is expressed in 1m . 
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2.4. Absolute energy and absolute mass of a particle 

 

  By adopting for absolute quantum of action the quantity 
absh hc  (in .J m ), associated 

to the absolute frequency of the De Broglie waves 
0

1

sin
abs

w






  (in 1m ), we are led to 

define as absolute energy of the particle P (in J ) the quantity : 
 

0 sin
abs abs abs

hc
E h

w



 


 . 

 

 The link between the energy 
absE  and the energy E of the particle measured in a reference 

frame R
 (where   is arbitrary, not a multiple of ) is given by : 

 

2

2

sin1 cos cos
.

sin
1

abs
abs

E
E E

v

c

 




  



 

 

 

  From this result, we can define the notion of absolute mass (in kg): 
 

0
02

0 0

, .
sin sin

abs
abs

E mh h
m with m

c c w c w 

 
    

  
   

 

(Note that the induced formula  
0

0

h
w

cm
    corresponds for 

0w   to the Compton 

wavelength of a particle, m0  being the rest mass of this particle P.) 

 

 

  Into the reference frame R
, is so obtained the following coherence : 

2

0

1 cos cos

sin sin

hc
E h mc

w

 


 


   


, 

 

with  
2

0

2

sin 1 cos cos

sin sin
1

abs c

wv

c

   


 


  




  

 

  and   
2

0

2

sin 1 cos cos

sin sin
1

absm h
m

c wv

c

  

 


  




. 
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2.5. Absolute linear momentum of a particle 

By analogy with the classical notion of momentum of a particle, we define its absolute 

momentum as being equal to the product of its absolute velocity by its absolute mass, 

 i.e.   
0 tan

abs abs abs

h
P m v

c w 
 


. 

(Note that this absolute momentum is expressed in  kg.) 

 

 

 

3. Application to the one-dimensional elastic collisions 

 

3.1. Two hypotheses 

Let us consider two ponctual particles P1 and P2 whose straight trajectories are directed 

respectively by the vectors i  et  i , associated to the stratifications whose distances are 

respectively 
01w  and 

02w . 

After the elastic collision of these two particles P1 and P2, if we call  'i  and 'i  the 

direction vectors of their new trajectories , we will choose as hypotheses : 

 

 the sum of absolute energy is conserved, 

i.e.   
01 02 01 02sin sin sin ' sin '

hc hc hc hc

w w w w   
  

   
 ; 

 

 the sum of absolute momentum is conserved, 

i.e.   
01 02 01 02tan tan tan ' tan '

h h h h

c w c w c w c w   
  

   
 . 

 

With the relations 
01

01

h
m

c w



 and 

02

02

h
m

c w



 (see articles cited by reference), these 

two assumptions will lead to the results described in the following paragraph. 
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3.2. One-dimensional elastic collisions 

 

 

 

 

 

 

 

 

 

 

 

- Diagram 1 - 

 

 

 

 

 

 

 

 

 

 

 

 

- Diagram 2 - 
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- Diagram 3 - 

 

Let us consider two particles P1 and P2 whose rest masses are respectivly m01 and m02 

coming into elastic collision in the Platonic space at the point « Impact » (see Diagram 2).  

This impact is perceived by the observer I1 into the reference frame R  ; the trajectory of this 

observer is represented by a blue dotted line.  

(Note that in the Platonic space, this collision can be represented with distinct values of w(P1) 

and w(P2). Here , they are chosen equal in Diagram 2 by pure graphical convenience.) 

Before the collision, in Diagram 1, the trajectory of P1 is directed at an angle  , the trajectory 

of P2 at an angle . The particles P1 and P2 are observed into R  at P1 and P2. 

After the collision, the trajectory of P1 is directed at an angle ' , that of P2 at an angle ' . 

The particles P1 and P2 , designated by P’1 et P’2 , are observed into R  at P’1 and P’2. 

From the two assumptions made in the previous paragraph , these two angles are given, with 

0     and  0    , by the following equations (cf. expressions with the rest masses at the 

end of this article): 

  

 

2 2 2

01 02

2 2 2 2

01 02 01 02

cos cos sin
cos ' cos ;

1 2cos cos cos sin 2 sin sin

w w

w w w w

  
 

     

  
 

       
 

  

 

2 2 2

01 02

2 2 2 2

02 01 01 02

cos cos sin
cos ' cos

1 2cos cos cos sin 2 sin sin

w w

w w w w

  
 

     

  
 

       
. 

It is noteworthy that on the one hand, these relations are absolute to the extent that they 

do not depend on the angle of   of the reference frame. 
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On the other hand, they lead, regardless of the value of the angle of the reference frame, 

to the conservation in this reference frame of the global energy and global momentum, namely: 

' '

01 1 02 2 01 1 02 2

2 2 '2 '2

1 2 1 2

2 2 2 2

2 2 2 2

01 02 01 02

2 2 '2 '2

1 2 1 2

2 2 2 2

1 1 1 1

1 1 1 1

m v m v m v m v

v v v v

c c c c
m c m c m c m c

v v v v

c c c c


  

    


   


   


 

i.e.  
01 02 01 02

01 02 01 02

cos cos cos cos cos ' cos cos ' cos

sin sin sin sin sin sin ' sin sin '
1 cos cos 1 cos cos 1 cos 'cos 1 cos 'cos

.
sin sin sin sin sin sin ' sin sin '

m m m m

m m m m

       

       
       

       

   
  

    
   
  

 

 

 

3.3. Study of some particular cases  

 First, if 
01 02w w    (i.e. 

01 02m m ) we obtain, independently of the reference frame R
, 

a geometrical symmetry whose simplicity is noteworthy .  

Indeed, in this case, the above formulas lead to '   and '  . 
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 If 
01 0w   or if 

02w  , then '   and 
 2

2

2cos cos 1 cos
cos '

1 cos 2cos cos

  


  

 


 
. 

This last result, of abstruse appearance, leads just to the following fact: in any reference 

frame R  where the particle 
1P  is at rest, the speed of 

2P  and 
2 'P  are opposite . 

Indeed, in this reference frame, we have (cf. hal-01165196, v1) : 
 2 cos cos

1 cos cos

v P

c

  

 





 

and there is obtained, after simplification: 
 2 ' cos ' cos cos cos

1 cos cos ' 1 cos cos

v P

c

    

   

 
  

 
. 

 

 

 

 

 

 

 

 

 

 

 

 Symmetrically, if 
01w   or if 

02 0w  , we obtain '   and 

 
 2

2

2cos cos 1 cos
cos '

1 cos 2cos cos

  


  

 


 
. 

 

  If 0   (i.e. if  1v P c ), then 
   

   

2 2

02 01

2 2

02 01

1 cos 1 cos
cos '

1 cos 1 cos

w w

w w

 


 

   


    
  

and ' 0   (i.e.  2 'v P c ). 

     If    (i.e. if  1v P c ), then 
   

   

2 2

01 02

2 2

01 02

1 cos 1 cos
cos '

1 cos 1 cos

w w

w w

 


 

   


    
  

and '   (i.e.  2 'v P c ). 



11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  If 0   (i.e. if  2v P c ), then 
   

   

2 2

01 02

2 2

01 02

1 cos 1 cos
cos '

1 cos 1 cos

w w

w w

 


 

   


    
  

and ' 0   (i.e.  1 'v P c ). 

     If    (i.e. if  2v P c ), then 
   

   

2 2

02 01

2 2

02 01

1 cos 1 cos
cos '

1 cos 1 cos

w w

w w

 


 

   


    
 

and '   (i.e.  1v P c ). 

 

 

 

4. Expressions of cos(’) and cos(’) based on the rest masses 
 

  

 

2 2 2

02 01

2 2 2 2

02 01 01 02

cos cos sin
cos ' cos ;

1 2cos cos cos sin 2 sin sin

m m

m m m m

  
 

     

 
 

   
 

 

  

 

2 2 2

02 01

2 2 2 2

01 02 01 02

cos cos sin
cos ' cos .

1 2cos cos cos sin 2 sin sin

m m

m m m m
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5. Conclusion 

Through this study, this article aims to show that the introduction of absolute concepts 

(energy, momentum , ...) can easily model relativistic phenomena in the Platonic framework . 

From this, it seems promising to continue their application (eg to study the elastic two-

dimensional relativistic collisions or inelastic collisions), or even to increase their number (eg by 

introducing the concept of absolute angular momentum) to solve the modeling of other 

problems, as the two-body problem . 

And beyond is needed of course the search for deeper understanding of the links between 

these concepts of absolute energy, momentum, angular momentum, … and the geometrical 

structures proposed into the Platonic model. 
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