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ONE-DIMENSIONAL ELASTIC COLLISIONS IN A PLATONIC QUADRIDIMENSIONAL SPACE

CHOCS ELASTIQUES FRONTAUX DANS UN ESPACE QUADRIDIMENSIONNEL PLATONICIEN

Alain Jégat

Abstract

From the concepts presented in the articles entitled " Towards a modeling of De Broglie
waves in a platonic quadridimensional space"” and " An idea of the mass of a particle in a platonic
quadridimensional space” is here developed the study, in this Platonic model, of the simple case
of elastic collision of two relativistic particles during a frontal impact.

By proposing the introduction of some additional absolute concepts and their application
to this study, this article also aims to enrich the toolbox available for analysis of relativistic
phenomena in this geometrical framework.

Résumeé

A partir des concepts exposés dans les articles intitulés « Vers une modélisation de 'onde
de phase de De Broglie dans un espace quadridimensionnel platonicien» et «Une idée de la
masse d'une particule dans un espace quadridimensionnel platonicien», est développée ici
’étude, dans le cadre du modéle platonicien, du cas simple de la collision élastique de deux
particules relativistes lors d'un choc frontal.

En proposant I'introduction complémentaire de quelques notions absolues et leur
application a cette étude, cet article vise aussi a enrichir la palette d’outils disponible pour
I'analyse, dans ce cadre géométrique, des phénomenes relativistes.

1. The geometrical framework

This modeling is based on the Platonic space outlined in the following articles:

« UN MODELE PLATONICIEN (EUCLIDIEN-PROJECTIF) POUR LA THEORIE DE LA
RELATIVITE RESTREINTE » (pré-publication hal-01081576, version 1).

« APLATONIC (EUCLIDEAN-PROJECTIVE) MODEL FOR THE SPECIAL THEORY OF
RELATIVITY » (pre-publication hal-01165196, version 1).

(O,T, ], K, h) is a frame for the four-dimensional Euclidean space whose axes are denoted

(OX ) , (OY ), (OZ ), (OW) ; the direction of the projection is that of the vector h.

Following the hal-01207447 v1 and hal-01213447 v1 articles, the notion of relativistic
mass of a particle is described here as a result of its interaction with a stratification of the

four-dimensional Platonic space by a sequence of hyperplanes H™ which are orthogonal

to the direction of the projection h , regularly spaced by a distance Aw, > 0.



2. Introduction of some absolute concepts

This section is intended to introduce some concepts, described as absolute, which are
independent of any moving reference frame in the Platonic space.

The application of these absolute concepts will allow us to obtain the relations between
the initial and final trajectories of two relativistic particles after a one-dimensional elastic
collision.

2.1. Absolute time concept

Given the regular motion of the objects observed in the Platonic universe (« between two
events, the distances traveled by all the observed objects are equal, regardless of their
trajectory »), we can introduce a notion of absolute time in the following terms :

« Absolute time between two events is the distance traveled by (all) the mobiles between
these two events .»

wi \

Thus, in the above diagram, if the event E1 occurs while the mobiles M, N and P are
respectively at M1, N1 and P1 and if the event E2 occurs while the mobiles M, N and P are
respectively at M2, N2 and P2, we can define the absolute time AT between these two events
by the relation AT =Ar.

Note that in this Platonic space, one can thus introduce a notion of absolute time which is
measured in meters.



2.2. Absolute velocity

Into the frame (O,T, ﬁ), let us consider a ponctual mobile M whose straight trajectory is

directed by a vector i, with (T,E) = f and two distinctlines X =a and X =D.

A | |
11' ] ]
((cfp)
_/
A |
s |
& 1 |
/ |
/- i |
r ] ]
, | |
/' I |
’ : |
s iy P! i |
h \ | AX = Arcosff |
o | n n -
0 7 X=a 1 X=b X

With AX =b—a, we can define the absolute velocity of M by :

_AX _Arcosﬁ_C

0s 3.
s AT Ar p

Note that here the absolute velocity of M is a dimensionless quantity.



2.3. Absolute frequency of De Broglie waves

Let us consider a ponctual particle P moving along a straight line led by a vector i , with

(i, iﬁ.) = [, linked to a stratification of the Platonic space whose distance is Aw, .

To this particle may be associated De Broglie waves (see the articles cited in reference).

Consider a line whose equationis X =a.

We can define the absolute frequency of these De Broglie waves considering two of its
successive occurrences El(”) and E§"+l) at X =a (see above diagram).
The absolute time separating these two occurrences being AT = Ar = Aw, sin S, the

1 1

absolute frequency of the De Broglie waves can be givenby: v, =—=———,
Jrequency 8 8 Vi Da AT Aw,sin B

Note that this absolute frequency is expressed in m™.



2.4. Absolute energy and absolute mass of a particle

® By adopting for absolute quantum of action the quantity h, . =hc (inJ.m), associated

1 _
to the absolute frequency of the De Broglie waves v, = ————— (inm ), we are led to
Aw, sin B

define as absolute energy of the particle P (in J ) the quantity :

hc
E,.=h, o, =———
abs abs ~abs - .
Aw, sin S

The link between the energy E_ . and the energy E of the particle measured in a reference

frame R, (where « is arbitrary, not a multiple of 7) is given by :

1-cosacosf  E,,sing
sina V2o
-
c

E=E

abs

@ From this result, we can define the notion of absolute mass (in kg):

m :Ea"s— h (— Mo , with m, = h }

¢ cAw,sing sin 8 CAW,

(Note that the induced formula Aw, = L corresponds for Aw, to the Compton
0

wavelength of a particle, Mo being the rest mass of this particle P.)

® Into the reference frame R_, is so obtained the following coherence :

hc L Ll-cosacosf
Aw, sinasin g

2

E=hv= mc*,

Vs SINS € Xl—cosm:osﬂ

with v = . -
1 V2 Aw, sinasin g
C2
m_..sin h  1-cosacos
and m=—2 2ﬁ: X 'B

LV CAwW, sinasinf
o



2.5. Absolute linear momentum of a particle

By analogy with the classical notion of momentum of a particle, we define its absolute
momentum as being equal to the product of its absolute velocity by its absolute mass,

h

ie. P vV, =— .
abs * abs c AWO tan ,B

abs

=m

(Note that this absolute momentum is expressed in kg.)

3. Application to the one-dimensional elastic collisions

3.1. Two hypotheses

Let us consider two ponctual particles P1 and P2 whose straight trajectories are directed
i e

respectively by the vectors 1, et 1, associated to the stratifications whose distances are

respectively Aw,, and Aw,, .

After the elastic collision of these two particles P1 and P, if we call s and C the

direction vectors of their new trajectories , we will choose as hypotheses :

O the sum of absolute energy is conserved,

hc hc hc hc

i.e. —— + — = : + : ;
Aw, sin B Awg,siny  Aw, sin 8' Aw,, sin y'

® the sum of absolute momentum is conserved,

. h h h h
.e + = + .
CAW,, tan B CAwy, tany  CcAwy, tan B' CAwy, tany’
. . h h . .
With the relations m;; = —— and my,, = ——— (see articles cited by reference), these

c WOl 02
two assumptions will lead to the results described in the following paragraph.



One-dimensional elastic collisions

3.2.

-
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- Diagram 2 -
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- Diagram 3 -

Let us consider two particles P1 and P2 whose rest masses are respectivly Mo1 and Moz
coming into elastic collision in the Platonic space at the point « Impact » (see Diagram 2).
This impact is perceived by the observer |1 into the reference frame R ; the trajectory of this

observer is represented by a blue dotted line.

(Note that in the Platonic space, this collision can be represented with distinct values of W(P1)
and W(P2). Here, they are chosen equal in Diagram 2 by pure graphical convenience.)

Before the collision, in Diagram 1, the trajectory of P1 is directed at an angle 5, the trajectory

of P2 atan angle y . The particles P1 and P2 are observed into R, at P1¢ and P2a.
After the collision, the trajectory of P1 is directed at an angle £, that of P2 at an angle y".
The particles P1 and P2, designated by P "1 et P 2, are observed into R, at P14 and P 24.

From the two assumptions made in the previous paragraph , these two angles are given, with
0< p<m and 0<y<r,Dby the following equations (cf. expressions with the rest masses at the

end of this article):

(Awg, — Awg,” ) (cos y —cos B)sin’ y

cos B'=cosy +— > ) T —
Aw,, (1—2003,8005;/+cos 7/)+Aw02 Sin® y + 2Aw,, Aw,, sin #sin y

(Awg,” - Awy,” ) (cos y —cos B)sin’ B
Aw,* (1-2¢0s Bcos y +¢0s° )+ Aw,” sin” B+ 2AWy Awg, sin Asiny

CoSy'=cCos f +

It is noteworthy that on the one hand, these relations are absolute to the extent that they
do not depend on the angle of & of the reference frame.



On the other hand, they lead, regardless of the value of the angle & of the reference frame,
to the conservation in this reference frame of the global energy and global momentum, namely:

mg,V. m,,V m,,V. m,,V
01 12 + 02 22 — 01 1.2 + 02 2‘2
B T I I
¢’ ¢’ c? ¢’
mmc2 My,C My, C + mozc2
2 2 2 2
1- _Vy v _V,
c? ¢’ c’ ¢’
cos f—cosa COSy—CoSa COSf'-CoSa COS y'—CoS &
ie | " singsing % sinasiny sinasin ' sinasin y'
o 1-cos fcosa l-cosycosa  1-cosp'cosa 1-cosy'cosa
% sinasin g sinasin y sinasin ' sinasiny'
3.3. Study of some particular cases

@ First, if Aw,, = Aw,, (i.e. my, =m,) we obtain, independently of the reference frame R ,

a geometrical symmetry whose simplicity is noteworthy .
Indeed, in this case, the above formulasleadto f'=y andy'= f.




2cos 3 —cos y (1+cos” B)

@ If Aw., > 0 orif Aw,, —> 4o, then #'— £ and COSy ' — )
o % Pk 7 i cos? B —2c0s BCOSy

This last result, of abstruse appearance, leads just to the following fact: in any reference

frame R ; Where the particle B is atrest, the speed of P, and P," are opposite .

v, () cosy—cos

Indeed, in this reference frame, we have (cf. hal-01165196, v1) :

1-cos Sscosy
vV, (R’ COS ¥'—C0s COS ¥ —COS
and there is obtained, after simplification: ﬂ( 2 ) = Y 'Bl =— 4 B .
c 1-cos fpcosy 1-cos fcosy
w ‘l P /'/
dy
4
-:.I\,.
|I'|1|Z-'J-3t |
Ouﬂ
Oq .da
| I i'|' S iB' AJ’_D
I i B o '
- Oy .-.g(

® Symmetrically, if Aw,, — +oo or if Aw,, — 0, we obtain y'— y and

2cos y —cos B(1+cos’ )

cosfB'— > :
1+cos” y—2cos g cosy

AW, (1+c0s y) — Awg, (1-cos )
AW, (1+¢0s )+ Awg, (1—cos y )

@ «1f B —0 (ie.if V(P)—cC), then cos B' >
and y'—> 0 (ie. V(P2 ')—)C).

AW, (1+€0s 7 ) — Awg, (1—cos y )
AW, (1+€0S 7 ) + Awg, (1—cos 7 )

If B— 7z (ie.if V(P)——C), then cos ' —

and y'—> 7 (i.e. V(P2 ')—)—C).
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Impact

AW, (1+cos B)— Awg, (1-cos )
AW, (1+cos )+ Awg, (1—cos 3)

@ «1f y >0 (ie.if V(P,) >C), then cosy'—

and B'—0 (ie. V(P,')—>c).

AW, (1+cos ) — Awg, (1-cos )

olf i f P - ) h '
y = (ie.if V(P,) > —C), then oSy —>Awgz(1+cosﬁ)+Aw§l(1—cosﬂ)

and ' — 7 (ie. V(P,) > —cC).

4. Expressions of cos(#’) and cos(y’) based on the rest masses

(mg,” —my,?)(cos y —cos B)sin’ y

Mg, (1-2¢0s Bos y +cos” y )+ my,*sin? y + 2mymy, sin Bsin y

cosfB'=cosy +

(mg,” —my,?)(cos y —cos B)sin’ B
my,” (1-2c0s Bcos y +cos” B)+my,” sin® 8+ 2mymg, sin Asin y

CoSy'=Cos f +

¥
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5. Conclusion

Through this study, this article aims to show that the introduction of absolute concepts
(energy, momentum, ...) can easily model relativistic phenomena in the Platonic framework .

From this, it seems promising to continue their application (eg to study the elastic two-
dimensional relativistic collisions or inelastic collisions), or even to increase their number (eg by
introducing the concept of absolute angular momentum) to solve the modeling of other
problems, as the two-body problem .

And beyond is needed of course the search for deeper understanding of the links between
these concepts of absolute energy, momentum, angular momentum, ... and the geometrical
structures proposed into the Platonic model.
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