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The geometrical framework

This modeling is based on the Platonic space outlined in the following articles:   , , , , O i j k h is a frame for the four-dimensional Euclidean space whose axes are denoted   OX ,   OY ,   OZ ,  

Ow ; the direction of the projection is that of the vector h .

Following the hal-01207447 v1 and hal-01213447 v1 articles, the notion of relativistic mass of a particle is described here as a result of its interaction with a stratification of the four-dimensional Platonic space by a sequence of hyperplanes 

Introduction of some absolute concepts

This section is intended to introduce some concepts, described as absolute, which are independent of any moving reference frame in the Platonic space.

The application of these absolute concepts will allow us to obtain the relations between the initial and final trajectories of two relativistic particles after a one-dimensional elastic collision.

Absolute time concept

Given the regular motion of the objects observed in the Platonic universe (« between two events, the distances traveled by all the observed objects are equal, regardless of their trajectory »), we can introduce a notion of absolute time in the following terms :

« Absolute time between two events is the distance traveled by (all) the mobiles between these two events .» Thus, in the above diagram, if the event E1 occurs while the mobiles M, N and P are respectively at M1, N1 and P1 and if the event E2 occurs while the mobiles M, N and P are respectively at M2, N2 and P2, we can define the absolute time T  between these two events by the relation Tr    .

Note that in this Platonic space, one can thus introduce a notion of absolute time which is measured in meters.

Absolute velocity

Into the frame   ,, O i h , let us consider a ponctual mobile M whose straight trajectory is directed by a vector i  , with   Note that here the absolute velocity of M is a dimensionless quantity.

Absolute frequency of De Broglie waves

Let us consider a ponctual particle P moving along a straight line led by a vector i  , with  

, ii    , linked to a stratification of the Platonic space whose distance is 0 w  .

To this particle may be associated De Broglie waves (see the articles cited in reference).

Consider a line whose equation is Xa  .

We can define the absolute frequency of these De Broglie waves considering two of its successive occurrences Note that this absolute frequency is expressed in

1 m  .

Absolute energy and absolute mass of a particle

 By adopting for absolute quantum of action the quantity abs h hc  (in .

Jm), associated to the absolute frequency of the De Broglie waves

0 1 sin abs w     (in 1
m  ), we are led to define as absolute energy of the particle P (in J ) the quantity :

0 sin abs abs abs hc Eh w     .
The link between the energy abs E and the energy E of the particle measured in a reference frame R  (where  is arbitrary, not a multiple of ) is given by :  Into the reference frame R  , is so obtained the following coherence :

2 0 1 cos cos sin sin hc E h mc w          , with 2 0 2 sin 1 cos cos sin sin 1 abs c w v c           and 2 0 2 sin 1 cos cos sin sin 1 abs m h m cw v c          .

Absolute linear momentum of a particle

By analogy with the classical notion of momentum of a particle, we define its absolute momentum as being equal to the product of its absolute velocity by its absolute mass, (Note that this absolute momentum is expressed in kg.) 

Application to the one-dimensional elastic collisions

Two hypotheses

h h h h c w c c w c w            .
With the relations (see articles cited by reference), these two assumptions will lead to the results described in the following paragraph.

One-dimensional elastic collisions -Diagram 1 --Diagram 2 --Diagram 3 -

Let us consider two particles P1 and P2 whose rest masses are respectivly m01 and m02 coming into elastic collision in the Platonic space at the point « Impact » (see Diagram 2).

This impact is perceived by the observer I1 into the reference frame R  ; the trajectory of this observer is represented by a blue dotted line.

(Note that in the Platonic space, this collision can be represented with distinct values of w(P1) and w(P2). Here , they are chosen equal in Diagram 2 by pure graphical convenience.)

Before the collision, in Diagram 1, the trajectory of P1 is directed at an angle  , the trajectory of P2 at an angle  . The particles P1 and P2 are observed into R  at P1 and P2.

After the collision, the trajectory of P1 is directed at an angle '  , that of P2 at an angle '  .

The particles P1 and P2 , designated by P'1 et P'2 , are observed into R  at P'1 and P'2.

From the two assumptions made in the previous paragraph , these two angles are given, with 0   and 0  , by the following equations (cf. expressions with the rest masses at the end of this article): 
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It is noteworthy that on the one hand, these relations are absolute to the extent that they do not depend on the angle of  of the reference frame.

On the other hand, they lead, regardless of the value of the angle of the reference frame, to the conservation in this reference frame of the global energy and global momentum, namely: 
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Expressions of cos(') and cos(') based on the rest masses
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  which are orthogonal to the direction of the projection h , regularly spaced by a distance

  distinct lines Xa  and Xb  . With X b a    , we can define the absolute velocity of M by :



  From this result, we can define the notion of absolute mass (in kg): wavelength of a particle, m0 being the rest mass of this particle P.)

  

  

  

  

  

  

  Let us consider two ponctual particles P1 and P2 whose straight trajectories are directed respectively by the vectors i  et i  , associated to the stratifications whose distances are

	respectively	w 	and	w  .										
		01		02										
				w 	sin hc			w 	sin hc			w 	sin ' hc 		w 	sin ' hc 	;
				01			02			01		02
	 the sum of absolute momentum is conserved,			
		i.e.											
				tan				tan				tan '		tan '
				01				02				01		02

After the elastic collision of these two particles P1 and P2, if we call ' i  and ' i  the direction vectors of their new trajectories , we will choose as hypotheses :

 the sum of absolute energy is conserved, i.e.

. Study of some particular cases

  

	 If	01 w  or if 0	02 w 	  , then '   and	cos ' 		 cos 1 cos 2 cos cos 2     2  2 cos 1 cos 	 		.
	This last result, of abstruse appearance, leads just to the following fact: in any reference
	frame R  where the particle	1 P is at rest, the speed of	2 P and	2 ' P are opposite .
	Indeed, in this reference frame, we have (cf. hal-01165196, v1) :	  2 vP c 		cos 1 cos cos cos    
	01 01 sin sin '  02 01 02 02 01 02 cos cos cos cos cos ' cos cos ' cos sin sin sin sin sin sin '                 and there is obtained, after simplification:   2 ' cos ' cos cos 1 cos cos ' 1 cos cos cos vP c              	.
	3.3 First, if	ww   	(i.e.				
			01	02					
	 Symmetrically, if	w    or if	0  , we obtain w	'   and
						01				02
			2 cos		 cos 1 cos	2		
	cos '								
				2						
			1 cos			2 cos cos		

01 02 mm  ) we obtain, independently of the reference frame R  , a geometrical symmetry whose simplicity is noteworthy . Indeed, in this case, the above formulas lead to '   and '   .

Conclusion

Through this study, this article aims to show that the introduction of absolute concepts (energy, momentum , ...) can easily model relativistic phenomena in the Platonic framework .

From this, it seems promising to continue their application (eg to study the elastic twodimensional relativistic collisions or inelastic collisions), or even to increase their number (eg by introducing the concept of absolute angular momentum) to solve the modeling of other problems, as the two-body problem .

And beyond is needed of course the search for deeper understanding of the links between these concepts of absolute energy, momentum, angular momentum, … and the geometrical structures proposed into the Platonic model.