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Abstract: In this paper, chaotic behavior study of a five-cells chopper when it is associated to
a nonlinear load is reported. The model of such system is described by a piece-wise smooth six
dimensional non-autonomous system. Then, some basic dynamical properties, such as Poincaré
mapping, first return map and continuous spectrum are investigated to highlight the main
characteristic of this particular chaotic behavior.
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1. INTRODUCTION

Hybrid systems piecewise affine form is an important and
simple class of hybrid dynamic systems Liberzon (2003),
Liberzon and Morse (1999). This is a finite set of affine
subsystems associated with one or more laws that define
switching every moment the system refines assets. These
systems are nonlinear and can have a variety of com-
plex phenomena associated with bifurcations and chaos
Branicky (1995). Switching circuits in power electronics
are considered as a good application for hybrid analysis,
because they are intrinsically hybrid in their structures.
Under this hybrid model, the system has discrete inputs,
continuous outputs, and disturbances that are either con-
tinuous, such as parametric variation in a load or source,
or discrete, as in a fault state of a particular switch.
Among these switching circuits, there are the multicel-
lular converters that are based on the series connection
of elementary switching cells. This structure has emerged
in the early 90 Meynard and Foch (1992), it is possible
to share the constraints in voltage when functioning in
high-voltage installation by switching connected cells in
series and also to improve the harmonic content of the
waveforms. These converters have two major advantages:
first, the distribution of voltage and current constraints
under high powers and the second are the spectral qualities
that present the output voltage. Besides, the modeling
is a very important phase for the synthesis of control
laws and observers Sadig et al. (2010). The accuracy of
the model depends on the required objectives. For this
reason, we can find several types of models for the same
process and the choice among these models depends on
its using and the purpose of control. For the synthesis
of the control or observer, the chosen model must be
simple enough to allow the realization of real-time control
(or observer), but it must be precise enough to get the
desired behavior Ghanes et al. (2009). To benefit from the

most enormous potential of the multicellular structure, the
research is oriented in different directions. The modeling
of multicellular converters is generally difficult. Indeed, it
contains continuous variables (voltages and currents) and
discrete variables (switches, or a discreet location). In the
literature, there are three main types of models Stala et al.
(2009):

• An average model whose principle is based on calcu-
lating average value of all the variables over one sam-
pling period. This model cannot represent the natural
balancing of the terminal voltages of the capacities.
Indeed, natural balancing is due to the harmonics of
the charging current at the cutting frequency;

• The second model takes into account of the har-
monics, and is called for this fact harmonic model.
It is based on the determination of the phases and
amplitudes of the voltages harmonics by considering
the charging current in steady-state operation;

• The third model is the exact or instantaneous model
which takes into account the evolution at every mo-
ment of all the variables including the state of the
switch (discrete location). This model is difficult to
use for the design of controllers and observers based
on; because of the converter is not continuous sys-
tem but a combination of continuous/discrete systems
Hosseini et al. (2009), Stala et al. (2009), Hagar
(2009). However hybrid modeling allows multicellular
converter to use powerful tools of analysis and syn-
thesis for better exploration of the controllers possi-
bilities Hosseini et al. (2010).

In recent decades, it was discovered that most of static
converters were the seat of unknown nonlinear phenomena
in power electronics Di Bernardo and Chi (2002), Defay
et al. (2008), Ghanes et al. (2012), Leon et al. (2008).
It is for example the case of multicellular choppers that
can exhibit unusual behaviors and sometimes chaotic be-



haviors. Obviously, this may generate dramatical conse-
quences. However, the usually averaged models do not
allow to predict nonlinear phenomena encountered. By na-
ture, these models obscure the essential nonlinearities Tse
(2003). To analyses these strange behaviors, it is necessary
to use a nonlinear hybrid dynamical model Barbot et al.
(2007), Ghanes et al. (2012). There have been many meth-
ods for detecting chaos from order Contopoulos (2002),
Chen and Dong (1998). Among them, routes to chaos
Contopoulos (2002), routes to chaos with phase portraits,
first return map, Poincaré sections, Lyapunov exponents
Benettin et al. (1976), fast Lyapunov indicators Froeschlé
et al. (1997), SAI (Smaller Alignment Index) Skokos (2001)
and its generalized alignment index Skokos et al. (2007),
bifurcations, power spectra Binney and Spergel (1982), fre-
quency analysis Laskar (1990), 0-1 test Gottwald and Mel-
bourne (2004), geometrical criteria Horwitz et al. (2007),
Wu (2009), and fractal basin boundaries Levin (2000),
and so on, are developped in the literature. Each of these
methods has its advantages and drawbacks in classifying
the attractors. The main purpose of the present paper
is to propose a framework of chaotic behavior study for
five-cells chopper connected to a nonlinear load. Three
chaotics indicators, considered in the above literature, will
be studied by using numerical approaches such as Matlab
/ Simulink in the case of multicell chopper.
The paper is structured as follows. Section 2 deals with
the modeling process. The electronic structure of the serial
multicell chopper is addressed and the appropriate math-
ematical model is derived to describe the dynamics of the
chopper. Five cells chopper modeling is then considered.
Chaotic behavior and simulation results are presented in
Section 3. Finally, some conclusion and remarks are re-
ported in section 4.

2. SERIAL MULTICELLULAR CHOPPER
MODELING

2.1 Serial multicellular chopper

The multicellular chopper consists of cells. Each cell con-
tains two complementary power electronics components
and it can be controlled by a binary switch sck Davaucens
and Meynard (1997), Meynard and Foch (1992), Gateau
et al. (1997). This signal sck is equal to 1 or 0 when
the upper or lower complementary switch of the cell is
conducting. These cells are associated in series with R, L
load and separated by capacities that can be considered
as continuous sources to these cells. The converter has
p− 1 floating voltage sources. In order to ensure a normal
functioning, it is necessary to guaranty a regulated distri-
bution of the voltages VCk

to their equilibrium values that
equal to kE

p Bethoux et al. (2008). The output voltage

Vs possesses p voltage levels (0, E
p , ...,

(p−1)E
p , E). The

model of this system can be obtained and represented by p
differential equations giving its state space representation
with floating voltages vCk

and load current iL as state
variables.
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To simplify the study and the notations, we will study
the overlapping operation of a converter with five cells
(Fig. 1). Its function is to supply a passive load (RL) in
series with another nonlinear load connected in parallel
with a capacitor Tse (2003). Note that the chopper,
which has a purely dissipative load, can not generate a
chaotic behavior. Nevertheless, it is well known since from
Meynard et al. (1997) that power converter when it is
connected to nonlinear load may have a chaotic behavior.

2.2 Five cells chopper modeling

A five cells chopper connected to a nonlinear load (Fig. 1)
can be represented by six differential equations giving its
state space.

Fig. 1. Five-cells chopper connected to a nonlinear load
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where
g(VCL

) = GbVCL
+ 1

2 (Ga −Gb)(|VCL
+ 1| − |VCL

− 1|)
which is the mathematical representation of the character-
istic curve of nonlinear load. The slopes of the inner and
outer regions are Ga and Gb (Fig. 2). The parameters of
the circuit elements are fixed as C1 = C2 = C3 = C4 =
0.1µF,Cl = 40µF,L = 50mH,R = 10Ω, E = 150V .

Fig. 2. Graph of nonlinear resistor

3. CHAOTIC BEHAVIOR STUDY

In this section, three indicators are used to illustrate
the presence of chaos Wiggins (2003) in the system (2):
Poincaré section, first return map and spectrum map.
Chaotic behavior of system (2) can be obtained only by
varying the switching frequency fs of the chopper. To be
able to enter the chaotic behavior, the parameters values
given at the end of section 2 are considered and assigned
constants in the three indicators. To show for example the
chaotic nature of this system, the 3D phase portraits are
shown in Fig. 3 and Fig. 4.

Fig. 3. Projection (iL, VC3 , VC4)

Fig. 4. Projection (VC3
, VC4

, VCL
)

3.1 First indicator: Poincaré section analysis

We performed a simulation at a calculation time 0.2s with
an initial condition xT0 = (0 5 5 5 5 4). The classical Pulse
Width Modulation (PWM) used, is intersective PWM
which consists in comparing the modulating sinusoidal
signal to a triangular carrier. Any Poincaré section per-
formed on an attractor is defined by |x1| < 0.01 when the
switching frequency is 20Hz Djondiné et al. (2014). In this
simulation, 12 264 points are obtained on the considered
Poincaré section. Poincaré sections are shown in Fig. 5.
To ensure that the behavior of the system does not stay
on part of the strange attractor after a transient, we have
divided our 12 264 iterations into four equal parts, and
we find that we have the same topology for each quarter
period of time. It is also noted that the number of ellipses
to the Poincaré section, x2 versus x1 is five while those
of Poincaré sections x3 versus x1 and x4 versus x1 are
respectively three and two. This causes us to believe that
the number of ellipses is function of the possible combi-
nations between the floating capacitor and the voltage
source. Looking carefully Poincaré section x2 versus x1,
we see that, at a scale factor, we find the same behavior.
This is highlighted by the zoom performed in Fig. 5 (a).
The same phenomenon of scale factor is observed in the
other two sections (Fig. 5 (c), Fig. 5 (d), Fig. 5 (e) and
Fig. 5 (f)).

This remark between the complexity of the Poincaré sec-
tion and the place of flottant capacitor considered raises
naturally the question of the relationship between the



Fig. 5. Poincaré sections

configuration of switches and ellipses of the Poincaré sec-
tion. We recall that in a circuit with k switches, there
are 2k possible discrete states. However, in practice, these
discrete states can not all be executed. Some of these states
are not feasible because of the physical characteristics of
switches, while others are forbidden in the design because
they are destructive, unnecessary or unsuitable for the
application. In our case, for each Poincaré section, as we
project from R6 to R3, and from R3 to R2, we find
that the chopper five cells associated with a nonlinear
load can take only five possible switch configurations on
the considered Poincaré section. So we will consider only
Poincaré sections from one of these different configura-
tions. Consider the configuration [−1 1 0 − 1 0]. Poincare
sections of this configuration are shown in Fig. 6. We find
that, the Poincaré section x2 versus x1 (Fig. 6 (a)) gives
us two ellipses of small dimensions. As noted on the full
Poincaré section, Poincaré sections x3 versus x1 (Fig. 6
(b)) and x4 versus x1 (Fig. 6 (c)) have less ellipses, which
is verified for this configuration. When we make operate
the converter with a switching configuration fixed, we find
immediately that the chaotic behavior disappears (see Fig.
7). So the switchings are at the origin of chaotic behavior.

3.2 Second indicator: first return map

The application of the first return on the voltage across
the load capacitor x6 is shown in (Fig. 8 (a)). By zooming
at the point x6k = 4V , and x6k+1

= 4V , we find that
there is an ellipse and around that ellipse leave the folds
that are four in number. We find for example a folding
near x6k = 4.006V and x6k+1

= 3.995V . Furthermore

Fig. 6. Poincaré sections of Configuration [−1 1 0 − 1 0]

these foldings are symmetrical with respect to the point
x6k = 4V , and x6k+1

= 4V .
Furthermore the application of the first return on the
current of x1 load (Fig. 8 (b)) shows ellipses along the
diagonal, leaving us think of a toroidal chaos Amroun-
Aliane et al. (2011), Amroun-Aliane et al. (2010).

3.3 Third indicator: spectrum map

The spectral representation of current x1, or any other
state variable (voltages across the capacitors) is contin-
uous. This is an indicator of the chaotic nature of our
system is - to - say a continuous spectrum. Below the
spectrums of load current x1 (Fig. 9 (a)) and voltage
x2 across the flottant capacitor C1 (Fig. 9 (b)) for the



Fig. 7. Projection of Configuration [−1 1 0 − 1 0]

Fig. 8. First return maps

switching frequency of the switches fs = 20Hz.

Fig. 9. Spectral representation

4. CONCLUSION

We studied the dynamic behavior of the five cells chop-
per associated with a nonlinear load. We made a digital
study of this chopper based on Matlab / Simulink tool.
We showed from the application of the first return, the
Poincaré section and the power spectrum that this system
can have a chaotic behavior. This study has shown the
capital importance of the regulation of the internal vari-
ables of multicellular to avoid chaotic behavior. To speak
pictorially, it must avoid pumping phenomena between ca-
pacitors due to different configurations. To better control
the chaotic behavior, we will, in our future work, study
the different controls that can rapidly bring the converter
in nominal operation compared to the load, but also in
relation to these internal variables (voltages across the
floating capacitors).
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