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Abstract

For integers m,n ≥ 1, we describe a bijection sending dissections of
the (mn+ 2)-regular polygon into (m+ 2)-sided polygons to a new basis
of the quotient of the polynomial algebra in mn variables by an ideal
generated by some kind of higher quasi-symmetric functions. We show
that divisibility of the basis elements corresponds to a new partial order
on dissections, which is studied in some detail.

1 Introduction

Let m ≥ 1 be an integer. For every integer n ≥ 1, we define a simple poset
structure Pm,n on the set of (m + 2)-angulations of a (mn + 2)-gon. This
generalizes the construction by Pallo on triangulations [Pal03], which is closely
related to the Tamari lattice.

Quasisymmetric functions, a generalisation of symmetric functions, were in-
troduced in [Ges84] and are now classical in algebraic combinatorics. Some
higher analogues were introduced in [Poi98] and further studied in [BH08].
We recall some results about quotients of polynomials rings by higher quasi-
symmetric functions, first obtained for quasisymmetric functions in [AB03,
ABB04] and extended to the higher case in [Ava07].

We then show that the poset Pm,n is isomorphic to the divisibility poset
of a new particular basis of the quotient of the polynomial ring in m sets of
n variables by the ideal generated by Gm-quasisymmetric functions without
constant term. Our description of a new basis builds upon the basis indexed by
m-Dyck paths that was introduced for general m in [Ava07].

For m = 1, the posets P1,n were introduced by Pallo in [Pal03] and further
studied in [CSS12, CSS14], and the basis indexed by triangulations was defined
in [Cha05], but the connection between them is new.

The last two sections of the article are devoted to some enumerative results
on the posets (enumeration of intervals, rank generating function) and to a
recursive description of the intervals as distributive lattices of orders ideals of
forests.
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2 A poset structure on M-angulations

Let m ≥ 1 be an integer. For the sake of readability, we will use the expression
M -angulation instead of (m + 2)-angulation. An M -angulation of a regular
convex polygon is a set of diagonals that cut the polygon into (m + 2)-sided
polygonal regions.

We consider the set Qm,n of M -angulations of a (mn+2)-gon. Every element
of Qm,n contains n regions, separated by n−1 diagonal edges. The cardinality of

Qm,n is given by 1
mn+1

(
(m+1)n

n

)
, the number of (m+ 1)-ary planar rooted trees

with n inner vertices (often called a Fuss-Catalan number). A simple bijection
between these two classes of objects is given by planar duality. Some elements
of Q2,7 are shown in Figures 1 and 2.

Figure 1: A quadrangulation of the 16-gon

To define a poset structure on Qm,n, we fix a particular element Q0, which
is a fan (every diagonal edge involves a fixed vertex, denoted 0 and called the
apex, see Figure 2).

1

2

3

4

5

6

0

Figure 2: The fan Q0 for m = 2 and n = 7

We consider the following order relation. An element Q of Qm,n is covered
in Pm,n by the M -angulations obtained by flipping one of its diagonal edges
included in Q0. Here flipping means removing this diagonal edge and replacing
it by another diagonal edge cutting again the (2m + 2)-gon created by the
removal into two (m+ 2)-gons. Note that any diagonal edge may be flipped in
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exactly m different ways. As an example the poset P2,3 is shown on Figure 3.

Figure 3: The poset P2,3

This poset is clearly graded, the rank of an element Q being n − 1 minus
the number of diagonal edges shared by Q0 and Q. This is also the number of
diagonal edges in Q that are not in Q0.

It follows from the description of the coverings that an element of rank r is
covered by exactly m(n−1−r) elements. This implies the formula mn−1(n−1)!
for the number of maximal chains in Pm,n.

This poset has Q0 as unique minimum. The fact that Q0 is smaller than
all M -angulations follows from the next lemma by induction on the number of
diagonals that are both in Q and Q0. This lemma implies that unless Q is Q0,
there is a cover relation Q′ /Q where Q′ has one more diagonal in common with
Q0.

Lemma 1. Let Q be distinct from Q0. Then there is always at least one diagonal
d0 in Q0 that cuts exactly one diagonal of Q.

Proof. One can assume without restriction that Q and Q0 have no common
diagonal, otherwise one can find d0 (by induction) inside one of the parts cut by
the common diagonals. In at least one of these parts the restriction of Q must
differ from the restriction of Q0, because Q is not Q0.

Let us label all the vertices of the regular polygon counter-clockwise by
integers, starting from the vertex 0 which is the apex of Q0.

Because Q and Q0 have no common diagonal, there exists a unique region R0

of Q that contains the vertex 0 in its boundary. Removing R0 from the ambient
polygon, one gets one or more convex polygons, all of them with km+2 vertices
for some k. Let us choose one of these polygons, and let Q′ be its M -angulation
obtained from Q by restriction. Let R′ be the unique region of Q′ which is
adjacent to R0.
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Excluding minimal and maximal indices, vertices of Q′ form a sequence of
mk vertices numbered consecutively, in which every residue class modulo m is
represented exactly k times.

Because of the tree-like structure of M -angulations, one can build the M -
angulation Q′ by successive additions of M -angles, starting from the region R′.
Going backwards, one can go from Q′ to R′ by removal of M -angles on the
boundary.

Using this leaf-removal induction, one can then prove that the boundary of
R′ (excluding minimal and maximal indices) contains exactly one representative
of every residue class modulo m.

Note now that in Q0, the vertices linked by a diagonal to the apex 0 form a
residue class modulo m, when numbered in the same way as the vertices of Q.

It follows that exactly one of the vertices of R′ (excluding minimal and
maximal indices) is the end of a diagonal d0 in Q0. The diagonal d0 does only
cross one diagonal of Q, namely the diagonal separating the regions R0 and
R′.

The maximal elements in the poset Pm,n are the M -angulations that have
no common diagonal with Q0. We will call them final M -angulations.

Remark: There are several interesting existing families of posets on objects
in bijection with (m+ 2)-angulations, including m-Tamari lattices [BPR12] and
m-Cambrian lattices of type A [STW15]. The posets introduced here seem to
be new.

3 m-analogues of B-quasisymmetric functions

In [BH08], Baumann and Hohlweg introduced the ring of B-quasisymmetric
functions as the graded dual Hopf algebra of the analog in type B of Solomon’s
descent algebra. This ring is contained in the polynomial ring in two sets of n
variables.

In [Ava07], a quotient ring of this polynomial ring by an ideal of B-quasi-
symmetric functions was studied. Moreover, for every integer m ≥ 1, an analog
of the ring of B-quasisymmetric functions and an analog of the quotient ring
were also defined and studied, involving m sets of n variables.

We refer to [Ava07] for the original motivations of the study of these rings
and for the proof of the results that we will use. Let us now summarize the
results of [Ava07] in their most general form.

Let us denote by M = {x, y, z, . . . , ω} a set of m distinct letters, endowed
with a total order x < y < z < · · · < ω. We will mostly illustrate our con-
structions with the cases m = 2 and m = 3, therefore using only the letters
x, y, z.

Let us start with polynomials in the union of m alphabets of each n vari-
ables: Xn = x1, . . . , xn, Yn = y1, . . . , yn, up to Ωn = ω1, . . . , ωn. Denote this
polynomial ring by Q[Xn, Yn, . . . ,Ωn]. Inside this polynomial ring, one can de-
fine a space of Gm-quasisymmetric functions, which reduces when m = 1 to the
classical quasisymmetric functions.

In [Ava07], a Gröbner basis for the ideal Jm,n generated by constant-term-
free Gm-quasisymmetric functions was described, and from that was deduced a
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monomial basis for the quotient Rm,n of the polynomial ring Q[Xn, Yn, . . . ,Ωn]
by Jm,n.

This monomial basis for the quotient Rm,n is indexed by m-Dyck paths,

which gives the dimension formula dimRm,n = 1
mn+1

(
(m+1)n

n

)
.

3.1 Definitions

For these definitions, we follow [BH08], with some minor differences, for the
sake of simplicity of the computations we will have to make. The main change
is to describe directly the general case for any m ≥ 1 and not the special case
m = 2.

An m-vector of size n is a vector v = (v1, v2, . . . , vmn−1, vmn) of length
mn with entries in N. One must think of m-vectors as the concatenation of n
sequences of length m. An m-composition is an m-vector in which there is no
sequence of m consecutive zeros.

The integer n is called the size of v. The weight of v is by definition the
m-tuple (w1, . . . , wm) where wj =

∑n−1
i=0 vmi+j . We also set |v| = ∑mn

i=1 vi. For
example (1, 0, 2, 1, 0, 2, 3, 0) is a 2-composition of size 4, and of weight (6, 3).

To make notations lighter, we shall sometimes write m-vectors or m-compo-
sitions as words with bars, where the bars separates the word into n blocks of
length m. For example, 10|21|02|30 stands for the 2-vector (1, 0, 2, 1, 0, 2, 3, 0)
(see also the following definition).

Let us now define the fundamental Gm-quasisymmetric polynomials, indexed
by m-compositions.

Let c = (c1, . . . , cmn) be an m-composition. One can decompose c as a
concatenation of n blocks of m integers. Let us first associate to c a word wc in
the alphabet {x, y, z, . . . , ω}, defined as the concatenation, over all blocks b =
(b1, . . . , bm) of c, of the word xb1yb2 . . . ωbm . For example, for the 3-composition
010|201, one obtains wc = yxxz (powers are written as repeated letters).

Then the fundamental Gm-quasisymmetric polynomial of index c is

Fc =
∑
i

∏
t∈wc

ti(t),

where the sum is taken over all maps i from the sequence of letters of the word
wc to the set {1, . . . , n} such that i is weakly increasing inside every block of c
and strictly increasing between two blocks.

Let us give some examples for m = 2:

F12 =
∑

i≤j≤k

xiyjyk, (1)

F02|10 =
∑

i≤j<k

yiyjxk. (2)

It is clear from the definition that the multidegree (i.e. the m-tuple (degree
in x, degree in y, ..., degree in ω)) of Fc in Q[Xn, Yn, . . . ,Ωn] is the weight of c.
If the size of c is greater than n, we set Fc = 0.

The space of Gm-quasisymmetric polynomials, denoted by QSymn(Gm) is
the vector subspace of the ring Q[Xn, Yn, . . . ,Ωn] generated by the Fc, for all
m-compositions c.
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Let us denote by Jm,n the ideal 〈QSymn(Gm)+〉 generated by Gm-quasi-
symmetric polynomials with zero constant term.

3.2 A monomial basis for Rm,n

Let v = (v1, v2, . . . , vmn−1, vmn) be an m-vector of size n. We associate to v
a path π(v) in the plane N × N, with steps (0, 1) (up step) or (m, 0) (right
step). We start from (0, 0) and for each entry vi (read from left to right) add vi
right steps (m, 0) followed by one up step (0, 1). This clearly defines a bijection
between m-vectors of size n and such paths of height mn.

As an example, the path associated to the 2-vector (1, 0, 1, 2, 0, 0, 1, 1) is

If the path π(v) associated with an m-vector v always remains above the
diagonal x = y, we call this path anm-Dyck path, and say that the corresponding
m-vector v is an m-Dyck vector.

Being an m-Dyck vector is equivalent to the condition that, for any 1 ≤ ` ≤
mn, one has

m(v1 + v2 + · · ·+ v`) < `.

For v an m-vector (of length mn), we denote by Av the monomial

Av = (xv11 y
v2
1 · · ·ωvm

1 )(x
vm+1

2 y
vm+2

2 · · ·ωv2m
2 ) · · · (xvm(n−1)+1

n · · ·ωvmn
n ).

This clearly defines a bijection between m-vectors and all monomials in the
polynomial ring Q[Xn, Yn, . . . ,Ωn].

For example, the monomial associated to the 2-vector (1, 0, 1, 2, 0, 0, 1, 1) is
x1x2y

2
2x4y4.

The following result was proved in [Ava07, Th. 5.1].

Proposition 2. The set Bm,n of monomials Av for v varying over m-Dyck
vectors of size n is a basis for the space Rm,n = Q[Xn, Yn, . . . ,Ωn]/Jm,n.

4 A bijection between M-angulations and m-Dyck
paths

We assign to each vertex of the mn+ 2-gon (except the vertex 0) a letter in M
as follows. The vertices are labelled by repeating the sequence x, y, z, . . . , ω in
counter-clockwise order around the polygon, in such a way that the final vertex
just before the vertex 0 receives the last letter ω of M. It follows that the first
vertex just after the vertex 0 also receives the letter ω.

See Figure 4 for an illustration of this labelling when m = 2 with the ordered
set of letters x < y.
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Figure 4: The labelling of vertices by x and y letters (m = 2)

Let us also label the inner diagonals of Q0 from 1 to n−1 in counter-clockwise
order.

Then we consider an M -angulation Q. To any diagonal d of Q, we associate a
polynomial md. If d coincides with a diagonal of Q0, we set md = 1. Otherwise,
and reading counter-clockwise, d starts from a vertex labelled by the letter u,
intersects consecutive diagonals of Q0 labelled from i to j and ends at a vertex
labelled by the letter v. Then we set md = vj+1 − ui. We then associate to Q
the polynomial PQ defined as the product of md over its diagonals.

As an example, Figure 5 shows the polynomials associated to the quadran-
gulations of Figure 3, in the corresponding positions.

1

(x3 − y2) (y3 − x2) (x2 − y1) (y2 − x1)

(x3 − y2)
(y3 − x1)

(x3 − y2)
(x3 − y1)

(y3 − x2)
(y3 − x1)

(y3 − x2)
(x2 − y1)

(x2 − y1)
(x3 − y1)

(y2 − x1)
(x3 − y1)

(y2 − x1)
(y3 − x1)

Figure 5: The polynomials associated to quadrangulations of Figure 3

To deal with leading terms of polynomials, we will use the lexicographic
order induced by the ordering of the variables:

x1 < y1 < · · · < ω1 < x2 < y2 < · · · < xn < yn < · · · < ωn. (3)

The lexicographic order is defined on monomials as follows: Av <lex Aw if and
only if the last non-zero entry of v − w (componentwise) is negative.
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Note that the leading monomial of the polynomial PQ attached to an M -
angulation is easily described: in every binomial factor written vj+1 − ui with
j + 1 > i, keep only the monomial vj+1.

Proposition 3. The set of leading monomials of the polynomials PQ when Q
varies over the set of M -angulations coincides with the monomial basis Bm,n.

Proof. We need a bijection Φ between M -angulations Q and m-Dyck paths (or
rather m-Dyck vectors v) such that the leading monomial of PQ is equal to
AΦ(Q).

The idea to define Φ is to compose the leading-monomial application Q 7→
LM(PQ) with the bijection between monomials and m-Dyck paths described in
section 3.2.

Let us instead define the reverse bijection Ψ.
Let v be anm-Dyck vector of size n. We start from the empty set of diagonals

on the mn + 2-gon. We shall add iteratively diagonals. Let D denote the
current set of diagonals, under construction. We read the m-vector v from left
to right. To any non-zero entry c associated to variable zk we add to D a fan
with c diagonals as follows. Let t be the letter before z in the cyclic order
x < y < · · · < ω < x. The (common) ending point of the added fan is the
first vertex labelled z that comes counter-clockwise after the diagonal k − 1 of
Q0, and the starting points are the c last vertices labelled t that are available
before the ending point. Here being available means not being separated from
the ending point by a diagonal already in D.

See Figure 6 for an example of this construction.

1

0

2

3

4

5

6

Figure 6: The quadrangulation Q associated to the monomial x5 y
3
5 y7

with PQ = (x5 − y4)(y5 − x3)(y5 − x2)(y5 − x1)(y7 − x6).

Now the key point is that, when adding such a fan, the starting points are
always strictly between the apex 0 and the ending point in counter-clockwise
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order. This is because of the m-Dyck word property of v: for any 1 ≤ ` ≤ mn,
one has

m(v1 + v2 + · · ·+ v`) < `.

Indeed, when numbering the vertices of the polygon counter-clockwise from the
apex 0 to mn + 1, the index of the first vertex t in counter-clockwise order for
the fan added at step ` is exactly (1 + `)−m(v1 + v2 + · · ·+ v`)− 1.

The leading term of the product of binomials md attached to the diagonals in
the fan just added is therefore the monomial zck, by definition of the lexicographic
order.

At the end of the process, there remains only to add some diagonals of Q0

to obtain an M -angulation. There is a unique way to do that. This does not
change the product of md over all diagonals.

One has therefore defined a map Ψ from m-Dyck words to M -angulations.
This has the property that the leading monomial of PΨ(v) is equal to Av. Be-
cause one can recover the m-Dyck word v from Av, this map is injective.

This proves that Ψ is an injection between sets of equal cardinalities, hence
a bijection.

The reverse bijection Φ can be described as first removing from Q all diag-
onals in Q0, then proceeding by successive removals of fans.

Proposition 4. The set of polynomials PQ (when Q varies over the set of M -
angulations) endowed with the poset structure given by divisibility is isomorphic
to Pm,n.

Proof. The map Q 7→ PQ is a bijection, with inverse obtained from the factori-
sation of the polynomial. The flip in Q of a diagonal of Q0 corresponds to the
multiplication of PQ by a linear binomial.

Remark: the fan Q0 has an obvious involutive symmetry that fixes the
apex 0 and flips the ambient polygon. Given the labelling of the polygon by
M = {x, y, . . . , ω}, this involution acts on variables by simultaneous substitution
of letters

ω, x, y, z, . . .←→ ω, . . . , z, y, x.

and renumbering of indices i↔ n+1−i. By construction, the set of polynomials
PQ is sent to itself (up to signs) by this involution acting on variables.

5 Enumerative aspects

5.1 Recursive description

Let Tm =
∑

n≥1 #Qm,nx
n be the generating series for M -angulations according

to their size n. Note that the power of x is chosen to correspond to the number
of regions.

There is a classical recursive decomposition of M -angulations, which de-
scribes them as an M -angle with an M -angulation (or nothing) grafted on all
but one sides. This implies that

Tm = x(1 + Tm)m+1. (4)

9



Recall that the final M -angulations are those which do not contain any
diagonal of Q0. They are the maximal elements of the posets Pm,n.

Let Fm be the generating series for final M -angulations according to the
number of regions. These objects can be decomposed as one M -angle (the
unique region having 0 in its boundary), on which one can graft anyM -angulation
on all sides that do not contain the vertex 0. One obtains that

Fm = x(1 + Tm)m = Tm/(1 + Tm). (5)

Let us now describe another simple decomposition of M -angulations, corre-
sponding to the rightmost expression in the equation (5).

To everyM -angulationQ, one can associate a list L(Q) of finalM -angulations,
obtained by cutting Q along its initial diagonals. Let us assume that these pieces
are listed in counter-clockwise order.

Proposition 5. Sending Q to L(Q) defines a bijection from M -angulations to
lists of final M -angulations.

The inverse bijection is very simple: given a list of final M -angulations, one
can glue them back along their sides into one single M -angulation.

This inverse bijection from L(Q) to Q can also be interpreted in the following
way, that will be useful later. Given a list of k final M -angulations, one considers
the M -angulation Q0 with k regions. One then replaces the regions of Q0 by
the final M -angulations, in the counter-clockwise order. In the resulting M -
angulation Q, the initial Q0 can be identified with the union of all regions that
are adjacent to the vertex 0.

Figure 7: Illustration of construction L

5.2 Rank generating function

Let Gm be the generating function for the elements of all posets Pm,n, according
to their size n and their rank, namely

Gm =
∑
n≥1

xn
∑

Q∈Pm,n

zrkQ. (6)

The generating function Gm satisfies

Gm =
Fm(zx)/z

1− Fm(zx)/z
(7)

where Fm is the generating series for the final elements. Indeed, any M -
angulation can be written uniquely as a list of final M -angulations by cutting

10



along the diagonal edges shared with Q0. The rank parameter is multiplicative
along this decomposition. And the rank of final M -angulations is just their size
minus 1, so that the generating series of final M -angulations according to size
and rank is just Fm(zx)/z.

Using Lagrange inversion followed by a simple summation of binomial coef-
ficients, one can deduce from (4), (5) and (7) that the rank generating function
of Pm,n is given by

n−1∑
k=0

n− k
n

(
mn+ k − 1

k

)
zk. (8)

For m = 1, this enumeration according to rank was already done in [CSS14,
§3].

5.3 Decomposition of intervals

Let us now study the intervals in the posets Pm,n.

An interval A is a pair of elements (A−, A+) in Pm,n that satisfies A− ≤
A+. In every finite poset, the number of intervals is also the dimension of the
incidence algebra.

Let us call an interval A initial if its lower bound A− is Q0. The set of initial
intervals can be identified with the set Qm,n of M -angulations in Pm,n. Indeed,
Q0 is smaller than all M -angulations by Lemma 1.

Let Im,n be the set of intervals in Pm,n. Let Im =
∑

n≥1 #Im,nx
n be the

generating series for intervals.
One can get a recursive decomposition for intervals, similar to the previous

decomposition for M -angulations. For this, one needs the following construc-
tion.

Suppose that one has an M -angulation B0 with k regions, and a list of k
final M -angulations B1, . . . , Bk. From this data, one can build an M -angulation
G(B0;B1, . . . , Bk) as follows. First build the M -angulation L−1(B1, . . . , Bk).
Removing its k − 1 initial diagonals creates a region with mk + 2 sides. Place
B0 inside this region to define the M -angulation G(B0;B1, . . . , Bk). See Figure
8 for an example.

If B0 is Q0, the construction G is just the inverse of the L map.

Figure 8: B0, B1, B2 and G(B0;B1, B2)

Given an interval A, one can apply the map L to its bottom element A−.
This gives a list of final M -angulations A−1 , . . . , A

−
k , such that

A− = G(Q0;A−1 , . . . , A
−
k ). (9)
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Proposition 6. There exists a unique M -angulation A+
0 such that

A+ = G(A+
0 ;A−1 , . . . , A

−
k ). (10)

Proof. Uniqueness is clear by the definition of the construction G.
Existence is proved by induction on the difference of initial diagonals in A−

and A+. If A+ = A−, then the only possible choice is A+
0 = Q0.

Otherwise, let us consider a cover relation A− ≤ Q′ / Q′′. Assume that
Q′ = G(Q′0;A−1 , . . . , A

−
k ) by induction. Because the cover relations flips an

initial diagonal d and does not change the other ones, the diagonal d must
in fact belong to Q′0. Therefore one can flip it in Q′0 to get Q′′0 such that
Q′′ = G(Q′′0 ;A−1 , . . . , A

−
k ).

Keeping the same notations, one also has the following result.

Proposition 7. Every element of the interval [A−, A+] can be uniquely written
as G(Q;A−1 , . . . , A

−
k ) for some Q in [Q0, A

+
0 ]. The interval A is isomorphic to

the interval [Q0, A
+
0 ].

Proof. This result follows from the proof of Prop. 6. In fact, more is true: all
elements greater than A− can be uniquely written G(Q;A−1 , . . . , A

−
k ) for some

Q and this bijection identifies the upper ideal of A− with a smaller poset of type
P.

Proposition 6 implies the following decomposition.

Proposition 8. The map sending an interval A to the pair (A+
0 ,L(A−)) defines

a bijection between intervals and pairs (B0, (B1, . . . , Bk)) where B0 is an M -
angulation with k regions and B1, . . . , Bk are final M -angulations.

The inverse bijection is given by

A− = G(Q0;B1, . . . , Bk) and A+ = G(B0;B1, . . . , Bk). (11)

Corollary 9. The generating series of intervals can be expressed using those of
M -angulations and final M -angulations as

Im = Tm(Fm) = Tm(x(1 + Tm)m). (12)

The second equality follows from (5).

6 Isomorphism types of intervals

The aim of this section is to give a description of the intervals as posets, and to
prove in particular that they are distributive lattices with Möbius numbers in
{−1, 0, 1}.

By Proposition 7, every interval is isomorphic to an initial interval. It is
therefore enough to study initial intervals.

Let us call an interval initial-final if its minimum is Q0 and its maximum is
a final quadrangulation.

Proposition 10. Every initial interval is isomorphic to a product of initial-final
intervals.
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Proof. Let A = [Q0, A
+] be an initial interval. Consider the set of diagonals

of Q0 that belong to A+. Then one can cut both Q0 and A+ along these
diagonals. Every piece A−i of Q0 is a smaller Q0. Every piece A+

i of A+ is a
final quadrangulation. By definition of the partial order, the same diagonals
belong to every element of A. Cutting along them gives an isomorphism with
the product of the intervals [A−i , A

+
i ], which are initial-final intervals.

Let us now proceed to a more subtle decomposition.
Let Q be a final triangulation. Let R0 be the unique region in Q with 0 in

its boundary. Removing R0 from Q leaves a certain number k of polygons, that
will be called the blocks. Let us call k the width of Q. The width can be 0 only
if Q is reduced to R0. Otherwise it lies between 1 and m.

Proposition 11. Every initial-final interval A is isomorphic to a product of
initial-final intervals of width 1.

Proof. The main idea is that the flips downwards from Q happen completely
independently in distinct blocks. Let now us give a detailed argument for this
independence.

Let us consider the set D of diagonals that go from vertex 0 to one of the
vertices of the region R0, except the two vertices that are neighbors of 0. These
diagonals are inside the region R0 and therefore do not belong to Q. The
extremities of these diagonals receive exactly once every label from 0 to m− 2
in clockwise order, and therefore never get the label m − 1. Note that the
extremities of the initial diagonal are labeled by m− 1.

Let us show by induction downward from Q that for every Q′ ∈ [Q0, Q], the
diagonals in D do not belong to Q′ and do not cross any diagonal of Q′. This
is clear for Q. The effect of a down flip is to replace a diagonal by an initial
diagonal. This initial diagonal is not in D and does not cross any diagonal in
Q, because of the labeling of its extremity is m− 1.

One can therefore cut along the diagonals in D. Replacing every block but
a fixed one by a trivial block gives a map to an initial-final interval of width 1.
Taking the product of all these maps gives the desired isomorphism.

Proposition 12. The number of elements covered by the maximum in a initial-
final interval [Q0, Q] is the width of Q.

Proof. In the proof of Lemma 1, it was shown that in every polygon of Q minus
R0, there is exactly one initial diagonal d that cross just one diagonal d′ of Q.
The set of diagonals of Q that can be flipped down in the poset is exactly the
collection of these d′, and their number is therefore the width of Q.

In particular, initial-final intervals of width 1 have a maximum that covers
a unique element.

Corollary 13. The intervals in Pm,n can be build iteratively by either adding
a maximum to a smaller one or by taking a product of several smaller ones.

Proof. By induction on both the height (difference of ranks) of the intervals
and the size of the ambient polygon. Every interval is a product of initial-final
ones. Every initial-final interval is a product of initial-final intervals of width 1.
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In both cases, if the product is not reduced to one element, the factors live in
strictly smaller polygons.

Every initial-final interval of width 1 is obtained by adding a maximum to
an interval, which has smaller height.

Let us define a forest poset as a poset where every element is covered by at
most one element. These posets can be build iteratively from the empty poset
by two operations, namely adding a maximum element and taking the disjoint
union. Their Hasse diagrams are forests of rooted trees, where the roots are the
maximal elements.

Proposition 14. Every interval in Pm,n is a distributive lattice, isomorphic to
the lattice of order ideals of a forest poset.

Proof. By the results above, the intervals in Pm,n can be obtained from smaller
intervals using two operations, namely adding a maximum and taking a prod-
uct. These two operations correspond to adding a maximum or taking the
disjoint union, on the poset of join-irreducible elements. The statement follows
by induction.

For m = 1, this property of intervals was already obtained in [CSS14, §2].

Corollary 15. Möbius numbers of intervals in posets Pm,n belong to {−1, 0, 1}.
Proof. This property is preserved by adding a maximum or taking a product.
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Institut de Recherche Mathématique Avancée, CNRS UMR 7501, Université de
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