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Abstract 

This work consists of the adaptation of a non-additive hard sphere theory inspired by 

Malakhov and Volkov, Polym. Sci. Ser. A. 2007;49(6):745-756 to a square-well chain. Using the 

thermodynamic perturbation theory, an additional term is proposed that describes the effect of 

perturbing the chain of square well spheres by a non-additive parameter. In order to validate this 

development, NPT Monte Carlo simulations of thermodynamic and structural properties of the 

non-additive square well (NASW) for a pure chain and a binary mixture of chains are performed. 

Good agreements are observed between the compressibility factor originating from the theory and 

those from molecular simulations. 

 

Keywords: Square–well potential, non-additive parameter, Monte Carlo simulation, 

compressibility factor, inter – segment distribution function  

 

1. Introduction 

Computation of realistic phase equilibria is of central importance in chemical engineering 

and more specifically for designing unit operations. In this domain, the equations of state play a 

major role allowing to deal with a wide range of mixtures in a broad range of pressures and 

temperatures. A good equation of state is capable of calculating and in the best case of predicting 

phase equilibria. This is the reason why theoretically rooted equations of state (based on statistical 

mechanics) such as SAFT1,2 are increasingly used in engineering problems. 
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Certain systems remain however difficult to model such as small molecule (e.g. gases) + 

solvents. A non-zero adjustable binary parameter must be used in order to reach experimental 

precision. From now on, the common practice is to use the so-called kij i.e. the binary parameter 

acting on energy of the dispersion term : 𝜀𝑖𝑗 = √𝜀𝑖𝑖. 𝜀𝑗𝑗(1 − 𝑘𝑖𝑗). Far more rarely, the effect on 

phase equilibria computation of binary parameter lij on cross diameter i.e. 𝜎𝑖𝑗 =
𝜎𝑖𝑖+𝜎𝑗𝑗

2
(1 − 𝑙𝑖𝑗) 

was explored
3
. Only limited number of equations of state were developed to account for this 

possible non-additivity effect mainly for spherical
4–11

 or hard chain
12,13

 molecules. To the best of 

our knowledge no equation of state was developed for non-additive attractive chain molecules. 

Our general goal is to propose an adequate implementation of a non-additive diameter in 

an engineering but theoretically rooted EOS such as PC-SAFT. As a first step, in a procedure 

similar to that followed by Gross and Sadowski
14,15

, we will first consider square well chain fluids 

as prototype fluids. The main goal of the work reported in this paper is to develop a non-additive 

Square Well Chain Equation of state that applies to small molecule + solvent systems. Extension 

to PC-SAFT will be presented in the next article. 

This paper is presented as follows. First, the general description of square well chains 

equation of state based on statistical mechanics is presented. Next, the development of a non-

additive term for square well chains is shown with in particular the determination of the inter-

segment distribution functions of square-well chains. Finally, the approach is validated against 

Monte Carlo molecular simulations for the pure chains and for the mixtures of square wells 

chains. 

 

2. Development of non-additive Square Well Chain Equation of state 

2.1. General expression of the equation of state 

The interaction potential between segments i and j of two non-additive square-well 

homonuclear chain molecules is defined as: 

 

𝒖𝒊𝒋(𝒓) = {

∞                  𝒓 < 𝝈𝒊𝒋

−𝜺𝒊𝒋      𝝈𝒊𝒋 ≤ 𝒓 < 𝝀𝝈𝒊𝒋

𝟎                𝒓 ≥ 𝝀𝝈𝒊𝒋

   (1) 

With     𝜎𝑖𝑗 =
𝜎𝑖+𝜎𝑗

2
(1 − 𝑙𝑖𝑗) 
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Notice that lii = ljj = 0; non-additivity implies non-zero lij. 

The equation of state derived from the above potential may be obtained by using 

perturbation techniques that start by subdividing the potential into a reference and a perturbation 

part: 

 

𝒖𝒊𝒋(𝒓) = 𝒖𝒊𝒋
𝒓𝒆𝒇(𝒓) + 𝒖𝒊𝒋

𝒑𝒆𝒓𝒕(𝒓)   (2) 

 

In standard procedures, one would choose the reference part as repulsive. This would lead 

to deal with non-additive hard chains as reference fluid for which little is known; in particular 

analytical expression of inter-segment distribution functions are unknown and simulation data for 

these functions are not available whereas they are needed to compute the perturbation part.   

So, rather than starting from the very beginning with the development of a new equation of 

state, we decided to base our work on the proposal of Malakhov and Volkov
16

, who developed a 

model of non-additive chains of hard spheres using a specifically designed perturbation. Doing so, 

the reference term is chosen as the additive potential i.e. for which lij = 0. The reference potential 

is written: 

 

𝒖𝒊𝒋(𝒓) = {

∞                  𝒓 < 𝝈𝒊𝒋

−𝜺𝒊𝒋      𝝈𝒊𝒋 ≤ 𝒓 < 𝝀𝝈𝒊𝒋

𝟎                𝒓 ≥ 𝝀𝝈𝒊𝒋

   (3) 

With     𝜎𝑖𝑗 =
𝜎𝑖+𝜎𝑗

2
 

 

This is the potential of usual square-well chain (SWC) molecules for which equations of 

state are available.
14

 This potential and its parameters are denoted with SWC superscript in the rest 

of the paper. Several authors have investigated the use of a square well reference that lead to the 

Square Well chains equation of state
17–20

.    

The perturbation part is simply defined as the difference between the non-additive and 

additive potentials and denoted NAS (Non – Additive Segments). In terms of Helmholtz free 

energy one obtains : 
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𝑨

𝑵𝒌𝑻
=

𝑨𝑺𝑾𝑪

𝑵𝒌𝑻
+

𝑨𝑵𝑨𝑺

𝑵𝒌𝑻
  (4)    

 

where N is the total number of molecules, k is the Boltzmann constant, and T is the absolute 

temperature. 𝐴𝑆𝑊𝐶 denotes the system energy in additive interactions
14

 i.e. ordinary square-well 

chain fluids (SWC).  

The contribution 𝐴𝑁𝐴𝑆 (NAS = Non – Additive Segments) is the perturbation term that acts 

as a correction to the additive behavior. In the same way as in the work of Malakhov and 

Volkov
16

, this term is evaluated here at the first order : 

 

      
𝑨𝑵𝑨𝑺

𝑵𝒌𝑻
=

𝟏

𝟐
𝝆 ∑ ∑ 𝒙𝒊𝒎𝒊𝒙𝒋𝒎𝒋

𝒋𝒊

∫ 𝟒𝝅𝒓𝟐𝒅𝒓𝒈𝒊𝒋
𝐒𝐖𝐂(𝒓)𝜷𝒖𝒊𝒋

𝑵𝑨𝑺(𝒓)   (5)  

 

Where 𝑔𝑖𝑗
𝑆𝑊𝐶(𝑟) represents the intersegment distribution function of a fluid of ordinary 

square-well chains. In equation (5) xi, xj are molar fractions of molecule i and j respectively; mi, 

mj are the number of constitutive segments or the length chain of molecule i and j; 𝜌 is the total 

molecular density and 𝛽 =
1

𝑘𝑇
. 

 

2.2. Computation of the perturbed contribution of the Helmholtz free energy 

Following again Malakhov and Volkov
16

, an explicit expression of 𝐴𝑁𝐴𝑆 is obtained by 

making a limited development at first order of 𝑢𝑖𝑗
𝑁𝐴𝑆 at the neighborhood of the additive potential 

(using the Taylor series).  

 

𝒖𝒊𝒋
𝑵𝑨𝑺(𝒓) = (

𝝏𝒖𝒊𝒋(𝒓)

𝝏𝝈𝒊𝒋
)

𝝈𝒊𝒋=𝝈𝒊𝒋
𝑺𝑾𝑪 𝒐𝒓 𝒍𝒊𝒋=𝟎

(𝝈𝒊𝒋 − 𝝈𝒊𝒋
𝑺𝑾𝑪) + ⋯   (6) 

 

Where the diameter for the additive case is written : 𝜎𝑖𝑗
𝑆𝑊𝐶 =

𝜎𝑖+𝜎𝑗

2
. 

In order to evaluate the derivative, we used the function 𝑒−𝛽𝑢𝑖𝑗(𝑟). One has : 
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𝒅𝒆−𝜷𝒖𝒊𝒋(𝒓)

𝒅𝝈𝒊𝒋
= −𝒆−𝜷𝒖𝒊𝒋(𝒓)𝜷

𝒅𝒖𝒊𝒋(𝒓)

𝒅𝝈𝒊𝒋
    (7)     

 

And recalling that 𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑆𝑊𝐶(1 − 𝑙𝑖𝑗), we can deduce then : 

 

𝜷𝒖𝒊𝒋
𝑵𝑨𝑺(𝒓) = 𝒆𝜷𝒖𝒊𝒋

𝑺𝑾𝑪(𝒓) (
𝒅𝒆−𝜷𝒖𝒊𝒋(𝒓)

𝒅𝝈𝒊𝒋
)

𝒍𝒊𝒋=𝟎

𝝈𝒊𝒋
𝑺𝑾𝑪𝒍𝒊𝒋  (8) 

 

Taking advantage of the shape of 𝑢𝑖𝑗(𝑟) (equation 3) that is such that 𝑒−𝛽𝑢𝑖𝑗(𝑟) can be 

expressed in terms of Heaviside step functions, we find: 

 

𝒆−𝜷𝒖𝒊𝒋 = [𝑯(𝒓 − 𝝈𝒊𝒋) − 𝑯(𝒓 − 𝝀𝝈𝒊𝒋)]𝒆𝜷𝜺𝒊𝒋 + 𝑯(𝒓 − 𝝀𝝈𝒊𝒋)  (9)  

 

The derivative of which is written as: 

 

𝒅𝒆−𝜷𝒖𝒊𝒋(𝒓)

𝒅𝝈𝒊𝒋
= 𝒆𝜷𝜺𝒊𝒋 (

𝒅𝑯(𝒓 − 𝝈𝒊𝒋)

𝒅𝝈𝒊𝒋
−

𝒅𝑯(𝒓 − 𝝀𝝈𝒊𝒋)

𝒅𝝈𝒊𝒋
) +

𝒅𝑯(𝒓 − 𝝀𝝈𝒊𝒋)

𝒅𝝈𝒊𝒋
   (10)  

 

Which can be written in terms of Dirac functions: 

 

𝒅𝒆−𝜷𝒖𝒊𝒋(𝒓)

𝒅𝝈𝒊𝒋
= 𝒆𝜷𝜺𝒊𝒋 (−𝜹(𝒓 − 𝝈𝒊𝒋) + 𝝀𝜹(𝒓 − 𝝀𝝈𝒊𝒋)) − 𝝀𝜹(𝒓 − 𝝀𝝈𝒊𝒋)  (11) 

 

Therefore, we have: 

 

(
𝒅𝒆−𝜷𝒖𝒊𝒋

𝑺𝑾𝑪(𝒓)

𝒅𝝈𝒊𝒋
)

𝒍𝒊𝒋=𝟎

= 𝒆𝜷𝜺𝒊𝒋 (−𝜹(𝒓 − 𝝈𝒊𝒋
𝑺𝑾𝑪) + 𝝀𝜹(𝒓 − 𝝀𝝈𝒊𝒋

𝑺𝑾𝑪)) − 𝝀𝜹(𝒓 − 𝝀𝝈𝒊𝒋
𝑺𝑾𝑪)    (12) 

 

Recall that we need to find the expression of free energy according to the equation (5) 

Combining equations (5), (6) and (12) we get : 
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𝑨𝑵𝑨𝑺

𝑵𝒌𝑻
= 𝟐𝝅𝝆 ∑ ∑ 𝒙𝒊𝒙𝒋𝒎𝒊𝒎𝒋 ∫ 𝒓𝟐𝒈𝒊𝒋

𝑺𝑾𝑪(𝒓) × 𝝈𝒊𝒋
𝑺𝑾𝑪 × 𝒍𝒊𝒋 × 𝒆𝜷𝒖𝒊𝒋

𝑺𝑾𝑪(𝒓)
∞

𝟎𝒋𝒊

× (−𝒆𝜷𝜺𝒊𝒋[𝜹(𝒓 − 𝝈𝒊𝒋
𝑺𝑾𝑪) − 𝝀𝜹(𝒓 − 𝝀𝝈𝒊𝒋

𝑺𝑾𝑪)] + 𝝀𝜹(𝒓 − 𝝀𝝈𝒊𝒋
𝑺𝑾𝑪)) 𝒅𝒓   (13)   

 

This expression can be further simplified using standard arguments making use of cavity 

function
60

 defined by 𝑦𝑖𝑗
𝑆𝑊𝐶(𝑟) = 𝑔𝑖𝑗

𝑆𝑊𝐶(𝑟)𝑒𝛽𝑢𝑖𝑗
𝑆𝑊𝐶(𝑟)

. This function is continuous at 𝑟 = 𝜎𝑖𝑗  :    

  

𝑨𝑵𝑨𝑺

𝑵𝒌𝑻
= −𝟐𝝅𝝆 ∑ ∑ 𝒙𝒊𝒙𝒋𝒎𝒊𝒎𝒋 × 𝝈𝒊𝒋

𝑺𝑾𝑪 × 𝒍𝒊𝒋

𝒋𝒊

× (𝝈𝒊𝒋
𝑺𝑾𝑪 𝟐𝒚𝒊𝒋

𝑺𝑾𝑪(𝝈𝒊𝒋
𝑺𝑾𝑪)𝒆𝜷𝜺𝒊𝒋 − (𝝀𝝈𝒊𝒋

𝑺𝑾𝑪 )
𝟐

𝒚𝒊𝒋
𝑺𝑾𝑪(𝝀𝝈𝒊𝒋

𝑺𝑾𝑪)𝒆𝜷𝜺𝒊𝒋

+ (𝝀𝝈𝒊𝒋
𝑺𝑾𝑪 )

𝟐
𝝀𝒚𝒊𝒋

𝑺𝑾𝑪(𝝀𝝈𝒊𝒋
𝑺𝑾𝑪))  (14) 

 

Where the cavity functions are evaluated either at the upper side of the limit (indicated by 

"+"), or at the lower side of the limit (marked with "-") : 

 

 

𝒚𝒊𝒋
𝑺𝑾𝑪(𝝈𝒊𝒋

𝑺𝑾𝑪) = 𝒈𝒊𝒋
𝑺𝑾𝑪(𝝈𝒊𝒋

𝑺𝑾𝑪 +)𝒆−𝜷𝜺𝒊𝒋   (15)      

 

𝒚𝒊𝒋
𝑺𝑾𝑪(𝝀𝝈𝒊𝒋

𝑺𝑾𝑪) = 𝒈𝒊𝒋
𝑺𝑾𝑪(𝝀𝝈𝒊𝒋

𝑺𝑾𝑪−)𝒆−𝜷𝜺𝒊𝒋  (16)   

 

It leads to:  

 

 

𝑨𝑵𝑨𝑺

𝑵𝒌𝑻
= −𝟐𝝅𝝆 ∑ ∑ 𝒙𝒊𝒙𝒋𝒎𝒊𝒎𝒋𝝈𝒊𝒋

𝑺𝑾𝑪 𝟑𝒍𝒊𝒋[𝒈𝒊𝒋
𝑺𝑾𝑪(𝝈𝒊𝒋

𝑺𝑾𝑪 +) − 𝝀𝟑𝒈𝒊𝒋
𝑺𝑾𝑪(𝝀𝝈𝒊𝒋

𝑺𝑾𝑪 −)

𝒋𝒊

+ 𝒆−𝜷𝜺𝒊𝒋𝝀𝟑𝒈𝒊𝒋
𝑺𝑾𝑪(𝝀𝝈𝒊𝒋

𝑺𝑾𝑪 −)]  (17) 

 

This expression requires having average inter - segment distribution functions at contact 

𝑔𝑖𝑗
𝑆𝑊𝐶( 𝑟 = 𝜎𝑖𝑗

𝑆𝑊𝐶+) and at limit 𝑔𝑖𝑗
𝑆𝑊𝐶(𝑟 = 𝜆. 𝜎𝑖𝑗

𝑆𝑊𝐶−) for a chain of spheres interacting via an 
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additive square well potential. This is the subject of the next section. 

 

2.3. Determination of inter segment distribution function 𝒈𝒊𝒋
𝐒𝐖𝐂(𝒓) 

We must now determine the inter-segment distribution function 𝑔𝑖𝑗
SWC(𝑟). In this work, we 

used the suggestion of Paredes et al
22

 who proposed to link 𝑔𝑖𝑗
SWC(𝑟) (between 2 segments of 2 

different chains) to the radial distribution function of disconnected spheres (called 𝑔𝑆,𝑆) and the 

inter-segment distribution function of dimers (called 𝑔𝐷,𝐷). Expressions for this latter radial 

distribution exist in the literature as a function of 𝜂 = 𝜌𝑣𝑚, vm being the molecular hard core 

volume and 𝑇∗ = 𝑘𝑇 𝜀⁄ = 1/𝛽𝜀.   

 

 

 

 

 

 

 

 

 

For two identical chains containing m segments, there are 4 interactions between terminal 

segments,  (𝑚 − 2)2 interactions between internal segments and 4(𝑚 − 2) interactions between a 

terminal segment and an internal segment. Therefore, we obtain the average inter-segment 

distribution function between 2 identical molecules as (cf. Figure 1) : 

    

𝒈𝒊𝒋 =
𝟒𝒈𝑻𝑻 + 𝟒(𝒎 − 𝟐)𝒈𝑰𝑻 + (𝒎 − 𝟐)𝟐𝒈𝑰𝑰

𝒎𝟐
   (18)  

 

Where 𝑔𝑇𝑇 is the radial distribution function between two terminal segments; 𝑔𝐼𝑇 is the 

radial distribution function between an internal segment and external terminal segment; 𝑔𝐼𝐼 is the 

radial distribution function between two internal segments and m is the chain length.  

According to Paredes et al.
22

, the inter-segment functions are supposed to depend on 

t

1 

c 

c 

t 

t 

c 

c 

t 

Chain A Chain B 

Figure 1: Interactions between chain A and chain B 
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accessible surfaces. In their work, the relations between the inter-segment distribution functions 

and gD,D and gS,S are written as: 

 

𝒈𝑻𝑻 = 𝒈𝑫,𝑫 (19)   

 

𝒈𝑰𝑻 =
𝟑

𝟐
𝒈𝑫𝑫 −

𝟏

𝟐
𝒈𝑺𝑺  (20) 

 

𝒈𝑰𝑰 = 𝟐𝒈𝑫𝑫 − 𝒈𝑺𝑺   (21) 

 

These results are consistent with the study of Chiew et al.
23,24

 who worked on the site-site 

correlation function of 4-mer hard chain by using the Percus-Yevick approximation. It is also 

compatible with the Flory theory of Hall et al.
25–27

 and it can be extended to the square well 

potential (with λ = 1.5). 

For the general case, we must deal with molecules having different numbers of segments 

mi and mj. Computing the average inter-segment distribution function is performed by a weighted 

average of the number of interactions: 

 

𝒈𝒊𝒋 =
𝟒𝒈𝑻𝒊𝑻𝒋

+ 𝟐(𝒎𝒊 − 𝟐)𝒈𝑰𝒊𝑻𝒋
+ 𝟐(𝒎𝒋 − 𝟐)𝒈𝑰𝒋𝑻𝒊

+ (𝒎𝒋 − 𝟐)(𝒎𝒊 − 𝟐)𝒈𝑰𝒊𝑰𝒋

𝒎𝒊𝒎𝒋
 (22) 

 

Based on homonuclear chains relations, we make the following approximation :  

 

𝒈𝑻𝒊𝑻𝒋
(𝜼) ≈ 𝒈𝑻𝑻(𝜼)  (23) 

 

𝒈𝑰𝒊𝑰𝒋
(𝜼) ≈ 𝒈𝑰𝑰(𝜼)  (24) 

 

𝒈𝑻𝒊𝑰𝒋
(𝜼) ≈ 𝒈𝑻𝒋𝑰𝒊

(𝜼) ≈ 𝒈𝑰𝑻  (25) 

 

In order to determine the inter-segment distribution function, it is necessary to have the 
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inter-segment distribution function of square well spheres and dimers as a function of packing 

fraction and temperature. The values of  𝑔𝑆,𝑆 and 𝑔𝐷,𝐷 at contact x = r/ = 1 and at x = 
-
= 1.5

-
 

were fitted using the following empirical expression:  

 

g(𝜼, 𝑻∗) = g(𝜼, ∞) + [𝑔(𝟎, 𝑻∗) − 𝑔(𝟎, ∞)]
1 + 𝑎. 𝜼 + 𝑏. 𝜼𝟐

1 + 𝑐. 𝜼 + 𝑑. 𝜼𝟐 + 𝑒. 𝜼𝟑
 (26) 

 

The form of this expression was partially motivated by noticing from molecular simulation 

data of Tavares et al
28

 that at high packing fraction ( > 0.3-0.4) the square-well fluid behaves 

closely to the hard fluid: in those conditions we have g(,T*) ≈ g(,T* = ∞). Also this expression 

obeys the high temperature limit (g(,T*)  g(,∞) when T*  ∞) and the low density limit 

(g(,T*)  g(,∞) when   0). Coefficients a, b, c, d and e are purely empirical and obtained by 

fitting simulation data (see table 1 below). 

The expression of the hard fluid inter-segment distribution is of a Carnahan and Starling 

type: 

 

g(𝜼, ∞) =
𝐴 + 𝐵. 𝜼 + 𝐶. 𝜼𝟐 + 𝐷. 𝜼𝟑

(𝟏 − 𝜼)𝟑
 (27) 

 

Coefficients A, B, C and D are known for spheres and dimers at contact. Those values are 

re-used in this work. At x = 
-
= 1.5

-
, the values of these coefficients were determined by fitting 

available simulation data (see table 1). 

The inter-segment distribution at zero packing fraction was put in the following form: 

 

g(𝟎, 𝑻∗) = 𝒆𝜶+
𝜷
𝑻

∗+(
𝜸
𝑻

∗)
𝟐

 (28) 

 

The coefficients  and  are known for spheres at contact. In the other cases, they were adjusted 

on simulation data. 

In Table 1, the available data of inter-segment distribution functions that were used for fitting 

unknown coefficients in equations (26-28) are detailed. They were obtained by 3 different 

methods. The first method is an NVT Monte Carlo simulation where temperature, the volume and 

the number of particles of the system are imposed. The second method is a Monte Carlo NPT 

simulation where pressure is fixed instead of volume). The third method is called BYG integral 
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equation. This method has been solved for many short-ranged potentials such as hard sphere
29,30

, 

square well
31

 and Lennard-Jones
32,33

 fluids. See the original articles for more details. This method 

is approximate and the resulting values are not as reliable as simulation data. However, such data 

are useful in conditions where no simulation data exist. 

As mentioned above, in this development we use the value of λ equal to 1.5 which is the most 

current width in square well potential where data are more abundant in the literature
34–36

. 

Extension of our model to other values of can be done if the corresponding simulation data are 

available. 

As it appears in table 1 and from a literature analysis, most data are available at temperature T
*
 

equal or higher than 1.5. 

 

Table 1: Summary of conditions of Monte Carlo simulation for fitting and for validation 

 m η T* Method Authors 

For fitting 

1 

0.05 ≤ 𝜂 ≤ 0.45 1.5, 2, 3, 10 NVT Largo et al
37

 

 

0.01 ≤ 𝜂 ≤ 0.5 1.5, 2, 3, 4 NVT Tavares et al
28

 

0.26 ≤ 𝜂 ≤ 0.42 1, 2, 4, ∞ NVT Henderson et 

al
38

  

0.15 ≤ 𝜂 ≤ 0.37 1, 2, 3 NVT Scarfe et al
39

  

2 

0 ≤ 𝜂 ≤ 0.4 1.5, 2 BGY Equation Lipson et al
35

 

0.01 ≤ 𝜂 ≤ 0.5 1.5, 2, 3, 4 NVT Tavares et al
28

 

 = 0   Taylor
40

  

0 ≤ 𝜂 ≤ 0.4 ∞ BGY Equation 

and NVT 

Taylor and 

Lipson
41

  

For validation: 

pure 

compound data 

4 0 ≤ 𝜂 ≤ 0.35 1.5 BGY Equation Lipson et al
36

 

6, 8, 16 0 ≤ 𝜂 ≤ 0.3 1.5 BGY Equation Lipson et al
34

 

4 0.05 ≤ 𝜂 ≤ 0.45 

1.5 NVT Tavares et al
28

 8 
0.36 ≤ 𝜂 ≤ 0.45 

16 

4 0 ≤ 𝜂 ≤ 0.5 1.5 NPT This work 
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For validation: 

mixtures data 

1+4 

x1 = 0.5 
0.05 ≤ 𝜂 ≤ 0.5 1.5, 2, 3 NVT Paredes et al

42
  

2+8 

x1 = 0.5 

 

 

All coefficient values used in equations (26-28) may be found in table 2. 

 

Table 2. Parameter values for use in equations (26-28) 

 gSS at x=1
+
 gSS at x=1.5

-
 gDD at x=1

+
 gDD at x=1.5

-
 

A 1 0.542 1 0.7181 

B -0.5 0.06137 -2.3993 -0.6696 

C 0 0 -0.4537 -3.6023 

D 0 0 3.0762 4.7213 

a -6.4228863 -5.4190153 1.65546909 -3.5876021 

b 8.54442269 6.79903564 -4.6437027 4.15933189 

c -1.6134866 -1.5638579 6.67813868 0.4981693 

d 5.82989458 9.94915946 45.6261314 30.7918644 

e 13.284929 1.75799648 56.5520302 1.92703553 

 1 1 -0.6675 -0.2939 

 0 0 2.2625 1.4688 

 0 0 0 0.64475 

 

 

Examples of fitting at T* = 1.5 are shown in Figure 2. A good fitting is observed. 
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Figure 2: Fitting inter-segment distribution functions of square well spheres (on the left) and 

square well dimers (on the right) at x= 
-
 = 1.5

-
 and T

*
 = 1.5. Full line (

____
) are g(r) calculated 

from the fitted expressions (26-28) and symboles are g(r) originating from () Lipson et al.
32

, () 

Largo et al.
37

 and () Tavares et al
28

.  

 

Validation is shown in the next section. 

 

 

3. Monte Carlo simulation data 

In this work, we used Monte Carlo simulation to validate the approach by comparing, for 

both the simulation and the model the inter-segment distribution function for pure chains and the 

compressibility factor for mixtures of chains. The MC simulations were performed with a standard 

NPT algorithm using N = 250 particles at different reduced pressures (𝑃∗ = 𝑃𝜎3 𝜀𝑖𝑗⁄ ) and reduced 

temperature (𝑇∗ = 𝑘𝑇 𝜀𝑖𝑗⁄ ). The average properties are computed during a production run lasting 

500 million Monte Carlo steps, one step corresponding to a single Monte Carlo move. Before each 

production run, a preliminary run of 50 million Monte Carlo steps is carried out to achieve 

equilibrium. The number of Monte Carlo steps may change depending on the convergence. In the 

case of square-well interactions, a spherical cutoff equal to half of the simulation box was used 

while classical tail corrections were employed
43

. For the intramolecular terms, the bonding is fixed 

with tangent spheres. There is neither bending nor torsion between two segments. The different 

Monte Carlo moves and their corresponding attempt probabilities used during the simulations are 



1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5

g(
r)

 


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x = 1.5- 

0.5

1.5

2.5

3.5

4.5

5.5
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g(
r)

 



x = 1+ 

x = 1.5- 
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molecular translation (20%), molecular rotation (20%), regrowth with configurational bias (59%) 

and volume change (1%). The amplitude of translations, rotations and volume changes was 

adjusted during the simulation to achieve an acceptance ratio of 40% for these moves.  

3.1. Pure chains of square wells 

For each simulation, the radial distribution functions g(r) for a pure square well chain are 

given directly. In NPT, in order to determine the g(r), it is necessary to get the histogram that 

represents the average number of particles whose distance from a given particle lies in the interval 

(r, r + dr). After, the radial distribution function is calculated by this expression: 

 

𝒈(𝒓 + 𝟏/𝟐𝒅𝒓) =
𝒉(𝒓)

𝑵
𝑽 ×

𝟒
𝟑 𝝅((𝒓 + 𝒅𝒓)𝟑 − 𝒓𝟑)

        (29) 

 

Where h(r) is the histogram; N is total number of particles in the system; V is the volume of 

simulation box. 

The MC simulation conditions are m = 4,  =1 and T* = 1.5. Data were acquired for P*/T* 

ranging from 0.001 to 1.5. The data are reported in supplementary section in table S1. 

 

3.2 Mixtures of chains of square wells 

For mixtures of chains of square-well, the same approach using Monte Carlo simulation 

method was employed. In the simulation box, we defined a number of particles for each type of 

molecules. And the property that we consider is the compressibility factor. The compressibility is 

calculated from following equation: 

 

𝒁 =
𝑷

𝝆𝒌𝑻
     (30) 

 

Where P, ρ, T, 𝑣 is the pressure, the molecular density, the temperature and the molar volume of 

system respectively, 𝑘 is Boltzmann constant. 

As mentioned above, a standard NPT algorithm is used for these calculations. It means that 

the pressure P, the number of particles N (for each type of molecules in the simulation box) and 
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the temperature T of the system are imposed. The computation gives a density that yields directly 

the compressibility factor using Equation (29).  

The input parameters are the reduced temperature T* (𝑇∗ = 𝑘𝐵𝑇 𝜀⁄  where ε is the 

dispersive energy, the reduced pressure P* (𝑃∗ = 𝜎3𝑃 𝜀⁄ , where σ is the diameter of the particle, 

this property is reduced in the mixture of 2 different particles) and the number of particles of each 

kind, as shown in table 3. In case of mixture of chains, each particle has the same dispersive 

energy 𝜀𝑖𝑗. We present usually the compressibility factor Z as a function of the compacity η with:  

 

𝜼 =
𝝅

𝟔
𝝆 = ∑ 𝒙𝒊𝒎𝒊𝝈𝒊

𝟑

𝒊

    (31) 

 

The density, and thus the molar volume are obtained directly from the statistical averages 

performed over the different Monte Carlo configurations. For example in the post-treatment, the 

molecular density is determined by: 

 

𝝆 =
𝑵

〈𝑽〉
  (32) 

 

Where 𝑁 is the number of particles in the box that is a fixed input (see table 3) in our case and 〈𝑉〉 

is the average molar volume. The MC simulation conditions for chain mixtures are summarized in 

Table 4.  

 Non-zero values of the non-additive parameter lij are taken into account by the use of the 

modified Lorentz-Berthelot combining rule: 

 

𝝈𝒊𝒋 =
𝝈𝒊 + 𝝈𝒋

𝟐
(𝟏 − 𝒍𝒊𝒋)   (33) 

 

In fact, in the MC simulation, we impose the diameter values 𝝈𝒊, 𝝈𝒋 of each component. 

We choose a value of lij, so the cross diameter is calculated by using Equation (32) then imposed 

in MC simulation.   

 



 

15 

Table 3: Summary of the different MC simulations performed on mixtures.  

T* P*/T* N1 m1 N2 m2 𝝈𝟐/𝝈𝟏 l12 

30 0.02 - 0.8 100 1 100 4 1.5 0, 0.1 

1.5 0.02 - 0.8 100 1 100 4 1.5 0, 0.5, 0.1 

1 0.02 - 0.8 100 1 100 4 1.5 0.1 

0.75 0.02 - 0.8 100 1 100 4 1.5 0.1 

1.5 0.02 - 0.8 100 1 100 4 3 0, 0.1 

1.5 0.02 - 0.8 50 1 150 4 1.5 0, 0.1 

1.5 0.02 - 0.8 100 2 100 5 1.5 0, 0.1 

1.5 0.02 - 0.8 100 2 100 5 3 0, 0.1 

 

In fact, here we only consider the positive values of l12. The geometric combining rule 

seems more adapted than the arithmetic one. Therefore it is mostly expected that l12 > 0. We 

considered the results of compressibility factor Z of chain mixtures mainly for the cases l12 = 0 

and l12 = 0.1. The results of molecular simulations for these mixtures are presented in table S2 in 

supplementary material. 

 

4. Validation of Square Wells Chains EoS against Monte Carlo simulation 

results  

In this section, two properties are validated against Monte Carlo (MC) simulation. At first, 

the inter-segment distribution functions at contact and at r = λσ (with λ = 1.5) for the pure chains 

is presented. Comparisons with molecular simulation results available in the literature are also 

provided. At second, the compressibility factor for mixtures of square-well chains is validated by 

MC simulation.      

 

4.1. Validation of inter-segment distribution function 

In Figures 3 and 4, our approach to calculate the distribution functions for chains is 

compared to the simulation reported by Lipson et al.
35,36

 and Tavares et al.
28

 for m = 4, 6, 8 and 

16. On the left of Figure 3 and Figure 4, the radial distribution function is evaluated at contact (r = 

σ) and at (𝑟 = 𝜆𝜎) for different compacities for chain length m=4 and a reduced temperature of 

1.5. Comparable figures for the other studied chain lengths (m=6, 8, 16) are provided in Appendix 

B. We see that the inter-segment distribution function, which is about 4 for ideal gas and rises 

slightly for longer chains, first decreases as the density increases, passes through a minimum and 
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then increases at higher densities. Our model represents correctly the qualitative behavior obtained 

by molecular simulation. 

We observe that, at medium and high density, a reasonable agreement is obtained between 

the relation proposed for the calculation of g (σ
+
) and  g (λσ

-
)  and the values calculated by Lipson 

and al
34–36

 and Tavares et al
28

 for pure compounds and Paredes et al
42

 for mixtures. At  low 

densities the agreement is less good: as a consequence virial coefficients are not expected to be 

well predicted (see below).   

However, the free energy 𝐴𝑁𝐴𝑆 corresponding to the non-additive term in Equation (17) 

depends on the inter-segment distribution function g(r) and on the density ρ or the reduced density 

ρ* that is a function of compacity 𝜂 (𝜌∗ = 𝜌 ∑ 𝑥𝑖𝑚𝑖𝜎𝑖
3 =

6𝜂

𝜋𝑖  ). A good modeling of 𝐴𝑁𝐴𝑆 may be 

obtained if the products of these two terms (ρ.g(r)) is represented correctly and especially ρ.g(r = 


-
) at low T* and high  (this term is magnified by 

3
.(e

1/T*
-1) in equation (17)). Such quantity 

is shown on the right part of Figures 3a and 3b for pure 4-mer.  

 

 

 

 

Figure 3a: Values of inter-segment distribution function at contact calculated in this work and 

taken from literature: (♦) Lipson et al.
35,36

 and (▲) Tavares et al.
28

  in case m = 4 at T* = 1.5. In 

this work, simulation results (o), calculation by our model (▬) 
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Figure 3b: Values of inter-segment distribution function at r = λ.σ
-
 (with λ = 1.5) calculated in 

this work and taken from literature: (♦) Lipson et al.
35,36

 in case m = 4 at T* = 1.5; simulation 

results (o); calculation by our model (▬) 

 

 

 

 

 

   

Figure 4: Values of inter-segment distribution function at contact calculated by our model (▬); 

symbols are for data taken from Paredes et al
42

. Mixtures considered here are: left plot: m1 =1, m2 
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=4, 1 = 2 = 1 and x1 = 0.5; right plot: m1 =2, m2 = 8, 1 = 2 = 1 and x1 = 0.5 

 

A good agreement is found between the theory and the simulations whatever the compacity. In 

view of all the approximation made, the above results allow us validating the expression of the 

site-site distribution function (22) to compute free energy. 

 

4.2. Validation of compressibility factor 

After the validation of the inter-segment distribution functions for the pure square-well 

chains, we compare the compressibility factor Z of binary mixture of square well chains calculated 

from our EoS to the ones originating from our Monte Carlo simulations. Consistently with our free 

energy the compressibility factor Z is calculated as a sum of two terms: 

 

Z = Z
SWC

 + Z
NAS

  (34) 

 

Here for Z
SWC

 we have chosen the model of Gross and Sadowski
14

. Z
NAS

 is obtained from 

equation (17) using standard thermodynamic relations. As a preliminary step it is interesting to put 

in light the conditions where the NAS term is significant in comparison with the SWC term. For 

this purpose, on figure 5, Z
SWC

 and Z
NAS

 were plotted for mixtures m1 = 1, m2 = 4, 1 = 1, 2 = 

1.5, x1 = 0.5 at different temperatures T* ranging from 0.75 to ∞. From this figure it seems that the 

NAS term become significant for  > 0.2 - 0.3. This term appears less depend on temperature than 

SWC term. 
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Figure 5. Plot of Z
SWC

 and Z
NAS

 in function of compacity at different temperatures. The 

mixture considered is in the following conditions: m1 =1, m2 =4, 1 =1, 2 = 1.5, x1 = 0.5 and l12 = 

0.1 

 

 

This is also clearly seen on figure 6 where we compare our model (with and without NAS 

term) to simulation data. Thanks to NAS term a good agreement with simulation data is generally 

obtained, but one may also observe deterioration at low temperatures. From this figure, it can be 

inferred that our model should not be used at temperature below 0.75.     
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Figure 6. Comparison between our model and simulation data. The mixture considered is 

in the following conditions: m1 =1, m2 =4, 1 =1, 2 = 1.5 and x1 = 0.5; l12 = 0.1. Symbols are for 

our simulation data; (
_____

) full model (eq. 34); (----) Z
SWC

. 

 

At low density (right part of figure 6) Z is predicted by our model within 2% error in 

comparison with simulation data. As expected and already noticed above the second virial 

coefficient is not well predicted (see the differences in the slopes). 

 

In the next figures we test the influence of several parameters on the predictions of our 

model: lij (see figure 7), number fraction x1 (see figure 8), diameter ratio (see figure 9-10) and 

chains lengths (see figure 10).      

As a general comment, we may conclude that our model reproduces qualitatively and 

quantitatively well the behavior of the fluid mixtures when the above-cited parameters are varied.   

    More specifically, the evolution of compressibility factor at high compacity (when NAS 

term is important) is well captured by the model when l12 is varied from 0 to 0.1 as may be seen on 

the example in figure 7.  

As may be shown on figure 8, the influence of the number fraction appears well taken into 

account by our model. 
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Figure 7: Comparison of the compressibility 

factor Z calculated by square-well chains EoS 

and issued from molecular simulation for the 

mixture:  m1 =1, m2 =4, 1 =1, 2 = 1.5 and x1 = 

0.5. Different lij are considered: 0 (), 0.05 () 

and 0.1 (). The solid lines are the predictions of 

the equation of state of square well chains. 

 

Figure 8: Comparison of the compressibility 

factor Z calculated by square-well chains EoS at 

different composition. The mixtures conditions 

are: m1 =1, m2 =4, 1 =1, 2 = 1.5 and l12 = 0.1 

The symbols denote the Monte Carlo simulation 

data. The solid lines are the predictions of the 

equation of state of square well chains. 

 

In the next figures 9-10, we investigate the effect of the mixture asymmetry on the 

prediction of the model. Asymmetry is tested through two parameters: size ratio between the two 

compounds and chain lengths. Here again our model appears to compute reasonably well the 

compressibility factor if compared to simulation data. 
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Figure 9: Comparison of the compressibility 

factor Z calculated by square-well chains EoS 

and issued from molecular simulation for 

different diameter ratio. The conditions of the 

mixture are: m1 =1, m2 =5, x1 = 0.5, T* =1.5 and 

l12 = 0.1. The symbols denote the Monte Carlo 

simulation data and the solid lines are the 

predictions of the equation of state of square 

well chains. 

 

Figure 10: Comparison of the compressibility 

factor Z calculated by square-well chains EoS and 

issued from molecular simulation for different 

diameter ratio. The conditions of the mixture are: 

m1 =2, m2 = 5, x1 = 0.5, T* =1.5 and l12 = 0.1. 

The symbols denote the Monte Carlo simulation 

data and the solid lines are the predictions of the 

equation of state of square well chains. 

 

 From all the observations made above, it may be concluded that the predictions of 

compressibility factor by our model appear satisfactory and reliable in a rather wide range of 

temperature (T
*
 > 0.75), composition, sizes and non-additivity (l12 <0.1). This result was obtained 

even if crude hypotheses were made in the development of the model. 

 

 

 

5. Conclusions   

The main target of this paper is to develop a physically-meaningful predictive approach for 

introducing a repulsive correction in an equation of state. This is done by using the perturbation 

theory, applied on a reference consisting of chains of square well molecules. The approach is 
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validated against molecular simulation. 

The correction works well at high density, but more substantial deviations are observed at 

very low density. Three possible paths are suggested for further improvement: 

- refitting inter-segment distribution functions after acquisition of new molecular 

simulation data, especially at lower temperature 

- revising equations (19-20) to predict better inter-segment distribution function at low 

density and low temperature 

- a re-mapping of the lij parameter as suggested in the work of Parricaud
44

.A modification 

in the non-additive parameter may be needed to allow better predictions. In his 

development for non-additive hard-sphere systems, Parricaud
44

 proposed to replace the 

non-additive theoretical terms contained 𝜎𝑖𝑗
2 (𝜎𝑖𝑗

𝑁𝐴𝑆 − 𝜎𝑖𝑗) by (𝜎𝑖𝑗
𝑁𝐴𝑆 3 − 𝜎𝑖𝑗

3 ). This 

modification allows a correct calculation of the second virial coefficient but to the best of 

our knowledge the second virial coefficient of non-additive square well chains is unknown. 

This should be investigated in a future work.  
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Appendix: The inter-segment distribution functions of pure chains of square 

wells 

 

Figure A1: Values of inter-segment distribution function at contact calculated and taken from 

literature in case T*=1.5 and m =6: () data from Lipson et al.
32,33

 (
___

), our model; m=8: () 

data from Lipson et al.
32,33

 , () data from Tavares et al.
29

, (
_ _ _

) our model; m =16: (▲) data from 

Lipson et al.
32,33

 , () data from Tavares et al.
29

, (
……

) our model. 

 

 

 

Figure A2: Values of inter-segment distribution function at λ=1.5 calculated and taken from 

literature in case T*=1.5 and m =6: () data from Lipson et al.
32,33
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data from Lipson et al.
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