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Introduction

Computation of realistic phase equilibria is of central importance in chemical engineering and more specifically for designing unit operations. In this domain, the equations of state play a major role allowing to deal with a wide range of mixtures in a broad range of pressures and temperatures. A good equation of state is capable of calculating and in the best case of predicting phase equilibria. This is the reason why theoretically rooted equations of state (based on statistical mechanics) such as SAFT [START_REF] Chapman | SAFT: Equation-ofstate solution model for associating fluids[END_REF][START_REF] Chapman | New Reference Equation of State for Associating Liquids[END_REF] are increasingly used in engineering problems.

Certain systems remain however difficult to model such as small molecule (e.g. gases) + solvents. A non-zero adjustable binary parameter must be used in order to reach experimental precision. From now on, the common practice is to use the so-called k ij i.e. the binary parameter acting on energy of the dispersion term : 𝜀 𝑖𝑗 = √ 𝜀 𝑖𝑖 . 𝜀 𝑗𝑗 (1 -𝑘 𝑖𝑗 ). Far more rarely, the effect on phase equilibria computation of binary parameter l ij on cross diameter i.e. 𝜎 𝑖𝑗 = 𝜎 𝑖𝑖 +𝜎 𝑗𝑗 2

(1 -𝑙 𝑖𝑗 ) was explored [START_REF] Nguyen | Improving GC-PPC-SAFT equation of state for LLE of hydrocarbons and oxygenated compounds with water[END_REF] . Only limited number of equations of state were developed to account for this possible non-additivity effect mainly for spherical [START_REF] Adams | Fluids of hard spheres with nonadditive diameters[END_REF][START_REF] Dickinson | On the thermodynamics of polydisperse systems of non-additive hard particles[END_REF][START_REF] Gazzillo | Fluid-fluid phase separation of nonadditive hard-sphere mixtures as predicted by integral-equation theories[END_REF][START_REF] Jagannathan | Integral equation theory for symmetric nonadditive hard sphere mixtures[END_REF][START_REF] Rovere | Fluid-fluid phase separation in binary mixtures of asymmetric nonadditive hard spheres[END_REF][START_REF] Saija | Entropy and Fluid -Fluid Separation in Nonadditive Hard-Sphere Mixtures: The Asymmetric Case[END_REF][START_REF] Santos | Equation of state of nonadditive d-dimensional hard-sphere mixtures[END_REF][START_REF] Hammawa | A simple model for size non-additive mixtures[END_REF] or hard chain [START_REF] Abu-Sharkh | Simulation and Model Development for the Equation of State of Self-Assembling Nonadditive Hard Chains[END_REF][START_REF] Abu-Sharkh | Investigation of the Microstructure of Micelles Formed by Hard-Sphere Chains Interacting via Size Nonadditivity by Discontinuous Molecular Dynamics Simulation[END_REF] molecules. To the best of our knowledge no equation of state was developed for non-additive attractive chain molecules.

Our general goal is to propose an adequate implementation of a non-additive diameter in an engineering but theoretically rooted EOS such as PC-SAFT. As a first step, in a procedure similar to that followed by Gross and Sadowski [START_REF] Gross | Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains[END_REF][START_REF] Gross | Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules[END_REF] , we will first consider square well chain fluids as prototype fluids. The main goal of the work reported in this paper is to develop a non-additive Square Well Chain Equation of state that applies to small molecule + solvent systems. Extension to PC-SAFT will be presented in the next article.

This paper is presented as follows. First, the general description of square well chains equation of state based on statistical mechanics is presented. Next, the development of a nonadditive term for square well chains is shown with in particular the determination of the intersegment distribution functions of square-well chains. Finally, the approach is validated against Monte Carlo molecular simulations for the pure chains and for the mixtures of square wells chains.

Development of non-additive Square Well Chain Equation of state

General expression of the equation of state

The interaction potential between segments i and j of two non-additive square-well homonuclear chain molecules is defined as:

𝒖 𝒊𝒋 (𝒓) = { ∞ 𝒓 < 𝝈 𝒊𝒋 -𝜺 𝒊𝒋 𝝈 𝒊𝒋 ≤ 𝒓 < 𝝀𝝈 𝒊𝒋 𝟎 𝒓 ≥ 𝝀𝝈 𝒊𝒋 (1) 
With 𝜎 𝑖𝑗 = 𝜎 𝑖 +𝜎 𝑗 2 (1 -𝑙 𝑖𝑗 )
Notice that l ii = l jj = 0; non-additivity implies non-zero l ij .

The equation of state derived from the above potential may be obtained by using perturbation techniques that start by subdividing the potential into a reference and a perturbation part:

𝒖 𝒊𝒋 (𝒓) = 𝒖 𝒊𝒋 𝒓𝒆𝒇 (𝒓) + 𝒖 𝒊𝒋 𝒑𝒆𝒓𝒕 (𝒓) (2)
In standard procedures, one would choose the reference part as repulsive. This would lead to deal with non-additive hard chains as reference fluid for which little is known; in particular analytical expression of inter-segment distribution functions are unknown and simulation data for these functions are not available whereas they are needed to compute the perturbation part.

So, rather than starting from the very beginning with the development of a new equation of state, we decided to base our work on the proposal of Malakhov and Volkov [START_REF] Malakhov | Phase behavior of polymer mixtures with nonadditive hardsphere potential[END_REF] , who developed a model of non-additive chains of hard spheres using a specifically designed perturbation. Doing so, the reference term is chosen as the additive potential i.e. for which l ij = 0. The reference potential is written:

𝒖 𝒊𝒋 (𝒓) = { ∞ 𝒓 < 𝝈 𝒊𝒋 -𝜺 𝒊𝒋 𝝈 𝒊𝒋 ≤ 𝒓 < 𝝀𝝈 𝒊𝒋 𝟎 𝒓 ≥ 𝝀𝝈 𝒊𝒋 (3) 
With 𝜎 𝑖𝑗 = 𝜎 𝑖 +𝜎 𝑗 2
This is the potential of usual square-well chain (SWC) molecules for which equations of state are available. [START_REF] Gross | Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains[END_REF] This potential and its parameters are denoted with SWC superscript in the rest of the paper. Several authors have investigated the use of a square well reference that lead to the Square Well chains equation of state [START_REF] Banaszak | Thermodynamic perturbation theory: Sticky chains and square-well chains[END_REF][START_REF] Adidharma | Prototype of an Engineering Equation of State for Heterosegmented[END_REF][START_REF] Gil-Villegas | Statistical associating fluid theory for chain molecules with attractive potentials of variable range[END_REF][START_REF] Tavares | A completely analytic equation of state for the squarewell chain fluid of variable well width[END_REF] .

The perturbation part is simply defined as the difference between the non-additive and additive potentials and denoted NAS (Non -Additive Segments). In terms of Helmholtz free energy one obtains :

𝑨 𝑵𝒌𝑻 = 𝑨 𝑺𝑾𝑪 𝑵𝒌𝑻 + 𝑨 𝑵𝑨𝑺 𝑵𝒌𝑻 ( 4 
)
where N is the total number of molecules, k is the Boltzmann constant, and T is the absolute temperature. 𝐴 𝑆𝑊𝐶 denotes the system energy in additive interactions [START_REF] Gross | Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains[END_REF] i.e. ordinary square-well chain fluids (SWC).

The contribution 𝐴 𝑁𝐴𝑆 (NAS = Non -Additive Segments) is the perturbation term that acts as a correction to the additive behavior. In the same way as in the work of Malakhov and Volkov [START_REF] Malakhov | Phase behavior of polymer mixtures with nonadditive hardsphere potential[END_REF] , this term is evaluated here at the first order :

𝑨 𝑵𝑨𝑺 𝑵𝒌𝑻 = 𝟏 𝟐 𝝆 ∑ ∑ 𝒙 𝒊 𝒎 𝒊 𝒙 𝒋 𝒎 𝒋 𝒋 𝒊 ∫ 𝟒𝝅𝒓 𝟐 𝒅𝒓𝒈 𝒊𝒋 𝐒𝐖𝐂 (𝒓)𝜷𝒖 𝒊𝒋 𝑵𝑨𝑺 (𝒓) (5)
Where 𝑔 𝑖𝑗 𝑆𝑊𝐶 (𝑟) represents the intersegment distribution function of a fluid of ordinary square-well chains. In equation (5) x i , x j are molar fractions of molecule i and j respectively; m i , m j are the number of constitutive segments or the length chain of molecule i and j; 𝜌 is the total molecular density and 𝛽 = 1 𝑘𝑇 .

Computation of the perturbed contribution of the Helmholtz free energy

Following again Malakhov and Volkov [START_REF] Malakhov | Phase behavior of polymer mixtures with nonadditive hardsphere potential[END_REF] , an explicit expression of 𝐴 𝑁𝐴𝑆 is obtained by making a limited development at first order of 𝑢 𝑖𝑗 𝑁𝐴𝑆 at the neighborhood of the additive potential (using the Taylor series).

𝒖 𝒊𝒋 𝑵𝑨𝑺 (𝒓) = ( 𝝏𝒖 𝒊𝒋 (𝒓) 𝝏𝝈 𝒊𝒋 ) 𝝈 𝒊𝒋 =𝝈 𝒊𝒋 𝑺𝑾𝑪 𝒐𝒓 𝒍 𝒊𝒋 =𝟎 (𝝈 𝒊𝒋 -𝝈 𝒊𝒋 𝑺𝑾𝑪 ) + ⋯ (6)
Where the diameter for the additive case is written :

𝜎 𝑖𝑗 𝑆𝑊𝐶 = 𝜎 𝑖 +𝜎 𝑗 2 .
In order to evaluate the derivative, we used the function 𝑒 -𝛽𝑢 𝑖𝑗 (𝑟) . One has :

𝒅𝒆 -𝜷𝒖 𝒊𝒋 (𝒓) 𝒅𝝈 𝒊𝒋 = -𝒆 -𝜷𝒖 𝒊𝒋 (𝒓) 𝜷 𝒅𝒖 𝒊𝒋 (𝒓) 𝒅𝝈 𝒊𝒋 (7) And recalling that 𝜎 𝑖𝑗 = 𝜎 𝑖𝑗 𝑆𝑊𝐶 (1 -𝑙 𝑖𝑗 ), we can deduce then :

𝜷𝒖 𝒊𝒋 𝑵𝑨𝑺 (𝒓) = 𝒆 𝜷𝒖 𝒊𝒋 𝑺𝑾𝑪 (𝒓) ( 𝒅𝒆 -𝜷𝒖 𝒊𝒋 (𝒓) 𝒅𝝈 𝒊𝒋 ) 𝒍 𝒊𝒋 =𝟎
𝝈 𝒊𝒋 𝑺𝑾𝑪 𝒍 𝒊𝒋 (8) Taking advantage of the shape of 𝑢 𝑖𝑗 (𝑟) (equation 3) that is such that 𝑒 -𝛽𝑢 𝑖𝑗 (𝑟) can be expressed in terms of Heaviside step functions, we find:

𝒆 -𝜷𝒖 𝒊𝒋 = [𝑯(𝒓 -𝝈 𝒊𝒋 ) -𝑯(𝒓 -𝝀𝝈 𝒊𝒋 )]𝒆 𝜷𝜺 𝒊𝒋 + 𝑯(𝒓 -𝝀𝝈 𝒊𝒋 ) (9)
The derivative of which is written as: (10) Which can be written in terms of Dirac functions:

𝒅𝒆 -𝜷𝒖 𝒊𝒋 (
𝒅𝒆 -𝜷𝒖 𝒊𝒋 (𝒓) 𝒅𝝈 𝒊𝒋 = 𝒆 𝜷𝜺 𝒊𝒋 (-𝜹(𝒓 -𝝈 𝒊𝒋 ) + 𝝀𝜹(𝒓 -𝝀𝝈 𝒊𝒋 )) -𝝀𝜹(𝒓 -𝝀𝝈 𝒊𝒋 ) (11) Therefore, we have:

( 𝒅𝒆 -𝜷𝒖 𝒊𝒋 𝑺𝑾𝑪 (𝒓)
𝒅𝝈 𝒊𝒋 )

𝒍 𝒊𝒋 =𝟎 = 𝒆 𝜷𝜺 𝒊𝒋 (-𝜹(𝒓 -𝝈 𝒊𝒋 𝑺𝑾𝑪 ) + 𝝀𝜹(𝒓 -𝝀𝝈 𝒊𝒋 𝑺𝑾𝑪 )) -𝝀𝜹(𝒓 -𝝀𝝈 𝒊𝒋 𝑺𝑾𝑪 ) (12) Recall that we need to find the expression of free energy according to the equation (5) Combining equations ( 5), ( 6) and ( 12) we get : 

𝑨 𝑵𝑨𝑺 𝑵𝒌𝑻 = 𝟐𝝅𝝆 ∑ ∑
)
Where the cavity functions are evaluated either at the upper side of the limit (indicated by "+"), or at the lower side of the limit (marked with "-") :

𝒚 𝒊𝒋 𝑺𝑾𝑪 (𝝈 𝒊𝒋 𝑺𝑾𝑪 ) = 𝒈 𝒊𝒋 𝑺𝑾𝑪 (𝝈 𝒊𝒋 𝑺𝑾𝑪 + )𝒆 -𝜷𝜺 𝒊𝒋 (15) 𝒚 𝒊𝒋 𝑺𝑾𝑪 (𝝀𝝈 𝒊𝒋 𝑺𝑾𝑪 ) = 𝒈 𝒊𝒋 𝑺𝑾𝑪 (𝝀𝝈 𝒊𝒋 𝑺𝑾𝑪-)𝒆 -𝜷𝜺 𝒊𝒋 (16)
It leads to:

𝑨 𝑵𝑨𝑺 𝑵𝒌𝑻 = -𝟐𝝅𝝆 ∑ ∑ 𝒙 𝒊 𝒙 𝒋 𝒎 𝒊 𝒎 𝒋 𝝈 𝒊𝒋 𝑺𝑾𝑪 𝟑 𝒍 𝒊𝒋 [𝒈 𝒊𝒋 𝑺𝑾𝑪 (𝝈 𝒊𝒋 𝑺𝑾𝑪 + ) -𝝀 𝟑 𝒈 𝒊𝒋 𝑺𝑾𝑪 (𝝀𝝈 𝒊𝒋 𝑺𝑾𝑪 -) 𝒋 𝒊 + 𝒆 -𝜷𝜺 𝒊𝒋 𝝀 𝟑 𝒈 𝒊𝒋 𝑺𝑾𝑪 (𝝀𝝈 𝒊𝒋 𝑺𝑾𝑪 -)] ( 17 
)
This expression requires having average inter -segment distribution functions at contact 𝑔 𝑖𝑗 𝑆𝑊𝐶 ( 𝑟 = 𝜎 𝑖𝑗 𝑆𝑊𝐶+ ) and at limit 𝑔 𝑖𝑗 𝑆𝑊𝐶 (𝑟 = 𝜆. 𝜎 𝑖𝑗 𝑆𝑊𝐶-) for a chain of spheres interacting via an additive square well potential. This is the subject of the next section.

Determination of inter segment distribution function 𝒈 𝒊𝒋 𝐒𝐖𝐂 (𝒓)

We must now determine the inter-segment distribution function 𝑔 𝑖𝑗 SWC (𝑟). In this work, we used the suggestion of Paredes et al [START_REF] Paredes | Inner segment radial distribution functions at contact point for chain-like molecules[END_REF] For two identical chains containing m segments, there are 4 interactions between terminal segments, (𝑚 -2) 2 interactions between internal segments and 4(𝑚 -2) interactions between a terminal segment and an internal segment. Therefore, we obtain the average inter-segment distribution function between 2 identical molecules as (cf. Figure 1) :

𝒈 𝒊𝒋 = 𝟒𝒈 𝑻𝑻 + 𝟒(𝒎 -𝟐)𝒈 𝑰𝑻 + (𝒎 -𝟐) 𝟐 𝒈 𝑰𝑰 𝒎 𝟐 ( 18 
)
Where 𝑔 𝑇𝑇 is the radial distribution function between two terminal segments; 𝑔 𝐼𝑇 is the radial distribution function between an internal segment and external terminal segment; 𝑔 𝐼𝐼 is the radial distribution function between two internal segments and m is the chain length.

According to Paredes et al. [START_REF] Paredes | Inner segment radial distribution functions at contact point for chain-like molecules[END_REF] , the inter-segment functions are supposed to depend on 

𝒈 𝑻𝑻 = 𝒈 𝑫,𝑫 (19) 
𝒈 𝑰𝑻 = 𝟑 𝟐 𝒈 𝑫𝑫 -𝟏 𝟐 𝒈 𝑺𝑺 (20) 𝒈 𝑰𝑰 = 𝟐𝒈 𝑫𝑫 -𝒈 𝑺𝑺 (21) These results are consistent with the study of Chiew et al. [START_REF] Chiew | Percus-Yevick integral-equation theory for athermal hard-sphere chains, Part I: Equations of state[END_REF][START_REF] Chiew | Percus-Yevick integral equation theory for athermal hard-sphere chains[END_REF] who worked on the site-site correlation function of 4-mer hard chain by using the Percus-Yevick approximation. It is also compatible with the Flory theory of Hall et al. [START_REF] Yethiraj | Site-site correlations in short chain fluids[END_REF][START_REF] Honnell | A new equation of state for athermal chains[END_REF][START_REF] Dickman | Equation of state for chain molecules: Continuous-space analog of Flory theory[END_REF] and it can be extended to the square well potential (with λ = 1.5).

For the general case, we must deal with molecules having different numbers of segments m i and m j . Computing the average inter-segment distribution function is performed by a weighted average of the number of interactions: (22) Based on homonuclear chains relations, we make the following approximation :

𝒈 𝒊𝒋 =
𝒈 𝑻 𝒊 𝑻 𝒋 (𝜼) ≈ 𝒈 𝑻𝑻 (𝜼) (23) 𝒈 𝑰 𝒊 𝑰 𝒋 (𝜼) ≈ 𝒈 𝑰𝑰 (𝜼) (24)
𝒈 𝑻 𝒊 𝑰 𝒋 (𝜼) ≈ 𝒈 𝑻 𝒋 𝑰 𝒊 (𝜼) ≈ 𝒈 𝑰𝑻 (25) In order to determine the inter-segment distribution function, it is necessary to have the inter-segment distribution function of square well spheres and dimers as a function of packing fraction and temperature. The values of 𝑔 𝑆,𝑆 and 𝑔 𝐷,𝐷 at contact x = r/ = 1 and at x =  -= 1.5 - were fitted using the following empirical expression:

g(𝜼, 𝑻 * ) = g(𝜼, ∞) + [𝑔(𝟎, 𝑻 * ) -𝑔(𝟎, ∞)] 1 + 𝑎. 𝜼 + 𝑏. 𝜼 𝟐 1 + 𝑐. 𝜼 + 𝑑. 𝜼 𝟐 + 𝑒. 𝜼 𝟑 (26) The form of this expression was partially motivated by noticing from molecular simulation data of Tavares et al [START_REF] Tavares | Equation of state for the square-well chain fluid based on the dimer version of Wertheim's perturbation theory[END_REF] that at high packing fraction ( > 0.3-0.4) the square-well fluid behaves closely to the hard fluid: in those conditions we have g(,T*) ≈ g(,T* = ∞). Also this expression obeys the high temperature limit (g(,T*)  g(,∞) when T*  ∞) and the low density limit (g(,T*)  g(,∞) when   0). Coefficients a, b, c, d and e are purely empirical and obtained by fitting simulation data (see table 1 

below).

The expression of the hard fluid inter-segment distribution is of a Carnahan and Starling type:

g(𝜼, ∞) = 𝐴 + 𝐵. 𝜼 + 𝐶. 𝜼 𝟐 + 𝐷. 𝜼 𝟑 (𝟏 -𝜼) 𝟑 (27) 
Coefficients A, B, C and D are known for spheres and dimers at contact. Those values are re-used in this work. At x =  -= 1.5 -, the values of these coefficients were determined by fitting available simulation data (see table 1).

The inter-segment distribution at zero packing fraction was put in the following form:

g(𝟎, 𝑻 * ) = 𝒆 𝜶+ 𝜷 𝑻 * +( 𝜸 𝑻 * ) 𝟐 ( 28 
)
The coefficients  and  are known for spheres at contact. In the other cases, they were adjusted on simulation data.

In Table 1, the available data of inter-segment distribution functions that were used for fitting unknown coefficients in equations (26-28) are detailed. They were obtained by 3 different methods. The first method is an NVT Monte Carlo simulation where temperature, the volume and the number of particles of the system are imposed. The second method is a Monte Carlo NPT simulation where pressure is fixed instead of volume). The third method is called BYG integral equation. This method has been solved for many short-ranged potentials such as hard sphere [START_REF] Kirkwood | Radial distribution functions and the equation of state of a fluid composed of rigid spherical molecules[END_REF][START_REF] Co | Solutions of the Yvon-Born-Green equation for the squarewell fluid at very high densities[END_REF] , square well [START_REF] Lincoln | Properties of solutions to the Yvon-Born-Green equation for the square-well fluid[END_REF] and Lennard-Jones [START_REF] Kirkwood | Radial distribution functions and the equation of state of fluids composed of molecules interacting according to the Lennard-Jones potential[END_REF][START_REF] Broyle | Radial Distribution Functions from the Born-Green Integral Equation[END_REF] fluids. See the original articles for more details. This method is approximate and the resulting values are not as reliable as simulation data. However, such data are useful in conditions where no simulation data exist.

As mentioned above, in this development we use the value of λ equal to 1.5 which is the most current width in square well potential where data are more abundant in the literature [START_REF] Porter | Square-well chain fluids: The thermodynamic properties of hexamers, octamers, and hexadecamers[END_REF][START_REF] Taylor | Structure and phase behavior of squarewell dimer fluids[END_REF][START_REF] Fridrikh | Square-well fluids: The statistical and thermodynamic properties of short chains[END_REF] . Extension of our model to other values of can be done if the corresponding simulation data are available.

As it appears in table 1 and from a literature analysis, most data are available at temperature T * equal or higher than 1.5. Examples of fitting at T* = 1.5 are shown in Figure 2. A good fitting is observed. Validation is shown in the next section.

Monte Carlo simulation data

In this work, we used Monte Carlo simulation to validate the approach by comparing, for both the simulation and the model the inter-segment distribution function for pure chains and the compressibility factor for mixtures of chains. The MC simulations were performed with a standard NPT algorithm using N = 250 particles at different reduced pressures (𝑃 * = 𝑃𝜎 3 𝜀 𝑖𝑗 ⁄ ) and reduced temperature (𝑇 * = 𝑘𝑇 𝜀 𝑖𝑗 ⁄ ). The average properties are computed during a production run lasting 500 million Monte Carlo steps, one step corresponding to a single Monte Carlo move. Before each production run, a preliminary run of 50 million Monte Carlo steps is carried out to achieve equilibrium. The number of Monte Carlo steps may change depending on the convergence. In the case of square-well interactions, a spherical cutoff equal to half of the simulation box was used while classical tail corrections were employed [START_REF] Allen | Computer Simulation of Liquids[END_REF] . For the intramolecular terms, the bonding is fixed with tangent spheres. There is neither bending nor torsion between two segments. The different Monte Carlo moves and their corresponding attempt probabilities used during the simulations are and volume change (1%). The amplitude of translations, rotations and volume changes was adjusted during the simulation to achieve an acceptance ratio of 40% for these moves.

Pure chains of square wells

For each simulation, the radial distribution functions g(r) for a pure square well chain are given directly. In NPT, in order to determine the g(r), it is necessary to get the histogram that represents the average number of particles whose distance from a given particle lies in the interval (r, r + dr). After, the radial distribution function is calculated by this expression:

𝒈(𝒓 + 𝟏/𝟐𝒅𝒓) = 𝒉(𝒓) 𝑵 𝑽 × 𝟒 𝟑 𝝅((𝒓 + 𝒅𝒓) 𝟑 -𝒓 𝟑 ) (29) 
Where h(r) is the histogram; N is total number of particles in the system; V is the volume of simulation box.

The MC simulation conditions are m = 4,  =1 and T* = 1.5. Data were acquired for P*/T* ranging from 0.001 to 1.5. The data are reported in supplementary section in table S1.

Mixtures of chains of square wells

For mixtures of chains of square-well, the same approach using Monte Carlo simulation method was employed. In the simulation box, we defined a number of particles for each type of molecules. And the property that we consider is the compressibility factor. The compressibility is calculated from following equation:

𝒁 = 𝑷 𝝆𝒌𝑻 ( 30 
)
Where P, ρ, T, 𝑣 is the pressure, the molecular density, the temperature and the molar volume of system respectively, 𝑘 is Boltzmann constant.

As mentioned above, a standard NPT algorithm is used for these calculations. It means that the pressure P, the number of particles N (for each type of molecules in the simulation box) and the temperature T of the system are imposed. The computation gives a density that yields directly the compressibility factor using Equation (29).

The input parameters are the reduced temperature T* (𝑇 * = 𝑘 𝐵 𝑇 𝜀 ⁄ where ε is the dispersive energy, the reduced pressure P* (𝑃 * = 𝜎 3 𝑃 𝜀 ⁄ , where σ is the diameter of the particle, this property is reduced in the mixture of 2 different particles) and the number of particles of each kind, as shown in table 3. In case of mixture of chains, each particle has the same dispersive energy 𝜀 𝑖𝑗 . We present usually the compressibility factor Z as a function of the compacity η with:

𝜼 = 𝝅 𝟔 𝝆 = ∑ 𝒙 𝒊 𝒎 𝒊 𝝈 𝒊 𝟑 𝒊 ( 31 
)
The density, and thus the molar volume are obtained directly from the statistical averages performed over the different Monte Carlo configurations. For example in the post-treatment, the molecular density is determined by:

𝝆 = 𝑵 〈𝑽〉 ( 32 
)
Where 𝑁 is the number of particles in the box that is a fixed input (see table 3) in our case and 〈𝑉〉 is the average molar volume. The MC simulation conditions for chain mixtures are summarized in Table 4.

Non-zero values of the non-additive parameter l ij are taken into account by the use of the modified Lorentz-Berthelot combining rule:

𝝈 𝒊𝒋 = 𝝈 𝒊 + 𝝈 𝒋 𝟐 (𝟏 -𝒍 𝒊𝒋 ) (33)
In fact, in the MC simulation, we impose the diameter values 𝝈 𝒊 , 𝝈 𝒋 of each component.

We choose a value of l ij , so the cross diameter is calculated by using Equation (32) then imposed in MC simulation. In fact, here we only consider the positive values of l 12 . The geometric combining rule seems more adapted than the arithmetic one. Therefore it is mostly expected that l 12 > 0. We considered the results of compressibility factor Z of chain mixtures mainly for the cases l 12 = 0 and l 12 = 0.1. The results of molecular simulations for these mixtures are presented in table S2 in supplementary material.

Validation of Square Wells Chains EoS against Monte Carlo simulation results

In this section, two properties are validated against Monte Carlo (MC) simulation. At first, the inter-segment distribution functions at contact and at r = λσ (with λ = 1.5) for the pure chains is presented. Comparisons with molecular simulation results available in the literature are also provided. At second, the compressibility factor for mixtures of square-well chains is validated by MC simulation.

Validation of inter-segment distribution function

In Figures 3 and4, our approach to calculate the distribution functions for chains is compared to the simulation reported by Lipson et al. [START_REF] Taylor | Structure and phase behavior of squarewell dimer fluids[END_REF][START_REF] Fridrikh | Square-well fluids: The statistical and thermodynamic properties of short chains[END_REF] and Tavares et al. [START_REF] Tavares | Equation of state for the square-well chain fluid based on the dimer version of Wertheim's perturbation theory[END_REF] for m = 4, 6, 8 and 16. On the left of Figure 3 and Figure 4, the radial distribution function is evaluated at contact (r = σ) and at (𝑟 = 𝜆𝜎) for different compacities for chain length m=4 and a reduced temperature of 1.5. Comparable figures for the other studied chain lengths (m=6, 8, 16) are provided in Appendix B. We see that the inter-segment distribution function, which is about 4 for ideal gas and rises slightly for longer chains, first decreases as the density increases, passes through a minimum and then increases at higher densities. Our model represents correctly the qualitative behavior obtained by molecular simulation.

We observe that, at medium and high density, a reasonable agreement is obtained between the relation proposed for the calculation of g (σ + ) and g (λσ -) and the values calculated by Lipson and al [START_REF] Porter | Square-well chain fluids: The thermodynamic properties of hexamers, octamers, and hexadecamers[END_REF][START_REF] Taylor | Structure and phase behavior of squarewell dimer fluids[END_REF][START_REF] Fridrikh | Square-well fluids: The statistical and thermodynamic properties of short chains[END_REF] and Tavares et al [START_REF] Tavares | Equation of state for the square-well chain fluid based on the dimer version of Wertheim's perturbation theory[END_REF] for pure compounds and Paredes et al [START_REF] Paredes | Square-well chain mixture: analytic equation of state and Monte Carlo simulation data[END_REF] for mixtures. At low densities the agreement is less good: as a consequence virial coefficients are not expected to be well predicted (see below).

However, the free energy 𝐴 𝑁𝐴𝑆 corresponding to the non-additive term in Equation (17) depends on the inter-segment distribution function g(r) and on the density ρ or the reduced density ρ* that is a function of compacity 𝜂 (𝜌 * = 𝜌 ∑ 𝑥 𝑖 𝑚 𝑖 𝜎 𝑖 3 =

6𝜂 𝜋 𝑖

). A good modeling of 𝐴 𝑁𝐴𝑆 may be obtained if the products of these two terms (ρ.g(r)) is represented correctly and especially ρ.g(r =

 -) at low T* and high  (this term is magnified by  3 .(e 1/T* -1) in equation ( 17)). Such quantity is shown on the right part of Figures 3a and3b for pure 4-mer.

Figure 3a:

Values of inter-segment distribution function at contact calculated in this work and taken from literature: (♦) Lipson et al. [START_REF] Taylor | Structure and phase behavior of squarewell dimer fluids[END_REF][START_REF] Fridrikh | Square-well fluids: The statistical and thermodynamic properties of short chains[END_REF] and (▲) Tavares et al. [START_REF] Tavares | Equation of state for the square-well chain fluid based on the dimer version of Wertheim's perturbation theory[END_REF] A good agreement is found between the theory and the simulations whatever the compacity. In view of all the approximation made, the above results allow us validating the expression of the site-site distribution function (22) to compute free energy.

Validation of compressibility factor

After the validation of the inter-segment distribution functions for the pure square-well chains, we compare the compressibility factor Z of binary mixture of square well chains calculated from our EoS to the ones originating from our Monte Carlo simulations. Consistently with our free energy the compressibility factor Z is calculated as a sum of two terms:

Z = Z SWC + Z NAS (34) 
Here for Z SWC we have chosen the model of Gross and Sadowski 14 . Z NAS is obtained from equation ( 17) using standard thermodynamic relations. As a preliminary step it is interesting to put in light the conditions where the NAS term is significant in comparison with the SWC term. For This is also clearly seen on figure 6 where we compare our model (with and without NAS term) to simulation data. Thanks to NAS term a good agreement with simulation data is generally obtained, but one may also observe deterioration at low temperatures. From this figure, it can be inferred that our model should not be used at temperature below 0.75. At low density (right part of figure 6) Z is predicted by our model within 2% error in comparison with simulation data. As expected and already noticed above the second virial coefficient is not well predicted (see the differences in the slopes).

In the next figures we test the influence of several parameters on the predictions of our model: l ij (see figure 7), number fraction x 1 (see figure 8), diameter ratio (see figure 9-10) and chains lengths (see figure 10).

As a general comment, we may conclude that our model reproduces qualitatively and quantitatively well the behavior of the fluid mixtures when the above-cited parameters are varied.

More specifically, the evolution of compressibility factor at high compacity (when NAS term is important) is well captured by the model when l 12 is varied from 0 to 0.1 as may be seen on the example in figure 7.

As may be shown on figure 8, the influence of the number fraction appears well taken into account by our model. From all the observations made above, it may be concluded that the predictions of compressibility factor by our model appear satisfactory and reliable in a rather wide range of temperature (T * > 0.75), composition, sizes and non-additivity (l 12 <0.1). This result was obtained even if crude hypotheses were made in the development of the model.

Conclusions

The main target of this paper is to develop a physically-meaningful predictive approach for introducing a repulsive correction in an equation of state. This is done by using the perturbation theory, applied on a reference consisting of chains of square well molecules. The approach is [START_REF] Kirkwood | Radial distribution functions and the equation of state of fluids composed of molecules interacting according to the Lennard-Jones potential[END_REF][START_REF] Broyle | Radial Distribution Functions from the Born-Green Integral Equation[END_REF] ( ___ ), our model; m=8: () data from Lipson et al. [START_REF] Kirkwood | Radial distribution functions and the equation of state of fluids composed of molecules interacting according to the Lennard-Jones potential[END_REF][START_REF] Broyle | Radial Distribution Functions from the Born-Green Integral Equation[END_REF] , () data from Tavares et al. [START_REF] Kirkwood | Radial distribution functions and the equation of state of a fluid composed of rigid spherical molecules[END_REF] , ( _ _ _ ) our model; m =16: (▲) data from Lipson et al. [START_REF] Kirkwood | Radial distribution functions and the equation of state of fluids composed of molecules interacting according to the Lennard-Jones potential[END_REF][START_REF] Broyle | Radial Distribution Functions from the Born-Green Integral Equation[END_REF] , () data from Tavares et al. [START_REF] Kirkwood | Radial distribution functions and the equation of state of a fluid composed of rigid spherical molecules[END_REF] , ( …… ) our model.  data from Lipson et al. [START_REF] Kirkwood | Radial distribution functions and the equation of state of fluids composed of molecules interacting according to the Lennard-Jones potential[END_REF][START_REF] Broyle | Radial Distribution Functions from the Born-Green Integral Equation[END_REF] , ( _ _ _ ) our model; m =16: (▲) data from Lipson et al. [START_REF] Kirkwood | Radial distribution functions and the equation of state of fluids composed of molecules interacting according to the Lennard-Jones potential[END_REF][START_REF] Broyle | Radial Distribution Functions from the Born-Green Integral Equation[END_REF] , ( …… ) our model.
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  who proposed to link 𝑔 𝑖𝑗 SWC (𝑟) (between 2 segments of 2 different chains) to the radial distribution function of disconnected spheres (called 𝑔 𝑆,𝑆 ) and the inter-segment distribution function of dimers (called 𝑔 𝐷,𝐷 ). Expressions for this latter radial distribution exist in the literature as a function of 𝜂 = 𝜌𝑣 𝑚 , v m being the molecular hard core volume and 𝑇 * = 𝑘𝑇 𝜀 ⁄ = 1/𝛽𝜀.

Figure 1 :

 1 Figure 1: Interactions between chain A and chain B

Figure 2 :

 2 Figure 2: Fitting inter-segment distribution functions of square well spheres (on the left) and square well dimers (on the right) at x=  -= 1.5 -and T * = 1.5. Full line ( ____ ) are g(r) calculated from the fitted expressions (26-28) and symboles are g(r) originating from () Lipson et al. 32 , () Largo et al. 37 and () Tavares et al 28 .
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 5 molecular translation (20%), molecular rotation (20%), regrowth with configurational bias (59%)

Figure 3b :Figure 4 : 3 =4,  1 =

 3b431 Figure 3a:Values of inter-segment distribution function at contact calculated in this work and taken from literature: (♦) Lipson et al.[START_REF] Taylor | Structure and phase behavior of squarewell dimer fluids[END_REF][START_REF] Fridrikh | Square-well fluids: The statistical and thermodynamic properties of short chains[END_REF] and (▲) Tavares et al.[START_REF] Tavares | Equation of state for the square-well chain fluid based on the dimer version of Wertheim's perturbation theory[END_REF] in case m = 4 at T* = 1.5. In this work, simulation results (o), calculation by our model (▬)

  this purpose, on figure5, Z SWC and Z NAS were plotted for mixtures m 1 = 1, m 2 = 4,  1 = 1,  2 = 1.5, x 1 = 0.5 at different temperatures T* ranging from 0.75 to ∞. From this figure it seems that the NAS term become significant for  > 0.2 -0.3. This term appears less depend on temperature than SWC term.

Figure 5 .

 5 Figure 5. Plot of Z SWC and Z NAS in function of compacity at different temperatures. The mixture considered is in the following conditions: m 1 =1, m 2 =4,  1 =1,  2 = 1.5, x 1 = 0.5 and l 12 = 0.1

Figure 6 .

 6 Figure 6. Comparison between our model and simulation data. The mixture considered is in the following conditions: m 1 =1, m 2 =4,  1 =1,  2 = 1.5 and x 1 = 0.5; l 12 = 0.1. Symbols are for our simulation data; ( _____ ) full model (eq. 34); (----) Z SWC .

1 Figure 7 :

 17 Figure 7: Comparison of the compressibility factor Z calculated by square-well chains EoS and issued from molecular simulation for the mixture: m 1 =1, m 2 =4,  1 =1,  2 = 1.5 and x 1 = 0.5. Different l ij are considered: 0 (), 0.05 () and 0.1 (). The solid lines are the predictions of the equation of state of square well chains.

Figure 8 :

 8 Figure 8: Comparison of the compressibility factor Z calculated by square-well chains EoS at different composition. The mixtures conditions are: m 1 =1, m 2 =4,  1 =1,  2 = 1.5 and l 12 = 0.1 The symbols denote the Monte Carlo simulation data. The solid lines are the predictions of the equation of state of square well chains.

Figure 9 :

 9 Figure 9: Comparison of the compressibility factor Z calculated by square-well chains EoS and issued from molecular simulation for different diameter ratio. The conditions of the mixture are: m 1 =1, m 2 =5, x 1 = 0.5, T* =1.5 and l 12 = 0.1. The symbols denote the Monte Carlo simulation data and the solid lines are the predictions of the equation of state of square well chains.

Figure 10 :

 10 Figure 10: Comparison of the compressibility factor Z calculated by square-well chains EoS and issued from molecular simulation for different diameter ratio. The conditions of the mixture are: m 1 =2, m 2 = 5, x 1 = 0.5, T* =1.5 and l 12 = 0.1. The symbols denote the Monte Carlo simulation data and the solid lines are the predictions of the equation of state of square well chains.

Figure A1 :

 A1 Figure A1:Values of inter-segment distribution function at contact calculated and taken from literature in case T*=1.5 and m =6: () data from Lipson et al.[START_REF] Kirkwood | Radial distribution functions and the equation of state of fluids composed of molecules interacting according to the Lennard-Jones potential[END_REF][START_REF] Broyle | Radial Distribution Functions from the Born-Green Integral Equation[END_REF] ( ___ ), our model; m=8: () data from Lipson et al.[START_REF] Kirkwood | Radial distribution functions and the equation of state of fluids composed of molecules interacting according to the Lennard-Jones potential[END_REF][START_REF] Broyle | Radial Distribution Functions from the Born-Green Integral Equation[END_REF] , () data from Tavares et al.[START_REF] Kirkwood | Radial distribution functions and the equation of state of a fluid composed of rigid spherical molecules[END_REF] , ( _ _ _ ) our model; m =16: (▲) data from Lipson et al.[START_REF] Kirkwood | Radial distribution functions and the equation of state of fluids composed of molecules interacting according to the Lennard-Jones potential[END_REF][START_REF] Broyle | Radial Distribution Functions from the Born-Green Integral Equation[END_REF] , () data from Tavares et al.[START_REF] Kirkwood | Radial distribution functions and the equation of state of a fluid composed of rigid spherical molecules[END_REF] , ( …… ) our model.

Figure A2 :

 A2 Figure A2:Values of inter-segment distribution function at λ=1.5 calculated and taken from literature in case T*=1.5 and m =6: () data from Lipson et al.[START_REF] Kirkwood | Radial distribution functions and the equation of state of fluids composed of molecules interacting according to the Lennard-Jones potential[END_REF][START_REF] Broyle | Radial Distribution Functions from the Born-Green Integral Equation[END_REF] ( ___ ), our model; m=8: ()

  𝒙 𝒊 𝒙 𝒋 𝒎 𝒊 𝒎 𝒋 ∫ 𝒓 𝟐 𝒈 𝒊𝒋

		𝒊	𝒋	∞ 𝟎	𝑺𝑾𝑪 × 𝒍 𝒊𝒋 × 𝒆 𝜷𝒖 𝒊𝒋 𝑺𝑾𝑪 (𝒓) 𝑺𝑾𝑪 (𝒓) × 𝝈 𝒊𝒋
		× (-𝒆 𝜷𝜺 𝒊𝒋 [𝜹(𝒓 -𝝈 𝒊𝒋 𝑺𝑾𝑪 ) -𝝀𝜹(𝒓 -𝝀𝝈 𝒊𝒋 𝑺𝑾𝑪 )] + 𝝀𝜹(𝒓 -𝝀𝝈 𝒊𝒋 𝑺𝑾𝑪 )) 𝒅𝒓 (13)
	This expression can be further simplified using standard arguments making use of cavity
	function 60 defined by 𝑦 𝑖𝑗 𝑆𝑊𝐶 (𝑟) = 𝑔 𝑖𝑗 𝑆𝑊𝐶 (𝑟)𝑒 𝛽𝑢 𝑖𝑗 𝑆𝑊𝐶 (𝑟) . This function is continuous at 𝑟 = 𝜎 𝑖𝑗 :
	𝑨 𝑵𝑨𝑺 𝑵𝒌𝑻	= -𝟐𝝅𝝆 ∑ ∑ 𝒙 𝒊 𝒙 𝒋 𝒎 𝒊 𝒎 𝒋 × 𝝈 𝒊𝒋 𝑺𝑾𝑪 × 𝒍 𝒊𝒋 𝒋 𝒊
				× (𝝈 𝒊𝒋 𝑺𝑾𝑪 𝟐 𝒚 𝒊𝒋 𝑺𝑾𝑪 (𝝈 𝒊𝒋 𝑺𝑾𝑪 )𝒆 𝜷𝜺 𝒊𝒋 -(𝝀𝝈 𝒊𝒋 𝑺𝑾𝑪 )	𝟐 𝒚 𝒊𝒋 𝑺𝑾𝑪 (𝝀𝝈 𝒊𝒋 𝑺𝑾𝑪 )𝒆 𝜷𝜺 𝒊𝒋
				+ (𝝀𝝈 𝒊𝒋 𝑺𝑾𝑪 )	𝟐 𝝀𝒚 𝒊𝒋 𝑺𝑾𝑪 (𝝀𝝈 𝒊𝒋 𝑺𝑾𝑪 )) (14

  𝟒𝒈 𝑻 𝒊 𝑻 𝒋 + 𝟐(𝒎 𝒊 -𝟐)𝒈 𝑰 𝒊 𝑻 𝒋 + 𝟐(𝒎 𝒋 -𝟐)𝒈 𝑰 𝒋 𝑻 𝒊 + (𝒎 𝒋 -𝟐)(𝒎 𝒊 -𝟐)𝒈 𝑰 𝒊 𝑰 𝒋 𝒎 𝒊 𝒎 𝒋

Table 1 :

 1 Summary of conditions of Monte Carlo simulation for fitting and for validationAll coefficient values used in equations (26-28) may be found in table 2.

		m	η	T*	Method	Authors
	For fitting		0.05 ≤ 𝜂 ≤ 0.45	1.5, 2, 3, 10	NVT	Largo et al 37
		1	0.01 ≤ 𝜂 ≤ 0.5	1.5, 2, 3, 4	NVT	Tavares et al 28
			0.26 ≤ 𝜂 ≤ 0.42	1, 2, 4, ∞	NVT	Henderson et al 38
			0.15 ≤ 𝜂 ≤ 0.37	1, 2, 3	NVT	Scarfe et al 39
			0 ≤ 𝜂 ≤ 0.4	1.5, 2	BGY Equation	Lipson et al
			0.01 ≤ 𝜂 ≤ 0.5	1.5, 2, 3, 4	NVT	Tavares et al 28
		2	 = 0			Taylor 40
			0 ≤ 𝜂 ≤ 0.4	∞	BGY Equation and NVT	Taylor and Lipson 41
	For validation:	4	0 ≤ 𝜂 ≤ 0.35	1.5	BGY Equation	Lipson et al
	pure	6, 8, 16	0 ≤ 𝜂 ≤ 0.3	1.5	BGY Equation	Lipson et al
	compound data					
		4	0.05 ≤ 𝜂 ≤ 0.45			
		8		1.5	NVT	Tavares et al 28
			0.36 ≤ 𝜂 ≤ 0.45			
		16				
		4	0 ≤ 𝜂 ≤ 0.5	1.5	NPT	This work

Table 2 .

 2 Parameter values for use in equations(26-28) 

		g SS at x=1 +	g SS at x=1.5 -	g DD at x=1 +	g DD at x=1.5 -
	A	1	0.542	1	0.7181
	B	-0.5	0.06137	-2.3993	-0.6696
	C	0	0	-0.4537	-3.6023
	D	0	0	3.0762	4.7213
	a	-6.4228863	-5.4190153	1.65546909	-3.5876021
	b	8.54442269	6.79903564	-4.6437027	4.15933189
	c	-1.6134866	-1.5638579	6.67813868	0.4981693
	d	5.82989458	9.94915946	45.6261314	30.7918644
	e	13.284929	1.75799648	56.5520302	1.92703553
		1	1	-0.6675	-0.2939
		0	0	2.2625	1.4688
		0	0	0	0.64475

Table 3 :

 3 Summary of the different MC simulations performed on mixtures.

	T*	P*/T*	N 1	m 1	N 2	m 2	𝝈 𝟐 /𝝈 𝟏	l 12
	30	0.02 -0.8	100	1	100	4	1.5	0, 0.1
	1.5	0.02 -0.8	100	1	100	4	1.5	0, 0.5, 0.1
	1	0.02 -0.8	100	1	100	4	1.5	0.1
	0.75	0.02 -0.8	100	1	100	4	1.5	0.1
	1.5	0.02 -0.8	100	1	100	4	3	0, 0.1
	1.5	0.02 -0.8	50	1	150	4	1.5	0, 0.1
	1.5	0.02 -0.8	100	2	100	5	1.5	0, 0.1
	1.5	0.02 -0.8	100	2	100	5	3	0, 0.1
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