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Large-eddy simulation (LES) solves only the large scales part of turbulent flows by
using a scales separation based on a filtering operation. The solution of the filtered
Navier-Stokes equations requires then to model the subgrid-scale (SGS) stress tensor
to take into account the effect of scales smaller than the filter size. In this work, a
new model is proposed for the SGS stress model. The model formulation is based
on a regularization procedure of the gradient model to correct its unstable behavior.
The model is developed based on a priori tests to improve the accuracy of the
modeling for both structural and functional performances, i.e., the model ability to
locally approximate the SGS unknown term and to reproduce enough global SGS
dissipation, respectively. LES is then performed for a posteriori validation. This work
is an extension to the SGS stress tensor of the regularization procedure proposed by
Balarac et al. [“A dynamic regularized gradient model of the subgrid-scale scalar
flux for large eddy simulations,” Phys. Fluids 25(7), 075107 (2013)] to model the
SGS scalar flux. A set of dynamic regularized gradient (DRG) models is thus made
available for both the momentum and the scalar equations. The second objective of
this work is to compare this new set of DRG models with direct numerical simulations
(DNS), filtered DNS in the case of classic flows simulated with a pseudo-spectral
solver and with the standard set of models based on the dynamic Smagorinsky
model. Various flow configurations are considered: decaying homogeneous isotropic
turbulence, turbulent plane jet, and turbulent channel flows. These tests demonstrate
the stable behavior provided by the regularization procedure, along with substantial
improvement for velocity and scalar statistics predictions. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4941781]

I. INTRODUCTION

Due to the large range of motion scales in turbulent flows, the direct numerical simulation
(DNS) of realistic applications is not yet feasible because of its excessive computational cost. To
overcome this limitation, the large-eddy simulation (LES) technique proposes to explicitly solve
only the large scales of the flow and to model the impact of the smallest scales on the large scales.
The separation between resolved large scales and modeled small scales is performed by a filtering
operation. The filtering operation applied to the flow equations leads to subgrid-scale (SGS) terms
which have to be modeled. The incompressible filtered Navier-Stokes equation writes

∂ūi

∂t
+
∂ūiū j

∂x j
= − 1

ρ

∂ p̄
∂xi
+ ν

∂2ūi

∂x2
j

−
∂τi j

∂x j
, (1)

with τi j = uiu j − ūiū j the SGS stress tensor to model in order to perform LES. In this equation, ūi is
the component of the filtered velocity in the ith direction, p̄ is the filtered pressure, ρ is the constant
density, and ν is the constant kinematic viscosity. Various models have been proposed to close the
filtered Navier-Stokes equations for incompressible flows.1–3

Two major strategies are usually followed to develop SGS models:3 functional and structural
strategies. The functional modeling strategy considers the action of the subgrid terms over the
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energy transfer between resolved and modeled scales and not the unknown term itself. It can intro-
duce a dissipative term, for example, that has a similar effect but not necessarily the same spatial
structure. Conversely, the structural modeling strategy consists in using the best local approximation
of the unknown SGS term by constructing it from the known structure of small-scales.

A typical functional model consists in defining an eddy viscosity to model the SGS stress
tensor as τi j − 1/3τkkδi j = −2νT S̄i j, with S̄i j = 1/2

�
∂ūi/∂x j + ∂ū j/∂x j

�
the filtered strain rate

tensor. Various formulations for the eddy viscosity have been proposed.4–6 The Smagorinsky
model,

νT = C∆̄2|S̄|, (2)

with |S̄| =


2S̄i j S̄i j, ∆̄ the filter size and C the model coefficient, is certainly the most commonly
used eddy-viscosity model. Due to its computational stability and the simplicity of its formulation,
this model is a valuable tool for engineering applications.7 However, this model is found to be too
dissipative in shear regions because of an excessive eddy-viscosity.8 Various corrections9,10 have
been proposed to limit the SGS dissipation in these regions. The most commonly used approach
is to determine dynamically the model coefficient using the Germano identity.9,11 Note that the
dynamic Smagorinsky (DS) model has also been extended to model the SGS scalar flux with a
dynamic eddy Schmidt number.12 However, even though a correct dissipation level is modeled, the
DS model is generally known to exhibit weak local correlations with the SGS terms.13 Indeed,
like other eddy viscosity models, the DS model assumes an alignment between the eigenvectors
of the SGS stress tensor and the filtered strain rate tensor S̄i j, which is not observed in reality.14

To correct this behavior, various approaches have been proposed based on the definition of a
velocity increment,15 a scale-similarity assumption16 or Taylor series expansions of the filtering
operation.17

Models defined from Taylor series expansions of the filtering operation are typical structural
models, often called gradient (G) models.13 In the case of the SGS stress tensor, this model writes as

τG
i j =
∆̄2

12
∂ūi

∂xk

∂ū j

∂xk
. (3)

This type of model is known to provide a good local approximation of the unknown term with a
high correlation between the unknown term and the model in a priori tests. However, this type of
model is also known to be unstable due to an incorrect prediction of the dissipation.18 Indeed, this
model leads to excessive back-scatter, i.e., energy transfer from modeled to resolved scales.19,20

Thus, various modifications have been proposed to stabilize the gradient model. These modifica-
tions can rely on using a “clipping”21,22 or on combining this model with an eddy viscosity model as
in mixed models.13,21,23

More recently, a novel regularization procedure has been proposed when the gradient model is
used to model the SGS scalar flux in the context of LES of turbulent mixing.24 The first objective
of the present work is to extend the regularization strategy for the SGS stress tensor, τi j. The
regularization is based on a decomposition of the filtered velocity gradients appearing in gradient
model (3). This allows to identify the terms responsible for unstable behavior. A stable model is
then proposed by removing these terms. This new model can be defined as both structural and
functional. Indeed, on one hand, the model starts from Taylor series expansions of the filtering
operation similarly to standard structural gradient models but on the other hand, the model is also
developed to control the predicted SGS dissipation similarly to standard functional models. The
modeling strategy is first assessed from a priori tests (i.e., in comparison with SGS terms evaluated
from a DNS database).

With this model for the SGS stress tensor and the regularized model for the SGS scalar flux,24

a new set of dynamic regularized gradient models for velocity and scalar is now available. The
second objective of this paper is then to test a posteriori this new set of models, by performing
LES in various flow configurations. It is thus demonstrated that the proposed regularization leads
to stable computations, with a substantial prediction improvement for various velocity and sca-
lar statistics in comparison with the set of standard models based on the dynamic Smagorinsky
model.9,11,12
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II. MODEL FORMULATION

A. Decomposition of the SGS dissipation predicted by the gradient model

In the context of SGS stress tensor modeling, the functional performance can be defined as the
model ability to reproduce the global grid-scale/subgrid-scale (GS/SGS) transfer of kinetic energy.
This transfer is controlled by the SGS dissipation,25,26 −τi j S̄i j. For a LES simulation to be accurate,
a model must correctly reproduce the average SGS dissipation.27 A positive value of the GS/SGS
dissipation leads to direct transfer from the large resolved scales to the small unresolved scales
(forward-scatter), while a negative value characterizes an inverse transfer (back-scatter). The SGS
dissipation is usually positive but with local negative values.25 The gradient model, Eq. (3), is
known to over-predict the back-scatter effect, leading to an under-estimation of the SGS dissipation
and, consequently, leading to an unstable simulation with an accumulation of kinetic energy at the
smallest resolved scales.

To better understand this behavior, the SGS dissipation predicted by the gradient model can be
re-written using a splitting of the filtered velocity gradients in terms of filtered strain rate tensor and
filtered rotation tensor,

− τG
i j S̄i j = −

∆̄2

12
∂ūi

∂xk

∂ū j

∂xk
S̄i j (4)

= − ∆̄
2

12
�
S̄ik + Ω̄ik

� �
S̄jk + Ω̄ jk

�
S̄i j

= − ∆̄
2

12
�
S̄ik S̄jk S̄i j +

�
S̄ikΩ̄ jk + Ω̄ik S̄jk

�
S̄i j + Ω̄ikΩ̄ jk S̄i j

�
.

The filtered rotation tensor, Ω̄i j, being anti-symmetric and the filtered strain rate tensor, S̄i j, being
symmetric, it can be shown that S̄ikΩ̄ jk S̄i j = Ω̄ik S̄jk S̄i j = 0.

The first term of the RHS in (4) is only defined from the strain rate tensor S̄i j. The filtered strain
rate tensor being real and symmetric, it can be further decomposed as

S̄i j =
3

k=1

λ
(k)e(k)i e(k)j , (5)

with λ(k) and e(k)i , respectively, the (real) eigenvalues and the components of the unitary eigenvectors
of the filtered strain rate tensor. The first RHS term of the SGS dissipation, Eq. (4), can thus be
expended as

S̄ik S̄jk S̄i j = *
,

3
l=1

λ
(l)e(l)i e(l)

k
+
-

*
,

3
m=1

λ
(m)e(m)

j e(m)
k

+
-

*
,

3
n=1

λ
(n)e(n)i e(n)j

+
-

(6)

=

3
l=1

3
m=1

3
n=1

λ
(l)
λ
(m)
λ
(n)e(l)i e(n)i e(l)

k
e(m)
k

e(m)
j e(n)j .

The orthonormality of the eigenvectors can be expressed as e(l)i e(n)i = δnl, with δnl the Kronecker
symbol equal to 1 only if n = l and zero otherwise. This leads to

S̄ik S̄jk S̄i j =
3

l=1

3
m=1

3
n=1

λ
(l)
λ
(m)
λ
(n)δnlδlmδmn =

3
l=1

λ
(l)(
λ
(l))2. (7)

Consequently, the sign of S̄ik S̄jk S̄i j is controlled by the eigenvalues λ(l). By defining

S̄⊕i j =
3

k=1

max
(
λ
(k),0
)

e(k)i e(k)j (8)

and
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S̄⊖i j =
3

k=1

min
(
λ
(k),0
)

e(k)i e(k)j , (9)

the SGS dissipation predicted by the gradient model is expressed as

− τG
i j S̄i j =

∆̄2

12
*..
,
−S̄⊕ik S̄jk S̄i j            

<0

−S̄⊖ik S̄jk S̄i j            
>0

−
�
S̄ikΩ̄ jk + Ω̄ik S̄jk

�
S̄i j                                                

=0

−Ω̄ikΩ̄ jk S̄i j
+//
-
. (10)

The term −S̄⊕
ik

S̄jk S̄i j is negative, meaning that this term leads to inverse transfer (back-scatter),
whereas the term −S̄⊖

ik
S̄jk S̄i j is positive and leads to direct transfer. Moreover, as already explained,

the term −
�
S̄ikΩ̄ jk + Ω̄ik S̄jk

�
S̄i j leads to no transfer. Finally, though an analytical development does

not allow to assess the sign of the term Ω̄ikΩ̄ jk S̄i j, numerical tests show that this term can be
negative and thus lead to inverse transfer.

As already proposed for the SGS scalar flux,24 a regularization of the gradient model can be
achieved by removing all the part of the model leading to inverse transfer in order to avoid unstable
behavior. In the model formulation, this means keeping only terms leading to positive or zero SGS
dissipation. From Equation (10), two models can be proposed. The first one is obtained by keeping
only the term exclusively allowing direct energy transfer. This leads to the first regularized gradient
(denoted RG1) model, which is written as

τRG1
i j =

∆̄2

12
S̄⊖ik S̄jk . (11)

The second one is obtained by also keeping the term which leads to no transfer, because it might
contribute to the structural performance of the model. The second regularized gradient (denoted
RG2) model is written as

τRG2
i j =

∆̄2

12
�
S̄⊖ik S̄jk + S̄ikΩ̄ jk + Ω̄ik S̄jk

�
. (12)

Both these model formulations lead to the same SGS dissipation, i.e., RG1 and RG2 models have
the same functional performance.

By construction, the proposed regularization neglects the back-scatter effect. This is a limita-
tion of the current approach, also present in other models where coefficient “clipping” is used (see
Refs. 21 and 22, for example). More complex models have been proposed to take into account
the back-scatter effect.28,29 It will be demonstrated in the following tests that the proposed regu-
larization strategy yields a large prediction improvement with respect to the gradient model, while
remaining simple in its formulation. Future works will be devoted to model back-scatter effect, by
including in a controlled way into the model terms leading to negative SGS dissipation.

In Subsection II B, the structural performance of the models is first assessed in order to differ-
entiate RG1 and RG2. A priori tests will be also conducted to compare the performance of the
proposed models with the DS and the gradient models.

B. A priori tests: Final model formulation

To further analyze the model formulation proposed, a priori tests are performed based on data
extracted from DNS of a forced homogeneous isotropic turbulence. The DNS database is generated
from a standard pseudo-spectral code and the simulation domain is discretized using 5123 grid
points on a domain of length 2π. A statistically steady flow is achieved by using a forcing term.30

The Reynolds number based on the Taylor microscale is around 160 at the stationary state. The
code and the flow configuration are similar to those used in previous works.23,24,31 The DNS data are
filtered in space to emulate LES quantities by using a spectral cut-off filter. Several filter sizes have
been chosen such that 2 ≤ ∆̄/∆x ≤ 32 where ∆̄ is the filter width and ∆x is the DNS mesh size.

The a priori tests are first performed to determine the best formulation between RG1 and RG2
models, Eqs. (11) and (12), respectively. These models can be differentiated only by their structural
performance. From Sagaut,3 the structural performance is defined as the model ability to locally
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describe the SGS unknown term appearing in the equation to solve. The divergence of the SGS
stress tensor, ∂τi j/∂x j is then considered. As already proposed in previous works23,24,32,33 dealing
with the development of SGS models, the structural performance is evaluated in the framework of
optimal estimation theory34 by using the optimal estimator concept introduced by Moreau et al.35

in the LES context. Defining the quadratic error between the exact SGS term and the model as the
relevant error to consider in LES,36 a minimal error can be defined, called the irreducible error.
The irreducible error depends only on the set of variables used to write the model. The concept
of optimal estimator forecasts that any model built on this set of variables will yield a quadratic
error higher than the irreducible error. The irreducible error is computed from the optimal estimator
defined as the conditional expectation of the exact SGS term with the chosen set of variables.
The optimal estimator theory provides useful informations on the SGS models used in LES. In
particular, the most suitable set of variables to model the SGS term can be determined by comparing
the corresponding irreducible error. Also, the difference between the quadratic error of a model
built on a given set of variables and the irreducible error computed with this same set of variables
allows to assess to what extent an existing model can be improved. To determine the most suitable
variables to model the SGS stress tensor, the irreducible errors of the RG1 and RG2 models are first
computed on the divergence of the SGS stress tensor, ∂τi j/∂x j. Due to the flow configuration, the
errors are computed using a spatial averaging. Because the divergence of the SGS stress tensor is a
vector, the errors are computed based on the square of the Euclidean norm. Moreover, the errors are
normalized by the square of the Euclidean norm of the statistical variance of the SGS stress tensor
exact divergence. Fig. 1 shows the evolution of the normalized irreducible error with the filter size.
The proposed regularized models are also compared with the DS and the gradient models. For the

DS model, the set of variables used to compute the irreducible error is


∂
∂x j

��
S̄

�
S̄i j

�
, whereas the

gradient model set of variables is


∂
∂x j

(
∂ūi
∂xk

∂ū j

∂xk

)
. For the proposed regularized models, the set

of variables used is


∂
∂x j

�
S̄⊖
ik

S̄jk

�
for RG1 model and


∂

∂x j

�
S̄⊖
ik

S̄jk + S̄ikΩ̄ jk + Ω̄ik S̄jk

�
for RG2

model, respectively. As expected the gradient model irreducible error is smaller than the DS model
irreducible error. This is because the gradient model is a structural type model, whereas the DS
model is a functional type model. It is thus expected the gradient model will yield a better structural
performance which is indeed observed. Because its irreducible error is high, an improvement of
the structural performance of the DS model cannot be expected without adding new quantities in

FIG. 1. Normalized irreducible errors as a function of the filter width for both formulations of the regularization of the
gradient model, RG1 and RG2, Eqs. (11) and (12), respectively. The results for DS and gradient models are also shown.
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its set of variables. The performances of the RG1 and RG2 regularized gradient models are very
different from one another. The RG1 model yields a good structural performance, much better than
that of the RG2 model. Indeed, the RG2 model irreducible error is even higher than DS model
error, showing that this model proposal does not provide an improvement in comparison with a
classic eddy viscosity model. Conversely, the irreducible error of the RG1 model is significantly
smaller than the DS model error. Model formulation (11) should thus lead to an improvement of
the structural performance in comparison with the standard DS model. Moreover, the RG1 model
formulation should also lead to an improvement of the functional performance in comparison with
the gradient model because the GS/SGS energy transfer is better controlled. Note that a decrease of

the RG2 model irreducible error could be obtained by using


∂
∂x j

�
S̄⊖
ik

S̄jk

�
; ∂
∂x j

�
S̄ikΩ̄ jk + Ω̄ik S̄jk

�
as set of variables. But this choice implies to further decompose the model in two terms with two
distinct coefficients to evaluate, leading to a more complex model that will not be considered in the
present work.

The proposed form of the regularized model is finally,

τDRG
i j = C∆̄2S̄⊖ik S̄jk, (13)

with C a coefficient. This coefficient is dynamically defined using a dynamic procedure based on
Taylor series expansions, as already proposed to model the SGS scalar flux24 and the SGS scalar
variance32 or to improve the accuracy of a mixed model.23 The dynamic procedure uses a test filter,
denoted ·̂, defined similarly to the SGS filter, with a filter size such as ∆̂ = 2∆̄. Applying the Taylor
series expansions of the test filter to the Leonard term, Li j = ̄uiū j − ˆ̄ui ˆ̄u j, and using the proposed
regularization yields

Li j = C∆̂2 ˆ̄S⊖ik
ˆ̄S jk . (14)

Assuming the same coefficient value for Equations (13) and (14), this relation can be used to
compute the model coefficient. The model coefficient is then evaluated as

C =
⟨Li j

ˆ̄Si j⟩
⟨Ni j

ˆ̄Si j⟩
, (15)

where Ni j = ∆̂
2 ˆ̄S⊖

ik
ˆ̄S jk and where the brackets indicate a statistical average over a suitable ensemble

to avoid local large values of the coefficient. For this a priori test based on homogeneous isotropic
turbulence, the averaging is performed over the homogeneous direction. Note that in our numerical
tests, this evaluation of the model coefficient leads to a better prediction of the SGS dissipation
in comparison with the filtered DNS result than an evaluation based on the classic least-squares
approximation according to Lilly’s method.11 Equations (13) and (15) define the proposed model,
referred from now on as DRG model for Dynamic Regularized Gradient model.

The final model formulation is now compared with the DS and gradient models in a priori
tests to better understand the advantage derived from using the regularized formulation. These tests
use the DNS database already described and allow to measure the functional and structural perfor-
mances. The functional performance, i.e., the model ability to predict the GS/SGS transfer, is first
studied; this performance is controlled by the SGS dissipation predicted by each model. Figure 2(a)
shows the mean SGS dissipation, −⟨τi j S̄i j⟩, as a function of the filter width for the various models
and for the filtered DNS. As expected, the mean SGS dissipation is positive showing that the
energy transfers are mainly from the large (resolved) scales to the small ones. The gradient model
strongly under-predicts the SGS dissipation in comparison with the DNS results. This explains
the unstable behavior of this model:20 it does not provide enough dissipation by over-estimating
back-scatter. On the other hand, the DS model is slightly too dissipative with an over-prediction of
the SGS dissipation. Finally, the DRG model yields a SGS dissipation close to the DNS results,
which should lead to stable LES. The structural performance is studied next; it is based on the
optimal estimation analysis to evaluate the ability of the DRG model to accurately predict the
divergence of the SGS stress tensor. The normalized quadratic errors are computed for the models
and compared with the normalized irreducible error. Figure 2(b) shows the errors as a function
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FIG. 2. A priori test of the DRG model: (a) Mean SGS dissipation as a function of the filter width for the proposed DRG
model. The results for DS and gradient models are shown for comparison. The symbols show the SGS dissipation given
by the filtered DNS data. (b) Normalized quadratic and irreducible (symbols) errors as a function of the filter width for the
proposed DRG model. The results for DS and gradient models are also shown.

of the filter width. As expected, the gradient model has the smallest error since it is designed to
optimize the structural performance. The quadratic and irreducible errors of the DS model are very
close, showing that the structural performance of the model cannot be further improved and that
the dynamic procedure is efficient. However, this model also displays the highest errors. The DRG
model allows an improvement of the structural performance in comparison with the DS model,
with a significant decrease of the errors. For large filter size, the quadratic error of the DRG model
is close to the quadratic error of the gradient model. Finally, the DRG model appears as a good
trade-off in terms of functional and structural performance. Indeed, this model allows to improve the
functional performance in comparison with the gradient model, while it also leads to a significant
improvement of the structural performance in comparison with the DS model.

III. A POSTERIORI (LES) TESTS

The newly proposed DRG model based on a regularization of the gradient model and defined
by Eqs. (13) and (15) is retained to compute the SGS stress tensor in the filtered Navier-Stokes
equation. It is applied to perform LES of some reference turbulent flows in order to provide an a
posteriori confirmation of the good structural and functional performance established on the previ-
ous a priori tests. This new model is associated with the SGS scalar flux modeled by the dynamic
regularized gradient model24 to propose a new set of models for both velocity and scalar. In the
following test cases, a scalar Z is thus considered to assess the performance of the proposed combi-
nation of DRG models. This new set of models will be compared with the set of DS models based
on an eddy viscosity and an eddy diffusivity assumptions. In the DS models set, the eddy viscosity is
defined by Equation (2) with a dynamic coefficient,9,11 and the eddy diffusivity is defined based on a
dynamic eddy Schmidt number.12

A. Decaying homogeneous isotropic turbulence

First, decaying homogeneous isotropic turbulence is computed using a spectral numerical
method. The flow is first established by DNS, using forcing similarly to the case used in the a priori
tests, with Rλ = 160. A spectral interpolation is then performed to define the initial condition on the
LES mesh. Moreover, the turbulent mixing of a scalar field is considered to assess the SGS scalar
flux models. The molecular Schmidt number is fixed to 0.7 and the scalar field is initialized between
0 and 1 according to the procedure proposed by Eswaran and Pope.37 The scalar is thus initialized
as large spots with a size of the order of half the computational box size. For LES, the simulation
domain is discretized with 323 grid points. The LES results will be compared with the DNS results
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FIG. 3. Comparison of decaying homogeneous isotropic turbulence statistics: evolution of the resolved kinetic energy (a)
and enstrophy (b) with time, and kinetic energy spectrum at t = 5 (c). DNS (symbol), DRG model (solid line), DS model
(dashed line), and gradient model (dotted line).

obtained on a 5123 grid and starting with the same initial condition. In this test case, the set of
gradient models for both scalar and momentum equations is also applied for comparison.

Figure 3 displays the velocity statistics. The respective decay with time of the LES resolved
kinetic energy and resolved enstrophy, 1/2⟨ω̄iω̄i⟩ with ωi the component of the vorticity in the ith
direction, are displayed in Figures 3(a) and 3(b). These results are compared with filtered DNS
quantities at the same filter size, ∆̄ = 16∆x, with ∆x the DNS mesh size. The unfiltered DNS
quantities are also shown. The analysis of the enstrophy allows to characterize the behavior of the
smallest resolved turbulent scales.38,39 Figure 3(c) compares the LES kinetic energy spectra with the
DNS one. As expected, the gradient model exhibits an unstable behavior. The decay of the kinetic
energy is largely under-estimated and a growth of the enstrophy is predicted instead of a decay. This
is due to a growth of the energy at the smallest resolved scales, consequence of the gradient model
not leading to enough SGS dissipation. The proposed regularization allows to correct this behavior.
The DRG and DS models lead to a correct decaying behavior for both kinetic energy and enstrophy.
The DS model leads to a slight under-estimation of the enstrophy in comparison with filtered DNS
results. This is due to an under-estimation of the energy contained at the smallest resolved scales as
shown by Fig. 3(c), because of the over-estimation of the SGS dissipation as found in a priori tests.
The DRG model provides a correct prediction of the energy at all the resolved scales.

Figure 4 shows scalar statistics. The resolved scalar variance decay is displayed in Figure 4(a).
To characterize the smallest resolved scales behavior, Figure 4(b) shows the evolution of the
resolved scalar enstrophy,40 1

2 ⟨ ∂Z̄
∂xi

∂Z̄
∂xi

⟩. Because the initial scalar field is only composed of large
scales, the first stage of the scalar mixing consists in a growth of the scalar enstrophy. This stage
corresponds to the generation of smaller mixing scales due to the transport by the velocity field.
After this stage, the scalar enstrophy decreases due to the dissipation process. The gradient model
over-predicts the growth of the scalar enstrophy and is not able to predict the decay. This implies

FIG. 4. Comparison of decaying homogeneous isotropic turbulence statistics: evolution of the resolved scalar variance (a)
and scalar enstrophy (b) with time, and scalar variance spectrum at t = 5 (c). DNS (symbol), DRG model (solid line), DS
model (dashed line), and gradient model (dotted line).
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a large under-estimation of the scalar variance decay and even an increase of this quantity. This is
due to the incorrect velocity field but also to the gradient model of the SGS scalar flux not predict-
ing enough SGS scalar dissipation.24 This eventually leads to a large over-prediction of the scalar
variance spectrum at the smallest resolved scales as see in Figure 4(c). As previously observed for
the velocity field prediction, the proposed regularization of the gradient model allows to correct this
behavior. The decays of both scalar variance and scalar enstrophy are correctly predicted by DS and
DRG models, even though a slight over-prediction of the scalar enstrophy is observed. As for the
kinetic energy spectrum, the DS model slightly under-predicts the scalar variance spectrum at the
smallest resolved scales, whereas the DRG model provides a correct prediction at all the resolved
scales. This first a posteriori test confirms the ability of the proposed regularization of the gradient
model to correct the well-known unstable behavior of the classic gradient model, which allows to
perform stable LES with good performance.

The DRG models set is now tested on other flow configurations including transitional and
wall-bounded flows.

B. Turbulent plane jet

Te mixing of a scalar initially seeded in a turbulent plane jet is computed using the YALES2
flow solver.41 This code solves the low-Mach number Navier-Stokes equations for turbulent reactive
flows on unstructured meshes using a projection method for constant.42 or variable density flows43

It relies on fourth-order central finite-volume schemes and on highly efficient linear solvers,44 which
enable the simulation and the post-processing of iso-thermal, reacting, or multiphase flows on
massive unstructured grids.45–47 Localized averages in space are used as suggested by Moin et al.12

when performing the dynamic procedures of both the SGS stress tensor and the SGS scalar flux
models. The flow configuration is similar to the configuration studied by da Silva and Métais.25

The inlet boundary condition is given by an analytic hyperbolic tangent profile for both the velocity
and scalar fields. A white noise is added to the inlet condition of the velocity field. The Reynolds
number is Re = ∆UH/ν = 3000, with H the initial thickness of the jet and ∆U = Uj −Uc with
Uj = 1.091 and Uc = 0.091, respectively, the center jet and co-flow velocity. The scalar field is
initially equal to 1 in the jet and to 0 outside. The Schmidt number is fixed to 0.7. The computa-
tional domain size is 12.4H × 12H × 2.9H in the streamwise, normal, and spanwise directions. A
DNS is first performed as reference. The DNS mesh is composed of 49.3 × 106 of tetrahedral cells
with a roughly uniform size (a edge size is around 0.04H , as in da Silva and Métais25). The LES is
performed on an adapted mesh following a strategy recently proposed.48 This mesh is composed of
3.4 × 106 of tetrahedral cells with edge sizes increasing from 0.04H to 0.3H .

Figure 5 shows the velocity statistics profiles at three distances from the inlet. First, Fig. 5(a)
compares the mean streamwise velocity profiles. Both RGM and DS models are in good agreement

FIG. 5. Comparison of turbulent plane jet statistics: mean (a) and rms (b) axial velocity profile at three sections, x/H = 4, 8,
and 12. DNS (symbol), DRG model (solid line), and DS model (dashed line).
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FIG. 6. Comparison of turbulent plane jet statistics: mean (a) and rms (b) scalar profile at three sections, x/H = 4, 8, and 12.
DNS (symbol), DRG model (solid line), and DS model (dashed line).

with DNS data. Some differences appear on the rms velocity profiles in Fig. 5(b). At x/H = 4
corresponding to the beginning of the transition, the DRG model better predicts the rms velocity
peak, whereas the DS model slightly under-predicts this peak. The rms velocity peak is slightly
under-predicted by both models at x/H = 8. This region corresponds to the end of the potential
core and its correct capture by LES remains challenging. Finally, at x/H = 12 corresponding to
the end of the transition, both models have similar prediction in agreement with DNS data. This
demonstrates the good capability of the DRG model to deal with flows in transition toward a fully
developed turbulence state. Scalar statistics at the same three sections are displayed in Figure 6.
Differences with DNS results are more pronounced because they result from disagreement on the
velocity field and from the SGS scalar flux model, both appearing in the filtered scalar transport
equation. Even though global good agreements are found for both DRG and DS models, the mean
scalar profiles exhibit some differences between LES and DNS results at the last section, x/H = 12.
In particular, the scalar value is slightly over-predicted by both models in the shear layer and the
scalar value in the center of the jet is slightly under-predicted. Differences are again more visible
for rms quantities. During the transition process (at x/H = 4 and 8), under-estimation persists in the
core of the jet. This behavior is more pronounced for the DRG model than for the DS model. This
might be due to a complex interaction between modeling errors of velocity and scalar fields. Con-
versely, at the jet end, the DS model over-predicts the rms value peak in the shear layer. The DRG
model allows to slightly correct this behavior even though an over-prediction persists. However,

FIG. 7. Comparison of turbulent channel flow statistics: mean (a) and rms (b) velocity profile. DNS (symbol), DRG model
(solid line), and DS model (dashed line).
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FIG. 8. Comparison of turbulent channel flow statistics: mean (a) and rms (b) scalar profile, and ⟨u′Z ′⟩ profile (c). DNS
(symbol), DRG model (solid line), and DS model (dashed line).

both sets of models have satisfactory behavior, and this test case confirms that the regularization
procedure proposed allows stable LES in transitional flow configuration.

C. Channel flow

The turbulent flow through a plane channel is eventually considered as a last test case. The
Reynolds number based the channel half-height δ and friction velocity uτ =


ν(∂⟨u⟩/∂ y)wall is 300.

Periodic boundary conditions are imposed in the streamwise and spanwise directions, while no-slip
conditions are imposed on the top and bottom walls. By using Dirichlet boundary conditions, the
scalar is added to the fluid from the top wall, Z = 1, and removed from the bottom wall, Z = −1.
The Schmidt number is fixed to 0.72. The LES is still performed using YALES2. The computational
domain size is 2πδ × 2δ × πδ in the streamwise, normal, and spanwise direction, and the structured
mesh is composed of 48 × 64 × 72 grid points, with a stretching applied in the normal direction to
obtain ∆y+ ≈ 0.7 at the walls.

Figures 7 and 8 display, respectively, the velocity and scalar statistics. The LES results are
compared with DNS results extracted from Morinishi et al.49 Variables are normalized using wall
units. The observations formulated for the previous test case still apply to the present configura-
tion. The mean velocity and scalar profiles predicted by DRG and DS models are similar and in
agreement with DNS results. Some differences appear on the fluctuating quantities, and a slight
improvement can be noted for the set of DRG models in comparison with the set of DS models. This
last test case confirms that the proposed regularization of the gradient model also leads to stable
LES in wall-bounded flow, with a correct prediction of both velocity and scalar fields.

IV. CONCLUSION

In this paper, a novel closure model for the subgrid-scale (SGS) stress tensor appearing in
the filtered Navier-Stokes equations is derived in the context of large eddy simulation (LES). The
proposed model introduces a regularization of the classic gradient model. The gradient model,
which is based on Taylor series expansions of the filtering operation, is known to provide good
estimates of the local SGS stress tensor but to yield in the same time unstable behavior when
applied to a posteriori tests because of its incorrect prediction of grid scale/subgrid scale (GS/SGS)
energy transfers. The proposed regularization first relies on a decomposition of the filtered velocity
gradient appearing in the gradient model using the filtered rotation and strain rate tensors. The
filtered strain rate tensor can then be split into two tensors, respectively, defined from its posi-
tive and negative eigenvalues. The regularized gradient model for the SGS stress tensor is finally
defined by keeping only the term leading to direct (forward) GS/SGS energy transfer. This regu-
larization is an extension to the Navier-Stokes equations of a regularization procedure previously
proposed for the SGS scalar flux modeling in the context of LES of turbulent mixing. The proposed
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regularization allows to better control the SGS dissipation by avoiding the excessive backscattering
predicted by the gradient model. A priori tests demonstrated that the proposed model leads to an
improvement of the structural performance in comparison with the classic dynamic Smagorinsky
model. In the same time, the proposed regularized gradient model also leads to an improvement of
the functional performance in comparison with the gradient model with a better prediction of the
global GS/SGS energy transfer. The new set of regularized gradient models for both the filtered
momentum and scalar transport equations is finally tested in a posteriori tests by performing LES
for various flow configurations. These tests confirm that the regularization allows to stabilize the
gradient model. Moreover, in comparison with the classic set of dynamic Smagorinsky models, the
new set of models improves the prediction of the flow dynamics and of the turbulent mixing at
the smallest resolved scales, as demonstrated by LES of homogeneous isotropic turbulence. Other
LES of a turbulent plane jet and of a turbulent channel flow confirm the good behavior of the
proposed regularized gradient models.
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