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1. Introduction

The study of circular rings, as well as of associated problems of
infinite circular cylindrical shells under pressure, has a long history. In
the context of infinitely small deformations and linear elasticity, a
solution was brought in the middle of the XIXth century by Lame ́ [1].
Complementary references to early studies of the problem are given in
the book by Love [2]. A hundred years after Lame’́s solution, for-
mulations incorporating nonlinear materials were proposed by Lurie
[3]. In this book, axially symmetric (i.e. being circular, angle-in-
dependent and with the same radius along the axis, even if the radius
can obviously change due to loads with respect to the unloaded
configuration) deformations are assumed, and the formula describing
the internal radius of long cylinders made of semi-linear materials,
subjected to an external pressure, is obtained. The closed-form stress
distribution within a cylinder of incompressible, Mooney‐Rivlin
hyperelastic material is also provided.
ure were examined in a
–7], where a fully three-
ered to build numerical
gs made of Ogden's hy-
to a combination of axial
loading and external pressure, are investigated. The ends of the cy-
linder are constrained, so that no displacements are allowed. It is
found that the mode with two circumferential waves becomes the
sole dominant buckling mode as the length of the hollow cylinder
increases. For very short and sufficiently thick cylinders, transition
from lower to higher (i.e. with more circumferential waves) modes
occurs in the considered range of axial compression. There is an ex-
tensive literature on the buckling and post-buckling of rings and cir-
cular cylindrical shells under pressure; however, in the present review,
only studies on axially symmetric deformations (i.e. the ring keeps a
circular cross-section) are targeted. In [6] the axisymmetric deforma-
tions of hollow cylinders under external pressure are considered. The
cylinders are made of incompressible Neo-Hookean material. Both
long and short circular cylindrical shells with zero displacements at
the ends are considered. The authors pay special attention to the ra-
dially-symmetric deformation and it is found that, for moderate de-
flections, the solution with prescribed axial symmetry is close to the
actual solution. Also, a comparisonwith the solution to the underlying
linearized formulation is proposed. As expected, this solution com-
pares well with the fully nonlinear solution for very small deflections
only. Unfortunately, the analysis does not consider the separate effect
of physical and geometrical nonlinearities, but it is observed that the
physical nonlinearity dominates in shorter and thicker hollow cylin-
ders, while geometrical nonlinearity has a leading effect for longer and
thinner cylinders.

The deformations of thick circular cylindrical shells under ex-
ternal and internal pressure are investigated in [7]. Again, zero



Fig. 1. Sketch of the ring and cylindrical coordinate system.
displacements are assumed at the shell ends. The paper specifi-
cally explores the buckling, but the range of external pressure
magnitudes for which the shell remains circular, are also provided.
In general, the authors come to the conclusion that, for thick-
walled short cylinders under either internal or external pressure,
the radially symmetric solution provides a very good approxima-
tion of the actual solution.

In the paper by Erbay and Demiray [8], radial and axial de-
formations of Neo-Hookean hollow cylinders under extension and
inflation are studied. The stress distribution in the special case of
deformation preserving circular cylindrical shape is discussed.

In [9], a nonlinear stability analysis for deformations of in-
compressible hyperelastic solids is presented. The conditions driving
the existence and uniqueness of cylindrical deformations for hollow
cylinders under internal pressure are derived.

In [10,11], the pre-buckling behavior of hollow cylinders under
external pressure is discussed. It is found that thick-walled cylin-
ders preserve a symmetric shape for external loads much higher
than for thin-walled cylinders.

In the present study, we investigate the static, axially symmetric
deformations of a free-end ring under internal and external pressures.
A few types of material are studied: a typically linear material that
obeys Hooke's law, an incompressible Neo-Hookean material, and two
types of compressible Neo-Hookean material. A simplified geome-
trically nonlinear shell theory is considered to describe the strain‐de-
flection relationships. In the case under consideration, the deforma-
tion is governed by a single ordinary differential equation. Two loads
are considered: the first one is a uniformly distributed radial force
(displacement independent pressure), while the second one is a dis-
placement-dependent pressure (actual pressure).

The problem under study is relatively simple and allows ana-
lytical or semi-analytical solution. Therefore, it has been chosen as
a benchmark to test commercial finite element software for dif-
ferent material laws at large strains. Numerical results are com-
pared with the predictions of the commercial finite element pro-
grams ANSYS and ABAQUS. The solutions obtained with these
programs are almost identical to the present semi-analytical ones,
except for the linear material, for which commercial finite element
programs give incorrect results. Instead, a successful comparison
with results obtained by a non-commercial finite element program
developed by the group of Professor Reddy [18] is shown for the
case of linearly elastic material.
2. Strain tensors

Different materials are implemented in this study: a physically
linear elastic material and three types of Neo-Hookean hyperelastic
materials. These two families of materials are defined in terms of their
strain energy densities (SED). The SED for linear elastic material is
expressed in terms of the components of the Green–Lagrange strain
tensor E, which in cylindrical coordinates z, θ , x (see Fig. 1) takes the
following form:
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Here the transformation r¼Rþz has been used, where z has the
same direction of the radial coordinate r but it is measured from the
middle surface of the ring instead of the ring longitudinal axis x.

In case of axially symmetric deformations of a ring under uniform
pressure, the shear deformation vanishes ε( = )θ 0x and the tensor E is
thus diagonal.

The SED, for all variants of Neo-Hookean materials, is given as a
function of the invariants of the Cauchy‐Green deformation tensor.
Since we approach the problem in term of displacements (see for
example [12,13]), it is useful to express the right Cauchy‐Green
deformation tensor C in terms of E:
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On the other hand, C can be represented as matrix with
squared principal stretches as diagonal elements:
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The principal stretches, as functions of the Green‐Lagrange
strain tensor components, can be easily obtained by identifying
the corresponding components of C in (1) and (2). Finally, the
invariants of the tensor C involved in the calculation of SEDs are
defined:

ε ε ε λ λ λ= ( )= ( + + )+ = + + ( )θ θI CTr 2 3 , 3x z x z1
2 2 2
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3. Strain‐displacement relationships and strain energy
densities

3.1. Circumferential strain

Consider a ring of radius R, thickness h and length L with free
ends (see Fig. 1). In this study we assume that L¼h. The ring is
modeled as a very short circular cylindrical shell and associated
derivations stem from the theory of thin shells. The expression for
the circumferential strain is [14]
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where u(z,θ ,x), v(z,θ ,x), w(z,θ ,x) are the displacements of a generic
point belonging to the middle surface in the directions of the cy-
lindrical coordinate system z, θ , x, respectively.

The ring and the load are both axisymmetric. Accordingly, it is
assumed that the ring remains circular after the deformation with
new radius Rþw. Note that the present work investigates axially
symmetric deformations only and buckling is ignored. Due to the
prescribed symmetry, the displacements do not depend on the
angular coordinate θ , and the displacement in the circumferential
direction v(z,θ ,x) is assumed to vanish. Finally, it seems reasonable



to assume that the shortness of the shell is such that the term ∂
∂
u
x

can be neglected, i.e. u is assumed to be constant along the ring
length since the ring is really short. Accordingly, the circumfer-
ential strain takes the following simplified expression:

ε = + ( )θ
w
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w
R2

. 5
2

2

3.2. Non-vanishing strains in case of linear material

For a linear material, the axial strain is expressed by enforcing a
zero axial stress that is [14]

σ
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1
0, 6x x2

where E and υ stand for Young's modulus and Poisson's ratio of the
material, respectively. In Eq. (6), plain stress has been assumed, i.e.
σ τ τ= = =θ 0z xz z . The assumption σ = 0x is due to the shortness of
the ring in axial direction and the fact that the ring is neither
subjected to kinematic constraints nor axial load. This implies

ε υε= − ( )θ. 7x

The corresponding strain energy density for the physically
linear material is [12–14]
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The expression for the axial stress is [14]
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Inserting the above equality in (7) leads to:
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2

The total elastic potential energy is retrieved by integrating the
strain energy density over the domain defining the ring that is:
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The term ( )+R 1 z
R

in (9) is a Lamé parameter. Eq. (9) is written
in the traditional shell notation. This is obtained with the trans-

formation r¼Rþz, which gives ∫ ∫= ( + )
−

+

−
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3.3. Non-vanishing strains in case of incompressible Neo-Hookean
material

For an incompressible Neo-Hookean material, the SED has the
form [15]

( )= −W
E

I
6

3 ,NHI 1

where I1 is the first invariant of the Cauchy‐Green deformation
tensor (3).

The expressions for the two strain components εx and εz have to
be determined. To this end, the incompressibility condition =J 1
[15] is enforced, where J is given by expression (4).

From L¼h, we also make the additional assumption that ε ε=z x

since (i) the cross-section of the ring is a square in this case, and
(ii) the load is assumed to be just in direction θ, so that the strains
in the two orthogonal directions can be assumed to be the same,
as for a beam of square section.

The incompressibility condition thus yields
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The expansion of WNHI into a series in εθ up to second power
coincides with expression (8).

3.4. Non-vanishing strains in case of compressible Neo-Hookean
material in Ogden's form

Two types of SED for compressible Neo-Hookean materials can
be found in the literature. First, we consider Ogden's form given by
[16]
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The expressions of εx and εz in terms of εθ , and thus w, are
obtained by enforcing vanishing of the corresponding stresses. We
impose the conditions of absence of the second Piola–Kirchhoff
stresses, which are given by formulas = =

ε ε
∂

∂
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W

z
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Based on the relationships ε λ= ( − )1 /2x x
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following equalities are obtained:

λ ε
ε
λ ε

λ

λ ε
ε
λ ε

λ

∂
∂

= ∂
∂

∂
∂

= ∂
∂

∂
∂

= ∂
∂

∂
∂

= ∂
∂

W W W

W W W

NHO

x

NHO

x

x

x

NHO

x
x

NHO

z

NHO

z

z

z

NHO

z
z
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to zero. These conditions are equivalent since princi-

pal stretches are always positive [15].
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Setting these two expressions to zero creates a system of two
nonlinear algebraic equations in λ λ,x z, which can be solved ana-
lytically. This system has eight solutions, only one of which has a
physical meaning:
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To obtain the expression of the SED in terms of the deflection,
expression (12) is substituted into Eq. (11) together with
λ ε= +θ θ2 1 .

3.5. Non-vanishing strains in case of compressible Neo-Hookean
material in Bower's form

The second form of the SED for compressible Neo-Hookean
material can be found in the book by Bower [15]. The same form is
used in the commercial finite element package ANSYS [17]. The
expression for the SED in this case is
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Analytical solutions of (14) are untrackable. Instead, the system
can be solved numerically but an analytical expression for the SED
in terms of w is desired since this quantity has to be differentiated
with respect to the generalized coordinate w to derive the corre-
sponding Lagrange equation. This is achieved by first solving the
system (14) numerically, and then by approximating, through a
least-squares technique, the solution as a polynomial in w.
4. Governing Lagrange equation

The behavior of the ring under pressure is properly captured by
a single Lagrange equation:
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is the potential energy,

W is the SED, w is the radial displacement, and F is the virtual
work done by pressure. Two pressure loads are investigated in this
study. The first one is a displacement-independent pressure
(uniformly distributed radial forces), which leads to
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where P is the pressure magnitude. We assume that the pressure
acts on the middle surface of the ring.

The second load is a displacement-dependent pressure (in the
present case the area of application changes during the ring de-
formation and the force per unit area is kept constant). The ex-
pression of the area of the middle surface of the deformed ring is
given by
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which can be normalized with respect to the area of the middle
surface of the undeformed ring π=S RL2u as follows:
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Finally, the work of the displacement-dependent pressure is
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Eq. (15) can sometimes be solved analytically, even though
numerical procedures are the only option in a vast majority of
configurations.
Fig. 2. Deflection of the ring for the linear material; solid line, displacement-de-
pendent pressure; dashed line, distributed radial forces; ♦, ANSYS results for ring
under displacement-dependent pressure; ♢, ANSYS results for ring under dis-
tributed radial forces. (a) actual results and (b) results in dashed and solid lines
with reversed (opposite) signs of displacement and pressure (ANSYS results not
reversed).
5. Numerical example

As an example, we solve the problem for the ring depic-
ted in Fig. 1 with the following parameters:

= = = = *R L h E0.15m, 0.03 m, 1.98 10 Pa;11 for the compressible
material, υ = 0.3, while for the incompressible material, υ = 0.5.
5.1. Linear material

The equilibrium equation in this case is
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The two possible external forces are (i) the distributed radial
forces
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and (ii) displacement-dependent pressure
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It is worthy to note that in the case of distributed radial forces,
the equilibrium equation does not depend on Poisson's ratio.

The numerical results are plotted in Fig. 2(a) as solid lines and



Fig. 4. Deflection of the ring for the incompressible Neo-Hookean ring; solid line,
displacement-dependent pressure; dashed line, distributed radial forces; �, ANSYS
results for ring under displacement-dependent pressure ( ν = 0.5); (○), ANSYS re-
sults for ring under distributed radial forces (ν = 0.5).
show a large difference in case of distributed radial forces and
displacement-dependent pressure. Finite element (FE) results ob-
tained with ANSYS [17] are also displayed; they compare well only
for small deflections, and are particularly far off in the case of
distributed radial forces.

However, surprisingly, Fig. 2(b) shows that, switching between
inward and outward directions, highly improves the agreement,
and results become almost coincident for the case of distributed
radial forces. It would be legitimate to suspect a sign error in our
computations, but, as further investigations show (see the next
subsection), this is not the case.

In order to verify our analytical solution, we used the FE code
created by the research group of Professor Reddy [18]. The com-
parison of the results is given in Fig. 3 for distributed radial forces.
These FE results are extremely close to our solution.

5.2. Incompressible Neo-Hookean material

For an incompressible Neo-Hookean material, the equilibrium
equation is
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(16); and in case of displacement-dependent pressure, it is:
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The two strains εθ and εx, arising in expressions (17) and (18),
are defined in (5) and (10), respectively.

Eq. (17) is solved numerically and results are presented in Fig. 4.
In this case, ANSYS results are particularly close (coincident in case
of distributed radial forces for the full pressure range) to our re-
sults without changing the sign. Also, the difference in the radial
displacement w between distributed radial forces and actual
(displacement-dependent) pressure is not that large, except for
very large pressures.

Since the results for the ring made of linear material subjected
to distributed radial forces do not depend on Poisson's ratio, they
can easily be compared to the results for the incompressible Neo-
Fig. 3. Deflection of the ring for the linear material; dashed line, distributed radial
forces; ∇, results from FE code by Reddy [18] for ring under distributed radial
forces.

Fig. 5. Deflection of the ring for incompressible Neo-Hookean (solid line) and
linear material (dashed line) materials and subjected to distributed radial forces.
(a) Actual results; (b) Results for linear material plotted with opposite signs (ex-
changing inward and outward directions).
Hookean material, as shown in Fig. 5(a). Again, a good match is
observed in the compression and extension zones only for a very
small pressure range. However, for the linear material, if the in-
ward and outward directions are exchanged (see Fig. 5(b)), the
match becomes surprisingly good for a wide pressure range. This
suggests that, rings of Neo-Hookean and linear materials behave in
an opposite way, unlike rods under uniaxial tension made of these



Fig. 7. Deflection of the Neo-Hookean rings subjected to distributed radial forces.
Solid line, incompressible material; dotted line, Bower's compressible material
materials [12].
To understand such a strange and unexpected feature, the SED

of the Neo-Hookean material is expanded into a series in the de-
flection w:
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On the other hand, the SED of the linear material is (8) and (9)
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We can see, comparing Eqs. (20) and (21), that the cubic terms
have opposite signs; this explains the almost mirrored behavior of
the two rings. Both compressible Neo-Hookean materials also
exhibit a cubic termwith a minus sign in the SED series expansion,
and their series expansions tend to series (20) as υ approaches 0.5.
These series are not shown here for the sake of conciseness.
(ν = 0.3); dashed line, Ogden's compressible material (ν = 0.3);□, ANSYS results for
compressible Neo-Hookean material (ν = 0.3).

Fig. 8. Deflection of the Neo-Hookean rings subjected to displacement-dependent
pressure. Solid line, incompressible material; dotted line, Bower's compressible
material (ν = 0.3); dashed line, Ogden's compressible material (ν = 0.3); ■, ANSYS
results for compressible Neo-Hookean material (ν = 0.3).
5.3. Compressible Neo-Hookean materials

For the two formulations of compressible Neo-Hookean material,
the equilibrium equations can be obtained as described in Section 4:
they are lengthy and are not provided here. For a compressible Neo-
Hookean material in Bower's form, the equation is not exact, since the
system = =S S0, 0x z for εx, εz is solved numerically and subsequently
approximated by a polynomial in w. The strains εx and εz are identical
in our problem. A convergence analysis shows that a sixth-order
polynomial in w is sufficient for good accuracy. This is illustrated in
Fig. 6, which displays the comparison between numerical results and
polynomial approximation; the maximal relative error is less than 0.1%.
This justifies the choice of the polynomial expression in the following
calculations.

The pressure‐radial deformation curves for Neo-Hookean materials
are shown in Figs. 7 and 8, for distributed radial forces and displace-
ment-dependent pressure, respectively. For the compressible Neo-
Hookean material, Bower's model is supposedly used in the ANSYS
code [17]. In case of distributed radial forces (Fig. 7), FE results for
ν = 0.3 are close to our results for Bower's model, but also to the results
for incompressible material. In case of displacement-dependent pres-
sure (Fig. 8), FE results for ν = 0.3 are closer to incompressible and
Ogden's compressible Neo-Hookean materials than to Bower's mate-
rial. Generally, FE results for distributed radial forces are extremely
close to our results, while this agreement is slightly reduced for the
case of displacement-dependent pressure when compared to Bower's
compressible model.
Fig. 6. Strain εx found numerically (dots) and the sixth-order polynomial approx-
imation (solid line).
6. Discussion and conclusion

We have analyzed the static, axially symmetric, deflection of a
ring under internal and external pressure. Compressible and in-
compressible Neo-Hookean materials, as well as linear elastic
material, are implemented. Results obtained from the theory de-
veloped in Section 5 are systematically compared to those com-
puted by the finite element package ANSYS. Since we found that
ANSYS is giving inaccurate results in case of linear elastic material
at large strains, we also repeated this analysis by using the com-
mercial FE program ABAQUS. The results obtained by both finite
element codes are practically identical. Instead, a non-commercial
FE code developed by the research group of Professor Reddy [18]
(this code has been developed only for linear elastic materials, so it
does not use the invariants of the Cauchy‐Green deformation
tensor in order to evaluate the strain energy of the structure) has
given results almost coincident to our analytical results, giving
strength to our solution and confirming that commercial FE codes,
at least ANSYS and ABAQUS, give incorrect results at large strains
when a linear elastic material is selected for the analysis. This is a
quite surprising result.

Our two main conclusions are the following:

� As opposed to the simple uniaxial tension of a rod, results for
rings of linear and Neo-Hookean materials greatly differ and



surprisingly exhibit opposite behaviors. The cubic term in the
governing Lagrange equation has opposite sign, which leads to
almost mirrored behavior. The pressure‐deflection curves for a
Neo-Hookean ring under external distributed radial forces, and
for a ring of linear material under internal distributed radial
forces, coincide up to high deflections (2/5 of radius in our ex-
ample). Correspondence for the second pair of curves, those for
displacement-dependent pressure, is not that good; however,
the pressure‐deflection curves are close for the deflection up to
1/10 of radius.

� Finite element results for the Neo-Hookean materials are in
agreement to the results proposed in this work. The agreement
is particularly good for a radial force while this agreement is
slightly reduced for a displacement-dependent pressure. How-
ever, within ANSYS, linear and Neo-Hookean materials behave
similarly. This suggests that the “linear elastic isotropic” material
available in ANSYS (and ABAQUS) is actually not linearly elastic.
In fact, for large strains, it exhibits a behavior that is much closer
to a hyperelastic material than to a linear elastic material.
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