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SPATIAL QUANTILE PREDICTIONS FOR ELLIPTICAL RANDOM FIELDS

V. MAUME-DESCHAMPS, D. RULLIÈRE, AND A. USSEGLIO-CARLEVE

Abstract. In this work, we consider elliptical random fields. We propose some spatial quan-
tile predictions at one site given observations at some other locations. To this aim, we first
give exact expressions for conditional quantiles, and discuss problems that occur for computing
these values. A first affine regression quantile predictor is detailed, an explicit formula is ob-
tained, and its distribution is given. Direct simple expressions are derived for some particular
elliptical random fields. The performance of this regression quantile is shown to be very poor
for extremal quantile levels, so that a second predictor is proposed. We prove that this new
extremal prediction is asymptotically equivalent to the true conditional quantile. Through nu-
merical illustrations, the study shows that Quantile Regression may perform poorly when one
leaves the usual Gaussian random field setting, justifying the use of proposed extremal quantile
predictions.

Keywords: Elliptical distribution; Quantile regression; Extremal quantile; Spatial prediction, Kriging.

1. Introduction

Kriging, introduced by Krige (1951), and formalized by Matheron (1963), aims at predicting the condi-
tional mean of a random field (Zt)t∈T given the values Zt1 , ..., ZtN of the field at some points t1, ..., tN ∈ T ,
where typically T ⊂ Rd. When using the Kriging techniques, for any x ∈ T , the conditional mean of Zx
given Zt1 , ..., ZtN is approximated by a linear combination of Zt1 , ..., ZtN where the weight vector is the
solution of a least square minimization problem (see Ligas and Kulczycki, 2010, for example). It seems
natural to predict, in the same spirit as Kriging, other functionals by linear combinations. Our starting
point is to apply this method to conditional quantiles and then get spatial quantile predictions.
In 1978, Koenker and Bassett proposed a conditional quantile estimation as an affine combination of
Zt1 , ..., ZtN , called Quantile Regression (cf. Koenker and Bassett, 1978). The weight vector is the solu-
tion of a minimization problem, with an asymmetric loss function, different from the least squares.
Obviously, for Gaussian fields, Zx|(Zt1 , ..., ZtN ) is still Gaussian, and the conditional quantile of Zx given
(Zt1 , ..., ZtN ) is easily computed. For non Gaussian fields, explicit formulas for conditional quantiles are
more difficult to get. The Quantile Regression approach usually requires time consuming simulations
to compute expectations. Moreover, in a non-gaussian setting, we do not have the certainty that the
conditional quantile is expressed as a linear combination of the covariates, thus the consistency of the
estimation by quantile regression is not guaranteed.
In this paper, we focus on elliptical random fields. Elliptical distributions, formalized by Cambanis et al.
(1981), have the advantage of being stable under affine transformations. Therefore, explicit formulas for
the quantile regression may be obtained for consistent elliptical distributions (cf. Kano (1994)). Never-
theless, the quantile regression is generally not equal to the conditional quantile and the difference may
be large, especially for extreme levels of quantile. This is why we propose a spatial quantile prediction
that is adapted to extremal quantiles.

The paper is organized as follows. In Section 2, we give some definitions, properties and examples
of elliptical distributions satisfying the consistency property. For these models, we give formulas for con-
ditional quantiles in Section 3. The Section 4 is devoted to quantile regression for consistently elliptical
random fields: closed formulas are obtained. In Section 5, we propose some extremal predictions and
prove asymptotic equivalences when the quantile level is close to 0 or 1. Section 6 provides a numerical
study. In particular, we emphasize the fact that quantile regression is generally not consistent, especially
for high level quantiles. We illustrate this point on several examples.

This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of UniversitÃ c© de Lyon, within the
program ”Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency
(ANR)..
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2. Elliptical distributions

In this section, we recall some useful properties and classical examples of elliptical distributions. Most
results may be found, for instance, in Frahm (2004).

Definition 2.1. Let X be a d−dimensional random vector. X is elliptical if and only if there exists a
unique µ ∈ Rd, a semi-positive definite matrix Σ ∈ Rd×d, and a function Φ : R+ → R such that the
characteristic function of (X − µ) is

E [exp(it(X − µ))] = Φ(t′Σt) .

For such an elliptical random vector, we write X ∼ Ed(µ,Σ,Φ)

It seems important to note that Σ is not necessarily the covariance matrix of X. More precisely, Σ is
proportional to the covariance matrix K of the random vector X, when it is defined, i.e there exists a
positive coefficient τ such that:

(2.1) Σ = τK

For example, for Gaussian distributions, τ = 1, i.e Σ = K. But this is not always the case for all
elliptical distributions: for Student distributions with ν degrees of freedom, τ = ν−2

ν . Furthermore, K
may not exist (e.g. for Cauchy distributions). In the present paper, we do only consider the case of
non-degenerated distributions, i.e. we assume that the matrix Σ is invertible.

The following representation theorem is central in the theory of elliptical distributions. This result
may be found in Cambanis et al. (1981).

Theorem 2.1 (Cambanis et al. (1981)). The random vector X is elliptical, X ∼ Ed(µ,Σ,Φ), if and only
if

(2.2) X = µ+RΛU (d),

where ΛΛT = Σ, U (d) is a d−dimensional random vector uniformly distributed on Sd−1 (the unit disk of
dimension d), and R is a non-negative random variable independent of U (d).

The representation of Theorem 2.1 is not unique (see Cambanis et al., 1981, for details). Given µ and
Σ, the elliptic random vector X is characterized by the non-negative random variable R, called the radius
of X. We now recall the consistency property of an elliptical distribution. The related definitions and
properties may be found in Kano (1994).

Definition 2.2. Let X ∼ Ed(µ,Σ,Φ). X is said consistent if Φ is dimension-free, i.e. if Φ does not
depend on d.

Kano (1994) established the following relation between Definition 2.2 and the radius R.

Proposition 2.2. Let X ∼ Ed(µ,Σ,Φ), and let R be the corresponding radius of X. X is consistent if
and only if :

(2.3) R
d
=
χd
ε
,

where χd is the square root of a χ2 distributed random variable with d degrees of freedom, ε is a non-
negative random variable which does not depend on d, and χd, ε and U (d) are mutually independent.

Theorem 2.3 (Elliptical density). Let X ∈ Rd be an elliptical random vector, X ∼ Ed(µ,Σ,Φ), and let
R be the corresponding radius of X.

(2.4) fX(x) =
cd

|det(Λ)|
gd
(
(x− µ)TΣ−1(x− µ)

)
where cdgd(t) =

Γ( d2 )

2π
d
2

√
t
−(d−1)

fR(
√
t), and fR(t) is the p.d.f of R.

The coefficient cd is called the normalization constant and the function gd is called the generator of X.
Table 1 provides some examples of elliptical distributions, associated with their coefficients and generators.
Most of them may easily be found in the literature: Kotz distribution is introduced in Nadarajah (2003),
Student in Nadarajah and Kotz (2004), and Laplace in Eltoft et al. (2006) and Kozubowski et al. (2013).
We added two other distributions, obtained with Kano’s representation : Unimodal Gaussian Mixture
(Unimodal GM), and another one which will be called Uniform Gaussian Mixture (Uniform GM).

In Table 1, Km(x) denotes the modified Bessel function of the second kind with order m, and χ2
m(x)

denotes the c.d.f of the χ2 distribution with m degrees of freedom, evaluated at x. Remark that the
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Distribution Coefficient cd Generator gd(t)

Gaussian 1

(2π)
d
2

exp(− t
2)

Student, ν > 0
Γ( d+ν

2
)

Γ( ν
2

)
1

(νπ)
d
2

(
1 + t

ν

)− d+ν
2

Logistic
Γ( d

2
)

(2π)
d
2

[
+∞∫
0

x
d
2
−1. e−x

(1+e−x)2
dx

]−1
exp(− 1

2
t)

(1+exp(− 1
2
t))

2

Kotz, q, r, s > 0
sΓ( d2 )

π
d
2 Γ( 2q+d−2

2s )
r

2q+d−2
2s tq−1 exp(−rts)

Unimodal GM 1

(2π)
d
2

n∑
k=1

πkθ
d
k exp

(
− θ2k

2 t
)

Laplace, λ > 0 2

λ(2π)
d
2

K d
2−1

(√
2
λ
t
)

(√
λ
2
t

) d
2−1

Uniform GM
Γ( d+1

2 )
√

2π
d
2

χ2
d+1(t)

t
d+1
2

Table 1. Some classical d−dimensional elliptical distributions with correspond-
ing normalisation constants and generators

Cauchy distribution corresponds to a Student distribution with ν = 1 degree of freedom.
In this paper, we focus on consistent elliptical distributions. Unfortunately, Logistic and Kotz distribu-
tions do not have this property (except the Kotz distribution with s = q = 1, and r = 1

2 , i.e the Gaussian
distribution). Therefore, our examples will only refer to the distributions mentioned in Table 2. For these
models, the non negative random variable ε is given in Table 2.

Distribution ε
Gaussian 1

Student, ν > 0 χν√
ν

Unimodal Gaussian Mixture
n∑
k=1

πkδθk

Laplace, λ > 0 1√
E( 1
λ

)

Uniform Gaussian Mixture U (]0, 1[)

Table 2. Some classical consistent d−dimensional elliptical distributions with
corresponding random variable ε

We have seen that an elliptical distribution is characterized by parameters µ, Σ, and by either the
characteristic function Φ, the radius R or the generator gd. For this reason, we define the distribution of
an elliptical random vector by any of these three possible characterization, using indifferently the notation
X ∼ Ed(µ,Σ,Φ), X ∼ Ed(µ,Σ, R) or X ∼ Ed(µ,Σ, gd). At last, in order to emphasis the role played by
the radius and the dimension, we also use the denomination (R, d)−elliptical, as defined hereafter.

Definition 2.3. An elliptical random vector of Rd with radius R is called (R, d)−elliptical.

The following proposition, from Hult and Lindskog (2002), is the basis of our study.

Proposition 2.4 (Affine transformation). Let X a consistent (R, d)−elliptical random vector with pa-
rameters µ and Σ. Then for any c ∈ Rd, cTX is (R, 1)−elliptical with parameters cTµ and cTΣc.

Proposition 2.4 implies that an affine transformation of a (R, d)−elliptical random vector is a (R, 1)-
elliptical random variable. The proposition below is a direct consequence of this result (see Hult and
Lindskog, 2002, for a proof).

Proposition 2.5 (Subvectors distributions). Let X = (X1, X2)T be a consistent (R, d)−elliptical random
vector with X1 ∈ Rd1 , X2 ∈ Rd2 , d1 + d2 = d and parameters µ and Σ. Let us write:

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, µ =

(
µ1

µ2

)
.
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Then X1 and X2 are respectively (R, d1)− and (R, d2)−elliptical with parameters µ1, Σ11 and µ2, Σ22,
respectively.

Remark that a p−dimensional subvector of a (R, d)-elliptical random vector with the consistency
property is (R, p)−elliptical. As a consequence when p = 1, all marginals are (R, 1)−elliptical. The
following proposition gives some indications concerning the conditional distributions of elliptical vectors.

Proposition 2.6 (Conditional distribution). Let X = (X1, X2)T be a consistent (R, d)−elliptical random
vector with with X1 ∈ Rd1 , X2 ∈ Rd2 , d1 + d2 = d and parameters µ and Σ. Let us write:

(2.5) Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, µ =

(
µ1

µ2

)
.

The conditional distribution X2|(X1 = x1) has parameters:

(2.6)

{
µ2|1 = µ2 + Σ21Σ−1

11 (x1 − µ1)
Σ2|1 = Σ22 − Σ21Σ−1

11 Σ12

Furthermore, X2|(X1 = x1) is elliptical, with radius R∗ given by :

(2.7) R∗
d
= R

√
1− β

∣∣∣∣ (R√βU (d) = C−1
11 (x1 − µ1)

)
where C11 is the Cholesky root of Σ11, and β ∼ Beta(d1

2 ,
d2

2 ).

At last, the conditional density of X2|(X1 = x1) is given by :

(2.8) fX2|X1
(x2|x1) =

c2|1

|Σ2|1|
1
2

gd

(
q1 + (x2 − µ2|1)TΣ−1

2|1(x2 − µ2|1)
)

with c2|1 = cd
cd1

gd1
(q1) , and q1 = (x1 − µ1)TΣ−1

11 (x1 − µ1).

Proof. For Equations (2.6) and (2.7), a proof may be found in Frahm (2004). Concerning Equation (2.8),

the proof is obvious, since fX2|X1
(x2|x1) =

fX1,X2
(x1,x2)

fX1
(x1) . Then :

(2.9) fX2|X1
(x2|x1) =

cd

|Σ|
1
2
gd
(
(x− µ)TΣ−1(x− µ)

)
cd1

|Σ11|
1
2
gd1

(q1)

Since (x− µ)TΣ−1(x− µ) = q1 + (x2 − µ2|1)TΣ−1
2|1(x2 − µ2|1) and |Σ| = |Σ11||Σ2|1|, we get the expected

result. �

We have introduced the main definitions and properties of elliptical distributions. With these tools, we
can define elliptical random fields. Indeed, a random field (X(t))t∈T is R−elliptical if ∀n ∈ N, ∀t1, ..., tn ∈
T , the vector (X(t1), ..., X(tn)) is (R,n)−elliptical. Obviously, it implies that all the k−dimensional
subvectors of (X(t1), ..., X(tn)) are (R, k)−elliptical. This assumption corresponds exactly to consistent
elliptical distributions properties given in Propositions 2.4, 2.5 and in Kano (1994). We thus focus our
study on elliptical distributions with the consistency property.
In the following section, we focus on conditional quantiles of elliptical distributions, applicated to our
problem of spatial prediction.

3. Conditional quantiles

In this section, we give exact expressions for conditional quantiles of an elliptical random field, and
discuss problems that occurs for computing these values.
From now on, we consider the following context: (X(t))t∈T is an R−elliptical random field. We consider
N observations at locations t1, ..., tN ∈ T , called (X(t1), ..., X(tN )). Our aim is to predict, at a site
t ∈ T , the quantile of X(t) given X(t1), ..., X(tN ). Remark that the vector (X(t), X(t1), ..., X(tN )) is
(R,N + 1)−elliptical. Thus, we can denote X2 = X(t) ∈ R and X1 = (X(t1), ..., X(tN )) ∈ RN and
restrict ourselves to the study of the qα(X2|X1).



SPATIAL QUANTILE PREDICTIONS FOR ELLIPTICAL RANDOM FIELDS 5

3.1. General case. Let us firstly give an expression of the theoretical conditional quantile. Consider
the respective cumulative distribution functions ΦR and Φ∗R,

(3.1)

{
ΦR(x) = P

(
RU (1) ≤ x

)
,

ΦR∗(x) = P
(
R∗U (1) ≤ x

)
,

where U (1) is 1 or −1 with probability 1
2 . ΦR and ΦR∗ are respective cumulative distribution functions

of the reduced centered (R, 1)−elliptical random variable and (R∗, 1)−elliptical random variable. With
this notation and the conditional generator given in Equation (2.7), we get the following result.

Proposition 3.1 (Conditional elliptical quantile). Let X = (X1, X2)T be a consistent (R,N+1)−elliptical
random vector with X1 ∈ RN , X2 ∈ R and parameters µ and Σ. Let us write Σ:

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
Then the α−quantile of X2|(X1 = x1) is given by :

(3.2) qα (X2|X1 = x1) = µ2|1 +
√

Σ2|1Φ−1
R∗(α)

where µ2|1 and Σ2|1 are given in Equation (2.6), and R∗ in Equation (2.7).

Proof. We know that X2|(X1 = x1) ∼ µ2|1 +R∗
√

Σ2|1U
(1). Then, our aim is to get qα such as :

P
(
µ2|1 +R∗

√
Σ2|1U

(1) ≤ qα
)

= α

Since P
(
µ2|1 +R∗

√
Σ2|1U

(1) ≤ qα
)

= P
(
R∗U (1) ≤ qα−µ2|1√

Σ2|1

)
= ΦR∗

(
qα−µ2|1√

Σ2|1

)
, we easily get the ex-

pected result. �

A general expression for conditional quantiles of consistent elliptical distributions is thus available.
However, Equation (2.7) shows that the conditional radius R∗ is difficult to exploit and thus, the cal-
culation of the conditional quantile is not tractable in general. Indeed, the term Φ−1

R∗(α), is difficult to
calculate, since the conditional density in Equation (2.8) leads to the inverse problem in x:

x∫
−∞

c2|1gN+1(q1 + t2)dt = α

where c2|1 is given in Proposition 2.6. Computing and inversing the function ΦR∗ from the distribution of
R∗ is not easier, since the latter is hard to obtain. We thus have a general expression for the conditional
quantile which is not easy to compute in the general case.

Fortunately, in several cases, we get an explicit formula for conditional quantiles. We propose two
classical examples: Gaussian and Student distributions. We thus get explicit formulas for some simple
cases, but it would not be possible in some other cases, such as Gaussian Mixture distribution.

3.2. Gaussian case. The Gaussian case is the most famous one and the simplest case of elliptical
distribution. Since a conditional Gaussian distribution is still Gaussian, we have:

(3.3) X2|(X1 = x1) ∼ N (µ2|1,Σ2|1)

with µ2|1 and Σ2|1 given in Equation (2.6). Then, the calculation of the conditional α−quantile of
X2|(X1 = x1) is immediate, and gives:

(3.4) qα(X2|X1 = x1) = µ2|1 +
√

Σ2|1Φ−1(α)

where Φ is the standard Gaussian distribution function.

3.3. Student case. In the Student case also, we get explicit formulas for conditional quantiles. For that
purpose, we need to introduce some properties of Student distributions. The lemma below and associated
proof may be found in Nadarajah and Kotz (2004).

Lemma 3.2. Let X be a d−dimensional Student distribution with ν degree of freedom and parameters
µ ∈ Rd and Σ ∈ Rd×d. Consider X = (X1, X2)T with X1 ∈ Rd1 , X2 ∈ Rd2 and d1 + d2 = d. Then the
density function of the conditional random variable X2|(X1 = x1) is given by the following equation.

(3.5) fX2|X1
(x2|x1) =

Γ
(
ν+d
2

)
((ν + d1)π)

d2
2 Γ
(
ν+d1

2

)
|Σ2|1|

1
2

[
1 +

1

ν

q2|1(x2)

1 + 1
ν
q1

]− ν+d
2

×

[
ν+d1
ν

1 + 1
ν
q1

] d2
2

,
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where q2|1(x2) and q1 are the Mahalanobis distances :{
q2|1(x2) = (x2 − µ2|1)TΣ−1

2|1(x2 − µ2|1) ,

q1 = (x1 − µ1)TΣ−1
11 (x1 − µ1) .

With the conditional density, we can deduce the conditional α−quantile, in the following proposition.

Proposition 3.3 (Conditional Student quantile). Let X a N + 1−dimensional Student distribution with
ν degree of freedom and parameters µ ∈ RN+1 and Σ ∈ R(N+1)×(N+1). Consider X = (X1, X2)T with
X1 ∈ RN and X2 ∈ R1. The conditional α−quantile of X2|(X1 = x1) has the following expression

(3.6) qα(X2|X1 = x1) = µ2|1 +
√

Σ2|1

√
ν

ν +N

√
1 +

1

ν
q1Φ−1

ν+N (α) .

Proof. We consider the density (3.5), with d1 = N , d2 = 1. We have q2|1(x2) =
(x2−µ2|1)2

Σ2|1
∈ R. Let qα

be the conditional quantile of X2|(X1 = x1). It satisfies:

qα∫
−∞

fX2|X1
(x2|x1)dx2 = α .

Hence :

Γ
(
ν+N+1

2

)
((ν +N)π)

1
2 Γ
(
ν+N

2

)
|Σ2|1|

1
2

[
ν+N
ν

1 + 1
ν
q1

] 1
2

×
qα∫
−∞

[
1 +

1

ν +N

ν+N
ν
q2|1(x2)

1 + 1
ν
q1

]− ν+N+1
2

dx2 = α

Considering z =

√
ν+N
ν (x2−µ2|1)√

Σ2|1
√

1+ 1
ν q1

we obtain:

Γ
(
ν+N+1

2

)
((ν +N)π)

1
2 Γ
(
ν+N

2

) × zα∫
−∞

[
1 +

z2

ν +N

]− ν+N+1
2

dz = α, with

zα =

√
ν+N
ν (qα − µ2|1)√

Σ2|1

√
1 + 1

ν q1

.

Let Φν+N be the one dimensional Student distribution with N + ν degrees of freedom. It is obvious that

Φν+N


√

ν+N
ν (qα − µ2|1)√

Σ2|1

√
1 + 1

ν q1

 = α.

As a consequence,

qα = µ2|1 +

√
ν

ν +N

√
Σ2|1

√
1 +

1

ν
q1Φ−1

ν+N (α).

�

We did not obtain such simple results for other elliptical distributions. In order to predict conditional
quantiles for other elliptical distributions, we propose, in what follows, two approaches. In the following
section, we apply quantile regression in the case of consistent elliptical distributions. In Section 5, we
focus on extreme quantile levels, i.e when the quantile level α is close to 0 or 1.

4. Quantile regression

In this section, we propose quantile regression predictors for elliptical distributions. We give direct
explicit expressions for these predictors as well as their distributions.
Quantile regression, introduced by Koenker and Bassett (1978), is a classical way to estimate conditional
quantiles of a distribution. If X1 ∈ RN and X2 ∈ R, the α−quantile of X2|(X1 = x1) is approximated by

(4.1) q̂α(X2|X1 = x1) = β∗Tx1 + β∗0 ,

where β∗ and β∗0 are solutions of the following minimization problem

(4.2) (β∗, β∗0) = arg min
β∈RN ,β0∈R

E
[
φα(X2 − βTX1 − β0)

]
.
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and where the scoring function φα (see Grant and Gneiting, 2012) is

(4.3) φα(x) = (α− 1)x1{x<0} + αx1{x>0} = αx− x1{x<0}.

Obviously, given Equation (4.2), we need to assume the existence of moments E [X1] and E [X2]. It
excludes some elliptical distributions with the consistency property (such as the Cauchy distribution).
Most of the time, we need simulations to find the solution, and an appropriate algorithm, for example
MM algorithm (see Hunter and Lange, 2000) or stochastic gradient (see Zheng, 2011). As an example,
the package quantreg of R performs simulations of (X1, X2) and solves Equation (4.2) by simplex or
interior point algorithm. These simulations are computationally expensive. Furthermore, it is difficult
to get the distribution of the estimator. It is a reason why we propose another approach for consistent
elliptical distributions.

In the following, we denote by E1
c (N + 1) the set of consistent elliptical random vectors X in RN+1,

with X = (X1, X2)T , X1 ∈ RN and X2 ∈ R, having an order one moment. We shall get an explicit
formula for β∗ and β∗0 . Let us recall the distribution function introduced in Equation (3.1),

ΦR(x) = P
(
RU (1) ≤ x

)
.

From Equation (2.8), we get

(4.4) ΦR(x) =

x∫
−∞

c1g1(x2)dx.

We will use this notation later in our formulas.
The next lemma is an explicit formula of a truncated moment for a bivariate elliptical distribution with
the consistency property.

Lemma 4.1. Let (X,Y ) be a consistent (R, 2)−elliptical vector, which admits an order one moment and

with parameters µ = (µX , µY )T and Σ =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)
. Then

(4.5) E
[
X1{Y >0}

]
= µXΦR

(
µY
σY

)
+ ρσX

+∞∫
µY
σY

c1zg1(z2)dz.

Proof. Let f(X,Y ) be the density of the random vector (X,Y ). Then

(4.6) E
[
X1{Y >0}

]
=

+∞∫
−∞

+∞∫
0

xfX,Y (x, y)dxdy.

We get:

+∞∫
−∞

xfX,Y (x, y)dx = fY (y)

+∞∫
−∞

x
fX,Y (x, y)

fY (y)
dx = fY (y)

+∞∫
−∞

xfX|Y (x|y)dx .

We recognize the integral expression of the conditional mean of X|Y , which is given in Equation (2.6) :

+∞∫
−∞

xfX,Y (x, y)dx = fY (y)E [X|Y = y] = fY (y)

(
µX + ρ

σX
σY

(y − µY )

)
.

Integrating with respect to the second variable y,

(4.7) E
[
X1{Y >0}

]
=

+∞∫
0

fY (y)

(
µX + ρ

σX
σY

(y − µY )

)
dy.

Recall that fY (y) = c1
σY
g1

(
(y−µY )2

σ2
Y

)
, this leads to

E
[
X1{Y >0}

]
= µX

+∞∫
0

fY (y)dy + ρ
σX
σY

c1

+∞∫
0

y − µY
σY

g1

(
(y − µY )2

σ2
Y

)
dy.

Using the change of variable z = y−µY
σY

, we get
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E
[
X1{Y >0}

]
= µXΦR

(
µY
σY

)
+ ρσX

+∞∫
−µYσY

c1zg1

(
z2
)
dz.

Hence the result. �

Previous lemma is a keystone to find β∗ and β∗0 . Let ρj be the correlation coefficient between X1j

and the random variable X2 − β∗TX1 − β∗0 . Indeed, X1j is (R, 1)−elliptical with parameters µ1j and
σ2

1j . Furthermore, X2 − β∗TX1 − β∗0 is (R, 1)−elliptical too, with parameters µ2 − β∗Tµ1 − β∗0 and

(−β∗, 1)TΣ(−β∗T , 1). Hence the (R, 2)−elliptical vector
(
X1j , X2 − β∗TX1 − β∗0

)
admits as second pa-

rameter the matrix :(
σ2

1j ρjσ1j

√
(−β∗, 1)TΣ(−β∗T , 1)

ρjσ1j

√
(−β∗, 1)TΣ(−β∗T , 1) (−β∗, 1)TΣ(−β∗T , 1)

)
Proposition 4.2 (Explicit form of β∗). Let X = (X1, X2)T ∈ E1

c (N + 1). The optimal β∗ is given by :

(4.8) β∗ = Σ−1
11 Σ12.

Proof.

(4.9) (β∗, β∗0) = arg min
β∈RN ,β0∈R

E
[
φα
(
X2 − βTX1 − β0

)]
Equation (4.9) is equivalent to :

(4.10)

{
E
[
−X1φ

′
α(X2 − β∗TX1 − β∗0)

]
= 0

E
[
−φ′α(X2 − β∗TX1 − β∗0)

]
= 0

with the scoring function derivative :

(4.11) φ′α(x) = (α− 1)1{x<0} + α1{x>0} = (α− 1) + 1{x>0}

We obtain

(4.12)

{
(1− α)E [X1]− E

[
X11{X2−β∗TX1−β∗0>0}

]
= 0

(1− α)− E
[
1{X2−β∗TX1−β∗0>0}

]
= 0

SinceX2−β∗TX1−β∗0 is (R, 1)−elliptical, with parameters µ = µ2−β∗Tµ1−β∗0 and Σ = (−β∗, 1)TΣ(−β∗, 1).

Then E
[
1{X2−β∗TX1−β∗0>0}

]
= P

(
X2 − β∗TX1 − β∗0 > 0

)
, i.e, if we denote σ = Σ

1
2 :

(4.13) E
[
1{X2−β∗TX1−β∗0>0}

]
= 1− ΦR

(
−µ
σ

)
= ΦR

(
µ

σ

)
Next, thanks to Equation (4.5), we have, for j ∈ {1, ..., N} :

(4.14) E
[
X1j1{X2−β∗TX1−β∗0>0}

]
= µ1jΦR

(
µ

σ

)
+ ρjσ1j

+∞∫
µ
σ

c1zg1(z2)dz

Finally, Equation (4.12) may be written as :

(4.15)


µ1j

[
(1− α)− ΦR

(
µ

σ

)]
− ρjσ1j

+∞∫
µ

Σ

c1zg1(z2)dz = 0

(1− α)− ΦR

(
µ
σ

)
= 0

,∀j ∈ {1, ..., N}

Therefore :

(4.16) ρjσ1j

+∞∫
µ

Σ

c1zg1(z2)dz = 0,∀j ∈ {1, ..., N}

Then ρj = 0,∀j ∈ {1, ..., N}. Now, it is not difficult to see that β∗ = Σ−1
11 Σ12. Indeed, the second

parameter of the (R,N + 1)−elliptical vector
(
X1, X2 − β∗TX1 − β∗0

)
is :(

Σ11 0RN
0TRN (−β∗, 1)TΣ(−β∗T , 1)

)
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Hence its determinant is (−β∗, 1)TΣ(−β∗T , 1)|Σ11|. Using the conditional moments ofX2−β∗TX1−β∗0 |X1

given in Proposition 2.6, we get the following equation :

Σ2|1 = Σ22 − Σ21Σ−1
11 Σ12 = (−β∗, 1)TΣ(−β∗T , 1)

Since (−β∗, 1)TΣ(−β∗T , 1) = Σ22 + β∗TΣ11β
∗ − 2β∗TΣ12, the previous equation is equivalent to :

2β∗TΣ12 − β∗TΣ11β
∗ − Σ21Σ−1

11 Σ12 = 0

The convex function 2β∗TΣ12 − β∗TΣ11β
∗ − Σ21Σ−1

11 Σ12 reaches its minimum 0 at β∗ = Σ−1
11 Σ12. �

This result shows that a quantile regression through a linear model is meaningless. Indeed, the vector
Σ−1

11 Σ12 does not depend on α and corresponds to the vector of weights in the Kriging mean (cf. Cressie,
1988). Using a linear predictor, the result of the quantile regression, whatever the quantile level α ∈ [0, 1],
would be the conditional mean µ2|1 given in Equation (2.6). This is why the addition of the affine term
β∗0 is required. Let us now calculate this term β∗0 . As mentioned in the last proof that, obviously,
X2−β∗TX1−β∗0 is elliptical with the same radius as (X1, X2). With Equation (4.8), we are now able to
prove that its second parameter is Σ2|1, given in Equation (2.6).

Lemma 4.3. Let X = (X1, X2)T ∈ E1
c (N + 1). X2 − β∗TX1 is (R, 1)−elliptical with parameters µ2 −

Σ21Σ−1
11 µ1 and Σ2|1 = Σ22 − Σ21Σ−1

11 Σ12.

Proof. The random variable X2−β∗TX1, as an affine transformation of a consistent (R, d)−elliptical ran-
dom vector, is obviously (R, 1)−elliptical. Furthermore, with the expression of β∗ given in Proposition 4.2,
E
[
X2 − β∗TX1

]
= µ2−Σ21Σ−1

11 µ1. Concerning the second parameter, it is equal to (−β∗, 1)TΣ(−β∗, 1).
Thus,

(−β∗, 1)TΣ(−β∗, 1) = σ2
2 − 2

n∑
i=1

β∗i ρixσ1iσ2 +

n∑
j=1

β∗j

n∑
i=1

β∗i ρijσ1iσ1j .

It may be rewritten in matrix form

(−β∗, 1)TΣ(−β∗, 1) = σ2
2 − 2β∗TΣ12 + β∗TΣ11β

∗.

Using that β∗ = Σ−1
11 Σ12, we prove the following equality.

(−β∗, 1)TΣ(−β∗, 1) = σ2
2 − 2Σ21Σ−1

11 Σ12 + Σ21Σ−1
11 Σ11Σ−1

11 Σ12 = σ2
2 − Σ21Σ−1

11 Σ12,

which concludes the proof. �

We have seen that the conditional second parameter of our (R, 1)−elliptical random variable is exactly
the conditional second parameter Σ2|1 of Equation (2.6). We are led to our main result of this section on
quantile regression for elliptical distributions.

Theorem 4.4 (Quantile Regression Predictor). Let X = (X1, X2)T ∈ E1
c (N+1). The quantile regression

vector (β∗, β∗0) of X2|(X1 = x1), satisfying Equation (4.2), is given by

(4.17)

{
β∗ = Σ−1

11 Σ12

β∗0 = µ2 − Σ21Σ−1
11 µ1 + σ2|1Φ−1

R (α)

The Quantile Regression Prediction with level α ∈ [0, 1] is given by:

(4.18) q̂α(X2|X1 = x1) = µ2|1 + σ2|1Φ−1
R (α)

Furthermore, the distribution of the associated predictor q̂α(X2|X1) is

(4.19) q̂α(X2|X1) ∼ E1
(
µ2 + σ2|1Φ−1

R (α),Σ21Σ−1
11 Σ12, g1

)
Proof. β∗ is given in Equation (4.8). Concerning β∗0 , it satisfies:

β∗0 = arg min
β0∈R

E
[
φα
(
X2 − β∗TX1 − β0

)]
.

Finally, β∗0 is the α−quantile of the random variable X2 − β∗TX1. We have seen in Lemma 4.3, that
X2 − β∗TX1 is (R, 1)−elliptical with parameters µ2 − Σ21Σ−1

11 µ1 and Σ2|1. Then, using the quantile

formula of an elliptical distribution, and denoting σ2|1 =
√

Σ2|1, we get:

β∗0 = µ2 − Σ21Σ−1
11 µ1 + σ2|1Φ−1

R (α).
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With our optimal parameters β∗ and β∗0 , we can now express our Quantile Regression Prediction of X2

given X1 = x1, q̂α(X2|X1 = x1), using Equation (4.1):

q̂α(X2|X1 = x1) = β∗x1 + β∗0 = µ2 + Σ21Σ−1
11 (x1 − µ1) + σ2|1Φ−1

R (α).

We recognize, on the left, the expression of µ2|1 given in Equation (2.6).

Concerning its distribution, we know that

q̂α(X2|X1) = µ2 + Σ21Σ−1
11 (X1 − µ1) + σ2|1Φ−1

R (α),

with X1 ∼ EN (µ1,Σ11, gN ). As an affine combination of X1, using Proposition 2.4, we have the relation-
ship q̂α(X2|X1) ∼ E1

(
µ2 + σ2|1Φ−1

R (α), (Σ21Σ−1
11 )Σ11(Σ−1

11 Σ12), g1

)
. Hence the result. �

As an illustration of Theorem 4.4, we now propose several examples, such as Gaussian and Student
cases, where the theoretical conditional quantiles are known (see Section 3). We also consider the Uni-
modal Gaussian Mixture and Laplace cases, where we do not have any explicit formula for theoretical
quantiles. Numerical applications are proposed in the last section.

4.1. Gaussian case. We recall the theoretical formula of the conditional quantile of a Gaussian distri-
bution :

(4.20) qα(X2|X1 = x1) = µ2|1 + σ2|1Φ−1(α).

In that case, the Quantile Regression Prediction q̂α(X2|X1 = x1) is exactly the same :

(4.21) q̂α(X2|X1 = x1) = µ2|1 + σ2|1Φ−1(α).

For Gaussian processes, the Quantile Regression Predictor and the theoretical conditional quantile coin-
cide.

4.2. Student case. The Gaussian case is the most simple one. Unfortunately, for Student distributions,
Quantile Regression Predictor and conditional quantile do not coincide. Indeed, the conditional quantile
of a multivariate Student distribution is given by Equation (3.6):

qα(X2|X1 = x1) = µ2|1 + σ2|1

√
ν

ν +N

√
1 +

1

ν
(x1 − µ1)TΣ−1

11 (x1 − µ1)Φ−1
ν+N (α).

The Quantile Regression Prediction is

q̂α(X2|X1 = x1) = µ2|1 + σ2|1Φ−1
ν (α).

The error qα(X2|X1 = x1)− q̂α(X2|X1 = x1) that is done when using the Quantile Regression Prediction
depends on the Mahalanobis distance (x1 − µ1)TΣ−1

11 (x1 − µ1) which may be large (see numerical study
in Section 5).

4.3. Unimodal Gaussian Mixture case. We consider here a mixture of 2 centered Gaussian distri-
butions, i.e a radius R such that

R =
χd

pθ1 + (1− p)θ2
.

Immediately, we get the following multivariate p.d.f :

(4.22) fX(x) =
1

(2π)
d
2

[
pθd1e

− θ
2
1
2 (x−µ)TΣ−1(x−µ) + (1− p)θd2e−

θ22
2 (x−µ)TΣ−1(x−µ)

]
.

As an illustration, we propose some examples of univariate densities (4.22), with different values of p, θ1

and θ2 : For these models, we do not have any explicit formula for qα(X2|X1 = x1). On the other hand,
using the conditional density expressed in Equation (2.8), we may get a numerical approximation of this
value, and compare it with the Quantile Regression Prediction.
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Figure 1. Univariate mixture distributions, with µ = 0 and Σ = 1

4.4. Laplace case. The multivariate Laplace distribution, introduced in Kozubowski et al. (2013) and Eltoft
et al. (2006), has the following density:

(4.23) f(x) =
1

|Σ| 12 (2π)
d
2

2

λ

K d
2−1

(√
2
λ (x− µ)TΣ−1(x− µ)

)
(√

λ
2 (x− µ)TΣ−1(x− µ)

) d
2−1

,∀x ∈ Rd\{µ}.

where Km(x) denotes the modified Bessel function of the second kind and order m, evaluated at x. In
this case, we can easily give an expression for the Quantile Regression Prediction q̂α(X2|X1 = x1). This
is the aim of the following proposition.

Proposition 4.5. In the Laplace case, the Quantile Regression Prediction is given by:

(4.24)

 q̂α(X2|X1 = x1) = µ2|1 +
√

λ
2σ2|1 ln(2α), for α ≤ 1

2

q̂α(X2|X1 = x1) = µ2|1 −
√

λ
2σ2|1 ln (2(1− α)) , for α > 1

2 .

Proof. From (4.18), we just have to calculate Φ−1
R (α), where ΦR is the distribution function of the

univariate reduced and centered Laplace distribution, with density function (4.23), and with d = 1.
Then, Φ−1

R (α) equals x ∈ R so that
x∫

−∞

1√
2λ
e−
√

2
λ |t|dt = α.

Since the univariate reduced centered Laplace distribution is symmetric, we have the equivalence α ≤
1
2 ⇔ x ≤ 0. Then, we separate the cases α ≤ 1

2 and α > 1
2 . If α ≤ 1

2 , we have to solve

x∫
−∞

1√
2λ
e
√

2
λ tdt = α⇒ x =

√
λ

2
ln(2α).

If α > 1
2 , we write :

0∫
−∞

1√
2λ
e
√

2
λ tdt+

x∫
0

1√
2λ
e−
√

2
λ tdt = α.

Since

0∫
−∞

1√
2λ
e
√

2
λ tdt =

1

2
and

x∫
0

1√
2λ
e−
√

2
λ tdt =

1

2
− 1

2
e−
√

2
λx, we quickly get x = − ln (2(1− α)).

Finally,  q̂α(X2|X1 = x1) = µ2|1 +
√

λ
2σ2|1 ln(2α) , α ≤ 1

2

q̂α(X2|X1 = x1) = µ2|1 −
√

λ
2σ2|1 ln (2(1− α)) , α > 1

2

which is the announced result. �
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5. Extremal quantiles

In this section, we show that, for an elliptical distribution, best affine predictors of conditional quantiles
are inadequate for extreme quantile levels. We thus propose some new extremal quantiles, which are shown
to be equivalent to the true conditional quantiles.
In order to simplify the notations, we denote by q1 the Mahalanobis distance (x1 − µ1)TΣ−1

11 (x1 − µ1).
We have previously defined a predictor q̂α based on quantile regression. We have seen that the best affine
prediction of conditional quantiles of an R−elliptical distribution with the consistency property is given
by:

(5.1) q̂α(X2|X1 = x1) = µ2|1 + σ2|1Φ−1
R (α)

where ΦR(x) =

x∫
−∞

c1g1(t2)dt. The conditional quantile is:

(5.2) qα(X2|X1 = x1) = µ2|1 + σ2|1Φ−1
R∗(α)

with the conditional radius R∗ defined in Equation (2.7). In this section, the aim is to establish a relation
between Φ−1

R and Φ−1
R∗ for extremal values of α, i.e for α→ 0 or α→ 1. Extreme quantiles estimation is an

active research topic, and we can find several papers in the literature. We think particularly to El Methni
et al. (2012), but the random variables X1, ..., Xn are supposed i.i.d. In our case, the covariates are
dependent. More recently, Gong et al. (2015) proposed an approach for dependant random variables,
but it requires simulations. It is why, in this paper, we propose another approach. To this aim, we
need a kind of regular variations hypothesis. It seems important to note that all elliptic c.d.f ΦR are not
regularly varying.

Assumption 1. Their exist 0 < ` < +∞ and γ ∈ R such as :

(5.3) lim
x→+∞

ΦR∗(x)

ΦR(xγ)
= `

where Φ = 1− Φ is the survival function associated to Φ.

We also recall that the cumulative distribution functions are ΦR(x) =

x∫
−∞

c1g1(t2)dt and

ΦR∗(x) =

x∫
−∞

c∗1gN+1(q1 + t2)dt, with c∗1 given by Equation (2.8).

(5.4) c∗1 =
cN+1

cNgN (q1)
,

where cN+1 and cN are the normalization coefficients of the elliptical distributions with radius R in
dimensions N + 1 and N . Then, coefficients γ and ` may also be obtained as

(5.5) lim
x→+∞

c∗1gN+1(q1 + x2)

c1γxγ−1g1(x2γ)
= `

Table 3 gives values of γ and ` for the examples introduced in Section 2. The calculations will be detailed
later on. Unfortunately, the Laplace distribution does not satisfy Assumption 1, this is why we will not
consider this example in what follows.

Thanks to Equation (5.3), we have, under Assumption 1, the following equivalence when x goes to
∞ :

(5.6) ΦR∗(x) ∼
x→∞

`ΦR(xγ)

Our aim is now to get an equivalence relationship between the quantile function Φ−1
R∗ and Φ−1

R∗ . For
that purpose, we refer to the paper of Djurcić and Torgasev, which gives some conditions to deduce the
equivalence of inverse functions if these functions are equivalent (cf. Djurcić and Torgasev, 2001).

Definition 5.1. A function f is a ϕ−function if f : [0,+∞[→ [0,+∞[, f(0) = 0, f is continuous, non
decreasing on [0,+∞[, and f → +∞ when x→ +∞.
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Distribution γ `
Gaussian 1 1

Student, ν > 0 N+ν
ν

Γ( ν+N+1
2 )Γ( ν2 )

Γ( ν+N2 )Γ( ν+1
2 )

(
1 + q1

ν

)N+ν
2 ν

N
2 +1

ν+N

Unimodal Gaussian Mixture 1
min(θ1,...,θn)N exp

(
−min(θ1,...,θn)2

2
q1

)
n∑
k=1

πkθ
N
k exp

(
−
θ2
k
2
q1

)

Uniform Gaussian Mixture N + 1
Γ(N+2

2 )q
N+1

2
1

√
2

Γ(N+1
2 )(N+1)χ2

N+1(q1)

Table 3. Coefficients γ and ` for classical distributions, where q1 = (x1 −
µ1)TΣ−1

11 (x1 − µ1) is a function of x1. (see Proposition 2.6).

Clearly, our two equivalent functions ΦR∗(x) and lΦR(xγ) are not ϕ−functions for several reasons :
ΦR∗(0) = 1

2 , `ΦR(0) = 1
2`, lim

x→+∞
ΦR∗(x) = 1 and lim

x→+∞
lΦR(xγ) = ` < +∞. Then, we have to transform

these functions in order to find an equivalence. But before, we need more definitions and properties.
The following is the definition of a general class of functions Kc, which contains in particular Regularly
Varying functions.

Definition 5.2. Kc is the set of all ϕ−functions f with the property :

(5.7) lim
x→+∞
λ→1

f (λx)

f(x)
= 1

In fact, the Kc is the set of ϕ−functions for which the limit lim
x→+∞
λ→1

f(λx)
f(x) exists, because if it exists, then

automatically we can swap the limits, and lim
x→+∞
λ→1

f(λx)
f(x) = lim

x→+∞

(
lim
λ→1

f(λx)
f(x)

)
= 1. We can also notice

that the condition in Equation (5.7) is more general than the regular variation functions in the sense of
Karamata.
These two last definitions are very important for the following lemma, which establishes the relation
between the equivalence of two functions and equivalence of their inverses.

Lemma 5.1. [ Djurcić and Torgasev (2001)] Suppose that f and g are two strictly increasing ϕ−functions,
and that at least one of the functions f−1, g−1 belongs to the class Kc, and f(x) ∼

x→∞
g(x). Then

f−1(x) ∼
x→∞

g−1(x)

Now, as we said previously, the first step is to transform our fonctions ΦR∗(x) and `ΦR(xγ) into
ϕ−functions.

Definition 5.3. Let Ψ and Ψ∗ be

(5.8)

{
Ψ(x) = 1

`ΦR(xγ)
− 2

`

Ψ∗(x) = 1
ΦR∗ (x)

− 2

Lemma 5.2. If γ > 0, then Ψ and Ψ∗ are ϕ−functions.

Proof. Since ΦR and ΦR∗ are clearly strictly decreasing, Ψ and Ψ∗ are obviously strictly increasing.
Furthermore, ΦR(0) = ΦR∗(0) = 1

2 , thus {
Ψ(0) = 0
Ψ∗(0) = 0

.

Finally, since lim
x→+∞

ΦR(xγ) = lim
x→+∞

ΦR∗(x) = 0, functions Ψ and Ψ∗ are such that lim
x→+∞

Ψ(x) =

lim
x→+∞

Ψ∗(x) = +∞. �

Now, given that ΦR∗(x) ∼
x→∞

`ΦR(xγ), we have to check whether Ψ(x) ∼
x→∞

Ψ∗(x).

Lemma 5.3. Under Asumption 1, we have

(5.9) Ψ∗(x) ∼
x→∞

Ψ(x)
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Proof. Let us focus on the limit

lim
x→+∞

Ψ∗(x)

Ψ(x)
= lim
x→+∞

1
ΦR∗ (x)

− 2

1
`ΦR(xγ)

− 2
`

.

This limit is equal to

lim
x→+∞

`ΦR(xγ)

ΦR∗(x)
· 1− 2ΦR∗(x)

1− 2ΦR(xγ)
.

Thanks to (5.3), lim
x→+∞

`ΦR(xγ)

ΦR∗ (x)
= 1. Furthermore, lim

x→+∞
ΦR∗(x) = lim

x→+∞
ΦR(xγ) = 0. Then :

lim
x→+∞

Ψ∗(x)

Ψ(x)
= lim
x→+∞

`ΦR(xγ)

ΦR∗(x)
· 1− 2ΦR∗(x)

1− 2ΦR(xγ)
= 1.

In other words, Ψ∗(x) ∼
x→∞

Ψ(x). �

In order to use Lemma 5.1, we shall need an additional assumption on Ψ−1
∗ .

Assumption 2. Ψ−1 belongs to the class Kc.

The following proposition is the key step to predict conditional quantiles.

Proposition 5.4. Under Assumptions 1 and 2, we have

(5.10) Φ−1
R∗ (α) ∼

α→1

[
Φ−1
R

(
1− 1

`
1−α + 2(1− `)

)] 1
γ

Proof. Since Ψ−1(x) belongs to the Kc class, and Ψ∗(x) and Ψ(x) are two strictly increasing ϕ−functions,
and Ψ∗(x) ∼

x→+∞
Ψ(x), then Lemma 5.1 gives

Ψ−1
∗ (x) ∼

x→+∞
Ψ−1(x)

In other words

(5.11) Φ−1
R∗

(
1− 1

x+ 2

)
∼

x→+∞

[
Φ−1
R

(
1− 1

`x+ 2

)] 1
γ

.

This may also be rewritten as

Φ−1
R∗ (α) ∼

α→1

[
Φ−1
R

(
1− 1

`
1−α + 2(1− `)

)] 1
γ

with α = 1− 1
x+2 , hence the result. �

This result leads us to the following conditional extremal quantile prediction.

Definition 5.4 (Extreme Conditional Quantiles Predictors). Define

(5.12)


ˆ̂qα↑(X2|X1 = x1) = µ2|1 + σ2|1

[
Φ−1
R

(
1− 1

`
1−α+2(1−`)

)] 1
γ

ˆ̂qα↓(X2|X1 = x1) = µ2|1 − σ2|1

[
Φ−1
R

(
1− 1

`
α+2(1−`)

)] 1
γ

The following proposition shows that ˆ̂qα↑(X2|X1 = x1) and ˆ̂qα↓(X2|X1 = x1) are asymptotically
equivalent to the theoretical quantile qα(X2|X1 = x1), respectively for α→ 1 and α→ 0.

Theorem 5.5 (Equivalences of Extreme Conditional Quantiles Predictions). Let (X1, X2)T ∈ E1
c (N+1).

Under Assumptions 1 and 2,

(5.13)


ˆ̂qα↑(X2|X1 = x1) ∼

α→1
qα(X2|X1 = x1)

ˆ̂qα↓(X2|X1 = x1) ∼
α→0

qα(X2|X1 = x1)

Proof. Recall Equation (3.2):

qα (X2|X1 = x1) = µ2|1 + σ2|1Φ−1
R∗(α)

From (5.10) and (5.12), we immediatly prove the first half of the result:
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qα(X2|X1 = x1) ∼
α→1

µ2|1 + σ2|1

[
Φ−1
R

(
1− 1

`
1−α+2(1−`)

)] 1
γ

= ˆ̂qα↑(X2|X1 = x1)

Now, let us prove the equivalence when α → 0. By the symmetry properties of elliptical distributions,
we have Φ−1

R∗(α) = −Φ−1
R∗(1− α),∀α ∈ [0, 1]. Then,

qα (X2|X1 = x1) = µ2|1 − σ2|1Φ−1
R∗(1− α).

Using the equivalence (5.10) and Equation (5.12), we finally get:

qα(X2|X1 = x1) ∼
α→0

µ2|1 − σ2|1

[
Φ−1
R

(
1− 1

`
α+2(1−`)

)] 1
γ

= ˆ̂qα↓(X2|X1 = x1)

�

We finish this section by checking Assumption 2 is satisfied for examples that are given in Table 3.

5.1. Gaussian case.

Lemma 5.6. Gaussian distribution satisfies Assumptions 1 and 2, with ` = 1 and γ = 1.

Proof. Firstly, let us calculate ` and γ. Take γ = 1, it remains the limit of Assumption 1 :

lim
x→+∞

c∗1gN+1(q1+x2)
c1g1(x2)

The values c1, gN+1(q1 + x2) and g1(x2) may be easily deduced from Table 1. Let c∗1 = cN+1

cNgN (q1) ,

` = lim
x→+∞

exp
(
− q1+x2

2

)
exp

(
− q12

)
exp

(
−x2

2

) = 1.

It remains to check whether the limit

εl = lim
x→+∞
λ→1

Ψ−1(λx)

Ψ−1(x)
= lim
x→+∞
λ→1

Φ−1
(

1− 1
λx+2

)
Φ−1

(
1− 1

x+2

)
exists, or equivalently, whether the limit

ε` = lim
(δ,y)→(0,0)

Φ−1
(

1− y
2y+δ+1

)
Φ−1

(
1− y

2y+1

)
exists.
Now, we move to polar coordinates, i.e take δ = r cos(θ) and y = r sin(θ), and calculate the limit when
r → 0. If this limit do not depend on θ, then the limit when (δ, y)→ (0, 0) exists. Consider

lim
r→0

Φ−1
(

1− r sin(θ)
2r sin(θ)+r cos(θ)+1

)
Φ−1

(
1− r sin(θ)

2r sin(θ)+1

) = f(θ).

Clearly, the numerator and denominator both tend to +∞, then we use the L’Hôpital’s rule to get

f(θ) = lim
r→0

(
− sin(θ)(2r sin(θ)+r cos(θ)+1)−r sin(θ)(2 sin(θ)+cos(θ))

(2r sin(θ)+r cos(θ)+1)2

)
1

φ(Φ−1(1− r sin(θ)
2r sin(θ)+r cos(θ)+1 ))(

− sin(θ)(2r sin(θ)+1)−r sin(θ)2 sin(θ)

(2r sin(θ)+1)2

)
1

φ(Φ−1(1− r sin(θ)
2r sin(θ)+1 ))

On the left, the bulky ratio clearly tends to 1 when r → 0. On the right, we recall that φ is the density

function of the standard normal distribution, i.e φ(x) = 1√
2π
e−

x2

2 . Then :

ε` = lim
r→0

φ(Φ−1(1− r sin(θ)
2r sin(θ)+1 ))

φ(Φ−1(1− r sin(θ)
2r sin(θ)+r cos(θ)+1 ))

Now, the numerator and denominator both tend to 0. Once again, we use the L’Hôpital’s rule and then,

f(θ) = lim
r→0

f1(r, θ)

f2(r, θ)

φ

(
Φ−1

(
1− r sin(θ)

2r sin(θ) + r cos(θ) + 1

))
φ

(
Φ−1

(
1− r sin(θ)

2r sin(θ) + 1

)) φ′
(

Φ−1
(

1− r sin(θ)
2r sin(θ)+1

))
φ′
(

Φ−1
(

1− r sin(θ)
2r sin(θ)+r cos(θ)+1

)) .
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where 
f1(r, θ) =

(
− sin(θ)(2r sin(θ) + 1)− r sin(θ)2 sin(θ)

(2r sin(θ) + 1)2

)
,

f2(r, θ) =

(
− sin(θ)(2r sin(θ) + r cos(θ) + 1)− r sin(θ)(2 sin(θ) + cos(θ))

(2r sin(θ) + r cos(θ) + 1)2

)
,

We have seen that the ratio f1(r,θ)
f2(r,θ) tends to 1. Furthermore, we have the relationship φ′(x) = −xφ(x).

Finally,

f(θ) = lim
r→0

Φ−1
(

1− r sin(θ)
2r sin(θ)+1

)
Φ−1

(
1− r sin(θ)

2r sin(θ)+r cos(θ)+1

) =
1

f(θ)
,

thus, f(θ) = 1, hence the result. �

Since Ψ−1(x) belongs to the Kc class and ` = γ = 1, we have the following formulas for the Extremal

Predictions ˆ̂qα↑ and ˆ̂qα↓ : {
ˆ̂qα↑(X2|X1 = x1) = µ2|1 + σ2|1Φ−1

R (α)
ˆ̂qα↓(X2|X1 = x1) = µ2|1 + σ2|1Φ−1

R (α)

Remark that ˆ̂qα↑ and ˆ̂qα↓ equal to the Quantile Regression Predictor q̂α, which equals the theoretical
quantile qα.

5.2. Student case. We have seen in Section 4 that the Quantile Regression Predictor q̂α was not good
in the Student case. Then, for extremal levels of quantile, we can guess that the predictor q̂α will be worse

and worse if α is close to 0 or 1. It is a reason why, in this case, our extremal predictors ˆ̂qα↑ and ˆ̂qα↓ may
potentially be especially interesting, and improve the prediction. Firstly, we prove that Assumptions 1
and 2 are filled.

Lemma 5.7. Student distributions satisfies Assumptions 1 and 2, with γ = N+ν
ν and ` given in Table 3.

Proof. Concerning Assumption 1, we have to calculate the limit :

lim
x→+∞

c∗1gN+1(q1+x2)
c1γxγ−1g1(x2γ)

From Table 1 and (5.4), we deduce c1 =
Γ( 1+ν

2 )
√
νπΓ( ν2 )

, c∗1 =
Γ(N+1+ν

2 )
√
νπΓ(N+ν

2 )

(
1 + q1

ν

)N+ν
2 , gN+1(q1 + x2) =(

1 + q1+x2

ν

)−N+1+ν
2

and g1(x2γ) =
(

1 + x2γ

ν

)− 1+ν
2

. Then the previous limit is the following :

lim
x→+∞

Γ(N+1+ν
2 )Γ( ν2 )

Γ( 1+ν
2 )Γ(N+ν

2 )

(
1 + q1

ν

)N+ν
2

(
1+

q1+x2

ν

)−N+1+ν
2

γxγ−1
(

1+ x2γ

ν

)− 1+ν
2

From now, we consider γ = N+ν
ν and we focus on the ratio on the right. The leading monomials are

ν
N+1+ν

2 x−N−1−ν (numerator) and ν
1+ν

2 x−N−1−ν (denominator). Then the limit is simply ν
N
2 . Finally :

` =
Γ(N+1+ν

2 )Γ( ν2 )
Γ( 1+ν

2 )Γ(N+ν
2 )

(
1 + q1

ν

)N+ν
2 ν

N
2

+1

N+ν

Concerning Assumption 2, the proof is similar to the Gaussian case, but we have γ 6= 1 and ` 6= 1 here.
We are dealing with the existence and value of the limit:

lim
x→+∞
λ→1

Φ−1
R

(
1− 1

`λx+2

) 1
γ

Φ−1
R

(
1− 1

`x+2

) 1
γ

.

As in the Gaussian case, we use the polar coordinates and the L’Hôpital’s rule to get the result. �

In the case of Student distributions, we shall apply the predictions, with the coefficients ` and γ given
in Table 3 :  ` =

Γ( ν+N+1
2 )Γ( ν2 )

Γ( ν+N
2 )Γ( ν+1

2 )

(
1 + q1

ν

)N+ν
2 ν

N
2

+1

ν+N

γ = N+ν
ν
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5.3. Unimodal Gaussian Mixture case.

Lemma 5.8. Unimodal Gaussian Mixture distribution satisfies Assumptions 1 and 2, with γ = 1 and `
given in Table 3.

Proof. Firstly, to prove that Assumption 1 is satisfied, we take γ = 1 and calculate the limit :

` = lim
x→+∞

c∗1gN+1(q1+x2)
c1g1(x2)

According to Table 1 and Equation (5.4), c∗1 = 1
√

2π
n∑
k=1

πkθNk exp

(
−
θ2
k
2 q1

) , gd(t) =
n∑
k=1

πkθ
d
ke
− θ

2
k
2 t and

c1 = 1√
2π

. Hence the limit :

` = lim
x→+∞

n∑
k=1

πkθ
N+1
k exp

(
− θ

2
k

2 q1

)
exp

(
− θ

2
k

2 x
2
)

[
n∑
k=1

πkθNk exp
(
− θ

2
k

2 q1

)] [ n∑
k=1

πkθk exp
(
− θ

2
k

2 x
2
)] .

Let k∗ such as θk∗ = min(θ1, ..., θn). After simplifications, it remains :

` =
θNk∗ exp

(
−
θ2
k∗
2 q1

)
n∑
k=1

πkθNk exp

(
−
θ2
k
2 q1

)

Now we have to check Assumption 2, i.e prove that :

lim
x→+∞
λ→1

Φ−1
R (1− 1

`λx+2 )
Φ−1
R (1− 1

`x+2 )
= 1

Like the Gaussian case, we do the same changes of variables, and the limit becomes

ε` = lim
r→0

φR(Φ−1
R (1− r sin(θ)

2r sin(θ)+1 ))
φR(Φ−1

R (1− r sin(θ)
2r sin(θ)+r cos(θ)+1 ))

= f(θ)

Here, φR(t) =
n∑
k=1

πkθkφ(θkt), where φ is the normal p.d.f, i.e φ(t) = e−
t2

2 . Since Φ−1
R

(
1− r sin(θ)

2r sin(θ)+1

)
and Φ−1

R

(
1− r sin(θ)

2r sin(θ)+r cos(θ)+1

)
tend to +∞ when r → 0, asymptotically, we only have to consider the

terms of the sum with the largest coefficient − θ
2
k

2 , i.e the smallest θk. Let k∗ such as θk∗ = min(θ1, ..., θn).
We get :

ε` = lim
r→0

π∗kθ
∗
kφ(θ∗kΦ−1

R (1− r sin(θ)
2r sin(θ)+1 ))

π∗kθk∗φ(θk∗Φ−1
R (1− r sin(θ)

2r sin(θ)+r cos(θ)+1 ))
= lim
r→0

φ(θ∗kΦ−1
R (1− r sin(θ)

2r sin(θ)+1 ))
φ(θk∗Φ−1

R (1− r sin(θ)
2r sin(θ)+r cos(θ)+1 ))

Finally, we have already calculated this kind of limit in the Gaussian case, and proved that it was equal
to 1. �

5.4. Uniform Mixture case. In this case, the radius R
d
= χd
U(]0,1[) . The density obtained is then

(5.14) f(x) =
1

|Σ| 12
Γ
(
d+1

2

)
√

2π
d
2

χ2
d+1

(
(x− µ)TΣ−1(x− µ)

)
[(x− µ)TΣ−1(x− µ)]

d+1
2

,∀x ∈ Rd\{µ}

where χ2
m(x) denotes the c.d.f of the χ2 distribution, with m degrees of freedom, evaluated at x.

Lemma 5.9. Uniform Mixture distribution satisfies Assumptions 1 and 2, with γ = N + 1 and ` given
in Table 3.

Proof. Concerning Assumption 1, we consider γ = N + 1, and calculate the limit :

` = lim
x→+∞

c∗1gN+1(q1+x2)
c1γxγ−1g1(x2)
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According to Table 1 and Equation (5.4), gd(t) =
χ2
d+1(t)

t
d+1

2

, c1 = 1√
2π

and c∗1 =
Γ(N+2

2 )q
N+1

2
1

Γ(N+1
2 )
√
πχ2

N+1(q1)
. Hence

the limit

` = lim
x→+∞

√
2π

Γ
(
N+2

2

)
q
N+1

2
1

Γ
(
N+1

2

)√
πχ2

N+1(q1)

χ2
N+2

(
q1 + x2

)
χ2

2 (x2N+2)

x2N+2

(q1 + x2)
N+2

2

1

(N + 1)xN
,

which leads to

` =
Γ
(
N+2

2

)
q
N+1

2
1

√
2

Γ
(
N+1

2

)
(N + 1)χ2

N+1(q1)
.

To prove that Assumption 2 is filled, we have, as in the other cases, to calculate the limit :

lim
x→+∞
λ→1

Φ−1
R

(
1− 1

`λx+2

)
Φ−1
R

(
1− 1

`x+2

) = lim
r→0

φR

(
Φ−1
R

(
1− r sin(θ)

2r sin(θ)+1

))
φR

(
Φ−1
R

(
1− r sin(θ)

2r sin(θ)+r cos(θ)+1

)) = f(θ).

We get once more that f(θ) = 1. �

In this section, we introduced asymptotic predictions based solely on the function ΦR, that is assumed
to be known. These predictions are asymptotically equivalent to the theoretical conditional quantiles,
for levels of quantiles close to 0 or 1. Thus, they are expected to improve the quantile regression. In the
following section, we perform some numerical applications to study the prediction quality.

6. Numerical study

In order to give a visual overview of the predictors we have defined, we have plotted in Figure 2, the
conditional quantiles of an elliptical process observed at N = 5 points. We call X1 ∈ R5 the covariates
vector. For x ∈ R, X2 denotes the process at x and the aim is to predict the quantile of X2|X1 = x1.
For simplicity, we assume that the process is centered, and stationary (matrices Σ and Σ11 are obtained
through an exponential kernel). But our results would be applicable without these assumptions. Param-
eters for the Gaussian Mixture example are θ1 = 1, θ2 = 3 and p = 0.1.

Of course, for the Gaussian process, the curves coincide. For the other examples, Quantile Regression
Predictors seem very far from the theoretical curves, especially in the Uniform Mixture case. On the other
hand, Extremal predictors seem significantly better; they look closer to the target conditional quantiles
here. We propose to use the following RMSE in order to quantify the error.

(6.1) RMSE(q̂α) =

√√√√ 1

n

n∑
i=1

(
qα(X

(i)
2 |X1 = x1)− q̂α(X

(i)
2 |X1 = x1)

)2

.

In the same way, we define the RMSE for Extremal Predictor :

(6.2) RMSE(ˆ̂qα) =

√√√√ 1

n

n∑
i=1

(
qα(X

(i)
2 |X1 = x1)− ˆ̂qα(X

(i)
2 |X1 = x1)

)2

.

The RMSE measures the average error in the prediction of the conditional quantiles. Table 4 is a summary
of the RMSE for all treated examples, and different levels of α. Obviously, we only consider the cases
α ≥ 1

2 because elliptical distributions are symmetric.

α Gaussian Student Unimodal GM Uniform GM

r(q̂α) r(ˆ̂qα) r(q̂α) r(ˆ̂qα) r(q̂α) r(ˆ̂qα) r(q̂α) r(ˆ̂qα)

0.5 0 0 0 0 0 0 0 0

0.6 0 0 0.027 0.372 0.001 0.019 0.067 0.334

0.7 0 0 0.059 0.376 0.003 0.036 0.151 0.301

0.8 0 0 0.104 0.358 0.006 0.051 0.297 0.249

0.9 0 0 0.195 0.322 0.012 0.061 0.770 0.177

0.95 0 0 0.314 0.289 0.024 0.061 1.880 0.123

0.9995 0 0 2.880 0.148 0.163 0.000 250.172 0.020

0.999995 0 0 16.546 0.081 0.109 7.130 · 10−06 25 178.530 0.008

Table 4. r(ˆ̂qα) = RMSE(ˆ̂qα) and r(q̂α) = RMSE(q̂α), for different levels of α,
and different consistent elliptical distributions.
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Figure 2. Theoretical quantiles, Quantile Regression and Extremal Predictors
for Gaussian, Student, Gaussian Mixture and Uniform Mixture processes, with
levels of quantile α = 0.995 and α = 0.005. In solid lines, the theoretical quantiles
(approximated most of the time numerically), dotted, the Quantile Regression
Predictor, and dashed, the Extremal Predictor.

For non Gaussian distributions, the RMSE(ˆ̂qα) decreases when α is close to 1, while the RMSE(q̂α)
increases, which is the expected behavior. We also remark that for the median (α = 0.5), the RMSE
are always equal to 0. Indeed, if we replace α by 1

2 in Equation (5.12) and Equation (4.18), our two
predictions are equal to the conditional mean µ2|1, defined in Proposition 2.6. Since median and mean

are coincident for elliptical distributions, we exactly predict the conditional α−quantile for α = 1
2 .

In order to have a visual overview of these phenomena, we propose, in Figure 3, some Q-Q plots, where
we can observe the convergence of our extreme predictor for extreme values. On the other hand, the
Quantile Regression Predictor seems better for reasonable values of α, whereas it is clearly biased. In
this case, we can also use simulations, using the conditional density given in Equation (2.8). Of course,
this approach is not possible for extreme values of α, and our extremal predictor takes its interest.

Figure 3. Q-Q plots for Student and Unimodal GM examples
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Conclusion

In this paper, we focused on conditional quantiles prediction, for elliptical random fields with the
consistency property. We proposed two different methods.
The first one is to use quantile regression, i.e to express the conditional quantile as an affine transformation
of the observed values. This approach is widely used in the literature but it often requires a large number
of simulations, especially for extreme levels of quantile (when α→ 0 or α→ 1). We have seen, in a first
time, that we can obtain some explicit formulas in our case of consistent elliptical random fields (4.1).
Furthermore, we have given the distribution of the quantile regression (Theorem 4.4). We have seen that
regression quantile is not adapted for non Gaussian distributions.
A second predictor is given in order to cope with regression quantile problems for extremal quantile
levels. We have shown that the proposed extremal quantile predictor is equivalent to the true conditional
quantile for extreme quantile levels. We have also illustrated on several numerical examples the better
performance of this predictor for extreme levels.
As a perspective, these prediction methods require the knowledge of the distribution of the covariates
vector X1. We have not explored the prediction procedure when the X1’s distribution is estimated
(parametrically e.g.). This is an interesting perspective, which is let for future work.
Finally, we would like to emphasize that we have given examples in dimension d = 1, but all the results
may be used in higher dimensions (see Figure 4).

Figure 4. Quantile regression for a Student random field, with α = 0.0005, in
dimension d = 2
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Université de Lyon, Université Lyon 1, Institut Camille Jordan ICJ UMR 5208 CNRS
E-mail address: usseglio@math.univ-lyon1.fr


	1. Introduction
	2. Elliptical distributions
	3. Conditional quantiles
	3.1. General case
	3.2. Gaussian case
	3.3. Student case

	4. Quantile regression
	4.1. Gaussian case
	4.2. Student case
	4.3. Unimodal Gaussian Mixture case
	4.4. Laplace case

	5. Extremal quantiles
	5.1. Gaussian case
	5.2. Student case
	5.3. Unimodal Gaussian Mixture case
	5.4. Uniform Mixture case

	6. Numerical study
	Conclusion
	References

