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SPATIAL QUANTILE PREDICTIONS FOR ELLIPTICAL RANDOM

FIELDS

V. MAUME-DESCHAMPS, D. RULLIÈRE, AND A. USSEGLIO-CARLEVE

Abstract. In this work, we consider elliptical random fields. We propose some spatial
quantile predictions at one site given observations at some other locations. To this aim,
we first give exact expressions for conditional quantiles, and discuss problems that occur
for computing these values. A first affine regression quantile predictor is detailed, an
explicit formula is obtained, and its distribution is given. Direct simple expressions are
derived for some particular elliptical random fields. The performance of this regression
quantile is shown to be very poor for extremal quantile levels, so that a second predictor
is proposed. We prove that this new extremal prediction is asymptotically equivalent
to the true conditional quantile. Through numerical illustrations, the study shows that
Quantile Regression may perform poorly when one leaves the usual Gaussian random
field setting, justifying the use of proposed extremal quantile predictions.

Keywords: Elliptical distribution; Quantile regression; Extremal quantile; Spatial prediction, Krig-
ing.

1. Introduction

Kriging, introduced by Krige (1951), and formalized by Matheron (1963), aims at predicting the
conditional mean of a random field (Zt)t∈T given the values Zt1 , ..., ZtN of the field at some points
t1, ..., tN ∈ T , where typically T ⊂ Rd. When using the Kriging techniques, for any x ∈ T , the con-
ditional mean of Zx given Zt1 , ..., ZtN is approximated by a linear combination of Zt1 , ..., ZtN where
the weight vector is the solution of a least square minimization problem (see Ligas and Kulczycki,
2010, for example). It seems natural to predict, in the same spirit as Kriging, other functionals by
linear combinations. Our starting point is to apply this method to conditional quantiles and then
get spatial quantile predictions.
In 1978, Koenker and Bassett proposed a conditional quantile estimation as an affine combination
of Zt1 , ..., ZtN , called Quantile Regression (cf. Koenker and Bassett, 1978). The weight vector is
the solution of a minimization problem, with an asymmetric loss function, different from the least
squares.
Obviously, for Gaussian fields, Zx|(Zt1 , ..., ZtN ) is still Gaussian, and the conditional quantile of
Zx given (Zt1 , ..., ZtN ) is easily computed. For non Gaussian fields, explicit formulas for condi-
tional quantiles are more difficult to get. The Quantile Regression approach usually requires time
consuming simulations to compute expectations. Moreover, the consistency of the estimation by
quantile regression is not guaranteed.
In this paper, we focus on elliptical random fields. Elliptical distributions, formalized by Cam-
banis et al. (1981), have the advantage of being stable under affine transformations. Therefore,
explicit formulas for the quantile regression may be obtained for consistent elliptical distributions
(cf. Kano (1994)). Nevertheless, the quantile regression is generally not equal to the conditional
quantile and the difference may be large, especially for extreme levels of quantile. This is why we
propose a spatial quantile prediction that is adapted to extremal quantiles.

The paper is organized as follows. In Section 2, we give some definitions, properties and ex-
amples of elliptical distributions satisfying the consistency property. For these models, we give
formulas for conditional quantiles in Section 3. The Section 4 is devoted to quantile regression for
consistently elliptical random fields: closed formulas are obtained. In Section 5, we prove asymp-
totic equivalences when the quantile level is close to 0 or 1. Section 6 provides a numerical study.
In particular, we emphasize the fact that quantile regression is generally not consistent, especially
for high level quantiles. We illustrate this point on several examples.
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2. Elliptical distributions

In this section, we recall some useful properties and classical examples of elliptical distributions.
Most results may be found, for instance, in Frahm (2004).

Definition 2.1. Let X be a d−dimensional random vector. X is elliptical if and only if there
exists a unique µ ∈ Rd, a semi-positive definite matrix Σ ∈ Rd×d, and a function Φ : R+ → R such
that the characteristic function of (X − µ) is

E [exp(it(X − µ))] = Φ(t′Σt) .

For such an elliptical random vector, we write X ∼ Ed(µ,Σ,Φ)

It seems important to note that Σ is not necessarily the covariance matrix of X. More precisely,
Σ is proportional to the covariance matrix K of the random vector X, when it is defined, i.e there
exists a positive coefficient τ such that:

(2.1) Σ = τK

For example, for Gaussian distributions, τ = 1, i.e Σ = K. But this is not always the case for all
elliptical distributions: for Student distributions with ν degrees of freedom, τ = ν−2

ν . Furthermore,
K may not exist (e.g. for Cauchy distributions). In the present paper, we do only consider the
case of non-degenerated distributions, i.e. we assume that the matrix Σ is invertible.

The following representation theorem is central in the theory of elliptical distributions. This
result may be found in Cambanis et al. (1981).

Theorem 2.1 (Cambanis, Huang, Simons, 1981). The random vector X is elliptical, X ∼ Ed(µ,Σ,Φ),
if and only if

(2.2) X = µ+RΛU (d),

where ΛΛT = Σ, U (d) is a d−dimensional random vector uniformly distributed on Sd−1 (the unit
disk of dimension d), and R is a non-negative random variable independent of U (d).

The representation of Theorem 2.1 is not unique (see Cambanis et al., 1981, for details). Given
µ and Σ, the elliptic random vector X is characterized by the non-negative random variable R,
called the radius of X. We now recall the consistency property of an elliptical distribution. The
related definitions and properties may be found in Kano (1994).

Definition 2.2. Let X ∼ Ed(µ,Σ,Φ). X is said consistent if Φ is dimension-free, i.e. if Φ does
not depend on d.

Kano (1994) established the following relation between Definition 2.2 and the radius R.

Proposition 2.2. Let X ∼ Ed(µ,Σ,Φ), and let R be the corresponding radius of X. X is consistent
if and only if :

(2.3) R
d
=
χd
ε
,

where χd is the square root of a χ2 distributed random variable with d degrees of freedom, ε is
a non-negative random variable which does not depend on d, and χd, ε and U (d) are mutually
independent.

Theorem 2.3 (Elliptical density). Let X ∈ Rd be an elliptical random vector, X ∼ Ed(µ,Σ,Φ),
and let R be the corresponding radius of X.

(2.4) fX(x) =
cd

|det(Λ)|
gd
(
(x− µ)Σ−1(x− µ)

)
where gd(t) =

Γ( d2 )

2π
d
2

√
t
−(d−1)

fR(
√
t), and fR(t) is the p.d.f of R.

The coefficient cd is called the normalization constant and the function gd is called the generator
of X. Table 1 provides some examples of elliptical distributions, associated with their coefficients
and generators. Most of them may easily be found in the literature: Kotz distribution is introduced
in Nadarajah (2003), Student in Nadarajah and Kotz (2004), and Laplace in Eltoft et al. (2006)
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Distribution Coefficient cd Generator gd(t)
Gaussian 1

(2π)
d
2

exp(− t
2 )

Student, ν > 0
Γ( d+ν

2 )

Γ( ν2 )
1

(νπ)
d
2

(
1 + t

ν

)− d+ν
2

Logistic
Γ( d2 )

(2π)
d
2

[
+∞∫
0

x
d
2−1. e−x

(1+e−x)2 dx

]−1
exp(− 1

2 t)

(1+exp(− 1
2 t))

2

Kotz, q, r, s > 0
sΓ( d2 )

π
d
2 Γ( 2q+d−2

2s )
r

2q+d−2
2s tq−1 exp(−rts)

Unimodal GM 1

(2π)
d
2

n∑
k=1

πkθ
d
k exp

(
− θ

2
k

2 t
)

Laplace, λ > 0 2

λ(2π)
d
2

K d
2
−1

(√
2
λ t
)

(√
λ
2 t
) d

2
−1

Uniform GM
Γ( d+1

2 )
√

2π
d
2

χ2
d+1(t)

t
d+1

2

Table 1. Some classical d−dimensional elliptical distributions with cor-
responding normalisation constants and generators

and Kozubowski et al. (2013). We added two other distributions, obtained with Kano’s representa-
tion : Unimodal Gaussian Mixture (Unimodal GM), and another one which will be called Uniform
Gaussian Mixture (Uniform GM).

In Table 1, Km(x) denotes the modified Bessel function of the second kind with order m, and
χ2
m(x) denotes the c.d.f of the χ2 distribution with m degrees of freedom, evaluated at x. Remark

that the Cauchy distribution corresponds to a Student distribution with ν = 1 degree of freedom.
In this paper, we focus on consistent elliptical distributions. Unfortunately, Logistic and Kotz
distributions do not have this property (except the Kotz distribution with s = q = 1, and r = 1

2 , i.e
the Gaussian distribution). Therefore, our examples will only refer to the distributions mentioned
in Table 1. For these models, the non negative random variable ε is given in Table 2.

Distribution ε
Gaussian 1

Student, ν > 0 χν√
ν

Unimodal Gaussian Mixture
n∑
k=1

πkδθk

Laplace, λ > 0 1√
E( 1
λ )

Uniform Gaussian Mixture U (]0, 1[)

Table 2. Some classical consistent d−dimensional elliptical distributions
with corresponding random variable ε

We have seen that an elliptical distribution is characterized by parameters µ, Σ, and by either
the characteristic function Φ, the radius R or the generator gd. For this reason, we define the
distribution of an elliptical random vector by any of these three possible characterization, using
indifferently the notation X ∼ Ed(µ,Σ,Φ), X ∼ Ed(µ,Σ, R) or X ∼ Ed(µ,Σ, gd). At last, in
order to emphasis the role played by the radius and the dimension, we also use the denomination
(R, d)−elliptical, as defined hereafter.

Definition 2.3. An elliptical random vector of Rd with radius R is called (R, d)−elliptical.

The following proposition, from Hult and Lindskog (2002), is the basis of our study.

Proposition 2.4 (Affine transformation). Let X a consistent (R, d)−elliptical random vector with
parameters µ and Σ. Then for any c ∈ Rd, cTX is (R, 1)−elliptical with parameters cTµ and cTΣc.
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Proposition 2.4 implies that an affine transformation of a (R, d)−elliptical random vector is a
(R, 1)-elliptical random variable. The proposition below is a direct consequence of this result (see
Hult and Lindskog, 2002, for a proof).

Proposition 2.5 (Subvectors distributions). Let X = (X1, X2)T be a consistent (R, d)−elliptical
random vector with X1 ∈ Rd1 , X2 ∈ Rd2 , d1 + d2 = d and parameters µ and Σ. Let us write:

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, µ =

(
µ1

µ2

)
.

Then X1 and X2 are respectively (R, d1)− and (R, d2)−elliptical with parameters µ1, Σ11 and µ2,
Σ22, respectively.

Remark that a p−dimensional subvector of a (R, d)-elliptical random vector with the consistency
property is (R, p)−elliptical. As a consequence when p = 1, all marginals are (R, 1)−elliptical. The
following proposition gives some indications concerning the conditional distributions of elliptical
vectors.

Proposition 2.6 (Conditional distribution). Let X = (X1, X2)T be a consistent (R, d)−elliptical
random vector with with X1 ∈ Rd1 , X2 ∈ Rd2 , d1 + d2 = d and parameters µ and Σ. Let us write:

(2.5) Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, µ =

(
µ1

µ2

)
.

The conditional distribution X2|(X1 = x1) has parameters:

(2.6)

{
µ2|1 = µ2 + Σ21Σ−1

11 (x1 − µ1)
Σ2|1 = Σ22 − Σ21Σ−1

11 Σ12

Furthermore, X2|(X1 = x1) is elliptical, with radius R∗ given by :

(2.7) R∗
d
= R

√
1− β

∣∣∣∣ (R√βU (d) = C−1
11 (x1 − µ1)

)
where C11 is the Cholesky root of Σ11, and β ∼ Beta(d1

2 ,
d2

2 ).

At last, the conditional density of X2|(X1 = x1) is given by :

(2.8) fX2|X1
(x2|x1) =

c2|1

|Σ2|1|
1
2

gd

(
q1 + (x2 − µ2|1)TΣ−1

2|1(x2 − µ2|1)
)

with c2|1 = cd
cd1

gd1
(q1) , and q1 = (x1 − µ1)TΣ−1

11 (x1 − µ1).

Proof. For Equations (2.6) and (2.7), a proof may be found in Frahm (2004). Concerning Equa-

tion (2.8), the proof is obvious, since fX2|X1
(x2|x1) =

fX1,X2
(x1,x2)

fX1
(x1) . Then :

(2.9) fX2|X1
(x2|x1) =

cd

|Σ|
1
2
gd
(
(x− µ)TΣ−1(x− µ)

)
cd1

|Σ11|
1
2
gd1

(q1)

Since (x − µ)TΣ−1(x − µ) = q1 + (x2 − µ2|1)TΣ−1
2|1(x2 − µ2|1) and |Σ| = |Σ11||Σ2|1|, we get the

expected result. �

We have introduced the main definitions and properties of elliptical distributions. With these
tools, we can define the notion of elliptical random fields. Indeed, a random field (X(t))t∈T is
R−elliptical if ∀n ∈ N, ∀t1, ..., tn ∈ T , the vector (X(t1), ..., X(tn)) is (R,n)−elliptical. Obviously,
it implies that all the k−dimensional subvectors of (X(t1), ..., X(tn)) are (R, k)−elliptical. This
assumption corresponds exactly to consistent elliptical distributions properties given in Proposi-
tions 2.4, 2.5 and in Kano (1994). We thus focus our study on elliptical distributions with the
consistency property.
In the following section, we focus on conditional quantiles of elliptical distributions, applicated to
our problem of spatial prediction.
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3. Conditional quantiles

In this section, we give exact expressions for conditional quantiles of an elliptical random field,
and discuss problems that occurs for computing these values.
From now on, we consider the following context: (X(t))t∈T is an R−elliptical random field.
We consider N observations at locations t1, ..., tN ∈ T , called (X(t1), ..., X(tN )). Our aim is
to predict, at a site t ∈ T , the quantile of X(t) given X(t1), ..., X(tN ). Remark that the vec-
tor (X(t), X(t1), ..., X(tN )) is (R,N + 1)−elliptical. Thus, we can denote X2 = X(t) ∈ R and
X1 = (X(t1), ..., X(tN )) ∈ RN and restrict ourselves to the study of the qα(X2|X1).

3.1. General case. Let us firstly give an expression of the theoretical conditional quantile. Con-
sider the respective cumulative distribution functions ΦR and Φ∗R,

(3.1)

{
ΦR(x) = P

(
RU (1) ≤ x

)
,

ΦR∗(x) = P
(
R∗U (1) ≤ x

)
,

where U (1) is 1 or −1 with probability 1
2 . ΦR and ΦR∗ are respective cumulative distribution

functions of the reduced centered (R, 1)−elliptical random variable and (R∗, 1)−elliptical random
variable. With this notation and the conditional generator given in Equation (2.7), we get the
following result.

Proposition 3.1 (Conditional elliptical quantile). Let X = (X1, X2)T be a consistent (R,N +
1)−elliptical random vector with X1 ∈ RN , X2 ∈ R and parameters µ and Σ. Let us write Σ:

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
Then the α−quantile of X2|(X1 = x1) is given by :

(3.2) qα (X2|X1 = x1) = µ2|1 +
√

Σ2|1Φ−1
R∗(α)

where µ2|1 and Σ2|1 are given in Equation (2.6), and R∗ in Equation (2.7).

Proof. We know that X2|(X1 = x1) ∼ µ2|1 +R∗
√

Σ2|1U
(1). Then, our aim is to get qα such as :

P
(
µ2|1 +R∗

√
Σ2|1U

(1) ≤ qα
)

= α

Since P
(
µ2|1 +R∗

√
Σ2|1U

(1) ≤ qα
)

= P
(
R∗U (1) ≤ qα−µ2|1√

Σ2|1

)
= ΦR∗

(
qα−µ2|1√

Σ2|1

)
, we easily get the

expected result. �

A general expression for conditional quantiles of consistent elliptical distributions is thus avail-
able. However, Equation (2.7) shows that the conditional radius R∗ is difficult to exploit and thus,
the calculation of the conditional quantile is not tractable in general. Indeed, the term Φ−1

R∗(α), is
difficult to calculate, since the conditional density in Equation (2.8) leads to the inverse problem
in x:

x∫
−∞

c2|1gN+1(q1 + t2)dt = α

where c2|1 is given in Proposition 2.6. Computing and inversing the function ΦR∗ from the distri-
bution of R∗ is not easier, since the latter is hard to obtain. We thus have a general expression for
the conditional quantile which is not easy to compute in the general case.

Fortunately, in several cases, we get an explicit formula for conditional quantiles. We propose
two classical examples: Gaussian and Student distributions. We thus get explicit formulas for
some simple cases, but it would not be possible in some other cases, such as Gaussian Mixture
distribution.
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3.2. Gaussian case. The Gaussian case is the most famous one and the simplest case of elliptical
distribution. Since a conditional Gaussian distribution is still Gaussian, we have:

(3.3) X2|(X1 = x1) ∼ N (µ2|1,Σ2|1)

with µ2|1 and Σ2|1 given in Equation (2.6). Then, the calculation of the conditional α−quantile of
X2|(X1 = x1) is immediate, and gives:

(3.4) qα(X2|X1 = x1) = µ2|1 +
√

Σ2|1Φ−1(α)

where Φ is the standard Gaussian distribution function.

3.3. Student case. In the Student case also, we get explicit formulas for conditional quantiles.
For that purpose, we need to introduce some properties of Student distributions. The lemma below
and associated proof may be found in Nadarajah and Kotz (2004).

Lemma 3.2. Let X be a d−dimensional Student distribution with ν degree of freedom and param-
eters µ ∈ Rd and Σ ∈ Rd×d. Consider X = (X1, X2)T with X1 ∈ Rd1 , X2 ∈ Rd2 and d1 + d2 = d.
Then the density function of the conditional random variable X2|(X1 = x1) is given by the following
equation.

(3.5) fX2|X1
(x2|x1) =

Γ
(
ν+d
2

)
((ν + d1)π)

d2
2 Γ
(
ν+d1

2

)
|Σ2|1|

1
2

[
1 +

1

ν

q2|1(x2)

1 + 1
ν
q1

]− ν+d
2

×

[
ν+d1
ν

1 + 1
ν
q1

] d2
2

,

where q2|1(x2) and q1 are the Mahalanobis distances :{
q2|1(x2) = (x2 − µ2|1)TΣ−1

2|1(x2 − µ2|1) ,

q1 = (x1 − µ1)TΣ−1
11 (x1 − µ1) .

With the conditional density, we can deduce the conditional α−quantile, in the following propo-
sition.

Proposition 3.3 (Conditional Student quantile). Let X a N+1−dimensional Student distribution
with ν degree of freedom and parameters µ ∈ RN+1 and Σ ∈ R(N+1)×(N+1). Consider X =
(X1, X2)T with X1 ∈ RN and X2 ∈ R1. The conditional α−quantile of X2|(X1 = x1) has the
following expression

(3.6) qα(X2|X1 = x1) = µ2|1 +
√

Σ2|1

√
ν

ν +N

√
1 +

1

ν
q1Φ−1

ν+N (α) .

Proof. We consider the density (3.5), with d1 = N , d2 = 1. We have q2|1(x2) =
(x2−µ2|1)2

Σ2|1
∈ R.

Let qα be the conditional quantile of X2|(X1 = x1). It satisfies:

qα∫
−∞

fX2|X1
(x2|x1)dx2 = α .

Hence :

Γ
(
ν+N+1

2

)
((ν +N)π)

1
2 Γ
(
ν+N

2

)
|Σ2|1|

1
2

[
ν+N
ν

1 + 1
ν
q1

] 1
2

×
qα∫
−∞

[
1 +

1

ν +N

ν+N
ν
q2|1(x2)

1 + 1
ν
q1

]− ν+N+1
2

dx2 = α

Considering z =

√
ν+N
ν (x2−µ2|1)√

Σ2|1
√

1+ 1
ν q1

we obtain:

Γ
(
ν+N+1

2

)
((ν +N)π)

1
2 Γ
(
ν+N

2

) × zα∫
−∞

[
1 +

z2

ν +N

]− ν+N+1
2

dz = α, with

zα =

√
ν+N
ν (qα − µ2|1)√

Σ2|1

√
1 + 1

ν q1

.
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Let Φν+N be the one dimensional Student distribution with N+ν degrees of freedom. It is obvious
that

Φν+N


√

ν+N
ν (qα − µ2|1)√

Σ2|1

√
1 + 1

ν q1

 = α.

As a consequence,

qα = µ2|1 +

√
ν

ν +N

√
Σ2|1

√
1 +

1

ν
q1Φ−1

ν+N (α).

�

We did not obtain such simple results for other elliptical distributions. In order to predict
conditional quantiles for other elliptical distributions, we propose, in what follows, two approaches.
In the following section, we apply quantile regression in the case of consistent elliptical distributions.
In Section 5, we focus on extreme quantile levels, i.e when the quantile level α is close to 0 or 1.

4. Quantile regression

In this section, we propose quantile regression predictors for elliptical distributions. We give
direct explicit expressions for these predictors as well as their distribution.
Quantile regression, introduced by Koenker and Bassett (1978), is a classical way to estimate
conditional quantiles of a distribution. If X1 ∈ RN and X2 ∈ R, the α−quantile of X2|(X1 = x1)
is approximated by

(4.1) q̂α(X2|X1 = x1) = β∗Tx1 + β∗0 ,

where β∗ and β∗0 are solutions of the following minimization problem

(4.2) (β∗, β∗0) = arg min
β∈RN ,β0∈R

E
[
φα(X2 − βTX1 − β0)

]
.

and where the scoring function φα (see Grant and Gneiting, 2012) is

(4.3) φα(x) = (α− 1)x1{x<0} + αx1{x>0} = αx− x1{x<0}.

Obviously, given Equation (4.2), we need to assume the existence of moments E [X1] and E [X2]. It
excludes some elliptical distributions with the consistency property (such as the Cauchy distribu-
tion). Most of the time, we need simulations to find the solution, and an appropriate algorithm, for
example MM algorithm (see Hunter and Lange, 2000) or stochastic gradient (see Zheng, 2011). As
an example, the package quantreg of R performs simulations of (X1, X2) and solves Equation (4.2)
by simplex or interior point algorithm. These simulations are computationally expensive. Further-
more, it is difficult to get the distribution of the estimator. It is a reason why we propose another
approach for consistent elliptical distributions.

In the following, we denote by E1
c (N + 1) the set of consistent elliptical random vectors X in

RN+1, with X = (X1, X2)T , X1 ∈ RN and X2 ∈ R, having an order one moment. We shall get an
explicit formula for β∗ and β∗0 . Let us recall the distribution function introduced in Equation (3.1),

ΦR(x) = P
(
RU (1) ≤ x

)
.

From Equation (2.8), we get

(4.4) ΦR(x) =

x∫
−∞

c1g1(x2)dx.

We will use this notation later in our formulas.
The next lemma is an explicit formula of a truncated moment for a bivariate elliptical distribution
with the consistency property.
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Lemma 4.1. Let (X,Y ) be a consistent (R, 2)−elliptical vector, which admits an order one mo-

ment and with parameters µ = (µX , µY )T and Σ =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)
. Then

(4.5) E
[
X1{Y >0}

]
= µXΦR

(
µY
σY

)
+ ρσX

+∞∫
µY
σY

c1zg1(z2)dz.

Proof. Let f(X,Y ) be the density of the random vector (X,Y ). Then

(4.6) E
[
X1{Y >0}

]
=

+∞∫
−∞

+∞∫
0

xfX,Y (x, y)dxdy.

We get:

+∞∫
−∞

xfX,Y (x, y)dx = fY (y)

+∞∫
−∞

x
fX,Y (x, y)

fY (y)
dx = fY (y)

+∞∫
−∞

xfX|Y (x|y)dx .

We recognize the integral expression of the conditional mean of X|Y , which is given in Equa-
tion (2.6) :

+∞∫
−∞

xfX,Y (x, y)dx = fY (y)E [X|Y = y] = fY (y)

(
µX + ρ

σX
σY

(y − µY )

)
.

Integrating with respect to the second variable y,

(4.7) E
[
X1{Y >0}

]
=

+∞∫
0

fY (y)

(
µX + ρ

σX
σY

(y − µY )

)
dy.

Recall that fY (y) = c1
σY
g1

(
(y−µY )2

σ2
Y

)
, this leads to

E
[
X1{Y >0}

]
= µX

+∞∫
0

fY (y)dy + ρ
σX
σY

c1

+∞∫
0

y − µY
σY

g1

(
(y − µY )2

σ2
Y

)
dy.

Using the change of variable z = y−µY
σY

, we get

E
[
X1{Y >0}

]
= µXΦR

(
µY
σY

)
+ ρσX

+∞∫
−µYσY

c1zg1

(
z2
)
dz.

Hence the result. �

Previous lemma is a keystone to find β∗ and β∗0 . Let ρj be the correlation coefficient between
X1j and the random variable X2−β∗TX1−β∗0 . Indeed, X1j is (R, 1)−elliptical with parameters µ1j

and σ2
1j . Furthermore, X2− β∗TX1− β∗0 is (R, 1)−elliptical too, with parameters µ2− β∗Tµ1− β∗0

and (−β∗, 1)TΣ(−β∗T , 1). Hence the (R, 2)−elliptical vector
(
X1j , X2 − β∗TX1 − β∗0

)
admits as

second parameter the matrix :(
σ2

1j ρjσ1j

√
(−β∗, 1)TΣ(−β∗T , 1)

ρjσ1j

√
(−β∗, 1)TΣ(−β∗T , 1) (−β∗, 1)TΣ(−β∗T , 1)

)
Proposition 4.2 (Explicit form of β∗). Let X = (X1, X2)T ∈ E1

c (N + 1). The optimal β∗ is given
by :

(4.8) β∗ = Σ−1
11 Σ12.
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Proof.

(4.9) (β∗, β∗0) = arg min
β∈RN ,β0∈R

E
[
φα
(
X2 − βTX1 − β0

)]
Equation (4.9) is equivalent to :

(4.10)

{
E
[
−X1φ

′
α(X2 − β∗TX1 − β∗0)

]
= 0

E
[
−φ′α(X2 − β∗TX1 − β∗0)

]
= 0

with the scoring function derivative :

(4.11) φ′α(x) = (α− 1)1{x<0} + α1{x>0} = (α− 1) + 1{x>0}

We obtain

(4.12)

{
(1− α)E [X1]− E

[
X11{X2−β∗TX1−β∗0>0}

]
= 0

(1− α)− E
[
1{X2−β∗TX1−β∗0>0}

]
= 0

Since X2 − β∗TX1 − β∗0 is (R, 1)−elliptical, with parameters µ = µ2 − β∗Tµ1 − β∗0 and Σ =
(−β∗, 1)TΣ(−β∗, 1). Then E

[
1{X2−β∗TX1−β∗0>0}

]
= P

(
X2 − β∗TX1 − β∗0 > 0

)
, i.e, if we denote

σ = Σ
1
2 :

(4.13) E
[
1{X2−β∗TX1−β∗0>0}

]
= 1− ΦR

(
−µ
σ

)
= ΦR

(
µ

σ

)
Next, thanks to Equation (4.5), we have, for j ∈ {1, ..., N} :

(4.14) E
[
X1j1{X2−β∗TX1−β∗0>0}

]
= µ1jΦR

(
µ

σ

)
+ ρjσ1j

+∞∫
µ
σ

c1zg1(z2)dz

Finally, Equation (4.12) may be written as :

(4.15)


µ1j

[
(1− α)− ΦR

(
µ

σ

)]
− ρjσ1j

+∞∫
µ

Σ

c1zg1(z2)dz = 0

(1− α)− ΦR

(
µ
σ

)
= 0

,∀j ∈ {1, ..., N}

Therefore :

(4.16) ρjσ1j

+∞∫
µ

Σ

c1zg1(z2)dz = 0,∀j ∈ {1, ..., N}

Then ρj = 0,∀j ∈ {1, ..., N}. Now, it is not difficult to see that β∗ = Σ−1
11 Σ12. Indeed, the second

parameter of the (R,N + 1)−elliptical vector
(
X1, X2 − β∗TX1 − β∗0

)
is :(

Σ11 0RN
0TRN (−β∗, 1)TΣ(−β∗T , 1)

)
Hence its determinant is (−β∗, 1)TΣ(−β∗T , 1)|Σ11|. Using the conditional moments of X2 −
β∗TX1 − β∗0 |X1 given in Proposition 2.6, we get the following equation :

Σ2|1 = Σ22 − Σ21Σ−1
11 Σ12 = (−β∗, 1)TΣ(−β∗T , 1)

Since (−β∗, 1)TΣ(−β∗T , 1) = Σ22 + β∗TΣ11β
∗ − 2β∗TΣ12, the previous equation is equivalent to :

2β∗TΣ12 − β∗TΣ11β
∗ − Σ21Σ−1

11 Σ12 = 0

The convex function 2β∗TΣ12−β∗TΣ11β
∗−Σ21Σ−1

11 Σ12 reaches its minimum 0 at β∗ = Σ−1
11 Σ12. �
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This result shows that a quantile regression through a linear model is meaningless. Indeed,
the vector Σ−1

11 Σ12 does not depend on α and corresponds to the vector of weights in the Kriging
mean (cf. Cressie, 1988). Using a linear predictor, the result of the quantile regression, whatever
the quantile level α ∈ [0, 1], would be the conditional mean µ2|1 given in Equation (2.6). This
is why the addition of the affine term β∗0 is required. Let us now calculate this term β∗0 . As
mentioned in the last proof that, obviously, X2 − β∗TX1 − β∗0 is elliptical with the same radius as
(X1, X2). With Equation (4.8), we are now able to prove that its second parameter is Σ2|1, given
in Equation (2.6).

Lemma 4.3. Let X = (X1, X2)T ∈ E1
c (N + 1). X2 − β∗TX1 is (R, 1)−elliptical with parameters

µ2 − Σ21Σ−1
11 µ1 and Σ2|1 = Σ22 − Σ21Σ−1

11 Σ12.

Proof. The random variableX2−β∗TX1, as an affine transformation of a consistent (R, d)−elliptical
random vector, is obviously (R, 1)−elliptical. Furthermore, with the expression of β∗ given in
Proposition 4.2, E

[
X2 − β∗TX1

]
= µ2 −Σ21Σ−1

11 µ1. Concerning the second parameter, it is equal

to (−β∗, 1)TΣ(−β∗, 1). Thus,

(−β∗, 1)TΣ(−β∗, 1) = σ2
2 − 2

n∑
i=1

β∗i ρixσ1iσ2 +

n∑
j=1

β∗j

n∑
i=1

β∗i ρijσ1iσ1j .

It may be rewritten in matrix form

(−β∗, 1)TΣ(−β∗, 1) = σ2
2 − 2β∗TΣ12 + β∗TΣ11β

∗.

Using that β∗ = Σ−1
11 Σ12, we prove the following equality.

(−β∗, 1)TΣ(−β∗, 1) = σ2
2 − 2Σ21Σ−1

11 Σ12 + Σ21Σ−1
11 Σ11Σ−1

11 Σ12 = σ2
2 − Σ21Σ−1

11 Σ12,

which concludes the proof. �

We have seen that the conditional second parameter of our (R, 1)−elliptical random variable is
exactly the conditional second parameter Σ2|1 of Equation (2.6). We are led to our main result of
this section on quantile regression for elliptical distributions.

Theorem 4.4 (Quantile Regression Predictor). Let X = (X1, X2)T ∈ E1
c (N + 1). The quantile

regression vector (β∗, β∗0) of X2|(X1 = x1), satisfying Equation (4.2), is given by

(4.17)

{
β∗ = Σ−1

11 Σ12

β∗0 = µ2 − Σ21Σ−1
11 µ1 + σ2|1Φ−1

R (α)

The Quantile Regression Predictor with level α ∈ [0, 1] is given by:

(4.18) q̂α(X2|X1 = x1) = µ2|1 + σ2|1Φ−1
R (α)

Furthermore, its distribution is

(4.19) q̂α(X2|X1) ∼ E1
(
µ2 + σ2|1Φ−1

R (α),Σ21Σ−1
11 Σ12, g1

)
Proof. β∗ is given in Equation (4.8). Concerning β∗0 , it satisfies:

β∗0 = arg min
β0∈R

E
[
φα
(
X2 − β∗TX1 − β0

)]
.

Finally, β∗0 is the α−quantile of the random variable X2 − β∗TX1. We have seen in Lemma 4.3,
that X2 − β∗TX1 is (R, 1)−elliptical with parameters µ2 − Σ21Σ−1

11 µ1 and Σ2|1. Then, using the

quantile formula of an elliptical distribution, and denoting σ2|1 =
√

Σ2|1, we get:

β∗0 = µ2 − Σ21Σ−1
11 µ1 + σ2|1Φ−1

R (α).

With our optimal parameters β∗ and β∗0 , we can now express our Quantile Regression Predictor
of X2 given X1 = x1, q̂α(X2|X1 = x1), using Equation (4.1):

q̂α(X2|X1 = x1) = β∗x1 + β∗0 = µ2 + Σ21Σ−1
11 (x1 − µ1) + σ2|1Φ−1

R (α).
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We recognize, on the left, the expression of µ2|1 given in Equation (2.6).

Concerning its distribution, we know that

q̂α(X2|X1) = µ2 + Σ21Σ−1
11 (X1 − µ1) + σ2|1Φ−1

R (α),

with X1 ∼ EN (µ1,Σ11, gN ). As an affine combination of X1, using Proposition 2.4, q̂α(X2|X1) ∼
E1
(
µ2 + σ2|1Φ−1

R (α), (Σ21Σ−1
11 )Σ11(Σ−1

11 Σ12), g1

)
. Hence the result. �

As an illustration of Theorem 4.4, we now propose several examples, such as Gaussian and
Student cases, where the theoretical conditional quantiles are known (see Section 3). We also
consider the Unimodal Gaussian Mixture and Laplace cases, where we do not have any explicit
formula for theoretical quantiles. Numerical applications are proposed in the last section.

4.1. Gaussian case. We recall the theoretical formula of the conditional quantile of a Gaussian
distribution :

(4.20) qα(X2|X1 = x1) = µ2|1 + σ2|1Φ−1(α).

In that case, the Quantile Regression Predictor q̂α(X2|X1 = x1) is exactly the same :

(4.21) q̂α(X2|X1 = x1) = µ2|1 + σ2|1Φ−1(α).

For Gaussian processes, the Quantile Regression Predictor and the theoretical conditional quantile
coincide.

4.2. Student case. The Gaussian case is the most simple one. Unfortunately, for Student dis-
tributions, Quantile Regression Predictor and conditional quantile do not coincide. Indeed, the
conditional quantile of a multivariate Student distribution is given by Equation (3.6):

qα(X2|X1 = x1) = µ2|1 + σ2|1

√
ν

ν +N

√
1 +

1

ν
(x1 − µ1)TΣ−1

11 (x1 − µ1)Φ−1
ν+N (α).

The Quantile Regression Predictor is

q̂α(X2|X1 = x1) = µ2|1 + σ2|1Φ−1
ν (α).

The error qα(X2|X1 = x1) − q̂α(X2|X1 = x1) that is done when using the Quantile Regression
Predictor depends on the Mahalanobis distance (x1 − µ1)TΣ−1

11 (x1 − µ1) which may be large.

4.3. Unimodal Gaussian Mixture case. We consider here a mixture of 2 centered Gaussian
distributions, i.e a radius R such that

R =
χd

pθ1 + (1− p)θ2
.

Immediately, we get the following multivariate p.d.f :

(4.22) fX(x) =
1

(2π)
d
2

[
pθd1e

− θ
2
1
2 (x−µ)TΣ−1(x−µ) + (1− p)θd2e−

θ22
2 (x−µ)TΣ−1(x−µ)

]
.

As an illustration, we propose some examples of univariate densities (4.22), with different values
of p, θ1 and θ2 : For these models, we do not have any explicit formula for qα(X2|X1 = x1). On

Figure 1. Univariate mixture distributions, with µ = 0 and Σ = 1
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the other hand, using the conditional density expressed in Equation (2.8), we may get a numerical
approximation of this value, and compare it with the Quantile Regression Predictor.

4.4. Laplace case. The multivariate Laplace distribution, introduced in Kozubowski et al. (2013)
and Eltoft et al. (2006), has the following density:

(4.23) f(x) =
1

|Σ| 12 (2π)
d
2

2

λ

K d
2−1

(√
2
λ (x− µ)TΣ−1(x− µ)

)
(√

λ
2 (x− µ)TΣ−1(x− µ)

) d
2−1

,∀x ∈ Rd\{µ}.

where Km(x) denotes the modified Bessel function of the second kind and order m, evaluated at x.
In this case, we can easily give an expression for the Quantile Regression Predictor q̂α(X2|X1 = x1).
This is the aim of the following proposition.

Proposition 4.5. In the Laplace case, the Quantile Regression Predictor is given by:

(4.24)

 q̂α(X2|X1 = x1) = µ2|1 +
√

λ
2σ2|1 ln(2α), for α ≤ 1

2

q̂α(X2|X1 = x1) = µ2|1 −
√

λ
2σ2|1 ln (2(1− α)) , for α > 1

2 .

Proof. From (4.18), we just have to calculate Φ−1
R (α), where ΦR is the distribution function of

the univariate reduced and centered Laplace distribution, with density function (4.23), and with
d = 1. Then, Φ−1

R (α) equals x ∈ R so that

x∫
−∞

1√
2λ
e−
√

2
λ |t|dt = α.

Since the univariate reduced centered Laplace distribution is symmetric, we have the equivalence
α ≤ 1

2 ⇔ x ≤ 0. Then, we will separate the cases α ≤ 1
2 and α > 1

2 . If α ≤ 1
2 , we have to solve

x∫
−∞

1√
2λ
e
√

2
λ tdt = α⇒ x =

√
λ

2
ln(2α).

If α > 1
2 , we write :

0∫
−∞

1√
2λ
e
√

2
λ tdt+

x∫
0

1√
2λ
e−
√

2
λ tdt = α.

Since

0∫
−∞

1√
2λ
e
√

2
λ tdt =

1

2
and

x∫
0

1√
2λ
e−
√

2
λ tdt =

1

2
−1

2
e−
√

2
λx, we quickly get x = − ln (2(1− α)).

Finally,  q̂α(X2|X1 = x1) = µ2|1 +
√

λ
2σ2|1 ln(2α) , α ≤ 1

2

q̂α(X2|X1 = x1) = µ2|1 −
√

λ
2σ2|1 ln (2(1− α)) , α > 1

2

which is the announced result. �

5. Extremal quantiles

In this section, we show that, for an elliptical distribution, best affine predictors of conditional
quantiles are inadequate for extreme quantile levels. We thus propose some new extremal quantiles,
which are shown to be equivalent to the true conditional quantiles.
In order to simplify the notations, we denote by q1 the Mahalanobis distance (x1−µ1)TΣ−1

11 (x1−µ1).
We have previously defined a predictor q̂α based on quantile regression. We have seen that the
best affine predictor of conditional quantiles of an R−elliptical distribution with the consistency
property is given by:

(5.1) q̂α(X2|X1 = x1) = µ2|1 + σ2|1Φ−1
R (α)
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where ΦR(x) =

x∫
−∞

c1g1(t2)dt. The conditional quantile is:

(5.2) qα(X2|X1 = x1) = µ2|1 + σ2|1Φ−1
R∗(α)

with the conditional radius R∗ defined in Equation (2.7). In this section, the aim is to establish a
relation between Φ−1

R and Φ−1
R∗ for extremal values of α, i.e for α→ 0 or α→ 1. Extreme quantiles

estimation is an active research topic, and we can find several papers in the literature. We think
particularly to El Methni et al. (2012), but the random variables X1, ..., Xn are supposed i.i.d. In
our case, the covariates are dependant. More recently, Gong et al. (2015) proposed an approach
for dependant random variables, but it requires simulations. It is why, in this paper, we propose
another approach. To this aim, we need a kind of regular variations hypothesis. It seems important
to note that all elliptic distributions are not regularly varying.

Assumption 1. Their exist 0 < ` < +∞ and γ ∈ R such as :

(5.3) lim
x→+∞

ΦR∗(x)

ΦR(xγ)
= `

where Φ = 1− Φ is the survival function associated to Φ.

We also recall that the cumulative distribution functions are ΦR(x) =

x∫
−∞

c1g1(t2)dt and

ΦR∗(x) =

x∫
−∞

c∗1gN+1(q1 + t2)dt, with c∗1 given by Equation (2.8).

(5.4) c∗1 =
cN+1

cNgN (q1)
,

where cN+1 and cN are the normalization coefficients of the elliptical distributions with radius R
in dimensions N + 1 and N . Then, coefficients γ and ` may also be obtained as

(5.5) lim
x→+∞

c∗1gN+1(q1 + x2)

c1γxγ−1g1(x2γ)
= `

Table 3 gives values of γ and ` for the examples introduced in Section 2. The calculations will be
detailed later on. Unfortunately, the Laplace distribution does not satisfy Assumption 1, this is
why we will not consider this example in what follows.

Thanks to Equation (5.3), we have, under Assumption 1, the following equivalence when x

Distribution γ `
Gaussian 1 1

Student, ν > 0 N+ν
ν

Γ( ν+N+1
2 )Γ( ν2 )

Γ( ν+N
2 )Γ( ν+1

2 )

(
1 + q1

ν

)N+ν
2 ν

N
2

+1

ν+N

Unimodal Gaussian Mixture 1
min(θ1,...,θn)N exp

(
−min(θ1,...,θn)2

2 q1

)
n∑
k=1

πkθNk exp

(
−
θ2
k
2 q1

)

Uniform Gaussian Mixture N + 1
Γ(N+2

2 )q
N+1

2
1

√
2

Γ(N+1
2 )(N+1)χ2

N+1(q1)

Table 3. Coefficients γ and ` for classical distributions, where q1 = (x1−
µ1)TΣ−1

11 (x1 − µ1) is a function of x1. (see Proposition 2.6).

goes to ∞ :

(5.6) ΦR∗(x) ∼
x→∞

`ΦR(xγ)
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Our aim is now to get an equivalence relationship between the quantile function Φ−1
R∗ and Φ−1

R∗ . For
that, we refer to the paper of Djurcić and Torgasev, which gives some conditions to deduce the
equivalence of inverse functions if these functions are equivalent (cf. Djurcić and Torgasev, 2001).

Definition 5.1. A function f is a ϕ−function if f : [0,+∞[→ [0,+∞[, f(0) = 0, f is continuous,
non decreasing on [0,+∞[, and f → +∞ when x→ +∞.

Clearly, our two equivalent functions ΦR∗(x) and lΦR(xγ) are not ϕ−functions for several rea-
sons : ΦR∗(0) = 1

2 , `ΦR(0) = 1
2`, lim

x→+∞
ΦR∗(x) = 1 and lim

x→+∞
lΦR(xγ) = ` < +∞. Then, we have

to transform these functions in order to find an equivalence. But before, we need more definitions
and properties. The following is the definition of a general class of functions Kc, which contains
in particular Regularly Varying functions.

Definition 5.2. Kc is the set of all ϕ−functions f with the property :

(5.7) lim
x→+∞
λ→1

f (λx)

f(x)
= 1

In fact, the Kc is the set of ϕ−functions for which the limit lim
x→+∞
λ→1

f(λx)
f(x) exists, because if it

exists, then automatically we can swap the limits, and lim
x→+∞
λ→1

f(λx)
f(x) = lim

x→+∞

(
lim
λ→1

f(λx)
f(x)

)
= 1. We

can also notice that the condition in Equation (5.7) is more general than the regular variation
functions in the sense of Karamata.
These two last definitions are very important for the following lemma, which establishes the relation
between the equivalence of two functions and equivalence of their inverses.

Lemma 5.1. [ Djurcić and Torgasev (2001)] Suppose that f and g are two strictly increasing
ϕ−functions, and that at least one of the functions f−1, g−1 belongs to the class Kc, and f(x) ∼

x→∞
g(x). Then f−1(x) ∼

x→∞
g−1(x)

Now, as we said previously, the first step is to transform our fonctions ΦR∗(x) and `ΦR(xγ) into
ϕ−functions.

Definition 5.3. Let Ψ and Ψ∗ be

(5.8)

{
Ψ(x) = 1

`ΦR(xγ)
− 2

`

Ψ∗(x) = 1
ΦR∗ (x)

− 2

Lemma 5.2. If γ > 0, then Ψ and Ψ∗ are ϕ−functions.

Proof. Since ΦR and ΦR∗ are clearly strictly decreasing, Ψ and Ψ∗ are obviously strictly increasing.
Furthermore, ΦR(0) = ΦR∗(0) = 1

2 , thus{
Ψ(0) = 0
Ψ∗(0) = 0

.

Finally, since lim
x→+∞

ΦR(xγ) = lim
x→+∞

ΦR∗(x) = 0, functions Ψ and Ψ∗ are such that lim
x→+∞

Ψ(x) =

lim
x→+∞

Ψ∗(x) = +∞. �

Now, given that ΦR∗(x) ∼
x→∞

`ΦR(xγ), we have to check whether Ψ(x) ∼
x→∞

Ψ∗(x).

Lemma 5.3. Under Asumption 1, we have

(5.9) Ψ∗(x) ∼
x→∞

Ψ(x)

Proof. Let us focus on the limit

lim
x→+∞

Ψ∗(x)

Ψ(x)
= lim
x→+∞

1
ΦR∗ (x)

− 2

1
`ΦR(xγ)

− 2
`

.
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This limit is equal to

lim
x→+∞

`ΦR(xγ)

ΦR∗(x)
· 1− 2ΦR∗(x)

1− 2ΦR(xγ)
.

Thanks to (5.3), lim
x→+∞

`ΦR(xγ)

ΦR∗ (x)
= 1. Furthermore, lim

x→+∞
ΦR∗(x) = lim

x→+∞
ΦR(xγ) = 0. Then :

lim
x→+∞

Ψ∗(x)

Ψ(x)
= lim
x→+∞

`ΦR(xγ)

ΦR∗(x)
· 1− 2ΦR∗(x)

1− 2ΦR(xγ)
= 1.

In other words, Ψ∗(x) ∼
x→∞

Ψ(x). �

In order to use Lemma 5.1, we shall need an additional assumption on Ψ−1
∗ .

Assumption 2. Ψ−1 belongs to the class Kc.

The following proposition is the key step to predict conditional quantiles.

Proposition 5.4. Under Assumptions 1 and 2, we have

(5.10) Φ−1
R∗ (α) ∼

α→1

[
Φ−1
R

(
1− 1

`
1−α + 2(1− `)

)] 1
γ

Proof. Since Ψ−1(x) belongs to the Kc class, and Ψ∗(x) and Ψ(x) are two strictly increasing
ϕ−functions, and Ψ∗(x) ∼

x→+∞
Ψ(x), then Lemma 5.1 gives

Ψ−1
∗ (x) ∼

x→+∞
Ψ−1(x)

In other words

(5.11) Φ−1
R∗

(
1− 1

x+ 2

)
∼

x→+∞

[
Φ−1
R

(
1− 1

`x+ 2

)] 1
γ

.

This may also be rewritten as

Φ−1
R∗ (α) ∼

α→1

[
Φ−1
R

(
1− 1

`
1−α + 2(1− `)

)] 1
γ

with α = 1− 1
x+2 , hence the result. �

This result leads us to the following conditional extremal quantile prediction.

Definition 5.4 (Extreme Conditional Quantiles Predictors). Define

(5.12)


ˆ̂qα↑(X2|X1 = x1) = µ2|1 + σ2|1

[
Φ−1
R

(
1− 1

`
1−α+2(1−`)

)] 1
γ

ˆ̂qα↓(X2|X1 = x1) = µ2|1 − σ2|1

[
Φ−1
R

(
1− 1

`
α+2(1−`)

)] 1
γ

The following proposition shows that ˆ̂qα↑(X2|X1 = x1) and ˆ̂qα↓(X2|X1 = x1) are asymptotically
equivalent to the theoretical quantile qα(X2|X1 = x1), respectively for α→ 1 and α→ 0.

Theorem 5.5 (Equivalences of Extreme Conditional Quantiles Predictors). Let (X1, X2)T ∈
E1
c (N + 1). Under Assumptions 1 and 2,

(5.13)


ˆ̂qα↑(X2|X1 = x1) ∼

α→1
qα(X2|X1 = x1)

ˆ̂qα↓(X2|X1 = x1) ∼
α→0

qα(X2|X1 = x1)

Proof. Recall Equation (3.2):

qα (X2|X1 = x1) = µ2|1 + σ2|1Φ−1
R∗(α)

From (5.10) and (5.12), we immediatly prove the first half of the result:
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qα(X2|X1 = x1) ∼
α→1

µ2|1 + σ2|1

[
Φ−1
R

(
1− 1

`
1−α+2(1−`)

)] 1
γ

= ˆ̂qα↑(X2|X1 = x1)

Now, let us prove the equivalence when α→ 0. By the symmetry properties of elliptical distribu-
tions, we have Φ−1

R∗(α) = −Φ−1
R∗(1− α),∀α ∈ [0, 1]. Then,

qα (X2|X1 = x1) = µ2|1 − σ2|1Φ−1
R∗(1− α).

Using the equivalence (5.10) and Equation (5.12), we finally get:

qα(X2|X1 = x1) ∼
α→0

µ2|1 − σ2|1

[
Φ−1
R

(
1− 1

`
α+2(1−`)

)] 1
γ

= ˆ̂qα↓(X2|X1 = x1)

�

We finish this section by checking Assumption 2 is satisfied for examples that are given in Table
3.

5.1. Gaussian case.

Lemma 5.6. Gaussian distribution satisfies Assumptions 1 and 2, with ` = 1 and γ = 1.

Proof. Firstly, let us calculate ` and γ. Take γ = 1, it remains the limit of Assumption 1 :

lim
x→+∞

c∗1gN+1(q1+x2)
c1g1(x2)

The values c1, gN+1(q1 + x2) and g1(x2) may be easily deduced from Table 1. Let c∗1 = cN+1

cNgN (q1) ,

` = lim
x→+∞

exp
(
− q1+x2

2

)
exp

(
− q12

)
exp

(
−x2

2

) = 1.

It remains to check whether the limit

εl = lim
x→+∞
λ→1

Ψ−1(λx)

Ψ−1(x)
= lim
x→+∞
λ→1

Φ−1
(

1− 1
λx+2

)
Φ−1

(
1− 1

x+2

)
exists, or equivalently, whether the limit

ε` = lim
(δ,y)→(0,0)

Φ−1
(

1− y
2y+δ+1

)
Φ−1

(
1− y

2y+1

)
exists.
Now, we move to polar coordinates, i.e take δ = r cos(θ) and y = r sin(θ), and calculate the limit
when r → 0. If this limit do not depend on θ, then the limit when (δ, y)→ (0, 0) exists. Consider

lim
r→0

Φ−1
(

1− r sin(θ)
2r sin(θ)+r cos(θ)+1

)
Φ−1

(
1− r sin(θ)

2r sin(θ)+1

) = f(θ).

Clearly, the numerator and denominator both tend to +∞, then we use the L’Hôpital’s rule to get

f(θ) = lim
r→0

(
− sin(θ)(2r sin(θ)+r cos(θ)+1)−r sin(θ)(2 sin(θ)+cos(θ))

(2r sin(θ)+r cos(θ)+1)2

)
1

φ(Φ−1(1− r sin(θ)
2r sin(θ)+r cos(θ)+1 ))(

− sin(θ)(2r sin(θ)+1)−r sin(θ)2 sin(θ)

(2r sin(θ)+1)2

)
1

φ(Φ−1(1− r sin(θ)
2r sin(θ)+1 ))

On the left, the bulky ratio clearly tends to 1 when r → 0. On the right, we recall that φ is the

density function of the standard normal distribution, i.e φ(x) = 1√
2π
e−

x2

2 . Then :

ε` = lim
r→0

φ(Φ−1(1− r sin(θ)
2r sin(θ)+1 ))

φ(Φ−1(1− r sin(θ)
2r sin(θ)+r cos(θ)+1 ))
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Now, the numerator and denominator both tend to 0. Once again, we use the L’Hôpital’s rule and
then,

f(θ) = lim
r→0

f1(r, θ)

f2(r, θ)

φ′
(

Φ−1
(

1− r sin(θ)
2r sin(θ)+1

))
φ′
(

Φ−1
(

1− r sin(θ)
2r sin(θ)+r cos(θ)+1

)) .
where 

f1(r, θ) =

(
− sin(θ)(2r sin(θ) + 1)− r sin(θ)2 sin(θ)

(2r sin(θ) + 1)2

)
φ

(
Φ−1

(
1− r sin(θ)

2r sin(θ) + 1

)) ,

f2(r, θ) =

(
− sin(θ)(2r sin(θ) + r cos(θ) + 1)− r sin(θ)(2 sin(θ) + cos(θ))

(2r sin(θ) + r cos(θ) + 1)2

)
φ

(
Φ−1

(
1− r sin(θ)

2r sin(θ) + r cos(θ) + 1

)) ,

We have seen that the ratio f1(r,θ)
f2(r,θ) tends to 1. Furthermore, we have the relationship φ′(x) =

−xφ(x). Finally,

f(θ) = lim
r→0

Φ−1
(

1− r sin(θ)
2r sin(θ)+1

)
Φ−1

(
1− r sin(θ)

2r sin(θ)+r cos(θ)+1

) =
1

f(θ)
,

thus, f(θ) = 1, hence the result. �

Since Ψ−1(x) belongs to the Kc class and ` = γ = 1, we have the following formulas for the

Extremal Predictors ˆ̂qα↑ and ˆ̂qα↓ :{
ˆ̂qα↑(X2|X1 = x1) = µ2|1 + σ2|1Φ−1

R (α)
ˆ̂qα↓(X2|X1 = x1) = µ2|1 + σ2|1Φ−1

R (α)

Remark that ˆ̂qα↑ and ˆ̂qα↓ equal to the Quantile Regression Predictor q̂α, which equals the theoretical
quantile qα.

5.2. Student case. We have seen in part 2 that the Quantile Regression Predictor q̂α was not
good in the Student case. Then, for extremal levels of quantile, we can guess that the predictor q̂α
will be worse and worse if α is close to 0 or 1. It is a reason why, in this case, our extremal predictors
ˆ̂qα↑ and ˆ̂qα↓ may potentially be especially interesting, and improve the prediction. Firstly, we prove
that Assumptions 1 and 2 are filled.

Lemma 5.7. Student distributions satisfies Assumptions 1 and 2, with γ = N+ν
ν and ` given in

Table 3.

Proof. Concerning Assumption 1, we have to calculate the limit :

lim
x→+∞

c∗1gN+1(q1+x2)
c1γxγ−1g1(x2γ)

From Table 1 and (5.4), we deduce c1 =
Γ( 1+ν

2 )
√
νπΓ( ν2 )

, c∗1 =
Γ(N+1+ν

2 )
√
νπΓ(N+ν

2 )

(
1 + q1

ν

)N+ν
2 , gN+1(q1 + x2) =(

1 + q1+x2

ν

)−N+1+ν
2

and g1(x2γ) =
(

1 + x2γ

ν

)− 1+ν
2

. Then the previous limit is the following :

lim
x→+∞

Γ(N+1+ν
2 )Γ( ν2 )

Γ( 1+ν
2 )Γ(N+ν

2 )

(
1 + q1

ν

)N+ν
2

(
1+

q1+x2

ν

)−N+1+ν
2

γxγ−1
(

1+ x2γ

ν

)− 1+ν
2

From now, we consider γ = N+ν
ν and we focus on the ratio on the right. The leading monomials

are ν
N+1+ν

2 x−N−1−ν (numerator) and ν
1+ν

2 x−N−1−ν (denominator). Then the limit is simply ν
N
2 .

Finally :

` =
Γ(N+1+ν

2 )Γ( ν2 )
Γ( 1+ν

2 )Γ(N+ν
2 )

(
1 + q1

ν

)N+ν
2 ν

N
2

+1

N+ν
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Concerning Assumption 2, the proof is similar to the Gaussian case, but we have γ 6= 1 and ` 6= 1
here. We are dealing with the existence and value of the limit:

lim
x→+∞
λ→1

Φ−1
R

(
1− 1

`λx+2

) 1
γ

Φ−1
R

(
1− 1

`x+2

) 1
γ

.

As in the Gaussian case, we use the polar coordinates and the L’Hôpital’s rule to get the result. �

In the case of Student distributions, we shall apply the predictions, with the coefficients ` and
γ given in Table 3 :  ` =

Γ( ν+N+1
2 )Γ( ν2 )

Γ( ν+N
2 )Γ( ν+1

2 )

(
1 + q1

ν

)N+ν
2 ν

N
2

+1

ν+N

γ = N+ν
ν

5.3. Unimodal Gaussian Mixture case.

Lemma 5.8. Unimodal Gaussian Mixture distribution satisfies Assumptions 1 and 2, with γ = 1
and ` given in Table 3.

Proof. Firstly, to prove that Assumption 1 is satisfied, we take γ = 1 and calculate the limit :

` = lim
x→+∞

c∗1gN+1(q1+x2)
c1g1(x2)

According to Table 1 and Equation (5.4), c∗1 = 1
√

2π
n∑
k=1

πkθNk exp

(
−
θ2
k
2 q1

) , gd(t) =
n∑
k=1

πkθ
d
ke
− θ

2
k
2 t and

c1 = 1√
2π

. Hence the limit :

` = lim
x→+∞

n∑
k=1

πkθ
N+1
k exp

(
− θ

2
k

2 q1

)
exp

(
− θ

2
k

2 x
2
)

[
n∑
k=1

πkθNk exp
(
− θ

2
k

2 q1

)] [ n∑
k=1

πkθk exp
(
− θ

2
k

2 x
2
)] .

Let k∗ such as θk∗ = min(θ1, ..., θn). After simplifications, it remains :

` =
θNk∗ exp

(
−
θ2
k∗
2 q1

)
n∑
k=1

πkθNk exp

(
−
θ2
k
2 q1

)

Now we have to check Assumption 2, i.e prove that :

lim
x→+∞
λ→1

Φ−1
R (1− 1

`λx+2 )
Φ−1
R (1− 1

`x+2 )
= 1

Like the Gaussian case, we do the same changes of variables, and the limit becomes

ε` = lim
r→0

φR(Φ−1
R (1− r sin(θ)

2r sin(θ)+1 ))
φR(Φ−1

R (1− r sin(θ)
2r sin(θ)+r cos(θ)+1 ))

= f(θ)

Here, φR(t) =
n∑
k=1

πkθkφ(θkt), where φ is the normal p.d.f, i.e φ(t) = e−
t2

2 . Since Φ−1
R

(
1− r sin(θ)

2r sin(θ)+1

)
and Φ−1

R

(
1− r sin(θ)

2r sin(θ)+r cos(θ)+1

)
tend to +∞ when r → 0, asymptotically, we only have to con-

sider the terms of the sum with the largest coefficient − θ
2
k

2 , i.e the smallest θk. Let k∗ such as
θk∗ = min(θ1, ..., θn). We get :

ε` = lim
r→0

π∗kθ
∗
kφ(θ∗kΦ−1

R (1− r sin(θ)
2r sin(θ)+1 ))

π∗kθk∗φ(θk∗Φ−1
R (1− r sin(θ)

2r sin(θ)+r cos(θ)+1 ))
= lim
r→0

φ(θ∗kΦ−1
R (1− r sin(θ)

2r sin(θ)+1 ))
φ(θk∗Φ−1

R (1− r sin(θ)
2r sin(θ)+r cos(θ)+1 ))

Finally, we have already calculated this kind of limit in the Gaussian case, and proved that it was
equal to 1. �
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5.4. Uniform Mixture case. In this case, the radius R
d
= χd
U(]0,1[) . The density obtained is then

(5.14) f(x) =
1

|Σ| 12
Γ
(
d+1

2

)
√

2π
d
2

χ2
d+1

(
(x− µ)TΣ−1(x− µ)

)
[(x− µ)TΣ−1(x− µ)]

d+1
2

,∀x ∈ Rd\{µ}

where χ2
m(x) denotes the c.d.f of the χ2 distribution, with m degrees of freedom, evaluated at x.

Lemma 5.9. Uniform Mixture distribution satisfies Assumptions 1 and 2, with γ = N + 1 and `
given in Table 3.

Proof. Concerning Assumption 1, we consider γ = N + 1, and calculate the limit :

` = lim
x→+∞

c∗1gN+1(q1+x2)
c1γxγ−1g1(x2)

According to Table 1 and Equation (5.4), gd(t) =
χ2
d+1(t)

t
d+1

2

, c1 = 1√
2π

and c∗1 =
Γ(N+2

2 )q
N+1

2
1

Γ(N+1
2 )
√
πχ2

N+1(q1)
.

Hence the limit

` = lim
x→+∞

√
2π

Γ
(
N+2

2

)
q
N+1

2
1

Γ
(
N+1

2

)√
πχ2

N+1(q1)

χ2
N+2

(
q1 + x2

)
χ2

2 (x2N+2)

x2N+2

(q1 + x2)
N+2

2

1

(N + 1)xN
,

which leads to

` =
Γ
(
N+2

2

)
q
N+1

2
1

√
2

Γ
(
N+1

2

)
(N + 1)χ2

N+1(q1)
.

To prove that Assumption 2 is filled, we have, as in the other cases, to calculate the limit :

lim
x→+∞
λ→1

Φ−1
R

(
1− 1

`λx+2

)
Φ−1
R

(
1− 1

`x+2

) = lim
r→0

φR

(
Φ−1
R

(
1− r sin(θ)

2r sin(θ)+1

))
φR

(
Φ−1
R

(
1− r sin(θ)

2r sin(θ)+r cos(θ)+1

)) = f(θ).

We get once more that f(θ) = 1. �

In this section, we introduced asymptotic predictions based solely on the function ΦR, that is
assumed to be known. These predictions are asymptotically equivalent to the theoretical condi-
tional quantiles, for levels of quantiles close to 0 or 1. Thus, they are expected to improve the
quantile regression. In the following section, we perform some numerical applications to study the
prediction quality.

6. Numerical study

In order to give a visual overview of the predictors we have defined, we have plotted in Figure 2,
the conditional quantiles of an elliptical process observed at N = 5 points. We call X1 ∈ R5 the
covariates vector. For x ∈ R, X2 denotes the process at x and the aim is to predict the quantile
of X2|X1 = x1. For simplicity, we assume that the process is centered, and stationary (matrices
Σ and Σ11 are obtained through an exponential kernel). But our results even work without these
assumptions. We also add that parameters for the Gaussian Mixture example are θ1 = 1, θ2 = 3
and p = 0.9.

Of course, for the Gaussian process, the curves coincide. For the other examples, Quantile
Regression Predictors seem very far from the theoretical curves, especially in the Uniform Mixture
case. On the other hand, Extremal predictors seem significantly better; they look closer to the
target conditional quantiles here. We propose to use the following RMSE in order to quantify the
error.

(6.1) RMSE(q̂α) =

√√√√ 1

n

n∑
i=1

(
qα(X

(i)
2 |X1 = x1)− q̂α(X

(i)
2 |X1 = x1)

)2

.

In the same way, we define the RMSE for Extremal Predictor :

(6.2) RMSE(ˆ̂qα) =

√√√√ 1

n

n∑
i=1

(
qα(X

(i)
2 |X1 = x1)− ˆ̂qα(X

(i)
2 |X1 = x1)

)2

.
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Figure 2. Theoretical quantiles, Quantile Regression and Extremal Pre-
dictors for Gaussian, Student, Gaussian Mixture and Uniform Mixture pro-
cesses, with levels of quantile α = 0.995 and α = 0.005. In solid lines, the
theoretical quantiles (approximated most of the time numerically), dotted,
the Quantile Regression Predictor, and dashed, the Extremal Predictor.

The RMSE measures the average error in the prediction of the conditional quantiles. Table 4 is
a summary of the RMSE for all treated examples, and different levels of α. Obviously, we only
consider the cases α ≥ 1

2 because elliptical distributions are symmetric.

α Gaussian Student Unimodal GM Uniform GM

r(q̂α) r(ˆ̂qα) r(q̂α) r(ˆ̂qα) r(q̂α) r(ˆ̂qα) r(q̂α) r(ˆ̂qα)

0.5 0 0 0 0 0 0 0 0

0.6 0 0 0.027 0.372 0.001 0.019 0.067 0.334

0.7 0 0 0.059 0.376 0.003 0.036 0.151 0.301

0.8 0 0 0.104 0.358 0.006 0.051 0.297 0.249

0.9 0 0 0.195 0.322 0.012 0.061 0.770 0.177

0.95 0 0 0.314 0.289 0.024 0.061 1.880 0.123

0.9995 0 0 2.880 0.148 0.163 0.000 250.172 0.020

0.999995 0 0 16.546 0.081 0.109 7.130 · 10−06 25 178.530 0.008

Table 4. r(ˆ̂qα) = RMSE(ˆ̂qα) and r(q̂α) = RMSE(q̂α), for different levels
of α, and different consistent elliptical distributions.

For non Gaussian distributions, the RMSE(ˆ̂qα) decreases when α is close to 1, while the
RMSE(q̂α) increases, which is the expected behavior. We also remark that for the median
(α = 0.5), the RMSE are always equal to 0. Indeed, if we replace α by 1

2 in Equation (5.12)
and Equation (4.18), our two predictions are equal to the conditional mean µ2|1, defined in Propo-
sition 2.6. Since median and mean are coincident for elliptical distributions, we exactly predict the
conditional α−quantile for α = 1

2 .
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Conclusion

In this paper, we focused on conditional quantiles prediction, for elliptical random fields with
the consistency property. We proposed two different methods.
The first one is to use quantile regression, i.e to express the conditional quantile as an affine
transformation of the observed values. This approach is widely used in the literature but it often
requires a large number of simulations, especially for extreme levels of quantile (when α → 0 or
α → 1). We have seen, in a first time, that we can obtain some explicit formulas in our case
of consistent elliptical random fields (4.1). Furthermore, we have given the distribution of the
quantile regression (Theorem 4.4). We have seen that regression quantile is not adapted for non
Gaussian distributions.
A second predictor is given in order to cope with regression quantile problems for extremal quantile
levels. We have shown that the proposed extremal quantile predictor is equivalent to the true
conditional quantile for extreme quantile levels. We have also illustrated on several numerical
examples the better performance of this predictor for extreme levels.
As a perspective, these prediction methods require the knowledge of the X1 distribution. We have
not explored the prediction procedure when the X1’s distribution is estimated (parametrically
e.g.). This is an interesting perspective, which is let for future work.
Finally, we would like to emphasize that we have given examples in dimension d = 1, but all the
results may be used in higher dimensions (see Figure 3).

Figure 3. Quantile regression for a Student random field, with α =
0.0005, in dimension d = 2
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