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A simple turbulent two-fluid model

Jean-Marc Hérard, Hippolyte Lochon

Abstract

We present in this paper a simple turbulent two-phase flow model
using the two-fluid approach. The model, that relies on the classical
ensemble averaging, allows the computation of unsteady flows including
shock waves, rarefaction waves and contact discontinuities. It requires
the definition of adequate source terms and interfacial quantities. The
hyperbolic turbulent two-fluid model is such that unique jump conditions
hold within each field. Closure laws for the interfacial velocity and the
interfacial pressure comply with a physically relevant entropy inequality.
Moreover, source terms that account for mass, momentum and energy in-
terfacial transfer are in agreement with the entropy inequality. Particular
attention is also given to the jump conditions when assuming a perfect
gas equation of state within each phase ; this enables to recover expected
bounds on the mean density through shock waves.

1 Introduction

We propose herein a turbulent two-fluid model for the prediction of two-phase
flows. Actually, though we use the classical ensemble averaging [19, 8], we follow
here the approach used in a recent series of papers. Our main goal is to derive
a two-fluid two-phase flow model that accounts for Reynolds stress tensors in a
very simple way, in such a way that the fundamental properties invoked in [7]
are preserved. This means that the following specifications are enforced:

• (i) the model should be such that one could retrieve the standard Baer-
Nunziato model in the laminar case;

• (ii) an entropy inequality should hold for smooth solutions, and mean-
while it should provide some guidelines for closure laws associated with
interfacial mass, momentum and energy transfer;

• (iii) unique jump conditions should be valid so that meaningful and unique
shock waves might be predicted.

These requirements are mandatory if we intend to predict relevant shock solu-
tions in two-phase flows, such as those that arise in vapour explosions or other
similar situations, while using the standard verification and validation process
for the code (see [4] for instance). A class of two-fluid models that are capable
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to predict unsteady situations has emerged from the recent literature, either for
gas-particle flows (see [2, 3, 21, 14, 20] for instance), or for water-vapour flows
(see [24, 13, 10] among others). These models essentially differ from one another
through the definition of the interface pressure-velocity couple. We will thus fo-
cus here on the approach suggested in [7], that gave some new enlightment on
the admissible closure laws that enable to comply with both items (ii) and (iii)
recalled above.

Moreover, in order to account for turbulent effects in a rather simple way,
we will rely on the single-phase proposal introduced in [16], that inherits from
the earlier work described in [9, 6, 1, 12]. As we will see, this will minimize
the number of unknowns, and inlet/outlet boundary conditions, and meanwhile
will allow to comply with the above mentionned requirements (i,ii,iii). We also
emphasize that the present work should not be confused with the one of [15],
which was mainly inspired by [26] and [7]. Actually, though it agrees with the
former items (i) and (ii), the latter turbulent model [15] is not suitable for shock
solutions, since the latter are not defined in a unique way, due to the occurence
of non-conservative products that are active in genuinely non-linear fields ; as
a result, different mesh-converged solutions issuing from distinct schemes may
emerge in practical computations, as it is now quite well-known.

The paper is organised as follows. We first provide the governing set of equa-
tions including source terms accounting for all possible transfers between phases.
The choice of relevant interfacial velocity and pressure is discussed. Then we
focus on the key property of the model which is the entropy inequality. It is
compared with the laminar case and we underline how turbulent energy affects
the different relaxation terms. A third section discusses the main properties of
the convective system: hyperbolicity, structure of fields and jump conditions.
For simplicity, we restrict ourselves to the Baer-Nunziato closure in this section
but few remarks are given about other possible closures. Particular attention is
given to the jump conditions when assuming perfect gas equation of state within
each phase. In that case, we show that density ratios are bounded through shock
waves and that they are in agreement with the laminar frame. Moreover turbu-
lent energy ratios are bounded unlike pressure ratios. The last section is devoted
to a few remarks.

2 Governing equations

The two-phase flow model has been obtained by a statistical averaging of the
single-phase Navier-Stokes equations. One additional topological equation on
the statistical void fraction is also needed (see [8]). For the sake of simplicity,
we do not detail this averaging procedure here but we underline the fact that
the tensor involving turbulent effects is modelled following the approach of [16]
for the single-phase Reynolds stress tensor. Thus the governing set of equations
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takes the form (when neglecting viscous terms):

∂tW + ∂xF (W ) + C(W )∂xW = S(W ) (1)

with W , F (W ), S(W ) in R7, and C(W ) in R7×7. The state variable W is:

W =



α1

α1ρ1
α2ρ2
α1ρ1u1
α2ρ2u2
α1E1

α1E2


(2)

where αk, ρk, uk, pk and Ek are respectively the statistical void fraction, the
mean density, the mean velocity, the mean pressure and the mean total energy
of phase k, k = 1, 2. The stastistical void factions are such that:

α2 = 1− α1

and the mean total energy Ek is given by:

Ek =
1

2
ρku

2
k + ρkεk +Kk

where εk = εk(ρk, pk) is the mean internal energy of phase k and Kk is the
turbulent kinetic energy:

Kk = Kk,0ρ
5/3
k (3)

(with Kk,0 > 0). It is important to underline the fact that the mean internal
energy only depends on the mean density and the mean pressure, which is a
crude assumption on the statistical thermodynamics. However, one can easily
prove that it is verified in the case of simple Equation Of State (EOS) such as
perfect gas or stiffened gas (see [18]). We define the set of admissible states Ω
by:

Ω =
{
W ∈ R7 ; α1 ∈ [0, 1] , ρk > 0, εk > 0

}
(4)

We also introduce the celerity of density waves ck in the pure phase k and its
temperature Tk:

ρkc
2
k = (∂pkεk)

−1

(
pk
ρk
− ρk (∂ρkεk)

)
1

Tk
= (∂pkεk)

−1
(∂pksk)

where sk = sk(ρk, pk) is the specific entropy complying with the constraint:

c2k (∂pksk) + (∂ρksk) = 0
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The convective part of the system is defined by:

F (W ) =



0
α1ρ1u1
α2ρ2u2

α1(ρ1u
2
1 + p1 + 2

3K1)
α2(ρ2u

2
2 + p2 + 2

3K2)
α1u1(E1 + p1 + 2

3K1)
α2u2(E2 + p2 + 2

3K2)


, C(W )∂xW =



uI∂xα1

0
0

−pI∂xα1

−pI∂xα2

−uIpI∂xα1

−uIpI∂xα2


(5)

where we use the following closure laws on interfacial velocity uI and pressure
pI :

uI = au1 + (1− a)u2 , a ∈
{

0,
m1

m1 +m2
, 1

}
(6)

pI = b

(
p1 +

2

3
K1

)
+ (1− b)

(
p2 +

2

3
K2

)
, b =

1−a
T1

1−a
T1

+ a
T2

(7)

In the case when a ∈ {0, 1}, it corresponds to the so-called Baer-Nunziato clo-
sure [2] in the laminar case. The third choice a = m1

m1+m2
has been proposed in

[7, 10] in the laminar case too. Those 3 possibilities for (uI , pI) have been mo-
tivated by two requirements: the enforcement of a relevant entropy inequality
which will be discussed later on, and the structure of the field associated with
λ = uI which is assumed to be linearly degenerate. Other closure laws could be
found [23, 14, 24, 5] but they will not be considered here.

The source part of the systeam reads:

S(W ) =



Φ
Γ
−Γ

D + UΓ
−D − UΓ

Q+ UD +HΓ− pIΦ
−Q− UD −HΓ + pIΦ


(8)

where U =
u1 + u2

2
, H =

u1u2
2

and the relaxation terms are given by:

Φ = α1α2δp
((
p1 + 2

3K1

)
−
(
p2 + 2

3K2

))
Γ = α1α2δµ

(
µ2

T2
− µ1

T1

)
D = α1α2δu (u2 − u1)
Q = α1α2δT (T2 − T1)

(9)

with :

µk = εk +
pk
ρk
− Tksk +

5Kk

3ρk
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which corresponds to the Gibbs free enthalpy in the laminar case when Kk = 0.
The scalar functions δϕ are not detailed here but are assumed to be positive. For
practical purposes, the pressure relaxation time scale involved in δp is provided
by the closure law detailed in [11] ; besides, other relaxation time scales δµ, δu, δT
embedded in mass, momentum and energy interfacial transfer terms, are taken
from the classical two-fluid literature. Hence, we emphasize the fact that all
possible transfers between phases (mass, momentum and energy) are accounted
for in this model.

3 Entropy inequality

A key property of the governing set of equations (1) is the following:

Proposition 1. Define the entropy-entropy flux pair (η, fη):

η = −α1ρ1s1 − α2ρ2s2 , fη = −α1ρ1s1u1 − α2ρ2s2u2

Then the following inequality holds for smooth solutions of (1):

∂tη + ∂xfη ≤ 0

Proof. Classical manipulations of the system give us the evolution law of the
specific entropy for smooth solutions:

∂t(αkρksk) + ∂x(αkρkskuk) +
1

Tk

(
pI −

(
pk +

2

3
Kk

))
(uk − uI) ∂xαk

=
(−1)k+1

Tk

{
Q+ (U − uk)D − µkΓ +

((
pk +

2

3
Kk

)
− pI

)
Φ

}
Then we use the closure laws on interfacial velocity and pressure (6)-(7) to get
the evolution law of the global entropy:

∂tη + ∂xfη =

(
1

T2
− 1

T1

)
Q

+

(
1

2T1
+

1

2T2

)
(u1 − u2)D

+

(
µ1

T1
− µ2

T2

)
Γ

+

(
1− b
T1

+
b

T2

){(
p2 +

2

3
K2

)
−
(
p1 +

2

3
K1

)}
Φ

The conclusion is now obvious using closure laws (9).

This entropy inequality is really close to the one in the laminar case, there-
fore it leads to similar source terms. Turbulent energies are involved in pressure
and free enthalpy relaxation terms but one recovers the laminar source terms
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when turbulent kinetic energies vanish. Temperature and velocity relaxation
terms remain exactly the same as in the laminar case.

From now on, we will restrict to the case (uI , pI) =
(
u1, p2 + 2

3K2

)
in the

sequel.

4 Main properties of the convective system

We provide below some of the main properties of the convective system of equa-
tions. Propositions 2 and 4 arise as expected.

Proposition 2. The homogeneous convective subset :

∂tW + ∂xF (W ) + C(W )∂xW = 0 (10)

is hyperbolic. It admits seven real eigenvalues:

λ1,2 = u1
λ3 = u1 − c̃1
λ4 = u1 + c̃1
λ5 = u2
λ6 = u2 − c̃2
λ7 = u2 + c̃2

with c̃2k = c2k +
10Kk

9ρk
(11)

and associated vectors span the whole space R7, unless |u2 − u1| /c̃2 = 1. Fields
associated with eigenvalues λ1,2 and λ5 are linearly degenerate (LD). Other fields
are genuinely non linear (GNL).

We notice that the turbulent kinetic energy modifies the celerity of the GNL
waves which is straightforward when focusing on single phase turbulent models
(see [9] for instance). Thus it will also affect resonant waves of the system.

Proposition 3 (Riemann invariants). The five Riemann invariants of the 1-2
LD field associated with the void fraction coupling wave are the following:

I11,2(W ) = u1
I21,2(W ) = s2
I31,2(W ) = α2ρ2 (u2 − u1)

I41,2(W ) = α1

(
p1 + 2

3K1

)
+ α2

(
p2 + 2

3K2

)
+ α2ρ2 (u2 − u1)

2

I51,2(W ) = ε2 + p2
ρ2

+ 5
3
K2

ρ2
+ 1

2 (u2 − u1)
2

(12)

The Riemann invariants associated with the other waves read:

I3(W ) =
(
α1, ρ2, u2,

(
p2 + 2

3K2

)
, s1, u1 + φ1

)T
I4(W ) =

(
α1, ρ2, u2,

(
p2 + 2

3K2

)
, s1, u1 − φ1

)T
I5(W ) =

(
α1, ρ1, u1,

(
p1 + 2

3K1

)
,
(
p2 + 2

3K2

)
, u2
)T

I6(W ) =
(
α1, ρ1, u1,

(
p1 + 2

3K1

)
, s2, u2 + φ2

)T
I7(W ) =

(
α1, ρ1, u1,

(
p1 + 2

3K1

)
, s2, u2 − φ2

)T
(13)
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where φk =

∫ pk

p0

c̃k
ρkc2k

(pk, sk)dpk.

Once again, we retrieve the classical results [10] when the turbulent kinetic
energies are not accounted for (thus setting Kk = 0).

Proposition 4 (Jump conditions). Within each isolated field, unique jump
conditions hold. We denote [f ] = fr− fl the jump between the (l)eft and (r)ight
states on each side of a discontinuity travelling at speed σ. Turning to the
genuinely non linear fields, jump conditions may be written:

[αk] = 0
−σ [ρk] + [ρkuk] = 0

−σ [ρkuk] +

[
ρku

2
k + pk +

2

3
Kk

]
= 0

−σ [Ek] +

[
uk

(
Ek + pk +

2

3
Kk

)]
= 0

(14)

Those jump conditions may be easily rewritten as follows:
[αk] = 0
σ = [ρkuk] / [ρk]

(ρk)R(ρk)L [uk]
2

=
[
pk + 2

3Kk

]
[ρk]

2
[
εk + Kk

ρk

]
+
{(
pk + 2

3Kk

)
R

+
(
pk + 2

3Kk

)
L

}[
1
ρk

]
= 0

(15)

More over, looking at the case of a perfect gas EOS, we have the following:

Proposition 5 (Jump conditions for perfect gas EOS). We assume that phase
k complies with the perfect gas EOS: pk = (γk−1)ρkεk, γk > 1. We also assume
that the Left state is admissible WL ∈ Ω according to (4) and that no vacuum
occurs in the solution. Then the jump conditions (14) ensure that the right state
is admissible: WR ∈ Ω. It also provides bounds for the density ratio whereas the
pressure ratio has no bound:

(βk)−1 <
(ρk)R
(ρk)L

< βk (16)

with βk = γk+1
γk−1 .

Proof. We note zk = (ρk)R/(ρk)L the density ratio and πk = (pk)R/(pk)L the
pressure ratio. The third equation of (15) gives the following relation between
states through genuinely non linear fields associated with λ3 or λ6:

πk (βk − zk) + 1− βkzk − gk(zk) = 0

where gk(z) = 2
3
(Kk)L
(pk)L

(
z8/3 − 4z5/3 + 4z − 1

)
. Moreover zk > 1 and it implies

gk(zk) > 0. Then we get the pressure ratio:

πk =
βkzk − 1 + gk(zk)

βk − zk
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and the conclusion is thus straightforward. A similar proof holds through fields
associated with λ4 or λ7.

We first note that we recover the bounds arising in the pure laminar case
(see for instance [25]). This was expected since the instantaneous inequality:

β−1φL < φR < βφL (17)

(where β is constant with respect to the statistics) obviously provides the fol-
lowing relation between the mean quantities:

β−1 < φL > ≤ < φR > ≤ β < φL > (18)

It is important to notice that, unlike in [9, 15], we do not require any approxi-
mate jump condition. Eventually, we can easily check that the ratio of left and
right turbulent kinetic energies is also bounded.

We recall that all the properties described here suppose that the Baer-
Nunziato closure holds (uI , pI) =

(
u1, p2 + 2

3K2

)
. In the case when a = m1

m1+m2
,

proposition 2 is slightly different since there is another distinct linearly degen-
erate field associated with λ = uI , where (uI − u1)(uI − u2) 6== 0. Therefore
proposition 3 is slightly different since other Riemann invariants arise. This
renders the coupling wave associated with the eigenvalue λ = uI more intricate,
as it already happens in the laminar case (Kk = 0).

5 Remarks

We now make a few remarks on the one-dimensional Riemann problem: ∂tW + ∂xF (W ) + C(W )∂xW = 0

W (t = 0, x) =

{
WL, if x < 0
WR, if x > 0

(19)

where WL and WR are admissible states: WL,WR ∈ Ω.

First of all, we remind that one cannot provide the solution of the general
Riemann problem in the laminar case, even when a perfect gas EOS is assumed
within each phase (see [10]). Nonetheless, a simple result may be given, which
is the straightforward counterpart of what happens in the laminar case:

Remark 1. We assume that (α1)L = (α1)R and that a perfect gas EOS holds
within each phase: pk = (γk− 1)ρkεk, γk > 1. The Riemann problem (19) has a
unique entropy consistent solution involving constant states separated by shocks,
rarefaction waves and contact discontinuities if and only if:

(uk)R − (uk)L <

∫ (pk)L

0

c̃k
ρkc2k

(pk, sk)dpk +

∫ (pk)R

0

c̃k
ρkc2k

(pk, sk)dpk (20)

for k = 1, 2.
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Proof. Since (α1)L = (α1)R, phases evolve independently. Therefore, we can
use the property from [16] on the monophasic Riemann problem.

In order to consider real void fraction coupling waves, we have to use the con-
nection through the 1,2-wave given by the Riemann invariants I1,2 in property
3. This leads to the following:

Remark 2. We now suppose that (α1)L 6= (α1)R. Assume that a perfect gas
EOS holds within each phase and that W (x, t) is the solution of the Riemann
problem (19). Then the connection of two constant states separated by a simple
wave (either a shock, a rarefaction wave or a contact discontinuity) guarantees
that all states of W (x, t) are admissible: W (x, t) ∈ Ω , ∀ x, t.

Our last remark addresses the problem of defining Kk,0. At the initial time,
we have:

Kk,0 =
Kk

ρ
5/3
k

(x, t = 0)

Thus, a natural choice of Kk,0 using the initial data is the mean value:

Kk,0 =
1

|V |

∫
V

(
Kkρ

−5/3
k

)
(x, t = 0)dx

The turbulent two-phase flow model introduced in this paper is in agreement
with requirements (i,ii,iii), and thus allows the computation of shock solutions in
turbulent two-phase flows. The extension of the current results to the framework
of multiphase flows seems feasable, considering [22, 17], but this point has not
been investigated yet.
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