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Preface

The motion of mechanisms, kinematics, is one of the most fundamental aspect of robot
design, analysis and control but is also relevant to other scientific domains such as biome-
chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK)
report the latest achievement in this field. ARK has a long history as the first book was
published in 1991 and since then new issues have been published every 2 years. Each book
is the follow-up of a single-track symposium in which the participants exchange their results
and opinions in a meeting that bring together the best of world’s researchers and scientists
together with young students. Since 1992 the ARK symposia have come under the patronage
of the International Federation for the Promotion of Machine Science-IFToMM.

This book is the 13th in the series and is the result of peer-review process intended to
select the newest and most original achievements in this field. For the first time the articles
of this symposium will be published in a green open-access archive to favor free dissemination
of the results. However the book will also be o↵ered as a on-demand printed book.

The papers proposed in this book show that robot kinematics is an exciting domain with
an immense number of research challenges that go well beyond the field of robotics.

The last symposium related with this book was organized by the French National Re-
search Institute in Computer Science and Control Theory (INRIA) in Grasse, France. We
are grateful to the authors for their contributions and to the large team of reviewers for their
critical and insightful recommendations. We are also indebted to the members of the HEP-
HAISTOS team of INRIA for their help in organizing the symposium and to Y. Papegay
for putting the whole book together.

Sophia Antipolis, June 2016 Jadran Lenarčič
Jean-Pierre Merlet





Contents

Mechanism and kinematics 1

Mass Equivalent Pantographs for Synthesis of Balanced Focal Mechanisms . . . . . 4
Volkert van der Wijk
Compliant Serial 3R Chain with Spherical Flexures . . . . . . . . . . . . . . . . . . 14
Farid Parvari Rad, Rocco Vertechy, Giovanni Berselli and Vincenzo Parenti-Castelli
Combining Tube Design and Simple Kinematic Strategy for Follow-the-Leader

Deployment of Concentric-Tube Robots . . . . . . . . . . . . . . . . . . . . . 24
Cédric Girerd, Kanty Rabenorosoa and Pierre Renaud
A screw based dynamic balancing approach, applied to a 5-bar mechanism . . . . . 32
Jan de Jong, Johannes van Dijk and Just Herder

Mechanism and kinematics 2

A Novel S-C-U Dual Four-Bar Linkage . . . . . . . . . . . . . . . . . . . . . . . . . 42
Pierre Larochelle and Sida Du
Inverse kinematics analysis of a P2CuP2Cu concentric tube robot with embedded

micro-actuation for 3T-1R contactless tasks . . . . . . . . . . . . . . . . . . . 52
Mohamed Taha Chikhaoui, Kanty Rabenorosoa and Nicolas Andre↵
Structural Synthesis of Hands for Grasping and Manipulation Tasks . . . . . . . . 62
Ali Tamimi, Alba Perez-Gracia and Martin Pucheta
Generalized Construction of Bundle-Folding Linkages . . . . . . . . . . . . . . . . . 72
Shengnan Lu, Dimiter Zlatanov, Matteo Zoppi and Xilun Ding

Parallel robots 1

A complete analysis of singularities of a parallel medical robot . . . . . . . . . . . 82
Josef Schadlbauer, C. Vaida, P. Tucan, D. Pisla, M. Husty and N. Plitea
Workspace Analysis of a 3-PSP motion platform . . . . . . . . . . . . . . . . . . . 90
Luc Baron
Posture Optimization of a Functionally Redundant Parallel Robot . . . . . . . . . 100
David Corinaldi, Jorge Angeles and Massimo Callegari
Accounting for tolerances in the design parameters of the 3-RRR . . . . . . . . . . 110
Joshua K. Pickard, Juan A. Carretero and Jean-Pierre Merlet

iii



Parallel robots 2

A Study on Simplified Dynamic Modeling Approaches of Delta Parallel Robots . . 120
Jan Brinker, Philipp Ingenlath and Burkhard Corves
Hidden cusps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Michel Coste, Philippe Wenger and Damien Chablat
Some Mobile Overconstrained Parallel Mechanisms . . . . . . . . . . . . . . . . . . 140
J.M. Selig
On the line-symmetry of self-motions of linear pentapods . . . . . . . . . . . . . . 150
Georg Nawratil
On some notable singularities of 3-RPR and 3-RRR PPRMs . . . . . . . . . . . . . 160
K.A. Arrouk, B.C. Bouzgarrou and G. Gogu

Parallel robots 3

Minimized-Torque-Oriented Design of Parallel Modular Mechanism for Humanoid
Waist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Mouna Souissi, Vincent Hugel, Samir Garbaya and John Nassour
Kinematic analysis of the Delthaptic, a new 6-DOF haptic device . . . . . . . . . . 182
Margot Vulliez, Said Zeghloul and Oussama Khatib
A family of non-overconstrained 3-DoF reconfigurable parallel manipulators . . . . 192
M.C. Palpacelli, L. Carbonari, G. Palmieri and Massimo Callegari
Dealing with redundancy of a multiple mobile coil magnetic manipulator: a 3RPR

magnetic parallel kinematics manipulator . . . . . . . . . . . . . . . . . . . . 202
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Mass Equivalent Pantographs for Synthesis of
Balanced Focal Mechanisms

Volkert van der Wijk

Abstract Force balance is an important property in the design of high-speed high
precision machinery to reduce base vibrations and also for the design of inherently
safe large movable structures. This paper presents the synthesis of inherently bal-
anced overconstrained focal mechanisms with mass equivalent pantographs. It is
shown how pantograph linkages can be combined into an overconstrained but mov-
able linkage by connecting them in their similarity points. With mass equivalent
modeling the force balance conditions are derived for which the common center of
mass is in the focal point for any motion. As examples Burmester’s focal mecha-
nism is investigated for balance and a new balanced focal mechanism of three mass
equivalent pantographs is presented.

Key words: focal mechanism, pantograph, Burmester, force balance, mass equiva-
lence

1 Introduction

In robotics, dynamic (shaking) force balance is an important property for high-speed
motion with minimal base vibrations [4]. Since force balanced mechanisms are stat-
ically balanced too, it is also an useful property for large moving structures for save
motion with minimal effort.

A problem of common approaches to balance pre-existing mechanisms is that
generally a multitude of counter-masses is required [1, 9], leading to unpractical
designs with a significant increase of mass and inertia [6]. Instead, a reversed ap-
proach was presented where balanced mechanisms are synthesized from inherently
balanced linkage architectures [4]. These linkages consist solely of the essential

V. van der Wijk
Centre for Robotics Research, Dep. of Informatics, Fac. of Natural and Mathematical Sciences,
King’s College London, Strand, London (UK); e-mail: Volkert.vanderWijk@kcl.ac.uk
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2 Volkert van der Wijk

kinematic and mass properties for balance. With this method a variety of new ad-
vantageous inherently balanced mechanism solutions were found among which the
first high-speed dynamically balanced parallel manipulator that was successfully
built and tested [8].

With inherent balancing it is also possible to synthesize balanced mechanism
solutions from overconstrained inherently balanced linkage architectures [7]. These
architectures have more links than kinematically needed. This gives the designer
the freedom to select links to keep or eliminate to obtain a normally constrained
balanced mechanism solution. Also more solutions can potentially be found.

The goal of this paper is to investigate focal mechanisms, which are overcon-
strained and movable, for inherent balance. The focal mechanism of Burmester [2]
- the cognate of Kempe’s focal mechanism - can be regarded a combination of two
pantographs [3]. It is shown how these two pantograph linkages can be combined
by connecting them in their similarity points. For force balance the two pantographs
need to be mass equivalent with a model of which the common center of mass
(CoM) is in the focal point. The conditions for this are derived. In addition also a
new inherently balanced focal mechanism of three combined pantographs is pre-
sented at the end.
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Fig. 1 Burmester’s focal mechanism of two pantograph linkages connected in their similarity
points A0, A2, and S. S is the focal point and is the common CoM of all elements for force balance.
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Mass Equivalent Pantographs for Synthesis of Balanced Focal Mechanisms 3

2 CoM in focal point of Burmester’s focal mechanism

Figure 1 shows Burmester’s focal mechanism which consists of the two pantograph
linkages P1A1P2S - with link lengths l1, l2, a1, and a2 - and P3A3P4S - with link
lengths l3, l4, a3, and a4 - that are connected with revolute pairs in the similarity
points A0, A2, and S. This linkage is two times overconstrained yet movable since
both pantographs are similar, i.e. elements A0A1P1 � A1A2P2 � A0A3P3 � A3A2P4
with angles b1 and b2. These four triangular elements are also similar to triangle
A0A2S for any motion of the mechanism. Both pairs of opposite internal four-bars
are reflected similar to one another, with one pair being parallelograms.

When, for example, for the upper pantograph a1, a2, l1, and b1 are given, l2 and
b2 can be calculated as

� S
1 = 1�

a1

l1
cosb1, � S

2 =
a1

l1
sinb1 (1)

b2 = tan�1 � S
2

� S
1

, l2 =
a2

� S
1

cosb2 =
a2

� S
2

sinb2

with � S
1 and � S

2 the constant similarity parameters of the four triangular elements
and triangle A0A2S. When, subsequently, for the lower pantograph l3 and l4 are
given, a3 and a4 can be calculated as

a3 = (1�� S
1 )

l3
cosb1

= � S
2

l3
sinb1

, a4 = l4
� S

1
cosb2

= l4
� S

2
sinb2

(2)

These parameters can also be obtained from the similarity conditions of the four
triangular elements which write

a1

l1
=

a3

l3
,

a2

l2
=

a4

l4
(3)

In Fig. 1 each of the eight links i has a mass mi of which the CoM is defined
with parameters ei and fi as illustrated. The aim is to design the mechanism such
that the common CoM of all elements is in focal point S for any motion. Then the
mechanism is inherently force balanced with respect to the focal point.

The force balance conditions describe how the CoMs of each element are related
for balance. These conditions can be found by mass equivalent modeling with real
and virtual equivalent masses [4, 5]. With mass mI = m1 + m2 + m5 + m6 of up-
per pantograph P1A1P2S and mass mII = m3 + m4 + m7 + m8 of lower pantograph
P3A3P4S the total mass of the focal mechanism can be written as mtot = mI + mII .
The common CoM of the upper pantograph is denoted SI and the common CoM
of the lower pantograph is denoted SII . With similarity points A0 and A2 these two
points form two triangles as well which also have to remain similar for any mo-
tion. For force balance then each pantograph is mass equivalent to a 2-DoF mass
equivalent model with the conditions [5]

Mass Equivalent Pantographs for Synthesis of Balanced Focal Mechanisms 5
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ma
I = mI(1�� I

1), mb
I = mI� I

1 , mc
I = mI� I

2 (4)
ma

II = mII(1�� II
1 ), mb

II = mII� II
1 , mc

II = mII� II
2

with � I
1 and � I

2 the similarity parameters of triangle A0A2SI , � II
1 and � II

2 the simi-
larity parameters of triangle A0A2SII , and real equivalent masses ma

j and mb
j and vir-

tual equivalent mass mc
j of each pantograph j. For the upper pantograph in Fig. 2a,

Fig. 2b shows the 2-DoF mass equivalent model adapted from [5]. Essentially the
virtual equivalent mass determines the link CoMs relative to the lines connecting the
joints, i.e. the values of parameters fi, whereas the real equivalent masses determine
the link CoMs along the lines connecting the joints, i.e. the values of parameters ei.

To have the common CoM in the focal point, the sum of the mass equiva-
lent models of the two pantographs should equal the mass equivalent model of
the complete mechanism. This can be written as mI� I

1 + mII� II
1 = mtot� S

1 and
mI� I

2 + mII� II
2 = mtot� S

2 . The resulting model is similar to Fig. 2b but with each
equivalent mass replaced with the sum of the equivalent masses of the two panto-
graph models as ma = ma

I +ma
II , mb = mb

I +mb
II , and mc = mc

I +mc
II . The conditions

for the mass equivalent model of the complete mechanism then are written as

ma = mtot(1�� S
1 ), mb = mtot� S

1 , mc = mtot� S
2 (5)

The force balance conditions for each pantograph can be derived from the linear
momentum equations of each DoF individually where the linear momentum of the
mass equivalent model must equal the linear momentum of the real pantograph,
similar as for the dyads in [5]. Figure 3a shows the mass motions of DoF 1 of the
upper pantograph where link A1A2 is fixed and link A0A1 rotates about A1 with
angle �I1. The mass motion of the pantograph for this DoF is shown on the right
with a compact Equivalent Linear Momentum System (ELMS) where all masses
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Fig. 2 For force balance (a) each pantograph must be mass equivalent to the (b) 2-DoF mass
equivalent model, here shown for the upper pantograph with CoM in SI .
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are projected on element A0A1. Figure 3b shows the mass motions of DoF 2 where
link A1A0 is fixed and link A1A2 rotates about A1 with angle �I2. Also here the mass
motion of the pantograph for this DoF is shown on the right with a compact ELMS
where all masses are projected on element A1A2. The linear momentum L1 and L2
of these individual motions can be written with respect to their relative reference
frames xI1yI1 and xI2yI2, which are aligned with lines A0A1 and A2A1, respectively,
as

L1

�̇I1
=


ma

I l1
�mc

I l1

�
=


m1e1 +m5(e5 cosb1 + f5 sinb1)+m6a1 cosb1
�m1 f1 �m5(e5 sinb1 � f5 cosb1)�m6a1 sinb1

�
(6)

L2

�̇I2
=


mb

I l2
mc

I l2

�
=


m2e2 +m5a2 cosb2 +m6(e6 cosb2 + f6 sinb2)
m2 f2 +m5a2 sinb2 +m6(e6 sinb2 � f6 cosb2)

�

These equations result in the four force balance conditions

ma
I l1 = m1e1 +m5(e5 cosb1 + f5 sinb1)+m6a1 cosb1 (7)

mc
I l1 = m1 f1 +m5(e5 sinb1 � f5 cosb1)+m6a1 sinb1 (8)

mb
I l2 = m2e2 +m5a2 cosb2 +m6(e6 cosb2 + f6 sinb2) (9)

mc
I l2 = m2 f2 +m5a2 sinb2 +m6(e6 sinb2 � f6 cosb2) (10)
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Fig. 3 The force balance conditions are derived from the linear momentum equations of each DoF
individually which are equal for the mass equivalent model (left) and the real pantograph (right,
here shown as compact Equivalent Linear Momentum Systems).
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For the other pantograph the force balance conditions can be derived similarly as

ma
IIl3 = m3e3 +m7(e7 cosb1 + f7 sinb1)+m8a3 cosb1 (11)

mc
IIl3 = m3 f3 +m7(e7 sinb1 � f7 cosb1)+m8a3 sinb1 (12)

mb
IIl4 = m4e4 +m7a4 cosb2 +m8(e8 cosb2 + f8 sinb2) (13)

mc
IIl4 = m4 f4 +m7a4 sinb2 +m8(e8 sinb2 � f8 cosb2) (14)

These are the 8 general force balance conditions of the focal mechanism in Fig. 1
for which the common CoM is in the focal point S. For example, from the first
four equations the equivalent masses ma

I , mb
I , and mc

I may be found to subsequently
calculate with Eqs. (5) the equivalent masses ma

II mb
II , and mc

II to be used in the latter
four balance conditions. It is also possible to initially choose values for ma

I mb
I , and

mc
I . Then for instance from the first four equations e5, f5, e6, and f6 can be derived

as

e5 =
sinb1(mc

I l1 �m1 f1 �m6a1 sinb1)+ cosb1(ma
I l1 �m1e1 �m6a1 cosb1)

m5

f5 =
sinb1(ma

I l1 �m1e1 �m6a1 cosb1)� cosb1(mc
I l1 �m1 f1 �m6a1 sinb1)

m5

e6 =
sinb2(mc

I l2 �m2 f2 �m5a2 sinb2)+ cosb2(mb
I l2 �m2e2 �m5a2 cosb2)

m6

f6 =
sinb2(mb

I l2 �m2e2 �m5a2 cosb2)� cosb2(mc
I l2 �m2 f2 �m5a2 sinb2)

m6

3 Focal mechanism of three pantographs

In general it is possible to synthesize a variety of inherently force balanced focal
linkages by combining multiple mass equivalent pantographs in the same way as
in the previous section. Figure 4 shows a new focal mechanism that is composed
of the three pantographs P1A1P2S, P3A3P4S, and P5A5P6S which are connected in
similarity points A0, A2, A4, and S where S is the focal point. The resulting linkage
is four times overconstrained yet movable. Also here each pantograph has similar
triangular elements and a similar triangle of the similarity points. However in this
case the pantographs differ from one another, e.g. the triangular elements of panto-
graph P1A1P2S are not similar to the triangular elements of the other pantographs.
In fact the focal mechanism is a combination of the three different triangles A0A2S,
A2A4S, and A0A4S that together form the triangle A0A2A4. For each pantograph the
dimensions of the elements can be calculated with Eqs. (1) with for each pantograph
different � S parameters. For two pantographs the � S parameters can be chosen in-
dependently such that with the triangle A0A2A4 the third is determined.

The approach to derive the force balance conditions for which the common CoM
is in focal point S is similar to Burmester’s focal mechanism. Here the mechanism

8 Volkert van der Wijk
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can be considered a combination of three mass equivalent models with each a mass
mI , mII , and mIII with CoMs in SI , SII , and SIII , respectively as illustrated in Fig. 5a.
For each pantograph the force balance conditions can be found with Eqs. (6). The
equivalent masses ma

j , mb
j , and mc

j of each mass equivalent model are defined ac-
cording to Eqs. (4). The mass equivalent model of the complete focal mechanism
has real equivalent masses ma

I + mb
III in A0, mb

I + ma
II in A2, and mb

II + ma
III in A4

and it has virtual equivalent masses mc
I about SI , mc

II about SII , and mc
III about SIII

as illustrated. Figure 5b shows the unified mass equivalent model of the complete
focal mechanism from which the conditions for which S is the CoM of this model
can be derived as

(mb
II +ma

III)d3 +(mb
I +ma

II)d1 cos�1 = mtoth1

(mb
I +ma

II)d1 sin�1 = mtoth2 (15)
mc

IIId3 �mc
IId2 cos�3 �mc

I d1 cos�1 = 0
mc

I d1 sin�1 �mc
IId2 sin�3 = 0

with total mass mtot = mI + mII + mIII and with the CoM in S defined with respect
to A0A4 by h1 and h2.
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Fig. 4 Focal mechanism of three pantograph linkages connected in their similarity points A0, A2,
A4, and S. S is the focal point and is the common CoM of all elements for force balance.
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4 Discussion and conclusion

The inherent force balance of Burmester’s focal mechanism was investigated and
the force balance conditions were derived. It was shown that for balancing the fo-
cal mechanism can be considered composed of two mass equivalent pantographs.
Combination of the mass equivalent models of the pantographs then results in one
mass equivalent model of which the center of mass is in the focal point.

It was also shown how with three mass equivalent pantographs a new focal mech-
anism could be designed. In general, by combining multiple mass equivalent pan-
tographs a variety of inherently balanced focal mechanisms can be synthesized. Uni-
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Fig. 5 a) Combination of the three mass equivalent models with their equivalent masses. The
common CoM of the focal mechanism is the CoM of this combined mass equivalent model; b) The
unified mass equivalent model of the focal mechanism of which S is the CoM.
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fying the mass equivalent models of all pantographs then results in a single mass
equivalent model of which the center of mass is in the focal point.

Parameters ai are the principal dimensions of the focal mechanism when its com-
mon center of mass is in the focal point. When the center of mass of an individual
pantograph is in the focal point, then ai are also the principal dimensions of this
individual pantograph.

Although in Burmester’s focal mechanism the two pantographs are in opposite
branch, this is not required from the force balance conditions. This means that for
force balance one of the pantographs or both of them may also be in the other branch,
which means that they could also appear as being on top of one another.
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Compliant Serial 3R Chain with Spherical
Flexures

Farid Parvari Rad1, Rocco Vertechy1, Giovanni Berselli2, and Vincenzo Parenti
Castelli1

Abstract A spherical flexure is a special kind of compliant hinge specifically con-
ceived for spherical motion. It features an arc of a circle as centroidal axis and an
annulus sector as cross-section, circle and annulus having a common center coin-
ciding to that of the desired spherical motion. This paper investigates a compliant
spherical 3R open chain that is obtained by the in-series connection of three iden-
tical spherical flexures having coincident centers and mutually orthogonal axes of
maximum rotational compliance. The considered spherical chain is intended to be
used as a complex flexure for the development of spatial parallel manipulators. The
compliance matrix of the proposed chain is first determined via an analytical pro-
cedure. Then, the obtained equations are used in a parametric study to assess the
influence of spherical flexure geometry on the overall stiffness performances of the
considered 3R open chain.

Key words: Spherical Flexures, Compliance Matrix, Spherical Mechanisms.

1 Introduction

Compliant mechanisms (CMs) are a special kind of articulated systems in which
motion, force or energy are transferred or transformed through the deflection of flex-
ible members (hereafter briefly referred to as ”flexures” or ”flexural hinges”) [10].
Thanks to the absence (or reduced use) of traditional kinematic pairs, which are in-
stead based on mating surfaces, CMs are almost not affected by wear, friction and
backlash, and only require minimal maintenance with no need of lubrication. Due
to their hinge-less nature, CMs can be manufactured in a single piece (for instance
via laser or water jet cutting, electrical discharge machining or additive manufac-
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ova, Italy, e-mail: giovanni.berselli@unige.it
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turing), thereby reducing number of parts, assembly needs and, thus, manufactur-
ing costs. With the above-mentioned features, CMs are ideal to work in vacuum,
contamination-free, wet or dirty environments and in devices requiring resistance to
shocks and silent operation. Common applications of CMs span high-precision man-
ufacturing [27,36], minimally invasive surgery [9,18] and micro-electromechanical
systems (MEMS) [1, 30].
As regards the existing literature, several studies have been devoted to the design, the
characterization and the comparative evaluation of different flexure geometries and
CMs formed therewith (see e.g. [14,21,31,35]). In particular, most of these devices
have been specifically conceived for the generation of planar motions only, out-of-
plane displacements being regarded as parasitic effects to be minimized when pos-
sible [13]. On the other hand, despite the huge potentialities, exploitation and study
of CMs specifically conceived for spatial motions have been much more rare (see
e.g. [3–5, 20, 26, 28, 32, 34, 39]). Within this scenario, the development of Spherical
CMs (SCMs) has recently attracted the attention of several researchers. SCMs are an
important class of flexure-based spatial CMs in which all points of the end-link are
ideally constrained to move on concentric spherical surfaces that are fixed with re-
spect to the grounded link. In particular, the in-series ensemble of two or three com-
pliant revolute (R) joints (of either planar notch, planar leaf spring or straight torsion
beam type) with orthogonal and intersecting axes has been proposed in [8,17,19,37]
to conceive compliant spherical 2R or 3R serial chains to be used as compliant uni-
versal or spherical joints for the development of Cardan’s [33] and Double-Hooke’s
couplings [17] and of spatial parallel manipulators [4, 5, 20, 26, 28, 32, 34, 39]. In
these applications, the use of compliant spherical 2R or 3R serial chains in place of
the axial-symmetric notch primitive flexure is usually preferred owing to the more
limited ranges of motions and larger stress concentrations of this latter. The con-
nection of four, five, six or eight bars with an equal number of compliant revolute
joints (of either straight crease or lamina emergent torsional type) with intersect-
ing axes has been considered in [6, 7, 38] for the development of 4R, 5R, 6R or
8R closed single-loop lamina-emergent SCMs, as well as arrays thereof (including
the six bar Watt’s and Stephenson’s linkages), to be used in origami-inspired fold-
able systems such as pop-up books, industrial packaging and deployable devices.
Planar notch and straight torsion beam flexures have been used in [19] to develop
an actuated miniature 3-CRU (C and U denoting cylindrical and universal joints
respectively) spherical parallel CM for the orientation of parts and tools in space.
The in-parallel connection of three symmetrically placed spherical 3R serial chains
employing either lamina emergent straight torsion beam or notch flexures has been
proposed in [11, 29] for the development of 3-(3R) spherical parallel CMs with flat
initial state to be used in compact pointing devices such as in MEMS beam-steering
mirrors or medical instruments.
In all the above-mentioned studies, the considered SCMs have been obtained by em-
ploying compliant revolute flexures specifically conceived for planar motion appli-
cations. In contrast to this, Circularly-Curved Beam Flexures (CCBFs) with constant
cross-section and featuring lower rotational rigidity along the radial direction have
been proposed in [12, 22] for the development of SCMs with improved spherical
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motion capabilities. Among these CCBFs, those with annulus sector cross-section
as depicted in Figs. 1 and 2, hereafter referred to as Spherical Flexures (SFs), have
recently been demonstrated among the most effective ones in reducing the drift of
the desired center of spherical motion under the combined action of torques and
forces [25].
In this context, this paper investigates the use of SFs for the development of compli-
ant spherical 3R serial chains to be used as SCMs or as spherical complex flexure
components for spatial CMs with either serial or parallel architecture. As depicted
in Fig. 3, the considered spherical chains are obtained by the in-series connection
of three identical SFs that are arranged in space so as to share the same center of
curvature and have mutually orthogonal axes of maximum rotational compliance. In
particular, analytical results are provided to characterize the compliance behavior of
the considered chain in 3D space as a function of flexure geometric parameters.
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2 Formulation

A spherical flexure connecting the rigid links A and B is depicted in Fig. 1. It is a
solid of revolution characterized by an annulus sector cross-section with inner and
outer radii, ri and ro, and subtended angle b (see Fig. 2), an axis of revolution zk
passing through the center Ok of the annulus and orthogonal to the cross-section axis
of symmetry, m, (see Fig. 1), and revolution angle � (which describes the flexure
length). Cross-section dimensionless parameters, b and w⇤ (w⇤ = ro�ri

ro
), are such

that its smaller area moment of inertia is in the direction of the m axis. Assuming
link A being clamped and B free and loaded, the small deflection behavior of the
flexure about its unloaded configuration can be described by the following relation
[23]:

ks =

"
ku
k���

#
=

2

4
kCu f

kCum

kC� f
kC�m

3

5
·

"
kf

km

#
= kC ·

kw (1)

where ks is composed of an incremental translation ku = [kux
kuy

kuz]T and an in-
cremental rotation k� = [k�x

k�y
k�z]T , kw is composed of an incremental force

kf = [k fx
k fy

k fz]T and an incremental torque km = [kmx
kmy

kmz]T , whereas
kCu f , kCum, kC� f , kC�m are three-dimensional matrices composed of entries with
dimensions [m/N], [1/N], [rad/N], and [rad/Nm] respectively.
As a consequence, kC ⌘

k Ci j is a 6x6 matrix with entries of non uniform physical
dimensions, the submatrices kCT = [kCu f

kCum] and kCR = [kC� f
kC�m] relating

the external wrench to the resulting translations and rotations respectively.
The expression of Eq. 1 is frame dependent. For any SF intended for spherical mo-
tion about the center of its centroidal axis circle, a suitable frame is Sk that features
center at Ok and orthogonal axes xk, yk and zk respectively lying on centroidal axis
plane, on beam symmetry plane and along the intersection of these two planes (see
Fig. 1). In this frame, indeed, sub-matrices kCu f and kC�m are diagonal (meaning
that xk, yk and zk are along the principal directions of rotational and translational
compliance of the flexure), and the components of kCu f and kCum (or kC� f ) indi-
cate how the desired center of spherical motion drifts as a consequence of applied
external forces and torques.
Knowing matrix kC for a single spherical flexure, the compliance matrix of the
in-series ensemble of any number n of identical flexures can be obtained with the
following formula [2]:

0C =
n

Â
k=1

0T�T
k ·

kC ·

0T�1
k =

n

Â
k=1

kTT
0 ·

kC ·

kT0 (2)

where kT0 is a 6x6 matrix to transform the components of the stiffness matrix kC
of the k � th flexure from the local frame Sk to a ground frame S0. In particular, the
expression of kT0 is:

16 Farid Parvari Rad et al.



Compliant Serial 3R Chain ... 5

kT0 =

"
kR0 0

ker0 ·

kR0
kR0

#
=

2

4
0RT

k 0
�0erk ·

0Rk
�T 0RT

k

3

5 (3)

where kR0 denotes the rotation matrix of frame S0 with respect to frame Sk and 0erk
indicating the skew symmetric matrix of the position vector kr0, which locates the
origin of frame S0 with respect to frame Sk.
For the compliant spherical 3R chain shown in Fig. 3, made by three identical spher-
ical flexures with coincident centers Ok and mutually orthogonal axes, the overall
compliance matrix expressed with respect to the reference frame of the first spheri-
cal flexure (namely, S0 ⌘ S1) results as [24]:

0C3R =

2

6666664

Cx, fx 0 0 0 Cx,my Cx,mz

0 Cy, fy 0 Cy,mx 0 Cy,mz

0 0 Cz, fz Cz,mx Cz,my 0
0 C�x, fy C�x, fz C�x,mx 0 0

C�y, fx 0 C�y, fz 0 C�y,my 0
C�z, fx C�z, fy 0 0 0 C�z,mz

3

7777775

3R

(4)

where:

Cx, fx = Cy, fy = Cz, fz =
R� (InGJ+GJR2A+R2EAIn)

EAInGJ = Ct

C�x,mx = C�y,my = C�z,mz = R� (InEIm+InGJ+GJIm)
GJEImIn = Cr

Cx,my = Cy,mz = Cz,mx = C�x, fz = C�y, fx = C�z, fy = �2R2 sin(�/2)
GJ = Ctr1

Cx,mz = Cy,mx = Cz,my = C�x, fy = C�y, fz = C�z, fx = 2R2 sin(�/2)
EIn = Ctr2

(5)

In Eq. 5, E and G are the Young’s and shear moduli of the employed material. A, R,
Im, In and J are, respectively, cross section area, certroidal axis radius, area moments
of inertia and torsional constant of the flexure cross section (refer to Fig. 2) that read
as follows [25]:

A =
r2

ob
2

�

r2
i b
2

=
(r2

o � r2
i )b

2
(6)

R =
4
3

(r3
o � r3

i )sinb/2
(r2

o � r2
i )b

(7)

Im =
1
8
(r4

o � r4
i )(b � sinb ) (8)

In =
1
8
(r4

o � r4
i )(b + sinb )�

8
9

(r3
o � r3

i )
2 sin2 (b/2)

(r2
o � r2

i )b
(9)

J =
2
3

sin3 (b/2)(r4
o � r4

i )�16sin4 (b/2)(VLr4
o +VSr4

i ) (10)

where:
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VL = 0.10504�0.2sin(b/2)+0.3392sin2 (b/2)�0.53968sin3 (b/2)+0.82448sin4 (b/2)

VS = 0.10504+0.2sin(b/2)+0.3392sin2 (b/2)+0.53968sin3 (b/2)+0.82448sin4 (b/2)

Eq. 10 is the formula for the torsional constant firstly proposed by J.B. Reynolds to
account for the warping of annulus sector cross-sections [15, 16].
As one can notice from Eqs. 4 and 5, the compliance matrix of the compliant spher-
ical 3R chain with respect to frame S0 still retains diagonal translational and rota-
tional sub-matrices (0Cu f and 0C�m), and is only a function of four independent
factors: Ct , Cr, Ctr1 and Ctr2 . Cr is the primary rotational compliance of the 3R
chain, which should be as high as possible to minimize resistance to desired spher-
ical motions. Ct is a secondary translational compliance, which should be as close
as possible to zero to minimize drift of the desired center of spherical motion (O0)
under the action of the force vector 0f applied on the end-link. Ctr1 and Ctr2 are
secondary coupled rotational-translational compliances, which should be as close
as possible to zero to minimize spherical motion center drift under the action of the
torque vector 0m applied on the end-link.

3 Parametric Evaluation of the Compliant Spherical 3R Chain

This section investigates the influence of flexure geometry on the ability of the con-
sidered 3R chain in the generation of spherical motions. The study is performed by
evaluating the following three indices:

f1 =

�����
1
r2

o

Ct

Cr

����� f2 =

�����
1
ro

Ctr1

Cr

����� f3 =

�����
1
ro

Ctr2

Cr

����� (11)

that represent the dimensionless ratios of the translational and coupled translational-
rotational compliances of a generic compliant spherical 3R chain to the rotational
counterpart. In the definition of these indices, the curvature radius ro of the SF is
used as characteristic size to obtain scale-independent expressions that only depend
on the flexure shape dimensionless parameters w⇤, b and � . In particular, f1 is only
a function of w⇤ and w⇤/b , whereas f2 and f3 also depend on � . Among the possi-
ble choices, ro has been chosen as characteristic length since it describes the overall
encumbrance of the 3R chain, which is often the most important application con-
straint in the design optimization process. Plots of Eq. 11 are reported in Figs. 4-8
as a function of the SF aspect ratios w⇤ and w⇤/b . The dependency of f2 and f3 on
� is shown by comparing Figs. 5 and 7 (for � = 45�) to Figs. 6 and 8 (for � = 90�).
In addition, the contour plot of the size independent factor C⇤

r = Cr ⇤ r3
o/� (which

is constant irrespective of the value of � and only dependent on the cross section
aspect ratios w⇤ and w⇤/b ) is reported in Fig. 9. As figures show, maximization of
the spherical motion generation capabilities of the considered compliant 3R chain
(that is, minimization of secondary to primary compliance ratios) can be obtained
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by adopting the largest possible values for � and w⇤/b (within the limits of physi-
cal realizability) as well as for w⇤ (within the limit of validity of the slender beam
approximation; namely w⇤ < 0.1� ).

4 Conclusions

A compliant open chain featuring three in-series connected identical primitive
spherical flexures with coincident centers of curvature and mutually orthogonal
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axes of principal compliance, is introduced and analyzed for application in spherical
compliant mechanisms. First, the closed form compliance equations of the proposed
spherical chain are presented as a function of flexure dimensions and employed ma-
terial. The obtained equations are then used to study the influence of flexure dimen-
sions on spherical chain parasitic motions.
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Combining Tube Design and Simple Kinematic

Strategy for Follow-the-Leader Deployment of

Concentric-Tube Robots

Cédric Girerd, Kanty Rabenorosoa, and Pierre Renaud

Abstract Concentric-tube robots show promising performances for many medical
applications. A particularly useful but challenging deployment of these robots, called
"follow-the-leader" deployment, consists in the robot following the path traced out
by its tip. In this paper, we propose to combine a simple and analytical kinematic
approach combined with now possible tube design to o�er e�cient follow-the-leader
behavior. The approach is presented and then assessed with promising performances
using a realistic scenario in the context of human nose exploration.

Key words: Continuum robot, concentric-tube robot, robot design, follow-the-
leader kinematics.

1 Introduction

Concentric-tube robots (CTR) constitute a class of continuum robots that is of
particular interest in the medical context [3]. The displacements of the robot end-
e�ector are then obtained by relative translations and rotations of precurved elastic
tubes with diameters that can be typically below 3 mm [5, 8]. Complex shapes
of robots can be generated using remote actuation, that is particularly relevant for
navigation in constrained anatomical areas. CTR kinematics are however complex
because of the mechanical interactions between the tubes. Several models have been
derived that now include in particular the impact of tube torsion which occurs in
the general case [2, 6]. Complementary work is now focused on the design of CTR
tubes, with local modifications of their shape and structure to obtain anisotropic
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Fig. 1: Front view and perspective view of the nasal cavity with suitable trajectory
(Fig. 1a, 1b) and CTR with 3 tubes deployed (Fig. 1c).

behavior and hence to modify the relative importance of bending and torsion in the
tubes. Until now, it is however still di�cult to build a CTR and its control to satisfy a
so-called follow-the-leader approach, where the CTR body only occupies the volume
swept by its tip during the deployment. Even though this approach can be mandatory
from an application point-of-view, limited solutions have indeed been reported to
choose accordingly a robot design, i.e. the number and geometry of precurved tubes,
and the deployment sequence [6].

In this paper we propose a simple-to-use and yet e�cient approach to CTR
design, with the corresponding deployment strategy, that allows an approximate
follow-the-leader behavior. In a realistic case study, i.e. the context of human nose
exploration, it is shown to be of adequate performance. The design and deployment
strategy combines the now existing possibility of tube design with a kinematic
approach. For planar trajectories, the goal of the paper, analytical formulation of
robot geometry, defined by number of tubes and their curvatures, and path following
sequence are introduced. Required modifications of tubes are then determined from
the task simulation. The method we propose consists first in path generation and
robot design. Their descriptions are introduced in sections 2 and 3 respectively with
illustration of the considered application. In section 4, the determination of tube
modifications is performed and the method assessed through simulation of torsion
impact as well as control errors during the deployment. Conclusions and perspectives
are finally given in section 5.

2 Trajectory Generation

In [6], the conditions for exact follow-the-leader deployment have been investigated.
To be admissible, a trajectory must not induce tube torsion. From a design point-
of-view, tubes with precurved helical shapes are identified as candidates for such
deployments, but their manufacturing remains delicate. The other option, for planar
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paths, uses planar precurved tubes with constant curvatures in the same or opposite
configurations. As a first step of our method, the CTR path is hence determined
by including this latter constraint. It can be easily demonstrated that a set of tubes
with planar configurations and constant curvatures form a CTR with 2D shape and
constant curvature by sections. The first step is therefore to identify a trajectory that
is admissible from an application perspective and constituted by portions of constant
curvatures.

In the following of the paper, an application is used for evaluation. We consider
the deployment of a CTR to reach the olfactory cleft, located in the upper part of
the nose. Fig. 1a represents the 3D shape of the area reconstructed from CT images.
The goal is to reach the olfactory cleft starting from the nostril. A planar path with
constant curvature by sections can be identified to join the two regions, as illustrated
in Fig. 1a and 1b. A point-cloud extraction and circle-fitting algorithm based on least-
squares optimization, not detailed for the sake of compactness, is used to identify the
path parameters. Three sections are determined, with length and curvature for each
one being equal to: 17.32, 14.27, 14.20 mm and 0.0353, 0.0646 and 0.0592 mm-1

respectively. The resulting trajectory is a key element that will be used as a reference
to quantify deployment errors during the robot insertion.

3 Robot Design and Deployment

The CTR is considered to be composed of planar precurved tubes of constant curva-
tures, located in the same plane, with aligned or opposite curvatures. In this situation
indeed, no torsion occurs in the tubes. If the tubes have aligned curvatures, one
can easily imagine that the resulting robot will be in a stable configuration. On the
contrary, depending on tube mechanical properties, opposite curvatures can make
the configuration unstable. This can be of course a main issue for the deployment.
To handle this situation, modification of the tube structure as described in [1, 7] is
considered. This does not a�ect the robot synthesis, described below, with determi-
nation of the number of tubes and their overall shapes, lengths and curvatures. Robot
design is thus described below, tube design being introduced in section 4.

Let n be the number of tubes of the CTR. Each tube numbered i is described by
its precurvature u⇤Fi (s)

i

(s) = [u⇤
i x

(s) u⇤
iy

(s) u⇤
iz

(s)]T expressed in its cross section
material coordinate frame F

i

(s). The sti�ness properties of the tube are expressed
by the frame-invariant sti�ness tensor K

i

= diag(E
i

I
i

,E
i

I
i

,G
i

J
i

), with E
i

, G
i

re-
spectively its Young and Shear modulus, and I

i

, J
i

respectively its cross section area
and polar moment of inertia. The curvature resulting from the combination of the n
tubes is then given by [5]:
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with F0(s) the cross-section reference frame which experiences no twist when trans-
lated along the robot’s centerline.

In order to determine the robot geometry, we propose to invert Eq. (1) in order
to solve for the tube curvatures. As the tubes are considered to have a constant
curvature along their length, without any presence of torsion, their curvatures can
then be written as u⇤

i

= [
i

0 0]T or u⇤
i

= [0 
i

0]T . The path sections are characterized
by their lengths (s1, . . ., sn ) and curvatures (1/r1, . . .,1/rn ), starting from the path
end. The number n of tubes is immediately determined to correspond to the number
of constant curvature sections on the path generated in the previous section. The tube
lengths (l1, . . ., ln) and curvatures (1, . . ., n ) can then be determined using Eq. (2),
which has to be solved first for tube 1, the inner tube, up to tube n, the outer tube,
in increasing index order, and using positive or negative path and robot curvatures
depending on the curvature direction:

l
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In (2), the values of Young’s modulus and cross section area moments of inertia I
j

are chosen from characteristics of circular Nitinol tubes, the standard choice for CTR
because of the material superelasticity. Using diameters of commercially-available
circular tubes, the lengths and curvatures are obtained from Eq (2) and indicated in
Table 1.

By extending the strategy described in [6], the computed CTR geometry can be
deployed with a follow-the-leader approach. As a first step, the n tubes are inserted
altogether by pure translation until the tube n reaches the end of its stroke (Fig. 2).
Then, the n� 1 tubes are inserted together, with the tube n remaining fixed, until
tube n�1 reaches the end of its stroke. The procedure is repeated until the robot is
fully deployed.

  

Tubes

3, 2, 1

Tubes

2, 1

Tube 1

Fig. 2: Deployment sequence of CTR with three tubes (n=3)
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Tube Young’s modulus Shear modulus Inner diameter Outer diameter Length Curvature
index (GPa) (GPa) (mm) (mm) (mm) (mm-1)

1 80 30 0.880 1.200 45.8 0.059
2 80 30 1.296 1.524 31.6 0.136
3 80 30 1.760 2.184 17.3 0.066

Table 1: Robot parameters after synthesis with the proposed method for the consid-
ered application.

4 Tube Design and Deployment Assessment

We have introduced in sections 2 and 3 how it is possible to generate a CTR geometry
and its deployment strategy for planar paths composed of constant curvature sections.
It was previously outlined that the use of concentric tubes with opposite curvatures
can lead to unstable configurations. To make use of a CTR for medical purposes, it
is obvious that only stable equilibrium positions should be used. In this section, we
propose to design tubes with anisotropic properties by local structure modification
to handle this particular issue and make the deployment strategy safe and accurate.

4.1 Robot kinematic model

The evaluation of the influence of tube properties is conducted using the application
data. The presented application context will also be used to assess the deployment
accuracy. Therefore, a model is needed to analyze the impact of torsion on the
interactions between the tubes, and possible deviations between stable and unstable
configurations. We here use the torsional model developed in [4, 10], based on an
energy method. For a set of n tubes experiencing bending and torsion, the energy
stored in the tubes is given by Eq. (3) if the tubes overlap continuously for s 2 [�1,�2].

E =
1
2

Z �2
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(u(s)�↵(s))T K (u(s)�↵(s))+Cds, (3)
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In these equations, u(s) represents the equilibrium curvature vector for the robot,
and R✓i the rotation matrix of angle ✓

i

about e3 = [0 0 1]T . The angles ( 1, . . ., n

)
designate the absolute angular variables of each tube. As neither C(s) nor ↵(s)
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depends on u(s), the minimal energy is obtained for u(s) = ↵(s). In order to
compute ↵(s), the variables  

i

(s) that describe the evolution of torsion along the
tubes have to be estimated. For tubes with constant curvature of the form u⇤

i

=
[

i

0 0]T or u⇤
i

= [0 
i

0]T , as previously considered, functions  
i

(s) can be
expressed by solving the system (5) of two first order di�erential equations [9]:
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where EI =
P

n

j=1 E
j

I
j

. The system (5) can be easily used for a CTR composed of
several sections by writing it for each set of overlapped tubes and adding continuity
constraints to the solution.

The set of equations representing torsion along the entire length of the robot is a
boundary value problem that is solved numerically using a finite di�erence code as
implemented in the bvp5c function in Matlab (The MathWorks Inc., Natick, USA).
Boundary conditions are  

i

(0), the known angles at the tubes insertion points, and
 ̇
i

(l
i

) = 0 as tubes can not apply axial moments at their distal ends. Finally, the
shape of the robot can be determined using Eq. (6), with superscript symbol "hat"
denoting the conversion of an element of R3 to an element of so(3), the Lie algebra
of Lie group SO(3).

ṗ = Re3
Ṙ = Rû (6)

To solve Eq. (6), u(s) can be approximated by constant values over a given step
size, and then a Runge-Kutta method can be used for the resolution.

4.2 Tube design

At this point, all the tube characteristics are known except the polar moments of
inertia J

j

, j 2 [1,n]. To select their adequate values, that can be adjusted by local tube
modification as described in [7], the ratio between bending and torsion sti�nesses is
being varied in simulation. The ratio � is equal to E

j

I
j

/G
j

J
j

[7] and is considered
identical for all the tubes. As expected, Fig. 3 shows that lowest values of � minimize
the torsional e�ects and finally the position errors in stable configurations. However,
it is challenging to obtain experimentally very low values for �. In [7], the authors
have successfully reached a value of 0.344. For our application, a ratio � = 0.348
results in a tip error of 2.51 mm, which is acceptable for our application. This value
is therefore selected, which ends the robot design with the proposed approach.

28 Cédric Girerd et al.



Combining Tube Design and Kinematic Strategy for Follow-the-Leader Deployment 7

Fig. 3: Robot positions for di�erent � values.

Table 2: Tip position errors
as a function of �. � = 1.33
corresponds to standard non-
modified circular tubes.

� Tip position error (mm)
0.348 2.51
0.4 19.24
0.7 36.49
1.33 44.96

Situation A B C
Without error (mm) 0 (0) 0.79 (0.27) 2.51 (0.95)

With error (mm) 0 (0) 1.05 (0.36) 3.31 (1.26)

Table 3: Position errors during the follow-the-leader deployment. Maximum errors
are in plain letters, RMS values are in bold.

4.3 Follow-the-leader behavior assessment

We now investigate precisely the follow-the-leader deployment errors by measuring
tip position error and root mean square error along the robot’s centerline for di�erent
deployment stages. The tubes are considered held at their insertion point. Measure-
ments are reported in Table 3 with two indicators : the maximum error (Max), which
is equal to the tip error, and the RMS value of deviation along the deployed robot.
Three configurations during the deployment are considered : after deployment of the
3 tubes altogether (Point A, Fig. 1c), of tubes 1 and 2 altogether (Point B, Fig. 1c),
and finally of tube 1 (Point C, Fig. 1c). At point A, errors are equal to zero. Further
analysis shows that anisotropy leads to the existence of only one configuration, su-
perimposed with the desired deployed geometry, a situation previously observed for
two tubes in [10]. Results obtained are suitable for our application in terms of tip
deviation.

In order to go further and explore the robustness of the follow-the-leader behavior,
we introduce angular errors in the control of the tubes at their base. A value of 0.005
degree, achievable with standard encoders and transmissions, is chosen. Results in
Table 3 indicate the maximum errors in presence of tube angular errors. Those
results still remain acceptable for our application, which is encouraging and show
the interest of the proposed robot design and deployment method.
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5 Conclusion

In this paper, we have proposed a method for CTR design and deployment. It com-
bines a simple kinematic approach and tube design to achieve approximate follow-
the-leader deployment. We have shown that interesting accuracy can be obtained
for a medical application. The e�ect of the actuation control errors on the robot
deployment have also been studied, and we have demonstrated that such errors re-
main acceptable for our application. The interest of tube modification is outlined,
with high sensitivity of the robot behavior to these modifications. Further work will
now be focused on selecting the best tube patterning techniques to obtain anisotropic
properties. Evaluation of sensitivity to design parameters and extension to other 3D
deployment situations will also be considered.
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A screw based dynamic balancing approach,
applied to a 5-bar mechanism

Jan de Jong, Johannes van Dijk, and Just Herder

Abstract Dynamic balancing aims to reduce or eliminate the shaking base reac-
tion forces and moments of mechanisms, in order to minimize vibration and wear.
The derivation of the dynamic balance conditions still requires significant effort. In
this study a screw based balancing methodology is proposed and applied to a 5-bar
mechanism. The method relies on four steps: 1) representation of the links’ iner-
tias into point masses, 2) finding the conditions for these point masses which result
in dynamic balance in one given pose (instantaneous balance), 3) extending these
conditions over the workspace to achieve global balance, 4) converting the point
mass representation back to feasible inertias. These four steps are applied to a 5-bar
mechanism in order to obtain the conditions which ensure complete force balance
and additional moment balance over multiple trajectories. Using this methodology,
six out of the eight balancing conditions are found directly from the momentum
equations.

Key words: dynamic balance, 5-bar mechanism, screw theory, inertia decomposi-
tion

1 Introduction

The ever increasing demands on the throughput of robots requires reduction of their
cycle times without compromising the accuracy and the lifetime. Higher veloci-
ties induce stronger base reaction forces and moments which in turn cause frame
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vibration and wear of the manipulator [8]. Dynamic balancing aims to design the
kinematics and the mass distribution of the manipulator such that both the changing
base reaction forces and moments are eliminated [10]. With force balancing, only
the changing reaction forces are considered [1].

Dynamic balancing often involves the addition of linkages and masses - such as
counter masses and/or counter rotations - which in general leads to higher complex-
ity and higher motor torques [8]. For closed loop mechanisms, the use of closure
equations supports finding dynamic balance without additional linkages or counter-
rotations [5]. However for mechanisms with more DOFs, the dynamic balance con-
ditions become increasingly difficult to find as the number of bodies increase and the
kinematic closure equations become more complicated. To overcome this, several
synthesis methods are presented; such as stacking of dynamically balanced 4-bar
linkages [10] and synthesis based on principle vector linkages [7]. These synthesis
methodologies do not cover all the possible solutions and require considerable effort
to find the balancing conditions.

In this paper, a screw theory based, four step methodology is presented to sim-
plify the process of finding the dynamic balance conditions for planar mechanisms,
with a potential extension to spatial mechanisms. The methodology relies on two
insights. Firstly, the geometric screw theory gives the conditions for the direct cal-
culation of a subset of the balancing conditions without differentiation or solving the
kinematic closure equations. Secondly, the dynamics equations are simplified using
an inertia decomposition method derived from Foucault and Gosselin [2]. This ap-
proach is illustrated by applying it to a 5-bar mechanism to obtain complete force
balance (similar to [4]) with additional moment balance over multiple trajectories
(similar to the Dual V [9]). First the kinematic model of a 5-bar mechanism (2.1),
and the screw dynamics (2.2) are described, based on which the four steps are illus-
trated (2.3 - 2.6).

2 Method

2.1 Kinematic model of a 5-bar mechanism

The 5-bar mechanism under investigation consists of two RR linkages connected by
a revolute joint at xxx (see Figure 1). To each body a reference frame (yi) is associated
in the joint as seen in the figure. The base reference frame is placed arbitrarily. The
frame in which a point is represented is denoted with a superscript (e.g. aaai).

The velocity of a body in space is described by a 6D twist vector (ttt j
k), which

is the general global velocity of frame yk expressed in y j. The angular velocity is
denoted by w

w

w and the linear velocity by vvv. The coordinate transformation matrix
(XXX j

i ) changes the expression of a twist from frame yi to y j. The matrix consists of
a rotation matrix (RRR j

i ) and a translation vector (ooo j
i )1:

1 The
⇥
ooo j

i ⇥
⇤

is a skew symmetric form of vector ooo j
i
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The body Jacobian (JJJi) relates the twist of a body to the joint velocities. As input
joint velocities (q̇qq f ) we choose the base joints q̇1 and q̇3. This makes bodies 1 and
3 the active, and 2 and 4 the passive (non-actuated) bodies. The Jacobian of the
mechanism can be found using methods such as presented by Zoppi et al. [12].
The body Jacobians are concatenated such that the total mechanism Jacobian (JJJ)
becomes:
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in which the unit twist t̂tt =
⇥
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T 000T ⇤T contains only a unit vector in the z-direction.
The Jacobian coefficients are:
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Note that the denominators of all the coefficients are equal, yet, we write them dif-
ferently in terms of the rotation matrix in the nominator for later use (Eq. 11).
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ĥhh2,1
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xxx

ooo3
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Fig. 1: Kinematic model and instanta-
neous balance of a 5-bar mechanism.
The momentum wrenches sum to zero
for a pure motion of joint q1.

m4,rrr4

mt,4,g4,ccc4

a4,3,uuu4,3

a4,2,uuu4,2
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Fig. 2: Inertia decomposition of the 5
bar mechanism. The COM (ccc4), inertia
(g4), and mass (m4) of body 4 is given
by sum of three point masses (uuu4,2, uuu4,3,
and rrr4)
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2.2 Screw theory based dynamics

The conditions for dynamic balance are usually derived from the momentum equa-
tions. Shaking forces and moments are the derivate of momentum. When assuming
zero initial velocity, the shaking forces and moments are zero when the momentum
is zero for all motions.

In screw theory, this momentum is seen as wrench [6]; the momentum wrench
(hhh), a concatenation of the angular momentum (x ) and the linear momentum (ppp).
The momentum wrench can be expressed in another frame using a second coordi-
nate transformation matrix. The momentum generated by a body, is calculated from
the twist or the Jacobain of that body and the inertia matrix MMMi, which is given later
(Eq. 7).
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
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x

x

j
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�
= (XXXi
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T hhhi hhh0

i = MMMittt0
i = MMMiJJJiq̇qqc (5)

The admissible momentum wrench of a mechanism is defined by its momentum
span. As the 5-bar mechanism is a 2 DOF mechanism, the dimension of the span
is maximally two. In the current study we choose the bases of this momentum span
(indicated with a hat) as the momenta generated by unit velocity of the two base
joints (q1 and q3).
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0
3

i
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4

Â
i

MMMiJJJi = 0 (6)

When the momentum span is only zero for a certain pose we have obtained a lo-
cal momentum equilibrium or instantaneous balance, this is a necessarily but not
sufficient condition for dynamic balance. For global dynamic balance, these instan-
taneous conditions have to be extended over the complete workspace.

2.3 Step 1. Inertia decomposition

Wu and Gosselin [11] used the property that the inertia of a body can be represented
as a collection of point masses to study the dynamic equivalence of robotic plat-
forms. Continuing on that, we recognize that the inertia of a planar body can be
sufficiently represented by two point masses. For a given center of mass (COM),
inertia and mass, four equations have to be satisfied [2]. As two point masses give
six variables, the location of one point mass can be chosen freely, fixing the location
of the other mass and the mass distribution over the two points.

When the free point mass is placed on the revolute joint, this joint has no influ-
ence on the motion of the free point. Therefore this point can also be regarded to
be fixed to the connecting body. This leaves the initial body with one point mass
representation (rrri, mi). This inertia decomposition can be applied throughout the
whole mechanism, such that the inertia properties of each body are characterized by
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a single principle point mass. This reduces the number of dynamic parameters from
4 to 3 per body.

MMMi = mi
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2.4 Step 2. Instantaneous balance

Dynamic balancing boils down to finding the location and mass of these principle
points such that the momentum span reduces to zero. For a 5-bar, the mechanism’s
momentum basis is defined by the motion of one joint while the other joint (and
body) is fixed. This means that only three bodies contribute to each mechanism’s
momentum basis.
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0
4,1 �ĥhh
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0
2,3 + ĥhh
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The three body momentum bases are represented as wrenches (see to Fig. 1). For
force balance, the vector sum of the linear momenta has be to zero. For additional
moment balance, the three wrenches have to intersect at one point. A momentum
wrench generated by rotation of a point mass around an axis passes trough the point
mass in a direction perpendicular to the point and the axis location. Therefore it
follows that the point mass of the base body has to be on the intersection point of
a line perpendicular to the wrench line (ĥhh1,1) and the axis of rotation, as indicated
in Fig. 1. The mass to be located at this point is given by ratio of linear and angular
momentum.
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If similar conditions are imposed on the second base link (rrr3
3, and m3), we have

obtained six instantaneous balance conditions.

2.5 Step 3. Global force balance

Global force balance is obtained when the sum of the linear momentum span of the
passive bodies (2 and 4) - expressed in the base bodies reference frames - is constant
over the workspace. This is required to enforce a pose independent solution for
Eq. 9. Therefore, the global force balance conditions only depends on the dynamic
properties of the passive bodies. After coordinate transformation of the linear part
of Eq. 8, the following constraint equation is obtained:
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Inspection shows that Eq. 10 and the terms d1 and d3 of Eqs. 3 and 4 are only
written in terms of the variables RRR1

2(q2,1) and RRR1
4(q4,1). For global force balance, the

derivative of Eq. 10 with respect to these two angles should remain zero:
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From this derivative, the following global force balance conditions is obtained.
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This constraint equation can also be obtained when differentiating Eq. 10 to the
other angles (q1,2), and from the derivatives of ( p̂pp3

3,3). Therefore, condition 12 is
sufficient for global force balance of a 5-bar mechansm. The implications of global
force balance and instantaneous dynamic balance on reactionless trajectories are
discussed in Section 2.7. This global solution step still requires considerable alge-
braic effort, especially when the mechanisms become more complicated.

2.6 Step 4. Inertia recomposition

The conditions for instantaneous dynamic balance and the global force balance are
written in terms of the point masses. These point masses describe a range of inertias
which all are fulfilling the balancing constraints. To find these inertias we recog-
nize that at the joints (uuui, j) - connecting body i with j - a point mass (ai, j) can be
exchanged between the bodies (see to Figure 2). The mass which is added to one
link has to be subtracted from the connecting link (ai, j = �a j,i). In such a way the
inertia (gi) and COM (ccci) of mass (mt,i) can be selected which satisfy the balance
conditions:

mt,i = mi +
n

Â
j=1

ai j mt,iccci = mirrri +
n

Â
j=1

ai juuui j gi +mt,ikcccik
2 = mikrrrik

2 +
n

Â
j=1

ai jkuuui jk
2 (13)

The mechanism can be built as long as the inertia and mass are positive. This
precludes a range selectable inertia distributions.

2.7 Reactionless trajectories

With global force balance the momentum span for planar mechanism is reduced to
an order of one. Since a 5-bar mechanism has 2 DOF, there exist a velocity vector
in each pose for which the angular momentum is equal to zero. This null space
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motion of Eq. 5 is numerically integrated to form a reactionless trajectory. In the
instantaneous balance poses, the order of the momentum span is zero. This means
that the mechanism can move infinitesimally into two directions in a reactionless
fashion. This implies that in these poses, two of these reactionless trajectories meet.

3 Results

To evaluate the presented method, a geometry is selected as depicted in Figure 3 and
Table 1. The dynamic balance of the mechanism is evaluated using multibody soft-
ware package Spacar [3]. The mechanism moves over two reactionless trajectories
(red and blue) and one arbitrary unbalanced trajectory (yellow).

The maximal shaking forces of all the trajectories are zero (max: 1.07�09 N),
confirming that the mechanism is force balanced. Also the shaking moments are
approximately zero (max: 3.01�04 Nm) for the two balanced trajectories. For the
unbalanced trajectory a maximal shaking moment of 6.69 Nm is found (Fig. 4.).

x(m)
-1.5 -1 -0.5 0 0.5

y(
m

)

-1

-0.5

0

0.5

1

xxx

y3

y1

y4

y2

Fig. 3: Geometry and trajectories
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Unbalanced Trajectory

Fig. 4: Shaking moments

Joint position [m]
ooo0

1 [0, 1]
ooo1

2 [-0.866, 0.5]
ooo0

3 [0, -1]
ooo3

4 [-0.866, -0.5]

COM [m]
ccc1

1 [0.220, 0.013]
ccc2

2 [0.250, 0.433]
ccc3

3 [0.220, -0.013]
ccc4

4 [0.250, -0.433]

Mass [kg]
mt,1 1.0155
mt,2 0.2000
mt,3 1.0155
mt,4 0.2000

Inertia [kgm2]
g1 0.0240
g2 0.0500
g3 0.0240
g4 0.0500

Table 1: Geometrical and dynamic parameters

4 Discussion and conclusion

Using the presented method a simplification of the balancing process is obtained
as six (Eq. 9 for rrr1

1, rrr3
3, m1, and m3) out of eight (Eq. 12 for rrr2

2) conditions for
dynamic balance can be calculated directly from the momentum equations without
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manipulation of the kineto-dynamic relationships. Furthermore, the two remaining
conditions for global balance are found to be only dependent on the dynamic prop-
erties of the passive bodies. However, these last two conditions still require effort
in taking derivatives and manipulation of the momentum equations. The applica-
bility of this balance methodology to more complex planar and ultimately spatial
mechanisms is under investigation.

In this paper, a screw based balancing method is presented and applied to a 5-bar
mechanism. The balancing conditions are found for force balance over the complete
workspace and additional moment balance over multiple trajectories, as shown by
simulation results. To arrive at these dynamic balance conditions, a screw based ap-
proach was presented. It consists of four steps. In the first step it was recognized that
the dynamic properties of a planar mechanism with revolute joints can be simplified
to one point mass per body. In the second step, instantaneous balance was found by
placing the point masses of the base links orthogonal to the momentum wrench line
generated by the rest of the mechanism. In the third step, the place of the remaining
point masses was calculated such that the force balance extends over the workspace.
In the last step, the resulting point masses where converted into actual inertias such
that the mechanism can be built.
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A Novel S-C-U Dual Four-Bar Linkage

Pierre Larochelle and Sida Du

Abstract This paper presents the kinematic architecture, analysis, and simulation of
the S-C-U Dual Four-Bar Linkage [3]. The S-C-U Dual Four-Bar Linkage, or SCUD
Linkage, is a biologically inspired design for articulating the leg in a mechanical
walking machine. The SCUD Linkage consists of dual planar four-bar mechanisms
used to support and generate the desired motion of a rod in three-dimensional space.
The rod is supported by two joints; each of these binary joints connecting the rod to a
coupler point on a planar four-bar mechanism. At one end of the rod a universal joint
connects it to a coupler point. At the rod’s midpoint, a combination of a cylindrical
joint and a universal joint are used to connect it to the other supporting coupler point.
The result is a two degree of freedom closed kinematic chain with two parallel sub
chains. The end-effector or workpiece of the SCUD Linkage is affixed to the free
end of the rod. Here, the concept of the SCUD Linkage as well as its kinematic
analysis and simulation are presented. The analysis of an example SCUD Linkage
is included.

Key words: walking machines, biologically inspired design.

1 Motivation & Related Works

The motivation for the creation of the SCUD Linkage came from the same source,
independently, to each of the authors before they had met. For both authors the
source of the inspiration was identical; it was the motion of the front legs of a
tortoise. In 1999 the first author acquired as a family pet a geochelone sulcata or
African Spurred tortoise named Chomper, see Figure 1. The complex motion of the
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front legs of the tortoise and their ability to support the relatively large mass of the
tortoise inspired the first author in 2006 to pursue the design of kinematic closed
chains that could replicate the motion of the front foot. Similarly, the second author,
while pursuing his bachelors degree in 2009, was inspired by the front leg mo-
tion of tortoises while working on the design of a mobile robot for the Biomimetic
Robotics Competition organized that year by the Harbin Institute of Technology.
Independently, each author explored the use of open kinematic chains to generate
the desired motion however they found that four or more degrees of freedom were
required for each foot. Simpler, lower degree of freedom, solutions were sought.
Once the authors met in Fall 2013 they began collaborating to identify kinematic
architectures that would effectively and efficiently replicate the front leg motion of
the geochelone sulcata. The SCUD Linkage presented here is one of the promising
architectures that the authors have designed.

Fig. 1 A Geochelone Sulcata or African Spurred Tortoise.

Human beings have long been curious about the behavior of the world’s won-
derful creatures and have tried to understand and imitate them. The earliest walking
machines were mechanical toys. Their legs were driven by cranks or cams from
a source of rotary power, usually clockwork, and executed a fixed cycle [8]. The
first documented walking mechanism appeared in about 1870 and was based on a
four-bar mechanism invented by the Russian mathematician P. LĊhebyshev as an at-
tempt to imitate natural walking (Artobolevsky, 1964) [6]. In 1893 the first patents
for legged systems were registered with the US Patent Office [6].

Based on the number of legs the robot has, there are bipeds e.g. humans or birds,
quadrupeds e.g. mammals and reptiles, hexapods e.g. insects, and octopods e.g. spi-
ders [6]. A hexapod robot is a mechanical device that walks on six legs. One example
is RHex, a biologically inspired hexapod with compliant legs [1, 7]. The Sphere-
Walker is another biologically inspired hexapod device [4]. The SphereWalker was
developed by the first author and colleagues and was also inspired by the front legs
of a tortoise. The SphereWalker is composed of three spherical four-bar linkages
each connected to base plates that are serially connected to each other using two
universal joints. Each linkage in SphereWalker is identical and each has two feet
attached to its extended coupler link.
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2 The SCUD Linkage

To fulfill the desired characteristics and performance attributes discussed above a
novel linkage was designed. The S-C-U Dual Four-Bar Linkage, or SCUD Linkage,
consists of dual planar four-bar mechanisms used to support and generate the desired
motion of a rod in three-dimensional space. The rod is supported by two joints; each
of these binary joints connecting the rod to a coupler point on a planar four-bar
mechanism. These coupler points support the rod at its midpoint and at one of its
ends. At one end of the rod a universal joint connects it to a coupler point. Along
the rod’s span a combination of a cylindrical joint and a universal joint are used to
connect the rod to the other supporting coupler point. The result is a two degree
of freedom spatial closed kinematic chain with two parallel sub chains. The SCUD
Linkage may also be classified as a parallel robot [5]. The end-effector or workpiece
of the SCUD Linkage is affixed to the free end of the rod. A kinematic diagram of a
SCUD Linkage is shown in Figure 2. The two planar closed chain four-bar linkages

U-Plane

S-Plane

U-Linkage
S-Linkage

Operator Rod

U-Joint

Base Frame

x

y

z

End-e↵ector
SC-joint

Fig. 2 An Example SCUD Linkage.

generate motion in either parallel or intersecting planes. These mechanisms transmit
motion and torque from their driving motors thru their couplers to the rod. Each of
the planar four-bar mechanisms drives their coupler point along coplanar coupler
curves and these curves determine the spatial motion of the end-effector rod. One
end of the rod is connected to one of the couplers with a universal joint. This end
of the rod is named the head of the rod and this four-bar mechanism is referred to
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as the U-linkage. Its plane of motion is the U-plane and the curve generated by the
coupler point of the U-linkage is the U-curve. Along the rod is a second joint that
connects it to the other four-bar mechanism. This joint consists of a combination of
a spherical joint and a cylindrical joint. This linkage is named the S-linkage, due
to the spherical joint, its plane is the S-plane, and its coupler curve is the S-curve.
The two intersection points between the rod and the U and S planes move along the
U-curve and S-curve and determine the spatial motion of the end-effector rod.

3 Kinematic Analysis

Here we present the kinematic analysis of the SCUD Linkage. First, Cartesian co-
ordinate frames are affixed to the links. Then, the transformation operators, velocity
vectors and acceleration vectors of the coupler points of the planar linkages and that
of the end-effector are derived to describe their motion with respect to the inputs.
Next, the parameters of the SCUD Linkage are used to build models both in Mat-
lab and in Creo [2] to generate and analyze the workspace of this SCUD Linkage.
These models are utilized to visualize the kinematic capabilities and limitations of
the SCUD Linkage.

Consider the SCUD Linkage whose U-linkage and S-linkage are each crank-
rocker four-bar mechanisms as shown in Figure 3. The kinematic analysis is per-
formed in 3 steps:

1. The derivation of the planar four-bar motions. In this first step, a four-bar position
analysis is performed to determine the relative angle (f ) of the coupler with
respect to the crank as a function of the input angle (q ). Next the two coupler
point frames relative to the base frame are determined; i.e. the frames {U} and
{S}.

2. The derivation of the rod’s spatial motion operator. In this second step, the an-
gles lx and ly are solved from a set of non-linear equations that describe the
geometric relationship between the {U} and {S} frames. Next, the frame {U

0

} is
derived by rotating the frame {U} by lx and ly and then the end-effector frame
{E} is obtained by translating the frame {U

0

} along the operator rod.
3. The derivation of the kinematic derivatives. The velocity vectors and the acceler-

ation vectors of the coupler points and the end-effector are obtained by comput-
ing the derivatives of the transformation operators obtained in steps 1 & 2.

Step 1 can be performed using the known position analysis of the planar four-
bar crank-rocker mechanism and applying coordinate transformations to yield the
frames {U} and {S}. Step 2 requires the angles lx and ly that represent the motion at
the U joint. These angles are determined by performing an analysis of the orientation
of frame {U} with respect to the {S} frame. In this problem, the unknown frame
{U

0

} has the same position as the known frame {U} and is rotated with respect to
{U} such that its z axis is directed towards the origin of {S}. Utilizing this geometric
relationship, the angles lx and ly are determined. The known frames {U} and {S}
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Fig. 3 The Example SCUD Linkage with Parameters and Frames Defined
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and the angles lx and ly are then used to obtain the frames {U
0

}, {S
0

}, and {E}.
See Figure 3. The details follow.

Frame {U
0

} is defined as having origin coincident with {U} and z-axis directed
along the rod toward {S}. Equating the direction of the z-axis of the {U

0

} and a
vector along the rod from {U} toward {S} yields,

px = l (cosGu sinly + sinGu sinlx cosly)

py = l (sinGu sinly � cosGu sinlx cosly)

pz = l (coslx cosly). (1)

where p is the known vector from the origin of the {U} frame to the origin of the
{S} frame, Gu = gu + du, and l is an arbitrary scale factor. The maximum possible
range of motion of the universal joint is [�p

2 , p

2 ]. These bounds are in the range of
the arctan function therefore the angles lx and ly are also in this range and can be
computed from Equation 1 by eliminating l and using arctan,

lx = arctan(
�(py cosGu � px sinGu)

pz
) (2)

ly = arctan(
coslx px � pz sinGu sinlx

pz cosGu
). (3)

Having found the lx and ly angles a straight-forward kinematic analysis yields {U
0

}

and {S
0

} as well as the end-effector frame {E}. Step 3 requires differentiating the
transformation operators. Though tedious, the process is straight-forward.

3.1 Workspace

The workspace of a SCUD Linkage is defined as the set of all reachable points of
the origin of the end-effector frame {E}. The SCUD Linkage possesses 2 degrees of
freedom therefore its workspace is a 2 dimensional spatial surface. A visualization
of the workspace of a SCUD Linkage is generated in 3 steps. Step 1: discretize the
working range of qu. Step 2: for each value of qu vary the input angle qs throughout
its range of motion. Determine the origin of {E} for each qs. This results in a curve
that is on the surface of a sphere whose center is at the U joint and whose radius is
the length of the rod Lrod . Step 3: repeat Step 2 for each value of qu. The resulting
curves represent the discretized 2 dimensional workspace. The discrete points that
represent the workspace of the SCUD Linkage may be visualized as a surface by
utilizing MATLAB’s surface rendering function surf, see Figure 4. Moreover, the
workspace of the SCUD Linkage may be visualized as a set of curves by utilizing
the tracecurve function in Creo, see Figure 5.
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Fig. 4 An Example SCUD Linkage Workspace Rendered in MATLAB.

Fig. 5 An Example SCUD Linkage & Workspace Rendered in Creo.

3.2 Velocity

Results of a linear velocity analysis of the example SCUD Linkage are shown in
Figures 6 & 7. Larger views of the detail sub-figures are shown in Figures 8 & 9.

4 Summary

A novel two degree of freedom S-C-U Dual Four-Bar Linkage, or SCUD Linkage,
consisting of dual planar four-bar mechanisms used to support and generate the spa-
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The Sub-Figure to Show Detail of Arrows

Fig. 6 An Example SCUD Linkage Linear Velocity Field: q̇u = 0.

The Sub-Figure to Show Detail of Arrows

Fig. 7 An Example SCUD Linkage Linear Velocity Field: q̇s = 0.

Fig. 8 A Linear Velocity Field: q̇u = 0.
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Fig. 9 A Linear Velocity Field: q̇s = 0.

tial motion of a rod has been presented. Included were the kinematic architecture,
analysis, and simulation of the SCUD Linkage. The design of the SCUD Linkage
was inspired by the motion of the front legs of the geochelone sulcata tortoise. Re-
sults of the kinematic analysis have been compared to clinical observations of the
walking tortoise and indicate that the SCUD Linkage has the desired motion genera-
tion capabilities. Ongoing work is addressing the kinetics and mechanical efficiency
of the SCUD Linkage to assess its suitability for use in mechanical walking ma-
chines.
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Inverse kinematics analysis of a P2CuP2Cu
concentric tube robot with embedded
micro-actuation for 3T-1R contactless tasks

Mohamed Taha Chikhaoui, Kanty Rabenorosoa, and Nicolas Andreff

Abstract This paper introduces a novel kinematic structure based on the concentric
tube robot (CTR) paradigm, augmented with embedded soft micro-actuation. The
latter allows to replace troublesome R-joints in CTR with 3 tubes by active tube
curvatures (Cu-joints). First, the forward kinematic model is derived. Furthermore,
the inverse kinematic problem is partially solved by restricting it to 3-translations /
1-rotation movements. Finally, the inverse model is used to perform path planning
schemes in medical scenarios.

Key words: Concentric tube robot, soft micro-actuation, path planning, medical
application.

1 Introduction

Flexible and miniaturized instruments are widely used for minimally invasive inter-
ventions. In this scope, continuum robots provide doctors with a controllable small
device with high precision navigation inside the human body for both therapeutic
and diagnosis purposes [4]. Particularly, concentric tube robots (CTR) have proven
their efficiency for a wide range of medical applications [3, 9, 10, 12, 14] . CTR are
formed by several pre-shaped tubes nested in each other that can translate and rotate
relatively in a telescopic way. The improved efficiency is due, among other reasons,
to the use of tubes of small diameters ranging from 5mm down to 0.8mm [16] with
a free lumen able to embed different medical tools. Despite all these advantages,
CTR suffer from mechanical limits such as snapping explained in [16] and caused
by the high torsional energy involved when rotating the tubes relatively. In fact, the
rotation input at the tube base is all the more different from its output angle at the
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tip as its length and/or curvature are higher. Another issue with CTR is that once
their assembly is performed, the curvature of each tube is a fixed parameter and
cannot be modified afterward, which narrows the possible workspace to cover as
demonstrated in [7, 8]. Furthermore, in order to perform the relative movements,
each tube is attached to the rotation stage, which can be connected to the translation
stage [2,5,9,15,18]. For n concentric tubes, one needs 2n actuators that should over-
come the frictional and torsional efforts of the tubes and thus are of a consequent
size compared to the effector size. With a 3-tube CTR, 6 actuators are used implying
the possibility to control the 6 degrees of freedom (DoF) of the robot end-effector.

The aim of this work is to propose an equivalent structure of a standard CTR but
augmented with embedded soft micro-actuation based on 2 tubes only and consid-
ered as a P2CuP2Cu. P denotes the prismatic joints equivalent to the translational
movements and the 2 active tube curvatures in 2 orthogonal directions for each tube
are denoted by Cu for each bending. This structure is intended to keep the same per-
formances with less mechanical constraints and an embedded soft actuation scheme
able to be easily integrated into an actual operating room. If the forward kinematic
model is rather easy to derive, inversion of the robot model in a geometrical way is
quite challenging but useful for a stable path planning including obstacle avoidance,
tissue and organ examination with imaging systems, and full robot shape monitoring
in constrained environments. From a control point of view, this solution is proposed
here in contrast with (i) Jacobian-based inverse-kinematics that require a full knowl-
edge of the kinematics, an important computational time and that are tributary to the
non-singular configurations [9], and with (ii) the kinematic-equivalent model based
inverse kinematics [13] that monitor exclusively the position of the robot tip (added
to the overall shape) by solution exploration without controlling its orientation.

a)

b)

Fig. 1 a) CAD design of the proposed P2CuP2Cu robot based on embedded soft micro-actuators
at an arbitrary configuration, b) Schematic description of an arc of a circle in 3D where the light
blue plane contains the previous section j �1 and the light green is the actual plane containing the
section j.

For the sake of the completeness of this introduction, a few words are needed on
technology. The comparison of the available micro-actuators such as shape memory
alloys (SMA) and piezoelectric materials (PEM) presents the electro-active poly-
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mers (EAP) as the best candidates for this application. In fact, EAP-based actuators
do not produce additional heating in contrast with SMA, require very low voltages
(<2 volts for some ionic EAP) in contrast with PEM, and do not alter the struc-
ture mechanics because of their lightweight [7]. Biocompatibility with a medical
device is also confirmed and a relatively high strain (more than 10%) should be
noted. Section 2 presents the combination of these promising technologies and the
forward modeling as the first work led to the best of our knowledge. Furthermore,
the inversion of these models is developed in a geometrical way in section 3 for the
P2CuP2Cu, it stems for a the computation of two tangentially connected circular
arcs of controllable curvature, orientation (hence, arc planes), and length. Simula-
tions of path planning results are also presented based on the developed models.

2 Concentric tube robot with embedded soft micro-actuation

2.1 Embedded soft micro-actuation in concentric tube robots

Adding micro-actuation to a concentric tube robot provides several improvements.
First, the intrinsic curvature of each tube is accessible when activating the EAP-
based soft micro-actuators deposed as 4 electrodes onto each tube as described in
figure 1a. In fact, each pair of electrodes generates antagonistic efforts due to an
electro-chemo-mechanical conversion. When one positively activated electrode ex-
pands in volume, its diametrically opposite one (negatively activated) shrinks which
leads to the bending of the substrate tube along the plane containing these electrode
central lines. This emerging technology is under continuous improvement and has
shown promising results that required expertise in chemistry, micro-fabrication and
clean room developments [1]. Moreover, with this 4-electrodes configuration, the
rotation motors are not mandatory which reduces substantially the actuation unit
size. Furthermore, biocompatible flexible tubes are used and thus small efforts are
required to deploy them telescopically. Smaller translation stages are adequate and
replace for the high-torque-requiring motors used in CTR actuation. The thickness
of such actuators varies between 10 and 30 microns and thus does not alter the
concentric tube approach and saves the free-lumen configuration, in contrast with
cable-driven continuum robots [6]. Finally, in order to preserve the accessible 6
DoF of the standard CTR, we propose the P2CuP2Cu which is a configuration with
2 concentric tubes augmented with 4 EAP electrodes each in order to control their
bending in 2 orthogonal directions added to their telescopic deployment.
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2.2 Forward kinematic model

The forward kinematic model first describes a single section of a CTR considering
its actuators. As the modeling is based on the piece-wise constant curvature assump-
tion [11, 17], an arc of circle in 3D is defined, following Figure 1b, by its curvature
k j (inverse of the radius of curvature r j), its length ` j, and the angle of the plane in
which it is located f j. Thus, the transformation matrix from the arc origin to its tip
is:

j�1T j = j�1 T j(f j)
j�1T j(k j,` j) =

"
Rz(f j) 0

0 1

#"
Ry(q j) p j

0 1

#
(1)

where q j = k j` j is the bending angle and p j = [r j(1� cosq j),0,r j sinq j]T . The arc
variables are directly linked to the robot actuators, depending on the overlapping
of the n tubes constituting m sections. For the considered P2CuP2Cu with 2 tubes,
the actuator space is constituted of q = [v1x v1y v2x v2y r1 r2]T where vix,y is the
supplied voltage to the ith tube according to its x and y axes respectively, and ri
is its translation for i = {1,2}. The intrinsic curvatures of each tubes are denoted
kix,yin = CEAPivix,y noting that CEAPi is the EAP electro-chemical constant of the ith
tube electrodes. The intrinsic arc variables for the 2 tubes (i = {1,2}) are given by:

8
<

:
kiin =

q
k

2
ixin

+k

2
iyin

fiin = atan2(kiyin ,kixin)
(2)

The second section (containing only tube 2) variables are directly identified as k2 =
k2in and f2 = f2in . However, for the first section subject to the mechanical interaction
of 2 tubes, one must compute the first section variables by:

8
<

:
k1 =

q
k

2
1x +k

2
1y

f1 = atan2(k1y,k1x)
(3)

where k1x =
Â2

i=1 EiIikiin cosfiin

Â2
i=1 EiIi

, and k1y =
Â2

i=1 EiIikiin sinfiin

Â2
i=1 EiIi

. where kix and kiy

are the decomposition of the main curvature along the x and y axes respectively
for the jth section, Ei is the elastic modulus, and Ii is the cross sectional moment of
inertia of the ith tube. We should note that kiin is constant for the standard CTR when
they are directly accessible in the proposed P2CuP2Cu with the pair of electrodes.
Finally, considering the initial pose of the robot where all the tubes are withdrawn,
the link lengths are such that ` j = 0,8 j = {1,2}. Whenever the tubes are deployed,
the link lengths are computed as `1 = r1 and `2 = r2 �r1.
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3 A geometrical approach to kinematic model inversion for
3T-1R contactless planning

3.1 Closed-form planar solution to the translation part

The model is inverted geometrically in order to find a closed-form planar solution
to properly control the robot end-effector position as a first step. For standard CTR
with 3 tubes, straightforward computation of the exact inverse kinematic model is
very arduous due to the non-linear equations involved and require challenging in-
verse kinematics or heuristic methods which are often limited by singularity is-
sues, demand significant computational resources and a consequent execution time.
In summary, the proposed algorithm computes the inverse kinematic model of the
P2CuP2Cu in 3D for 4 DoF including the three position components and one in-
plane orientation as described below.

3.1.1 Plane definition

Recalling the geometrical description of an arc (or a tube) in Figure 1b, let us assume
that S is its start point, E(XE ,YE ,ZE) its end point, and �!z j1 its tangent at the origin S.
We consider the robot sections that lie in the same plane P where P = (S,�!z j ,

�!

SE).
The output of this step is the homogeneous out-of-plane transformation j�1T j(f j)
defined in equation 1 such as:

j�1T j(f j) = f (S,E) where f j = atan2(YE ,XE) (4)

The new frame at S is then
�
�!x j ,

�!y j ,
�!z j

�
where [�!u j ,1]T = j�1 T j(f j)[

��!u j�1,1]T for
�!u = {

�!x ,�!y ,�!z }.

3.1.2 Planar solution for a single arc

Once the plane P is figured out, the process is performed in a planar way and thus
reduces substantially the computation complexity. The desired point is projected
onto the frame related to the plane P such that its coordinates are P XE =

q
X2

E +Y 2
E ,

PYE = 0, and P ZE = ZE . In all cases, for a tangent vector �!z j , the end-effector of
an arc of a circle is described in its base frame (S,�!x j ,

�!y j ,
�!z j ) (cf. Figure 1b) by

equations 5 and 6.

k j =
2P XE

P X2
E +P Z2

E
, (5)

Inverse kinematics analysis of a P2CuP2Cu concentric tube robot . . . 55



6 Mohamed Taha Chikhaoui, Kanty Rabenorosoa, Nicolas Andreff

` j =

8
><

>:

1
k j

acos
⇣

1�k j
P XE

⌘
if P ZE > 0

1
k j

✓
2p �acos

⇣
1�k j

P XE

⌘◆
else.

(6)

The homogeneous in-plane transformation matrix is then computed such as j�1T j
in equation 1. This step is denoted (k j,` j,

j�1 T j(k j,` j)) = g(S,E,�!z j ).

3.1.3 Closed-form solution to the translation part

For the considered 2-tubes P2CuP2Cu, this single-arc inverse kinematic model g
is computed for each arc separately, once the plane P is defined. Both arcs meet
in A which is the inflection point along the robot structure. Let us assure that for
any A 2 P , closed-form solutions can be computed [13]. We compute the single arc
solution following this order: (i) from the robot origin O to the first section end-
effector A, assuming that O is also the world frame (O,�!x0 ,�!y0 ,�!z0 ) origin, then (ii)
from A to the second section (and the robot) end-effector B:

8
<

:

⇣
k1,`1,

0 T1(k1,`1)
⌘

= g(O,�!z1 ,A) for tube 1
⇣

k2,`2,
1 T2(k2,`2)

⌘
= g(A,�!z2 ,2 B) for tube 2

(7)

which can be expressed by the global closed-form function h:
⇣

k1,`1,k2,`2,
0 T1(k1,`1),

1 T2(k2,`2)
⌘

= h(O,�!z1 ,A,B) (8)

Note that using f (O,A), we define F1 = (O,�!x1 ,�!y1 ,�!z1 ) the origin frame of the first

Fig. 2 Solving the closed-form inverse model for a desired point B after computing the plane P

(in green) with an arbitrary inflection point A. Section 1 plot is blue and section 2 is red.

arc and thus �!z1 = �!z0 . The output frames of the first and second arcs respectively are
F2 = (A,�!x2 ,�!y2 ,�!z2 ) and F3 = (B,�!x3 ,�!y3 ,�!z3 ) computed using g function, and 2B is
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the expression of B in the frame F2 obtained by inverting 0T1(k1,`1). To check the
validity of this solution, the results of equation 8 are fed through the forward model.
It enables to draw the robot shape and pose. The end-effector position must match
the initial desired point as described in Figure 2 with orientation �!z3 .

3.2 Monovariable virtual proportional control

The closed-form model inversion presented above solves for the 3D position of the
end-effector at B. In order to control the end-effector in-plane orientation, we use
algorithm 1. It is based on virtual proportional control of a single variable which is
the in-plane orientation at B denoted �!zB with a proportional gain l . After initializing
the inflection point A at an arbitrary position in the calculated plane P (cf. section
3.1.1), we solve the inverse kinematics for the position of point B through the func-
tion h in equation 8. The output orientation �!z3 at B is then compared to the desired
orientation �!zB . At every step, the point A is slid on the perpendicular (D) to (OB) in
the plane P at A defined by its guiding vector �!uD.

Algorithm 1 Solving for position and in-plane orientation
Data: O, B, �!zB
Result: Arc variables c = [k1 f1 k2 f2 `1 `2]T
0T2(f2) = f (O,B);
Choose f1 = f2; {A 2 P}
while �!z3 6= �!zB do⇣

k1,`1,k2,`2 , 0T1(k1,`1) , 1T2(k2,`2)
⌘

= h
�
O,�!z1 ,A,B

�
;

a = atan2
⇣
�!z3

T �!zB , �!u
P

�
�!z3 ⇥

�!zB
�⌘

;
dA = la; {Virtual proportional control}
A = A+dA �!uD;

end while

Once the arc variables c = [k1 f1 k2 f2 `1 `2]T are computed, the actuator con-
figurations q are calculated by inverting equations 2 and 3. For the brevity of this
paper, such demonstrations are not detailed.

3.3 3T-1R task planning

Using the aforementioned kinematic inversion, examples of the path planning sim-
ulations of the P2CuP2Cu are presented hereby. For the intended medical applica-
tions, a sweeping scheme of the distal tube end-effector housing an optical imaging
system (camera with fiber bundle, OCT probe, confocal microscope) is developed.
More specifically, a square sweeping of 10x10mm is validated by the simulations in
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Figure 3a. One can note that the end-effector orientation is preserved (orthogonal
to the examined tissue surface) which respects the constraints of a sweeping proce-
dure. A circular path on a sphere of 2mm radius is also performed (Figure 3b) while
keeping the orientation pointing to the sphere center as for a tissue examination
with a sub-degree precision. These planning schemes were performed according
to mechanical and fabrication constraints of a maximum arc lengths of 40mm and
maximum curvatures of 200m�1.

a) b)

Fig. 3 For an arc length ratio Lr = 1, the robot poses during model inversion based path planning
are shown for a) a square scanning and b) a spherical cap scanning schemes.

4 Conclusions

An alternative structure to the usual 3-tubes CTR was presented in this paper. This
P2CuP2Cu is based on EAP soft micro-actuators and provides equivalent kinematic
performances with only 2 tubes with a free lumen and a continuum shape approach.
The major expected advantages of our robot are the compactness due to the embed-
ded soft micro-actuation and the controllability especially for medical applications.
Furthermore, the inverse kinematic model was analyzed in a geometrical approach
and improved with an in-plane orientation control. This virtual control was vali-
dated by path planning schemes (namely tissue scanning) in simulations for 3T-1R
tasks. Deriving the complete inverse kinematic model is a future challenge and will
conduct to a full pose control.
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Structural Synthesis of Hands for Grasping and
Manipulation Tasks

Ali Tamimi, Alba Perez-Gracia, and Martin Pucheta

Abstract In the kinematic synthesis of multi-fingered robotic hands for a specific
task, the selection of the hand topology is an important step. Considerable research
efforts have been directed to the structural synthesis of hand topologies for satis-
fying grasping and manipulation metrics such as mobility and force closure. In this
work, we develop a structural synthesis, isomorphism-free enumeration method that
combines the solvability for rigid-body guidance with the grasping and manipula-
tion metrics, for general hands with a tree structure. An algorithmic implementation
of the methodology is presented and illustrated with validation examples.

Key words: Multi-fingered robotic hands, Dexterous grasping, Structural synthe-
sis, Spatial dimensional synthesis.

1 Introduction

Multi-fingered robotic hands are mechanical linkages where a common set of links
spans a number of serial chains, designed for grasping and manipulation tasks. Tra-
ditionally, a robotic hand consists of a single link, or palm, spanning several sub-
chains, which are the fingers. This definition can be extended to consider a common
set of links and joints spanning the finger chains, possibly in several stages.
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The structural or type synthesis of multi-fingered hands seeks to enumerate all
possible topologies for a desired quality of the hand. Most of the previous work
focuses on enumerating the topologies according to the mobility of the hand. Salis-
bury and Roth [4] studied the type synthesis of three-fingered hands with a single
palm and no wrist. They defined the degrees of freedom of the finger-object contact
to synthesize all the topologies with full mobility and non-positive locked-joint mo-
bility between palm and object. Based on this work, Lee and Tsai [2] undertook the
structural synthesis of multi-fingered hands without wrist, with a single palm and
identical type of finger contacts, with 3 to 7 fingers, to present an enumeration of
feasible kinematic structures of mechanical hands.

Tischler, Samuel, and Hunt worked on the type synthesis for robotic hands with
emphasis on the creation of a minimal-isomorphism list of kinematic chains [7].
They also considered a positive mobility between the ground and the grasped object
and the connectivity between fingertips and the grasped object as selection criteria
[8]. Their work imposes full-cycle mobility and restricts the results to full six-dof of
mobility and point contact with friction for the finger-object contact. This contact is
modelled as a spherical pair, realized as a 3R serial chain.

More recently, Özgür et al. [3] used the structural analogy between the palm-
fingers-object system and a parallel robot consisting on a base-limbs-platform sys-
tem (as was recognized before by [8] and [2]). They adapted the procedures de-
veloped by Gogu [1] for parallel robot manipulators and worked on the structural
synthesis of robotic hands for given values of dexterity, mobility, overconstraint,
and redundancy.

All this previous work in structural synthesis of hands is focused on mobility and
related metrics for grasping and manipulation of hands.

This paper presents a method for the structural synthesis of general hands (al-
lowing multiple branchings of the tree topology) for grasping, mobility, and free
motion of the fingertips. This method combines the checking for solvability for the
rigid-body guidance dimensional synthesis problem [6] with the computation of a
desired mobility and force closure for the hand-object system, for a given number
of fingertips. The method generates an isomorphism-free list of structural solutions
with a labelling approach which can be considered similar to [7].

2 Hand, fingertip contacts, and hand-object representations

A multi-fingered hand is defined as a multi-body system with a common body -
the wrist, which is a fundamental part of the hand manipulation- spanning several
branches and ending in multiple end-effectors [5]. The kinematic chain of a multi-
fingered hand has a tree topology that can be represented as rooted a tree graph [9],
with the root vertex being fixed with respect to a reference system, see Fig. 1(b).

A more general hand also has several palms arbitrarily branched and can be called
a multi-fingered, multi-palm hand. A palm is an intermediate link whose degree is
ternary or above. A branch of the hand is defined as the series of joints connecting
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the root node to one of the end-effectors, or fingertip. They are the main elements
whose motion or contact with the environment is being defined by the task, see
Fig. 1(a). Hereafter, the tree of the hand will refer to the contracted tree of the
hand obtained by replacing the binary links between two higher order links by an
edge labeled with their connectivity, which is equivalent to the number of 1-DOF
joints between them; see for example Fig. 1(c). Open hands with a hybrid topology
can also be transformed into a contracted tree topology, adequate to perform its
dimensional synthesis, by removing the internal loops [6].
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Fig. 1 A hand-object interaction and its graph representation. (a) A multi-fingered hand with 1-
DOF revolute joints and 3 spherical fingertips. (b) The tree associated to the hand. Vertices filled
in black are the root (circled), the palms, and the fingertip links; vertices filled in grey are binary
links. (c) Contraction replaces the string of vertices with a unique edge labeled with its number
of 1-DOF joints: 9 edges are contracted to 5 edges. (d) The contracted tree is connected by blue
edges from each fingertip, each one labelled with the type (DOF) of contact, to the grasped object
(squared vertex), to form the hand-object graph.

Two arrays are defined for the tree topology with n vertices and e = n�1 edges,
which capture the incidence and adjacency properties as well as information of the
edges. They are the parent-pointer array p and the joint array j. A labelling of the
graph edges from 1 to e is assumed for the entries of both arrays. The parent-pointer
array implements the parent-pointer representation of the tree. The first edges inci-
dent at the root vertex take the value zero.

The relative motion allowed between each fingertip and the object can geometri-
cally be classified as proposed by Salisbury and Roth [4]. The connectivity c of the
grasped object relative to the fingertip, which is denoted as the degrees of freedom
at the contact, can take any value from 0 (rigidly attached) to 6 (no contact). The
Table 1 summarizes the description of the contacts [4, 8].
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Table 1 Contact types between a fingertip and a grasped object.
Degrees of freedom Description

6 Free link (without contact)
5 Point contact without friction
4 Line contact without friction
3 Point contact with friction or plane contact without friction
2 Area of contact with friction (Soft finger [4])
1 Plane contact with friction
0 Rigid attachment to object

This work uses these contact types to extend the representation of the hand to
the representation of the hand-object system. When an object is grasped, a loop is
created in the graph of the hand-object system for any two fingers in contact with
the object.

An additional fingertip array c that contains the type of contact between the
fingertip and the object. Figure 1(d) depicts the graph of the tree topology of the
hand grasping an object with all fingertips in contact. In this case, the correspond-
ing parent-pointer, joint, and fingertip arrays are respectively p = {0,1,1,2,2},
j = {2,1,2,2,2}, and c = {3,3,3}.

For dimensional synthesis purposes, the general Chevychev-Grübler-Kutzbach
mobility criteria for the hand-object system [4] is preferred to the more accurate
methods developed by [1] and used in [3], because the information on the relative
positions of the axes is not available; assuming a general position of the axes is
appropriate in the general design problem where no geometric constraint on the un-
known axes is prescribed. Once the degree-of-freedom of the fingertips are defined,
the grasping and manipulation tasks for a body with a known shape can be defined
to dimensionally size each of the feasible hand topologies found by the following
algorithm.

3 Type Synthesis Algorithm for Free-finger and Object-contact
Tasks

The goal is to find all hand topologies that can be paired with the task for dimen-
sional synthesis, given a set of user-defined restrictions. User-defined inputs are the
number of positions of the task m, the number of end-effectors or branches b, the
range [emin,emax] for the total number of edges of the graph e, the types of allowed
fingertips c (from Table 1), and the desired mobility M. The output is the set of
topologies that (i) meet the solvability criterion subject to these requirements, and
(ii) meet the constraints related to the mobility of any root to end-effector subgraph.
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3.1 Mobility and Solvability Conditions

Given the tree of the hand T and its mobility M, any root-to-end-effector subgraph
Tsub must satisfy a non-positive mobility M0 if joints are locked and a mobility
greater or equal than that of the overall tree.

8Tsub 2 T :

(
M0(Tsub)  0
M(Tsub) � M.

(1)

The solvability criterion for the dimensional synthesis of a tree topology T passing
through a number of m positions is the formula m = s(T ) proposed by Simo-Serra
and Perez-Gracia [6], which also requires the analysis for each subtree Tsub of the
graph. The tree is solvable iff

s(Tsub) � m 8Tsub 2 T (2)

3.2 Variety

Tischler and Hunt [8] define the variety of a graph as the difference between its full
mobility M and the minimum mobility of a subgraph containing a loop or set of
loops, Mmin, that is, V = M �Mmin.

For the reduced and compacted tree graphs of the hand, all the loops contain
the vertex corresponding to the grasped object. Imposing that the graphs have va-
riety V = 0 ensures that the object has the desired degrees of freedom and that the
locked-joints mobility is non-positive. This condition is imposed by identifying and
checking the subgraphs created along the tree graph, starting at the root. Let the
ternary or above vertices (palms) be labeled as pi, and the subgraph starting at pi
in which all previous edges and vertices have been eliminated be Tpi . The following
condition is imposed:

M(Tpi) � M, i = 1, . . . , p, (3)

where p is the total number of palms in the hand.

3.3 Algorithmic Implementation

The algorithm is divided in three main steps. In Step 1, the algorithm searches all
possible topologies which satisfy user inputs. Then, Step 2 checks the solvability
of candidate topologies and keeps only the topologies that are solvable. Finally, the
mobility of the solvable candidates is computed in Step 3 and those topologies that
satisfy the user inputs are presented as final answers. The method is described in
Algorithm 1.
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Algorithm 1 Type Synthesis Algorithm for Free-finger and Object-contact Tasks
(1) Find all the possible topologies.
Inputs: number of positions (m), number of branches (b), number of edges (e)
Outputs:Parent Pointer Array and Joints Array.

(1.1) Find parent pointer array (p). Parent pointer array must have length of e and b branches.

(1.2) Find joint array. For each parent pointer array in step 1.1, construct all possible joint
arrays which meet the input criteria

(2) Solvability check. For each pair of parent pointer array and joint array found in step 1,
calculates the number of positions for the exact kinematic synthesis. If the number of positions
obtained for the kinematic task of all subtrees is greater or equal than the number of positions
for the overall tree, the tree is solvable.

(2.1) Find all root to end effectors subgraphs. A graph with b branches has 2b
�1 subgraphs.

Calculate m for all subgraphs and compare with m for the overall tree.

(2.2) Remove common edges. Common edges are the edges which are contained in all
branches. In this step, an algorithm finds all common edges and removes them.

(2.3) Change root to one of end effectors. When the root of the graph is changed the value of
the parent pointer array and joint array should be updated. The algorithm updates them in two
steps. There is a path between the previous root and the new root.

• First, the parent-pointer value of the edges that are connected to this path is updated.
• Second, the parent-pointer value for the edges which are in the path is updated.
• Other edges which are not in the path or does not connect to the path do not need to be

updated because the parents of them did not change.

(2.4) Iterate steps 2.1 to 2.3. This part will be stopped when only two end-effectors remain.

(3) Check Mobility. The output of the step 2 are the possible topologies. In this step the
algorithm verifies that the mobility of the topology is equal to that defined as input when the
grasping loops are created adding the fingertip contact array c to the graph.

(3.1) Remove unused part and calculate mobility. Since some part of rigid body may not
participate in the grasping process, the algorithm removes them. For finding the used part,
the algorithm finds all the edges that are in the branches from root to the end-effectors which
contribute in grasping. The other edges are unused and the value of �1 is assigned to each
corresponding element of parent pointer array and joint array. Then, calculate mobility for the
resulting topology. If it equals to the user input, it is one of possible solutions.

(3.2) Find Mobility for subgraphs. Using the algorithm proposed in step 2.1, find all the root
to end-effector subgraphs and calculate mobility (M) and locked joint mobility (M’) for them.

(3.3) Remove common edges (Palms). Using the algorithm proposed in step 2.2 remove palms.

(3.4) Calculate Mobility for the graph of part 3.3.
(3.5) Iterate step 3.3 and 3.4 until there is no common edge.

(3.6) Internal checks. If all the subgraphs fulfill the two following conditions, the topology is
one of the solutions.

• M0

subgraph  0
• Msubgraph � M
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4 Results

The table below shows a binary hand in which the calculations are detailed for the
overall mobility and in-palm mobility for different palms along the depth of the tree,
removing first the wrist and then the depth-1 palm. For clarity, the solvability of this
hand is calculated separately.

Table 2 Mobility calculations for a binary hand with four fingertips.
Topology Parameter Symbol Value

Number of task positions m 9
Number of branches (fingertips) b 4

p = {0,1,1,2,2,3,3} number of edges e 7
j = {2,1,1,2,4,2,4} Type of fingertip contact c {2,2,2,2}

Mobility M 6
locked-joints mobility M -10

Subgraph 1 Number of branches (fingertips) b 4
Remove Wrist number of edges e 6

p = {0,0,1,1,2,2} Type of fingertip contact c {2,2,2,2}

j = {1,1,2,4,2,4} Mobility M 4
locked-joints mobility M -10

Subgraph 2 Number of branches (fingertips) b 2
Remove Palm 1 number of edges e 2

p={0,0} Type of fingertip contact c {2,2}

j={2,4} Mobility M 4
locked-joints mobility M -2

For comparison, the input used in the type synthesis example of Tischler and
Hunt [8] is used here in the first example below. For the second example, we com-
pare the output to the results of Salisbury and Roth [4] but using soft fingers instead
of pointy fingers with friction. The number of positions for the synthesis is chosen so
that the number of joints in the hand candidates is similar to those in the references
used.The input values for both examples are shown in Table 3.

Table 3 Input values for the example
Parameter Symbol Example 1 Example 2

Number of task positions m 5 9
Number of branches (fingertips) b 3 3

Minimum and maximum number of edges e (2,4) (2,5)
Type of fingertip contact c {3,3,3} {2,2,2}

Mobility M 6 � 6

For the first example, the algorithm constructed 95 hand topologies and 10 of
them were solvable. Out of those 10, only 3 topologies fulfilled the mobility re-
quirements, that is, having M = 6 at the object with negative locked-joints mobility.
The 3 topologies are shown in Table 4. Out of these topologies, two of them have a

Structural Synthesis of Hands for Grasping and Manipulation Tasks 67



8 Ali Tamimi, Alba Perez-Gracia, and Martin Pucheta

1-dof wrist, which means that they have in-palm mobility equal to 5. The no-wristed
hand obtained is the same that was obtained in the example from [8].

Table 4 Resulting topologies suited for the tasks of Examples 1 and 2
Example Parent-pointer array Joint array Tree graph

Example 1 {0,0,0} {3,3,3}

{0,0,1,1} {1,3,2,3}

{0,1,1,1} {1,2,3,3}

Example 2 {0,0,0} {4,4,4}

For the second example, 295 topologies are compatible with the rigid-body guid-
ance task, out of which 78 are solvable. However only one topology, the one corre-
sponding to three 4-dof fingers and no wrist, has the required mobility M = 6 with-
out being constrained by any subgraph, and negative locked-joints mobility. This
topology corresponds to the solution chosen in [4]. In this case several other topolo-
gies had the required overall mobility, but the additional constraint of having the
same or higher in-palm mobility from any palm discarded those other topologies.

The results clearly show that the obtained hand topologies are general. Salisbury
and Roth as well as Lee and Tsai procedures leads to hands with serial chain fingers
and a unique palm without wrist. Özgür methodology leads to serial and complex
(chains with loops) parallel hand topologies analogous to parallel robots. Tischler
et al. procedures have complex fingers with hybrid kinematic chains and produce
topologies similar to the ones produced here for the case with a unique palm with-
out wrist. Additionally, the tree topologies used here can be dimensioned through
exact dimensional synthesis and when connected to the grasped object have serial,
parallel, and hybrid topologies given more, or eventually new, design alternatives
compared to those obtained in previous research.
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The current algorithm also allows flexibility on where and when define the mo-
bility. The current implementation imposes the same or higher mobility at each palm
as that of the overall hand, but that can be modified to make some of the palms as
grasping-only, for instance, while having different degrees of dexterity depending
on the palm and fingers involved.

5 Conclusions

In this work, a structural synthesis procedure for general multi-fingered hands has
been presented. The methodology considers the solvability of the hand for rigid-
body guidance, and the mobility and locked-joints mobility when grasping an ob-
ject, including the selection of the fingertips involved in the grasping and manipula-
tion action. This procedure yields an isomorphism-free enumeration for compacted
and reduced tree graphs. The presented examples show the adequacy of the method-
ology as a first step in the selection of a hand structure for a given general task that
may include free-finger motion, grasping, and manipulation of the grasped objects.
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Generalized Construction of Bundle-Folding
Linkages

Shengnan Lu, Dimiter Zlatanov, Matteo Zoppi, and Xilun Ding

Abstract A mechanism which is able to fold into a bundle is of particular inter-
est: minimal size facilitates storage and transport. The paper presents a simple and
general geometric method to design bundle-folding linkages based on one-degree-
of-freedom spatial overconstrained loops. The so designed mechanism can be folded
into a line bundle and deployed into a spatial shape. The geometric conditions, under
which an overconstrained linkage can be folded into a bundle, are discussed. Case
studies of bundle-folding designs are presented and validated using simulations.

Key words: deployable mechanism, bundle folding, overconstrained mechanism.

1 Introduction

A deployable mechanism (DM) is capable of configuration change which dramat-
ically alters its shape and size. This property enables many potential applications
[1–3]. With good design, DMs can be folded into a bundle and deployed into differ-
ent shapes: the compact folding facilitates storage and transport.

DMs are often constructed as networks of simple component mechanisms called
deployable units (DUs). Typically, identical units (of one or several types) can be
added to the assembly without limit resulting in arbitrarily large deployed structures.
A necessary condition for the compact folding of the network is that each DU can
be reduced in size, ideally collapsed into a bundle. This is true for scissor-linkage
elements, the most important subassembly used in DMs [4, 5]. Recently, the clas-
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sic spatial overconstrained loops have been used as DUs. Pellegrino et al. studied a
bundle-compacting form of the Bennett linkage with equal link lengths [6]. Similar
research has also been done on the Myard [7] and Bricard linkages c [6, 8–11]. In
this study, we discuss the generalized construction of bundle folding mechanisms,
focusing on 1-dof overconstrained hinged loops. Some general conditions and spe-
cial cases are discussed and illustrated with examples and simulations.

Section 2 presents the geometric method for generating a bundle folding mech-
anism. Next, geometric conditions for a 1-dof loop with different numbers of revo-
lute joints are analyzed. Case studies are performed on some typical overconstrained
linkages; the obtained mechanisms have been simulated.

2 General method for obtaining bundle folding mechanisms

In general, the geometric construction of R-jointed linkage with a given connectivity
graph involves the determination of the spatial relationship among the hinge axes in
each link. Beyond interference, the kinematics of the linkage is not affected by the
geometric outlines of the links, yet these affect its physical appearance and utility.

The linkage is bundle-folding, if it has a configuration, in which the physical
rigid links can be folded completely into a bundle without internal space gaps. We
focus on single loops. A rigid bar which realizes a physical binary link should not
be confused with the common normal used to geometrically represent the abstract
link. The former can be any line segment with ends on the two joint axes sharing
the link. The objective of the conceptual design of a maximally compact linkage is
to find a line segment containing all rigid bars in some configuration.

Thus, a simple construction procedure can be proposed: choose a configuration
and draw a line intersecting all joint axes. Then, take the segment of this line con-
necting the intersection points on any two adjacent R-axes as the physical rigid link.
Thus, in the chosen configuration, the linkage will be compacted into a single line
segment. Once the linkage moves to other configurations, (generally non-planar)
polygons will be formed by these connecting link segments. Practically, the rigid
links have finite cross section and so in the folded configuration, the physical shape
of the mechanism will be a bundle. The mechanical design must ensure that this
bundle is realized without gaps and interference.

3 Bundle folding conditions of 1-dof overconstrained mechanism

According to the Chebychev-Grübler-Kutzbach criterion, a spatial closed-loop link-
age should have seven joints to be mobile. If realized with fewer hinges, the mecha-
nism is called overconstrained. In the following, we will discuss the bundle folding
conditions for loops with four, five, and six revolute joints.
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3.1 4R loops

Figure 1 [12] characterizes the Bennett linkage. Opposing links have the same
length, a or b, and twist angle, a or b , respectively. All offsets are zero and
asinb = bsina [13].

Fig. 1 The Bennett linkage and its geometric de-
scription [12]
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Fig. 2 Plane symmetric Myard linkage

The linkage is mobile with one dof as in every configuration the four zero-pitch
twists of the hinges are linearly dependent and span a three-system of screws. For
general choices of the parameters a, b, a , b , and a general configuration, this is a
general three system with one positive, one negative, and no zero principal pitches.
So four revolute joint axes will be in the same regulus on a hyperboloid of one sheet
(the zero-pitch quadric of the system). Hence, every line of the second regulus of
the same hyperboloid intersects all four hinge axes, and can be used to construct a
bundle-folding Bennett four-bar. (See [12] and [14] for the properties of the general
three-system and the one spanned by the Bennett axes.)

Special or degenerate cases occur when for special geometries or configurations.
Thus, when the common normals of the links align, the two reguli, of the R joints
and of their intersectors, both rule a hyperbolic paraboloid.

When a = b 6= 0, each pair of opposing revolute axes intersects at a point. The
desired line can be the segment linking the two intersections, or any line passing
through one of the points and lying in the plane of the two axes through the other. In
this case the general three-system spanned by the joint twists has middle principal
pitch equal to zero and the hyperboloid regulus of the four lines degenerates to a
pair of intersecting planes.

When a = b = 0, the mechanism becomes a planar parallelogram. In a gen-
eral configuration no line intersects all axes (at finite points), but the four axes can
become coplanar in a singularity of increased instantaneous mobility. Only in this
configuration a bundle-generator line can be drawn.
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Analogously, when a = b = 0, the mechanism is a collapsible spherical four-
bar. At the configuration where all the axes are coplanar, there are (infinitely many)
bundle generators.

3.2 5R loops

In a 5R loop with one dof, the screw system spanned by the rotational twists is of
dimension 4. Any line intersecting all five hinges is the axes of a zero-pitch screw in
the reciprocal two-system. (Two zero pitch screws are reciprocal if and only if their
axes are coplanar.) Therefore the existence and multiplicity of a bundle generator
depends on the type of the co-determined two- and four-systems. A two-system
may contain zero, one, two, or infinitely many zero-pitch screws. The most general
cases are of two or zero solutions.

It is important to distinguish the special case when the candidate generator is par-
allel rather than intersecting an axis. To construct a physical bundle-folding linkage
the intersection point must be finite. In practice, the angle at the intersection is pre-
ferred to be close to p/2, although some useful solutions exist when the generator
coincides with an axis.

An example of 5R-loop is the plane-symmetric Myard linkage, in Fig. 2. The
zero-pitch joint screws and their axes are denoted r

r

r i and `(rrr i), i = 1, . . . ,5, re-
spectively. `(rrr2) and `(rrr5) always intersect, and so do `(rrr3) and `(rrr4). The two
intersection points must be in the plane of symmetry, therefore, the line connecting
the two points also intersects r

r

r1 (in some singular configurations, the two lines co-
incide). One more solution exists: the intersection of the plane defined by `(rrr3)
and `(rrr4) and the one spanned by `(rrr2) and `(rrr5) intersects also with `(rrr1),
Fig. 2 [7, 12, 15, 16].

3.3 6R loops

In a 6R 1-dof loop, the joint rotations span a 5-system of twists. The reciprocal
(wrench) system is defined by a unique screw. A (unique) bundle generator exists
only if the pitch of this screw is zero. (In addition this line must not be parallel to
any of the axes.) Let r

r

r i = (www i,vi), i = 1, . . . ,5, be five independent zero-pitch twists
in the 5-system. A wrench, y = (f,m), with on the screw reciprocal to the 5-system
satisfies the five homogeneous linear equations

f ·vi +m ·w

w

w i = 0 (1)

This defines a one-system of screws whose pitch is zero only if f · m = 0 for one
(and every) solution. To avoid parallelism with a joint axis we need, for every i,
either f ⇥ w

w

w i 6= 0 or m/|f| 6= vi/|w

w

w i|. In general, one cannot expect the additional
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conditions to be satisfied and therefore, for five lines in general position a sixth
intersecting each of them does not exist.

However, the search for a bundle generator needs to succeed in only one con-
figuration. If an IIM (increased instantaneous mobility) singularity exists, where no
five of the lines are independent, finding a generator is easier. In particular, if the
spanned system is three-dimensional, so is its reciprocal and then (usually) there
will be infinitely many solutions, as explained above.

For instance, the systems of some Bricard linkages can degenerate in some con-
figurations. Depending on the degree and type of the system, different numbers of
solutions can be obtained. Examples are given in the following section.

4 Case studies of bundle folding loops

4.1 Bennett linkage

We choose a Bennett linkage with parameters a = 80, b = 128, a = 30�, b = 51.13�

as an example. The bundle is generated along the common intersecting line as shown
in Fig. 3(a). Here the folded configuration is the one where the joint axes have a com-

r

r

r1

r

r

r2

r

r

r3

r

r

r4

(a) (b) (c)

Fig. 3 Simulation of a bundle-folding Bennett linkage

mon normal, which is the chosen bundle generators. There are infinitely many other
common intersecting lines in this configuration, resulting in longer link segments.
Bennett loops can be linked in a network forming intersting DMs. Bundle folding
units are preferred; in particular the special case with a = b [6, 17–19].

4.2 Type III Bricard linkage

Figure 4 shows the definition of a type III Bricard linkage in one of its two collapsed
configurations. The edges AB, BC, AC0, A0B0, B0C0, A0C are the rotation axes of the
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mechanism. (For more details, see [11, 20].) In the example chosen, Figs. 4-5, the
dimensions are: r = 110, lOA = l0OA = 213.35, \AOA0 = 27.93�, r = 110, R = 179.47.

Fig. 4 Example of the type III Bricard
linkage

(a) (b) (c)

Fig. 5 Simulation of an example Bricard linkage

In the collapsed configurations (where all hinge axes are coplanar), the rank of
the system spanned by the joint twists drops to three. Then, there are infinitely many
possible bundle generators, each intersecting all the revolute axes. Indeed, any line
in the plain which is not parallel to any of the six axes can be used. Obviously, none
of these generators can be a common normal to the hinges.

The segment BB0 is the folded bundle of the linkage. In the other collapsed con-
figuration, the link segments form a square, Fig. 4. A 3D CAD model of the Bricard
linkage bundle has been build. The cross-section of each bar is nearly a rectangle,
slightly modified to avoid collisions during the motion. Simulation of the move-
ment is illustrated in Fig. 5. Bricard linkages have also been used as deployable
units, usually bundle-folding [6,8–10]. Type III Bricards can form indefinitely long
chains [21] which can deploy and reconfigure in various ways [22].

4.3 Sarrus linkage

The model and parameters of the Sarrus linkage [23] are shown in Fig. 6. The unit
joint rotation twists are r

r

r i, i = 1, . . . ,6. The adjacent axes of joints 1, 2 and 3 are
parallel, and so are `(rrr4), `(rrr5), and `(rrr6). The angle between the necessarily non-
parallel directions of two groups of joint axes is a .

As discussed in Section 3.3, the desired common intersecting line (a zero-pitch
reciprocal screw) does not always exist for a 6R loop. In a Sarrus linkage configura-
tion where the joint twists span a five-system, there cannot be a pure force exerting
no power on any hinge rotation. Indeed, if this were the case, then the reciprocal
system would be of dimension at least two because there is always an infinite-pitch
reciprocal screw (in the direction perpendicular to all axes). However, for many Sar-
rus linkages there are singular configurations with instantaneous mobility two (or
three) and then a bundle-generating line can be found.
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Fig. 6 The Sarrus linkage
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(a) (b) (c)

Fig. 7 Bundle-folding Sarrus linkage

For example suppose that the two planar 3R serial subchains of the Sarrus can
be maximally extended simultaneously. That is, there is a configuration where the
parallel triples `(rrr i), i = 1,2,3 and i = 4,5,6, are coplanar in p123 and p456, respec-
tively. Then the intersection p123 \ p456 is the expected line. (The intersection line
exists and is unique if the Sarrus is non-degenerate, allowing finite translation of
link 3-4 with respect to 1-6.) An example mechanism is shown in Fig. 7.

Another example is when a Sarrus can be collapsed. Then, as with the type III
Bricard, the joint twists span only a three-system, and any line on the plane not di-
rected in either of the two joint-axis directions, can be the bundle generator, Figure 8.
Sarrus linkages can also be very useful when constructing deployable mechanisms:
they can be used as equivalents of sliders in networks of scissor linkages [24, 25].
Bundle-folding Sarrus variants can be useful in such DM applications.

Fig. 8 Another bundle-folding Sarrus linkage

5 Conclusions and future work

A simple general geometric method for the conceptual design of bundle-folding
realizations of a spatial 1-dof overconstrained loop is presented. The procedure in-
volves the construction of a bundle-generating line, which intersects all hinge axes
in a chosen configuration. Geometric conditions are given for the existence of such
a generator for linkages composed of four, five, and six revolute joints. Case studies
of bundle-folding designs of different 4R and 6R loops are presented and validated
using simulations.
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A complete analysis of singularities of a parallel
medical robot

Josef Schadlbauer1, Calin Vaida2,Paul Tucan2, Doina Pisla2, Manfred Husty1,
Nicolae Plitea 2

Abstract This paper analyzes the singular poses of a 5-DOF parallel robot used for
brachytherapy. In compliance with the latest safety protocols and requirements [3]
the paper presents a new mathematical model using algebraic constraints and the
Study parameterization of the Euclidian displacement group. Using algebraic meth-
ods combined with multidimension geometry proved to be efficient in the calcula-
tion of the kinematics of mechanisms and in the explanations of their behavior. The
results obtained using this algebraic method were analyzed with respect to the data
obtained from the experimental model of the robot by comparing theoretical com-
putation results with the actual behavior of the robot. The analysis of the kinematics
using these methods allows a complete description of working modes, singularities
and robot behavior enabling a safe control throughout the medical task.

Key words: singularity, kinematics, Study parameters, algebraic constraints, paral-
lel robot, safe medical robot.

1 Introduction

Robotic architectures have been introduced in multiple medical fields to provide ad-
vanced tools for the doctors enhancing through their characteristics the medical act
and ultimately the life quality of patients. Some of the most complex tasks are those
where the robot as a slave tool, controlled by the doctor from a master console, in-
teracts intimately with the patient [4]. A new challenge refers to the development
of new techniques for the curative and palliative treatment of malignant tumors. In
the recent years a new technique, called brachytherapy (BT), has been developed,
aiming to provide, local, targeted treatment of the tumors, by delivering specialized
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radioactive seeds directing into the tumor. The limited use of BT is caused by the
seed placement accuracy required, which, especially for deeply located tumors is be-
yond human capability. Thus, as shown in [1,6], robot assisted brachytherapy proves
to be a necessity in order to: improve the accuracy of the needle placement and seed
delivery; improve the consistency of the seed implant; avoid critical healthy areas;
reduce radiation exposure. For a successful procedure the robot should introduce,
needles with diameters varying from 0.6 mm up to 2 mm on distances up to 200
mm, following a linear trajectory, with a maximum positioning error of 1 mm [1].
This task requires both high accuracy and stiffness where parallel robots thrive. In
full compliance with the latest challenges and requirements defined in [3] the CES-
TER team developed an innovative parallel robotic system, PARA-BRACHYROB,
capable of targeting tumors located in the entire thoraco-abdominal area of the body
under real-time CT monitoring [1, 2].

Fig. 1: PARA-BRACHYROB Prototype

The prototype of PARA-
BRACHYROB parallel robot has
been built at CESTER and can be seen
in Fig. 1. The study of this paper is
the implementation of a new mathe-
matical model that defines all the area
where the robot becomes unstable,
helping the controlling unit to avoid
them, increasing the safety of the
human patient and in the same time
optimizing the command of the robotic
system, enabling the manipulation in a
singularity free workspace.

2 The kinematics using Study parameters

PARA-BRACHYROB is a parallel robot with 2 modules with 3-DOF working in
cylindrical coordinates, the first module having three actuated joints (two transla-
tions and one rotation), while the second has only two actuated joints (two transla-
tions). The two modules each with Cardan joints having the first axis parallel with
the Z-axis, connect between them the needle-insertion module [6]. In the mathemat-
ical description of the manipulator, Study parameters or dual quaternions will be
used to parameterize the Euclidean displacement group SE(3). The first step in the
analysis of this manipulator is the derivation of the algebraic constraint equations.
For this purpose the parallel manipulator is decomposed into two serial chains. As
shown in Figs. 2 and 3 the serial structures are two identical PRPRR chains, L1 resp.
L2. The direct kinematics of the chain Li is computed via the matrix product where
the matrices represent transformations according to Tab. 1.
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Fig. 2: Basic structure of the 2nd PRPRR chain
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MK

Fig. 3: Basic structure of the 1st PRPRR chain

Li = Mi1 ·T1 ·T2 ·T3 ·T4 ·Mi2 ·T5 ·Mi3, (1)

Table 1: The geometric representation of the transformation matrices for L1 resp. L2.

Matrix Representaion Parameter Type

M11 basistransformation for leg 1 (identity matrix) - -
M21 basistransformation for leg 2, translation along the x-axis d12 -
T1 translation along z-axis t1 resp. s1 active
T2 rotation around z-axis t2 resp. s2 active resp. passive
T3 translation along x-axis t3 resp. s3 active
T4 rotation around z-axis t4 resp. s4 passive

M12 translation along z-axis (distance between A1 C1) l1 -
M22 translation along z-axis (distance between A2 C2) l1 -
T5 rotation around y-axis t5 resp. s5 passive

M13 final translation along z-axis lc -
M23 final translation along z-axis lc -

The matrices L1 resp. L2 represent Euclidean displacements for all sets of pa-
rameters. Following Walter and Husty [7] this Euclidean displacements are mapped
to the kinematic image space P7 using the kinematic mapping k introduced by
Study [5]. The parametrizations k (Li) of the image can be found in [6]. The
parametrizations k (Li) are representing 5-dimensional subvarieties of the Study
quadric. An implicit representation of these varieties is computed by using the LIA
(= Linear Implizitization Algorithm [7]). It has to be noted that the passive joint
parameters mentioned in Tab. 1 are eliminated during this process. The LIA shows
that there are 4 linear and one quadratic polynomial representing k (L1). Because
of the length of the polynomials only the first constraint polynomial is displayed at
this point:

(l2
1t2

2 �2l1t1t2
2 � l2

c t2
2 + t2

1 t2
2 + t2

2 t2
3 + l2

1 �2l1t1 � l2
c + t2

1 + t2
3 )x3

+(2l1t2
2 �2lct2

2 �2t1t2
2 +2l1 �2lc �2t1)y0 +4t2t3y1 +(2t2

2 t3 �2t3)y2 = 0
(2)

The ideal generated by the 5 polynomials of the first chain is denoted by I1. The
variables in I1 are the Study parameters. The input parameters of the first chain
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t1, t2, t3 and l1, lc determine the design of the manipulator. For k (L2) the LIA is
returning no linear polynomial. But it comes up with 10 quadratic polynomials. The
ideal generated by these 10 quadratic polynomials is denoted by I2. Because of the
length only one of these polynomials is explicitly shown here

(�l1 � lc � s1)x0y2 +(�l1 + lc � s1)x1y3 +(l1 � lc + s1)x2y0

+(l1 + lc + s1)x3y1 �2y0y1 �2y2y3 = 0
(3)

Remarkably one of the quadratic polynomials is the Study quadric x0x0 + x1y1 +
x2y2 + x3y3 = 0. This polynomial is already included in the ideal I1.

For the solution of the direct kinematic problem the zero set of the union I =
I1 [ I2 has to be computed for every set of input parameters. The vanishing set
of an ideal are all common roots of the polynomials which generate the ideal. The
ideal I1 is generated by 4 linear polynomials and one quadratic polynomial. One
can solve for all yi linearly and

y0 = �

l1t2
2 x3 + lct2

2 x3 � t1t2
2 x3 + t2

2 t3x1 �2t2t3x2 + l1x3 + lcx3 � t1x3 � t3x1

2(t2
2 +1)

,

y1 = �

l1t2
2 x2 � lct2

2 x2 � t1t2
2 x2 � t2

2 t3x0 +2t2t3x3 + l1x2 � lcx2 � t1x2 + t3x0

2(t2
2 +1)

,

y2 =
l1t2

2 x1 � lct2
2 x1 � t1t2

2 x1 � t2
2 t3x3 �2t2t3x0 + l1x1 � lcx1 � t1x1 + t3x3

2(t2
2 +1)

,

y3 =
l1t2

2 x0 + lct2
2 x0 � t1t2

2 x0 + t2
2 t3x2 +2t2t3x1 + l1x0 + lcx0 � t1x0 � t3x2

2(t2
2 +1)

.

(4)

substituting these solutions for yi into the quadratic equation in I1 results in x0x1 +
x2x3 = 0. This equation is also contained in the ideal I2, so this equation will be
considered in the discussion of I2.

The solutions obtained in Eq. (4) are then substituted into the polynomials of the
ideal I2. This results in the new ideal I 0

2 containing the unknowns x0,x1,x2,x3. The
ideal I 0

2 is generated by 10 polynomials. It was not possible to compute a general
Gröbner Basis for this ideal, but after adding the normalizing condition x2

0 + x2
1 +

x2
2 + x2

3 �1 = 0 Maple was able to compute a basis together with 5 other generating
polynomials. As the ordering was chosen to be lexicographic, the basis contains a
univariate polynomial which is of degree 8. It has to be noted that up to now all the
computations could be done without specifying any design and input parameters.
Furthermore one has to take into account that the quadratic normalizing condition
doubles the number of solutions and it can be stated that the direct kinematics of this
manipulator has four solutions. There are two solutions in the orientation module,
consisting of the double cardan joints close to the end-effector coordinate system
(xE ,yE ,zE) (Figs. 2, 3). These two solutions differ by a 180� rotation about the
zE axis. The two solutions of the positioning of the end-effector can be explained
geometrically: when the input parameters s1 and s3 of the first chain are specified
then the intersection point A of the two cardan axes is bound to move on a circle c1
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in a plane orthogonal to the z-axis of the base system in the height s3 + l1. When the
input parameters t1, t2 and t3 of the second system are specified, then the location
of the intersection point MK of both cardan axes of the second chain is defined. In
the assembled robot the distance 2lc between the points A and MK is fixed, so the
endpoint of a rod emanating from MK with length 2lc describes a sphere k with
center MK and radius 2lc. The intersection of the sphere and the circle c1 yields two
possible locations for the point A. A complete example of the solution of the direct
kinematics can be found in [6].

A

MK
zE

x

y

s3

s1

c1z A

t1

t3

Fig. 4: Geometric interpretation of the direct kinematics

3 Singularity Analysis

In this section a complete singularity analysis of the robot using the algebraic con-
straint equations from I1 and I2 will be presented. As it was mentioned in Sec. 2
the first ideal consists of five polynomials and the second on of ten polynomials. One
could rightfully question if this is a minimal description of the robot. Essentially it
can be shown that the LIA algorithm comes up with a minimal set of polynomials
that describe exactly the constraint variety of the robot.

In the following we are interested to compute all output singularities in the joint
space. Having a single polynomial which describes all singular poses, allows its use
as a parameter in the robot control, allowing the avoidance of any singular config-
uration, ensuring the safe robot behavior during the procedure. The number of 15
polynomial generates a serious difficulty in computing the Jacobian and the sin-
gularities. One could take subsets of eight polynomials respectively, differentiate
with respect to the Study parameters (xi,yi), assemble the differentials into an 8⇥8
Jacobian matrix and compute the determinant. Unfortunately the resulting polyno-
mials contain the Study parameters non linearly and an attempt to eliminate these
parameters to obtain an equation in the input parameters solely is hopeless.
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So another approach, based on the observation that in a singularity at least two
solutions of the direct kinematics have to coincide, was followed. As mentioned
in Sec. 2 the univariate polynomial of degree eight in one of the xi Study parame-
ters could be computed without specifying the input parameters (e.g. the univariate
polynomial P8(x3, t1, t2, t3,s1,s3)). It is easy to see that in a double solution the poly-
nomial DP = ∂P8

∂x3
and P8 have to vanish. P8 and DP can be taken to eliminate the

last Study parameter. The result is a large polynomial which fortunately factors in
eight terms:

Sing = P1 ·P2 ·P3 ·P4 ·P5 ·P6 ·P7 ·P8.

But this is not the end of the story, because the set of all double solutions in one
Study parameter yields only a necessary condition for being a double solution of
the direct kinematics. Sufficiency is only guaranteed when one can obtain double
solutions in all Study parameters. This can be for example done by back substituting
into the original system of constraint equations and computing the direct kinematics.
The polynomials P1,P2,P3,P4 are simple enough to be displayed using the actual
design parameters of PARA-BRACHYROB (d12 = 615mm, lc = 85mm, l1 = 67mm):

P1 : s1 � t1 +304, P2 : s1 � t1 �36, P3 : t2
2 t3 +615 t2

2 � t3 +615

P4 : t3
2 t2

3 +1230 t2
2 +378225 t2

2 + t2
3 �1230 t3 +378225 (5)

Substitution of the input parameters of P1 and P2 into the constraint equations reveals
that they even lead to self motions of the manipulator. In both cases the vertical axes
of the two cardan joints coincide and allow a full rotation of the end effector about its
zE axis. This motion was already detected in [6]. P5, P6, P7 are not discussed because
back substitution into the basis shows, that they do not lead to double solutions of the
direct kinematic and hence, don’t provide singular positions. The remaining cases
will be discussed separately.

3.1 P3

Here, one can solve for t3 and obtains t3 = �

615(t2
2 +1)

t2
2 �1 . Substituting t3 into the set

of original constraint equations and computing the Gröbner base with lexicographic
term order reveals that the univariate polynomial is indeed squared and yields only
four solutions, but one obtains one more polynomial in the base which is squared
and this fact brings a total number of eight solutions. The conclusion is that the input
parameter condition P3 does not yield singular poses for the manipulator.

3.2 P8

We start with this case because this case yields the general singularities which have
to be avoided in the medical operation. P8 is a polynomial of degree eight in the
input parameters t1, t2, t3,s1,s3. Fig. 5 shows the singularity surface P8 in the joint
space t1, t2, t3 for s1 = 200 and s3 = 700. This means, when four out of the five pa-
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rameters are given, then up to eight values of the remaining input parameter will
lead to a singular configuration of the end effector. These singularities have an ob-
vious geometric interpretation which can be seen in Fig. 5. The intersection points
of the sphere k and the circle c1 merge into one point (A = A), or with other words:
the circle touches the sphere, either from inside or outside. Computing the condition
for this geometric situation yields also the polynomial P8 and conforms the above
statement. This polynomial codes all input configurations which yield the tangency
configuration of both geometric objects and therefore yields singularities, an exam-
ple is shown in Fig. 5. These poses have been tested on the experimental model
and behaved as expected, generating singularities. They define the intersection of
two working modes of the robot and shows that the robot cannot cross from one
working mode into the other.

A = A

MKzE

x

y

s3

s1

c1
z

Fig. 5: Singularity condition according to P8

t3

t2
t2

Fig. 6: Singularity set for s1 = 200 and s3 = 700

3.3 P4

Solving P4 for t2 yields t2 = I(t3�615)
t3+615 , t2 = �

I(t3�615)
t3+615 , which is only real for t2 = 0

and t3 = 615. This set of parameters leads to an interesting geometric configuration
of the manipulator, which can be seen in Fig. 7: the first rotation axis of the first
chain and the first rotation axis of the cardan joint of the second chain coincide.
This means that the circle axis of c1 passes through MK and the intersection circle
of k in the plane of c1 and c1 are concentric. They have real intersections only when
they are congruent. The condition for this is s3 =

p
(s1 � t1 +304)(s1 � t1 +36).

But then point A together with the whole end effector system can freely rotate about
the coinciding axes.

Conclusions

Using algebraic constraint equations a complete singularity analysis of a medical
robot designed for brachytherapy was performed. It turned out that this manipulator
allows three kinds of self motions and all singularities can be found by input pa-
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rameter sets that fulfill an eight degree polynomial. The zero set of this polynomial
describes a degree eight hypersurface in the five dimensional joint space.

A

MK
zE

s3

y

xs1

c1
z

t3

t1

Fig. 7: Third Self Motion

The polynomial expression was im-
plemented in the control unit of the
robot ensuring its motion in singular-
ity free poses enabling a safe behav-
ior during the medical procedure. The
safe motion capability of the robot en-
ables its use in a CT-Sim environment
with real-time position control of the
needle.
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Workspace Analysis of a 3-PSP motion platform

Luc Baron

Abstract This paper presents the workspace analysis of a 3-PSP motion platform
to be used as a flight simulator. In this design, all passive joints are kept on the
base plate rather than under the moving platform, thus ensuring a secure and easy to
construct configuration. With a proper description of the constrained rotation of the
platform, the inverse kinematics canbe solved in an analytical form. The resulting
workspace shows varying tilting amplitudes with respect to the vertical displace-
ment, the azimuth and the actuator strokes.

Key words: workspace, 3-PSP, parallel manipulator, flight simulator.

1 Introduction

For flight simulation applications, parallel manipulators are first-choice mechanisms
to provide the 6-degrees-of-freedom (dof) mobility of the motion platform. In gen-
eral, these manipulators are particularly worthy of note because they have a high car-
rying capacity, as well as a lower workspace volume, more singularity problems and
an increased complexity when solving the direct kinematic problem compared to se-
rial manipulators of equivalent size [1]. However, since a full 6-dof is not required
for every type of flight simulation training, the use of lower mobility mechanisms
may often fulfill the same training objectives at a much lower cost. In particular,
3-dof motion platforms providing a vertical displacement and pitch and roll rota-
tions, without either the lateral and longitudinal displacement or the yaw rotation
(see Fig. 1), are the most important mobilities [2] required from the point of view of
flight simulation. Like 3-PSP platforms, these mechanisms have many advantages
in terms of simplicity of construction/control and reduced cost, although they also
present some problems due to the coupled orientation and position of the platform.

École Polytechnique, Montréal, Canada, e-mail: Luc.Baron@polymtl.ca
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(a) (b)

(c) (d)

P
S

P

Fig. 1 The 3-PSP motion platform: a) actual prototype; b) CAD model; c) actual passive PS joints;
and d) modeled passive PS joints.

Most of the research works published in the literature on these platforms have been
done on the 3-PSP variant [4–8], i.e., where the actuated prismatic joint is located on
the base, unlike our 3-PSP variant [9], where the actuated prismatic joint are located
on the platform. In our design, all passive joints (possibly harmful) are located at the
attachment of the leg tip with the base plate through a passive combined PS joints.
As shown in Fig. 1(c) and (d), the actual implementation is realized with a sphere
(attached to the leg tip) sliding and rotating into a partially open horizontal hole (at-
tached to the base plate). It is noteworthy that here we develop a kinematic model of
general geometry, while in our previous study [9] we assumed an equilateral triangle
and not adressing the influence of the actuator stroke.

90 Luc Baron



Workspace Analysis of a 3-PSP motion platform 3

(a) Euler ZYZ (b) Tilt and Torsion

Fig. 2 Orientation parameters: (a) Euler ZYZ angles (rotation of f around z, rotation of q around
y⇤ and a rotation of y around z⇤); (b) the tilt and torsion [3] (tilting of q around a being oriented
in xy-plan at f ; then torsion of s around z⇤).

2 Platform Mobility

The 3-PSP mechanism provides a constrained spatial displacement of the platform,
i.e., a generic point of it moves in 3-dimensional space, while the platform rotates
around three axes, but only 3 out of 6 parameters are independent. Consequently,
the platform has only 3-dof relative to the base. The constrained rotation of the
platform can be described with only two independent coordinates together with its
vertical displacement. Thus, the orientation of the platform is not arbitrary and can
be described with the tilt and torsion angles [3] such that

RT &T (f ,q ,s) = RZ(f)RY (q)RZ(s �f) (1)

where the tilt angle q is a rotation around axis a located in the original xy-plane,
while the orientation of the latter is given by the azimuth angle f . As shown in
Fig. 2(b), the torsion angle s is about z⇤-axis. It has been pointedout [3] that 3-PSP
mechanisms have a zero torsion angle, i.e., s = 0, and are hence,

R(f ,q) = RZ(f)RY (q)RZ(�f) (2)

=

2

4
cos2

f cosq + sin2
f sinf cosf(cosq �1) cosf sinq

sinf cosf(cosq �1) sin2
f cosq + cos2

f sinf sinq

�sinq cosf �sinq sinf cosq

3

5

Equation (2) is nothing else then the Euler ZYZ angles with the third angle being
constrained to �f . This representation of the constrained rotation of the platform
will allow a compact formulation of the kinematic model.
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A

B

P

S

P

Fig. 3 The kinematic loop of a leg

3 Kinematic Model

Let us attach frame A to the fixed base A and frame B to the moving body B,
its z-axis parallel to the three actuated joints axes, as shown in Fig. ??. Frames A
and B are coincident when all actuated prismatic joints are fully retracted. Finally,
a prime is used to denote vectors expressed in the moving frame B, while every
other vectors are by default expressed in frame A . Table 1 gives the geometry of
the actual prototype.

3.1 Position Analysis

The position vector of point Bi is expressed in B as

b0

i = [ri cosai r sinai 0]T , (3)

with ai being defined as

ai ⌘ 2(i�1)p/3, i = 1,2,3. (4)

In the base frame A , the unit vectors along the three passive prismatic joints can
be written as

ni = [cosai sinai 0]T , (5)

or alternatively, in the moving frame B, as

n0

i = RT ni. (6)
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Table 1 Geometry of the 3-PSP prototype.
i 1 2 3 unit

{qi}min 0 0 0 mm
{qi}max 100 100 100 mm

ri 475 400 400 mm

The position vector of the origin of B relative to the origin of A expressed in the
moving frame B is given as

p0 = [x0 y0 z0]T , (7)

and alternatively, in the base frame A as

p = Rp0 = [x y z]T . (8)

The position vector of point Bi relative to the origin of A , but expressed in B, is
given as

m0

i = p0 +b0

i. (9)

Alternatively, the same position vector can also be obtained as

m0

i = a0

i +q0

i = ain0

i +qik0

i. (10)

Since the closure equation requires vectors m0

i, n0

i and k0

i of each individual leg i to
be coplanar, they must satisfy the following equation

det
⇥
m0

i n0

i k0

i
⇤
= 0, (11)

where k0

i = [0 0 1]T . Using eq.(11), we can algebraically obtain the solution of
the inverse kinematic problem, i.e., the actuated joint position qi as

q1 =
z� r1 sinq cosf

cosq

q2 =
2z+ r2 sinq cosf �

p

3r2 sinq sinf

2cosq

(12)

q3 =
2z+ r3 sinq cosf +

p

3r3 sinq sinf

2cosq

from a given position and orientation of the platform, i.e., z,q ,f . It is worth noting
that z is an independent coordinate that can be chosen freely, while q and f are the
specified orientation of the platform. An important feature of this mechanism is the
parasitic displacement in x and y as

x =
2r12(r11 �

p

3r21)r1 + r11(r12 �3r21 �

p

3(r11 + r22))r2

2
p

3(r11r22 � r12r21)
(13)
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y =
�2r12(r12 �

p

3r22)r1 +�r12(r12 �3r21 �

p

3(r11 + r22))r2

2
p

3(r11r22 � r12r21)
, (14)

which depend on the platform geometry ri and orientation q and f through ri j.

3.2 Velocity Analysis

On differentiating eq.(12), it is easy to discover the mechanism’s general velocity
realtionship, i.e.,

Aṗ = Bq̇ (15)

where ṗ , namely the twist of the platform, and q̇, namely the actuated joint veloci-
ties, are defined as

ṗ ⌘ [ż q̇ ḟ ]T , q̇ ⌘ [q̇1 q̇2 q̇3]
T . (16)

Matrices A and B are the so-called parallel and serial Jacobian matrices given as

A(z,q ,f) =

2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5 , B = 13⇥3, (17)

with

a11 =
1

cosq

,

a12 =
q1 sinq � r1 cosq cosf

cosq

,

a13 =
r1 sinq sinf

cosq

a21 =
1

cosq

, (18)

a22 =
2q2 sinq + r2 cosq cosf �

p

3r2 cosq sinf

2cosq

,

a23 =
�(

p

3r2 sinq cosf + r2 sinq sinf)

2cosq

,

a31 =
1

cosq

,

a32 =
2q3 sinq + r3 cosq cosf +

p

3r3 cosq sinf

2cosq

,

a33 =

p

3r3 sinq cosf � r3 sinq sinf

2cosq

.
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Fig. 4 Workspace of the 3-PSP of Table 1 with h0 = [100 0 1200]T mm.

Matrix A degenerates when q = p/2. At this tilting angle, the legs become of infinite
length, and do not produce any motion of the platform. Obviously, the mechanism
is not able to reach such a high value of q . In fact, the prototype is able to reach a
maximum tilt angle of approximatly p/6.

4 Workspace

The workspace of the 3-PSP motion platform is determined by varying the following
three variables z, f and q , and computing the corresponding joint positions {qi}

3
1

with eqs.(12). The first loop varies z from 0 to {qi}max. The second loop varies f

from �p to +p , and the third loop varies q from 0 to the angles for which one
of the qi reaches its minimum or maximum. In order to study the displacement the
pilot’s head with the platform motion, let us define the position of the pilot head in
frame B as h0 = [100 0 1200]T mm and compute the corresponding head position
in frame A as h. Figures 4 and 5 show a set of contours limiting the workspace
of constant z0 values of {0,10,20, ...,{qi}max} mm. Apparently, the amplitude of
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= f

= q

z0=10z0=30

z0=50

z0=70z0=90

Fig. 5 Orientation workspace of the prototype for different z0 = {10,30,50,70,90} mm.

head displacement and orientation (corresponding to the pitch and roll angles of the
aircraft) are both varying with z0. All the azimuth f are reachable with different
amplitude of tilt angle. Increasing the actuator strokes from 100 to 300 mm allows
to increase the maximum tilting angle from 8o to approximatively 25o.

5 Conclusions

The 3-PSP variant, i.e., with the three actuated prismatic joints rigidly attachedto the
platform, is secure for the pilot and easy to construct. It is particularly well-suited
for the flight simulation applications. The inverse kinematic model can be solved
in analytical form with a proper description of the constrained rotation of the plat-
form. Although every azimuth are obtained, the amplitude of tilting is varying with
both the azimuth and the vertical displacement. The tilting amplitude also greatly
dependes on the actuator strokes.
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Posture Optimization of a
Functionally Redundant Parallel Robot

David Corinaldi, Jorge Angeles and Massimo Callegari

Abstract The use of parallel-kinematics machines (PKM) for manufacturing opera-
tions is attractive because of the high accuracy they can ensure. These robots might
perform a task that requires less degrees of freedom than those offered by the robot.
This is the case of a robot facing a functional redundancy, which can be exploited to
further increase the accuracy of the task, e.g. upon minimizing the condition number
of the Jacobian matrix. A practical case study of a spherical manipulator perform-
ing a pointing task are reported, to show how posture-optimization can be used as a
redundancy-resolution means for functionally redundant PKMs. The kinematics of
the machine and the orientation of the pointing task is used to build, respectively,
the objective function and the constraint equations. Sequential Quadratic Program-
ming is conducted to solve the constrained optimization problem and to find the
end-effector pose corresponding to the robot posture of minimum condition num-
ber for every direction of a given pointing path. Lastly, the constrained problem
is rewritten as one of unconstrained optimization of one objective function in one
design variable.

Key words: Functionally Redundant Robot, Posture Optimization, Maximum Dex-
terity, Parallel Kinematics Machines

David Corinaldi*, Massimo Callegari
Polytechnic University of Marche, Ancona AN, Italy.
e-mail: d.corinaldi@univpm.it, m.callegari@univpm.it
Jorge Angeles
McGill University, Montreal QC, Canada.
e-mail: angeles@cim.mcgill.ca

1



2 David Corinaldi, Jorge Angeles and Massimo Callegari

1 Introduction and Case Study

The improvement of task performance using robotic manipulators is a recurrent
challenge in robotics research. The need of a robot with high accuracy often arises
in industry when manufacturing tasks have to be performed without giving up the
flexibility provided by a manipulator. This feature often drives the choice of the ma-
nipulator, namely the most generic type: robots aimed at displacing the end-effector
(EE) with six degrees of freedom (dof). Due to their wide range of applications,
six-dof robots can manipulate an axially symmetric tool, thereby freeing a rotation
around its axis of symmetry. This class of tasks is characterized by five-dof, of par-
ticular interest to industry, since machining, arc-welding and deburring operations
all fall into this category. A six-dof robot that performs a five-dof task is said to
be functionally redundant [1]: more dof are available than needed; therefore, these
robots can be exploited to accomplish a secondary task. More specifically, the robot
considered is functionally redundant because it has an operational-space dimension
(reachable Cartesian space of the EE) greater than its operational task-space dimen-
sion (Cartesian space of the task). Intrinsically redundant robots are those whose
joint-space dimension is grater than their operational space dimension. Functional
redundancy can be used to increase the accuracy of the manipulator above what is
currently available, as reported by Léger and Angeles [6] for serial robots. The sec-
ondary objective in the present paper being to avoid singularities, the local dexterity
index used was the condition number, which quantifies the error amplification be-

Fig. 1 System architecture of an assembly cell based on two cooperating 3-dof parallel robots.
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tween joint and EE relative errors [7]: by lowering the condition number value, the
propagation of joint errors to the EE pose is reduced, thus increasing accuracy. In
this work the authors report a new step in the same direction and hence, apply the
same concept to parallel manipulators, known to offer many advantages over their
serial counterparts, like a lightweight structure and a high stiffness, which are ideal
for the task at hand: they are the best candidates for tasks that require high accuracy.

One of the issues in the analysis of parallel manipulators with six-dof is the com-
plexity of their kinematics, which can affect adversely in the path-planning. Often
what is done in conventional machining operations is to decompose the full-mobility
operations into elementary sub-tasks, to be performed by separate machines with
lower mobility [5]. In the foregoing paper the authors envisaged the architecture
of a mechatronic system with six-dof, i.e., two parallel robots cooperating while
performing a five-dof assembly task, as shown in Fig. 1. The kinematics of both
machines is based upon the 3-CPU topology, but the joints are differently assem-
bled so as to obtain: one translating parallel machine (TPM) with one mechanism
and one spherical parallel machine (SPM) with the other. The operation that the two
PKMs have to perform is a peg-in-hole assembly task with axisymmetric tools, a
classical five-dof assembly task. The SPM on the bottom, called Sphe.I.Ro., shown
in Fig. 2(a), holds the piece with the hole, while the TPM on the top translates the
cylindrical peg. The accuracy of the two manipulators is often decisive for the as-
sembly to be successful. Hence, functional redundancy, pertaining to the SPM, is
exploited to orient the axis of the hole along the directions given by a pointing-path
coming from the assembly strategy. The manipulator, which is still able to rotate
around such directions, will attain an optimal posture that minimizes the condition
number of the SPM.

2 Determination of Jacobian Matrices and their Condition
Number

The objective function of the optimization problem is the square of the condition
number of the the Jacobian matrix of Sphe.I.Ro. The Jacobian is obtained by means
of the theory of screws; its formulation for the 3-CPU PKM architecture was re-
ported in [4, 8]. The moving-platform (MP) twist t =

⇥
w

w

w

T vT ⇤T can be expressed
as a linear combination of the velocities that each joint in the kinematic chain pro-
vides. The expression is simplified by multiplication of the screws reciprocal to all
passive joint screws of each leg: the screw directions e1, e2 and e3 are indicated
in Fig. 2(b). By doing so, the influence on end-effector velocity of non actuated
joint rates is eliminated. In the specific case of a pure rotational tripod robot, the
kinematic relations follow:

Posture Optimization of a Functionally Redundant Parallel Robot 101
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2

4
nT

1
nT

2
nT

3

3

5

| {z }
J

2

4
w1
w2
w3

3

5

| {z }
w

w

w

=

2

4
q̇1
q̇2
q̇3

3

5

| {z }
q̇

(1)

where ni is the moment of the direction ei with respect to the F0-origin. Since
the inverse Jacobian matrix is constant and equal to the identity matrix, the study
focuses only on the direct Jacobian J. Based on the Frobenius norm of the 3 ⇥ 3
Jacobian J, the square of the condition number k

2
F(J) becomes

k

2
F(J) = kJk

2
FkJ�1

k

2
F =

1
n2 tr(JJT )tr(J�1J�T ) (2)

where kJk is obtained as the positive square root of kJk

2
F = tr(JJT )/3. Each trace

of this expression is expanded, to express it as a function of the row vectors of the
Jacobian matrix, namely,

tr(JJT ) = tr
Ä⇥

n1 n2 n3
⇤T ⇥

n1 n2 n3
⇤ä

=
3X

i=1

knik
2 (3)

Regarding the second factor of Eq. (2) tr(J�1J�T ), the inverse of JT can be ex-
pressed in terms of its columns explicitly, without introducing components, if the
concept of reciprocal bases is recalled [2]:

J�T = (JT )�1 =
1
D

⇥
n2 ⇥n3 n3 ⇥n1 n1 ⇥n2

⇤T
, D ⌘ n1 ⇥n2 ·n3 (4)

X0 Z0

F0

center of 
spherical motion

moving 
platform

C

P
U

robot base

(a)

X0 Y0

Z0

d c

leg 1

leg 2

leg 3

leg 1

leg 2

leg 3

e2

e3

e1
p1

p3

p2

Y1

Z1

X1
F1

(b)

F0

Y0

Fig. 2 Virtual model (a) of the spherical 3-CPU manipulator Sphe.I.Ro. Reference frames and
geometrical parameters of the ith leg (b).
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By transposing this matrix, J�1 is obtained and the trace can be written as before.
Hence, the square of the condition number becomes

k

2
F(J) =

�
kn1k

2 +kn2k
2 +kn3k

2��
kn2 ⇥n3k

2 +kn3 ⇥n1k
2 +kn1 ⇥n2k

2�

9(n1 ⇥n2 ·n3)2 (5)

which can be written as a function of the parameters describing the orientation
through the rotation matrix since to an EE pose corresponds a single posture of
Sphe.I.Ro, as reported by Callegari [3]. To this end the ni vectors are expressed in
terms of the rotation matrix Q, represented in the reference system F0 that maps
a vector from the mobile frame F1 to the fixed frame F0. This is possible since
the unit vectors of the reciprocal screws ei represent the axes of a reference frame
fixed to the ground, while the directions of the chosen vectors pi represent a triad
of directions of a reference frame fixed to the mobile platform. The three vectors ni
can then be written as

n1 = p1 ⇥ e1 = �dj1 ⇥ i0 = i0 ⇥dj1 ) [n1]0 = d[i0]0 ⇥ [Q]0[j1]1

n2 = p2 ⇥ e2 = �dk1 ⇥ j0 = j0 ⇥dk1 ) [n2]0 = d[j0]0 ⇥ [Q]0[k1]1

n3 = p3 ⇥ e3 = �di1 ⇥k0 = k0 ⇥di1 ) [n3]0 = d[k0]0 ⇥ [Q]0[i1]1

Hence, p is the vector connecting the origin of the reference frame F0 to a point of
the axis of the screw. Among the various vectors, we choose the one from the center
of the spherical manipulator to the intersection of the two universal joint axes.

3 Formulation of the Optimization Problem

In trying to resolve the functional redundancy of Sphe.I.Ro. performing a two-dof
task, the problem can be formulated as one of solving a constrained optimization
problem, the constraints being imposed by the pointing specification, while the ob-
jective function is k

2
F(J). Then the problem takes the form:

f (x) ⌘ k

2
F(J) ! min

x
, s.t. h(x) = 0 (6)

where h is a four-dimensional vector of constraints and x the array of actuated-joint
variables. The constrained problem can be formulated by means of points lying on
a sphere with unit radius. Choosing this approach, a rotation about the axis that
passes through the center of the spherical manipulator is the functional redundancy.
The constraint is then the coincidence of the vertical unit vector ev, mapped by the
rotation matrix and the actual unit vector of the hole direction eh, both expressed in
the same reference frame, i.e., the fixed frame F0.

h(x) = Qev � eh = 0 ) h(x) = [Q(x)]0[ev]0 � [eh]0 = 0 (7)

According to the two reference systems chosen, [ev]0Ê=[eh]1 = �

p

3/3
⇥
1 1 1

⇤T .
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So far the optimization problem is written in terms of the rotation matrix Q that
needs a proper parametrization to describe the orientation of the mobile platform:
among the various representations that describe the rotation, we choose the one
based on the rotation invariants, and in particular, the Euler-Rodrigues Parameters
(ERPs), i.e., the four scalars r and r0 [1]:

Q = (r2
0 � rT r)1+2rrT +2r0R, R = CPM(r) (8)

where CPM(r) denotes the cross-product matrix1 of r ⌘ esin(f/2). This repre-
sentation is more robust than the others because it does not entail any singularity;
therefore, smoother trajectories can be obtained. The array of unknowns becomes
x =

⇥
rT r0

⇤T , which are not independent, for they obey the constraint krk2 +r2
0 = 1.

A non linear system of four algebraic equations in four unknowns is thus obtained,
that seems to leave no room for optimization. Actually, the system conceals a non-
linear dependency between the variables [2], since the 4 ⇥ 4 gradient of the system
of equations is singular. As a matter of fact, the 4th equation of the system naturally
comes out from the Euclidean norm of the two sides of Eq. (7) by introducing Eq.
(8) and imposing that ev and eh be unit vectors. In order to provide the system with
a straightforward physical interpretation, a projection of the equations is operated
along known directions as shown below:

8
>>><

>>>:

rT ev = rT eh

rT Eveh = 2r0(rT r� (rT ev)2)

eT
v eh = 2(r2

0 +(rT ev)2)�1
krk2 + r2

0 = 1

(9)

From the first scalar equation the angle between the vector r and the two unit vectors
ev and eh of the vertical and actual hole axes must be equal: this vector is bound to
lie on the bisector of the plane defined by to the two unit vectors ev and eh. Vector r
can sweep this plane upon rotating around the origin of the frames. Within this set
of vectors r that brings ev to overlay with ep, the solution of the problem is the one
that optimally orients the EE in the eh pointing direction.

The constrained optimization can be rewritten as an unconstrained problem by
decomposing the Q matrix into two rotation matrices, namely, Q = Q1Q2. For the
sake of simplicity, the two factors are described here in terms of their linear invari-
ants Qi(ei,Ji), even though ERPs where used for practical implementation. The first
rotation is determined by imposing the coincidence of the two given vectors: among
the infinite number of rotation matrices, the one that minimizes the angle of rotation
J1 is chosen

Q1 = Q1

Å ev ⇥ eh

kev ⇥ ehk
,atan2

�
kev ⇥ ehk,eT

v eh
�ã

(10)

1 That is, CPM(r) = ∂ (r⇥v)/∂v, 8v, x 2 R3
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Fig. 3 (a) Sphe.I.Ro PKM in the arbitrary initial posture of the trajectory; (b) reciprocal of the
condition number for SQP and function evaluation and joint values progressions.

The matrix Q2(eh,J2) describes a rotation around the unit vector eh of an angle
J2. Then, the whole rotation Q can be used to compute the square of the condition
number k

2
F(J2) as a function of J2, which represents the only unknown. Such ma-

nipulations allow the writing down of the problem as an unconstrained optimization
of the objective function k

2
F in the single design variable J2.

4 Implementation and results

Sphe.I.Ro is to perform a pointing task while keeping the Frobenius condition
number of its Jacobian matrix at a minimum. In order to prove the effectiveness
of the procedure, an arbitrary array of Euler-Rodrigues parameters

⇥
rT r0

⇤T
=

⇥
0.1401 0.2100 0.2800 0.9262

⇤T is chosen to reproduce a geometric path for the
EE. In practical cases instead, such path is given by the task. The finite rotation be-
tween the two frames is taken as the pointing path of the hole axis, represented by
ehi: a total of i 100 path points on the unit sphere are used to describe the axis path,
keeping fixed the axis of rotation while decreasing the angle of rotation j by Dj ,
as shown in Fig. 4(a). For each prescribed direction of the hole axis an optimization
problem is solved in order to find the EE orientation that minimizes the Jacobian
condition number. To solve the optimization problem of a nonlinear function with
nonlinear constraint equations we use the Sequential Quadratic Programming (SQP)
algorithm, while the gradient of the objective function is estimated using finite dif-
ferences at every step. After having found the first point of the optimum joint trajec-
tory, the remainder of the path follows in a similar way, using the previous trajectory
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point as an initial guess. The next posture is, consequently, the closest minimizer at
the current posture. To verify the results of the SQP method, the condition number
is evaluated at each iteration upon varying the angle of rotation J2 about the axis eh
of the unconstrained problem: the plots in Figs. 4(a) and (b) show the evaluation in
a rich sample of argument values for a full rotation of 2p , i.e. the 50th and final point
of the path. In Fig. 4(b) the reciprocal of the condition number indicates the passing
through an isotropic configuration and through a singular one; moreover, the plot
rightfully appears as p�periodic. From the first results, of the optimization problem
we conclude that the implementation of the complete system of Eqs. (9) leads to
an excessive number of iterations, often without reaching a minimum value. The
exclusion of the fourth equation from the system makes the dof of the functional
redundancy explicit, thereby leading to a faster convergence. The comparison of the
history of the condition number along the path for the optimization problem versus
the unconstrained function evaluation (Fig. 4 (b)), shows the same results; hence,
the solver is capable of finding the local minimum. In Figs. 3 and 4 the strokes of
the actuated joints (qi) are also plotted, for the respective condition number obtained
using the inverse kinematics relationships:

q1,i = c13⇥1 �d
⇥
Q1,2 Q2,3 Q3,1

⇤T (11)

where c is the constant length between the prismatic pair direction and the universal-
joint center along the cylindrical-joint axis, while Qi, j represents the (i, j) entry of
the rotation matrix. The pointing-path was verified looking for potential problems
such as joint-limit violation and singular postures. No such problems were found
for this particular path. For every practical purpose, this result shows that the opti-
mization scheme led to a constant condition number, at a remarkably low level. It
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is noteworthy that the optimization problem avoids singularities only if at least one
non-singular posture is available for a particular pointing direction; since this is not
ensured for every pointing direction, it can happen that the solution of the problem is
a pose either singular or close to a singular configuration. In any case, the proposed
procedure is not aimed at seeking at a singularity-free trajectory but at optimizing a
particular path that should be generated a priori and verified for singularity avoid-
ance. In particular, for each path it should be guaranteed that the condition number
is lower than a safe threshold to setup according to the task at hand. The pointing
path discussed here is not anyhow related to time; for this reason it does not rep-
resent a specific trajectory: a motion planner able to perform such verification and
to provide a time history for the subsequent configurations is still a matter of study,
that is to be further investigated.

In conclusion, the paper shows how posture-optimization can be used as a
redundancy-resolution means for functionally redundant PKMs. The constrained
optimization problem here defined is solved with the SQP algorithm. The problem
is recast as one of unconstrained optimization, whose objective function is evaluated
over a rich sample of argument values to verify the SQP results by inspection.
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Accounting for tolerances in the design
parameters of the 3-RRR

Joshua K. Pickard, Juan A. Carretero, and Jean-Pierre Merlet

Abstract Accounting for manufacturing tolerances and uncertainties in the design
specifications of a parallel manipulator are important for a reliable analysis of a
mechanism. Given a task, described by a desired workspace and set of wrenches to
be generated at the end-effector, it is necessary to ensure that a fabricated design
can achieve the desired criteria. The 3-RRR planar parallel manipulator is modelled
with tolerances on each of the design variables. Interval analysis techniques are then
utilised to solve the reachable workspace of the mechanism which also accounts for
self-collisions. The wrench capabilities throughout the collision-free workspace are
then verified. The results describe the set of verified poses which satify the task’s
criteria given the tolerances and uncertainties in the specified design.

Key words: interval analysis, self-collisions, wrench workspace

1 Introduction

A useful concept in parallel manipulator analysis is to evaluate certain properties of
a mechanism when the design geometries are not precisely known, but can be deter-
mined with a tolerance. A desired geometry can be fabricated to within a certain set
of tolerances. In order to ensure that the desired properties will be present within the
fabricated mechanism, the fabrication tolerances must be taken into account when
analysing the mechanism. These properties can include identifying collision-free
regions [2], singularity-free regions [2, 8], and wrench capability analysis [3, 9].
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Self-collisions are typically prevalent throughout the reachable workspace of par-
allel manipulators (especially for the 3-RRR mechanism). To ensure that the fab-
ricated mechanism avoids self-collisions, the components of the design (e.g., the
actuator and mounting hardware, joints, links, platform, end-effector), and the ar-
rangement of these components, should be accounted for when analysing the mech-
anism. Several techniques have been proposed to deal with self-collisions. Ketchel
and Larochelle [5] exploit the geometry of right circular cylindrical objects to fa-
cilitate the detection of collisions from three dimensional motions [5]. Merlet and
Daney [6] apply interval analysis techniques to determine the minimum distance be-
tween cylindrical members to detect self-collisions in the Stewart-Gough platform.

Interval analysis is a mathematical framework which allows for computation us-
ing interval quantities, such that an interval variable [x] denotes the natural extension
of the closed interval [x] = [x,x] = {x | x 2 R, x  x  x}. Through the use of in-
terval analysis techniques, a variable’s tolerances can be accounted for during all
computations. The evaluation of a function f (x) over an interval [x] yields the in-
terval solution [ f ] of the function. This function [ f ] is called the inclusion function
for f ([x]), such that f ([x]) = { f (x) | x 2 [x]} ✓ [ f ]. The converse inclusion does not
hold in general, and [ f ] overestimates f ([x]). This overestimation is a result of the
well known wrapping effect and dependency problem in interval analysis [4]. Sev-
eral techniques are commonly applied to manage interval overestimation: interval
contracting techniques, branch and bound methods, and alternative representations
of the inclusion functions (e.g., centred, mixed centred, Taylor) [4, 7].

In section 2, interval analysis is incorporated into the design specifications of the
3-RRR parallel manipulator. This allows uncertainties in the mechanism to be ac-
counted for during analysis. Section 3 introduces the description of a desired task in
terms of workspace and wrench requirements. Then, in section 4, the inverse kine-
matics for the mechanism are solved using interval analysis and both self-collisions
and joint limitations are accounted for. In section 5, the wrench capabilities of the
mechanism are evaluated and verified against the wrench requirements of the task.

2 Design Specifications

The design of a 3-RRR will be described in terms of a set of design parameters,
denoted D . Illustrated in Figure 1, these design parameters include link lengths (ri
and li), moving platform and fixed base geometries (described by di and ai, respec-
tively), and actuator torque capabilities (ti). In addition to the discrete values for the
design parameters, interval analysis provides the ability to easily model tolerances
on each of the variables. It is therefore necessary to denote a design with tolerances
as [D ]. The length of a link may normally be discretely represented as li, whereas
the inclusion of a manufacturing tolerance r allows for the length to be represented
as [li] = li ±r . Also, consider that the location of each actuator is not exact; thus, it is
useful to add tolerances ([ai]). Lastly, it may be necessary to include positioning and
orientation tolerance on the desired pose ([p]). The remainder of this work proposes
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Fig. 1: The 3-RRR architecture with 3-DOF (x, y, and y) (adapted from [9]).

and demonstrates algorithms which are developed to analyse mechanisms with in-
terval design parameters, such that each design D 2 [D ] and each pose p 2 [p] are
accounted for.

3 Task Requirements

Given a design [D ] containing tolerances, it is important to understand the capa-
bilities of a mechanism in generating wrenches throughout its reachable workspace
(PRW ). The symbol P denotes a set of poses and the subscript refers to the relevant
workspace. The term wrench capability (F ) denotes the complete set of wrenches
that a mechanism can generate at its end-effector in a given pose. Bouchard et al. [1]
considered a discrete representation for a mechanism’s design and pose and pre-
sented an algorithm for an exact polytopic representation of F . The selected design,
D , and pose, p, both affect the resulting wrenches, i.e., F (p,D). The minimum al-
lowable wrench capability (Fmin) defines the minimum wrench set required for a
specific task. The set of poses with Fmin ✓ F (p,D) are said to be inside the mech-
anism’s Wrench Workspace (PWW ). That is, PWW is a subset of PRW which can
be used by the desired task.

The description of a task used in this work will contain: 1) the set of pose in-
tervals, denoted Ptask = {[p1], . . . , [pk]}, required by the desired trajectories, and
2) the Fmin required to be generated along the trajectory. If Ptask is described by
some desired trajectory, it will be assumed that Ptask ✓ PRW . Alternatively, if the
knowledge of the task is the Fmin, it may be desirable to analyse wrench capabilities
throughout the entire reachable workspace. That is, Ptask is initialised as

Ptask = {[p] | [p] 2 PRW , width([p])  e} (1)

where width([p]) returns the largest width of an element in the vector [p], and e

denotes the desired resolution. PWW defined in terms of interval variables is

PWW = {[p] | [p] 2 Ptask, 8 p 2 [p], 8 D 2 [D ], Fmin ✓ F (p,D)}. (2)
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4 Kinematics: Including Collisions and Reachability

Oetomo et al. [8] formulated a set of constraint equations using the inverse and
direct kinematics equations of a 3-RRR (for brevity these equations are not re-
peated here). Reachability of the 3-RRR for a given pose interval [p] is determined
by applying interval constraint propagation and numerical constraint satisfaction
techniques to the set of constraint equations for the manipulator in order to solve
the inverse kinematics. The set of equations are solved to yield consistent inter-
val domains for the joint variables: cos([ai]), sin([ai]), cos([bi]), sin([bi]), cos([gi]),
sin([gi]) for i = 1 . . .3, such that each joint variable satisfies the set of constraint
equations. It is necessary to ensure that each of the joint variables is also consis-
tent with the domain [�1,1]. Furthermore, this domain can be narrowed to limit the
allowable range of motion of a joint.

An ‘inside-outside’ classification test determines the set of pose intervals which
are completely inside the PRW and the complementary set of pose intervals which
are completely outside the PRW . An unclassified pose interval may contain both
inside and outside poses or require additional refinement due to interval overesti-
mation. A pose interval [p] satisfies the inside test when the set of interval joint
variable solutions satisfies all of the domain constraints. Alternatively, a pose in-
terval [p] satisfies the outside test if any of the joint variable solutions falls in the
complement of a domain constraint. When a pose interval fails to be classified as
inside or outside, the pose interval [p] is bisected using an interval bisection routine.
For example, a largest-first bisection would bisect [p] along the dimension with the
largest width, resulting in two new pose intervals [p1] and [p2], which can then be
tested. This takes place until every unclassified pose interval is below some desired
width threshold e .

Collisions between the distal link and platform are accounted for by adding re-
strictions on the allowable domain of [gi]. Here, without loss of generality, it will
be assumed that the platform has the geometry of an equilateral triangle, and is
therefore symmetric about each [di]. With such an assumption, the distal link and
platform collisions can be avoided by ensuring cos([gi]) ⇢ [cos(fi),1] (see Figure 1
for the description of fi). A pose [p] resulting in a value of [gi] falling outside of its
allowable domain contains collisions between the distal link and the platform.

An algorithm for detecting collisions between limbs will now be proposed. For
a given design [D ], the reachability problem determines the corresponding interval
joint values ([ai], [bi], [gi]) for each limb i given the location of the platform attach-
ment, [ci] ([ci] is dependent on the values of [p] and [di]), and fixed base location,
[ai]. It is necessary to determine if there is always a collision between limbs i and
j or when there is never a collision. Representing the line segment of the proximal
link (i.e., the link closest to the base with length ri) for limb i as L1i and the line
segment of the distal link (i.e., the link attached to the moving platform with length
li) for limb i as L2i, limb i can be described by the union of segments: Li = L1i [L2i.
Limb j can be similarly described by L j (see Figure 3). A collision will always
occur when
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8ai 2 [ai], 8a j 2 [a j], 8ci 2 [ci], 8c j 2 [c j], Li \L j 6= /0 (3)

That is, whatever the values of a 2 [a] and c 2 [c] for limbs i and j, a collision
will always occur between Li and L j. Alternatively, limb i and limb j may partially
collide when

9ai 2 [ai], 9a j 2 [a j], 9ci 2 [ci], 9c j 2 [c j] | Li \L j 6= /0 (4)

An algorithm is proposed to determine the classification of limb collisions, con-
sisting of a partial collision test and a full collision test. Let [bi] describe the loca-
tions of the second joint in limb i. Applying a convex hull routine (conv), the set of
all line segments, {Li}, associated with the ith limb is described as

{Li} = conv([ai], [bi])[ conv([bi], [ci]) (5)

The partial collision test computes the sets {Li} and {L j} for two limbs and deter-
mines if the sets intersect. This test can be used to check Eq. (4). Consider some
Li 2 {Li} and some L j 2 {L j}, as depicted in Figure 3. The partial collision test will
succeed given the intervals, however Li \L j = /0. Therefore a full collision test must
verify Eq. (3) by guaranteeing that 8Li 2 {Li},8L j 2 {L j},Li \L j 6= /0. To solve the
full collision test, an alternative representation of {Li} using the combinations of the
vertices of [ai], [bi], and [ci] is used, such that each vertex of [ai] connects to each
vertex of [bi], which in turn connects to each vertex of [ci]. This creates a form of
vertex representation of {Li} which is now finite in terms of line segments. Eq. (3)
can now be tested with an algorithm which tests for intersections of line segments.
If the full collision test fails, then only a partial collision can be guaranteed and the
pose interval [p] must be bisected for additional testing.

The 3-RRR planar parallel manipulator with design [D ], described by the follow-
ing interval design parameters, is analysed.
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Fig. 3: Constant orientation workspace for the 3-RRR planar parallel manipulator

r1 = [0.1648,0.1650]m, r2 = [0.1350,0.1352]m, r3 = [0.1479,0.1481]m;
l1 = [0.2411,0.2413]m, l2 = 0.2955,0.2957]m, l3 = [0.2895,0.2897]m;
ti = [�10,10]Nm for i = 1, . . . ,3.

The links of the manipulator are assumed to be slender. A constant orientation
workspace is selected with a platform orientation specified as [y] = [0.0] rad. All
poses resulting in collisions between the platform and distal links are avoided. As
well, all poses resulting in limb collisions are detected by the full collision test and
are also avoided. The constant orientation workspace neglecting collisions is pro-
vided in Figure 4a with a resolution of e = 0.001m, whereas the self-collisions are
considered in Figure 4b. The set of poses with the inside classification are guar-
anteed to be reachable for the design [D ]. Alternatively, the set of poses with the
outside classification are guaranteed to be unreachable. The full PRW can be com-
puted by accounting for every platform orientation. This can be done by simply
allowing [y] = [�p,p].

5 Verifying Task Requirements

Interval analysis derived tests can be used to verify the wrench capabilities of a
mechanism. Gouttefarde et al. [3] proposed an inside-outside test for the verifica-
tion of the wrench capabilities of cable-driven parallel manipulators. Their inside
test makes use of a strong feasibility theorem proposed by Rohn [11] which re-
lies on the assumption that the solution of an interval linear system of equations
is nonnegative. This restriction makes their tests suitable for cable-driven architec-
tures which must maintain nonnegative cable tensions. Pickard and Carretero [10]
proposed an alternative formulation of the inside test which makes use of the strong
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solvability theorem proposed by Rohn [11] which removes the nonnegative assump-
tion. The formulation in [10] removes the restriction on the actuator limits and their
tests can be applied to other parallel manipulator architectures such as the 3-RRR.

A task may be specified in terms of wrench requirements at the end-effector.
For example, the manipulator is used to perform a task which requires F =
([ fx], [ fy], [mz])T = ([0.0] N, [0.0] N, [�5,5] Nm)T . The interval analysis tests de-
scribed by Pickard and Carretero [10] can be utilised to verify that the manipu-
lator’s wrench capabilities exceed the task’s wrench requirements. The associated
wrench workspace considering the task’s requirements and self-collisions is pro-
vided in Figure 4a with a resolution of e = 0.0005m. As a result of the tolerances
on the design variables and the inherent overestimation with interval analysis, there
are thick regions of unclassified (boundary) poses. That is, these poses cannot be
classified as inside or outside with the wrench workspace tests. Therefore, a trajec-
tory for the task must remain within the region of inside poses to guarantee that the
desired wrench set can be generated for design [D ].

If a desired trajectory and wrench set are known, the pose intervals containing the
trajectory can be evaluated, rather than the entire constant orientation workspace.
Depending on the resolution of the sensors used by the manipulator and the con-
trol techniques applied, the manipulator may also have a pose error. The same F
is selected as before, and a linear trajectory, contained within the constant orien-
tation workspace, is to be completed. For illustration purposes, a positioning error
of ±0.1mm is assumed for the manipulator. The associated wrench workspace con-
sidering the task’s requirements and self-collisions is provided in Figure 4b with a
resolution of e = 0.0005m. The benefit of considering only the pose intervals con-
taining the trajectory is that the problem can be solved much more quickly. This is
important when multiple designs are evaluated, as is required in design optimisation.

6 Conclusions and Future Work

Techniques for analysis of the 3-RRR planar parallel manipulator with tolerances
in the design parameters have been presented. These techniques are designed to ac-
count for self-collisions and have been demonstrated by evaluating the reachable
and wrench workspaces of a given design with reasonable tolerances on each vari-
able. Additional work will consider replacing angles with coordinates in the inverse
kinematics evaluation. As well, the interval evaluation of the Jacobian matrix can be
improved by using coordinates which will also improve wrench capability verifica-
tion and reduce computational time.

The authors would like to thank the Natural Sciences and Engineering Research
Council of Canada (NSERC), Mitacs, and Inria for their funding of this research.
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Fig. 4: Wrench capability verification for the 3-RRR planar parallel manipulator
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A Study on Simplified Dynamic Modeling
Approaches of Delta Parallel Robots

Jan Brinker, Philipp Ingenlath, and Burkhard Corves

Abstract This contribution presents a study on simplified dynamic modeling ap-
proaches of the Delta parallel robot. Complete and simplified dynamic modeling
approaches are reviewed and compared in respect to their computation times. Also,
the dependency of the accuracy on the mass distribution of the distal link is analyzed
in detail and assessed based on a single industry-relevant pick-and-place trajectory
as well as randomly generated Lissajous curves for (more) general validity.

Key words: kinematics, dynamics, energy deviations, delta parallel robots.

1 Introduction

In the 1980s, Reymond Clavel (professor at EPFL – École Polytechnique Fédérale
de Lausanne) invented a parallel robot known as Delta robot [4]. A Delta robot
consists of three symmetric kinematic chains of the type RRPaR, RUU or R(SS)2
(where R: revolute joint, U: universal joint, S: spherical joint, Pa: parallelogram).
The three spatial four-bar parallelograms, each attached distally to one of the ro-
tationally actuated links, restrain completely the orientation of the mobile platform
which remains with three purely translational degrees of freedom. With this, the
rods within the parallelogram only need to transmit axial forces allowing for light-
weight materials and thus, very low inertia compared to serial articulated robots.
Research in the general fields of kinematics, dynamics, control, singular configura-
tions, workspace, calibration, and mechanical design of Delta robots has been con-
ducted extensively during the last decades. A comprehensive overview about the
historical, academic, and industrial development of such mechanisms is presented
by the authors of this contribution [1].
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2 Jan Brinker, Philipp Ingenlath, and Burkhard Corves

Dynamic modeling is generally used to predict the desired actuator torque in
order to dimension parts and develop efficient control schemes. Against this back-
ground, the dichotomy between simulation accuracy and computation time poses
high challenges to the development of robot dynamics models. The most common
analytical approaches for dynamic modeling are: the Principle of Virtual Work, the
Newton-Euler Formulation, and the Lagrangian Formulation [3]. Besides basic as-
sumptions of complete non-simplified models (e.g., frictional effects are neglected,
links are modeled as rigid cylinders, etc.), the description of the dynamic behavior
of a system and its components can be further simplified to increase the computa-
tional efficiency for control purposes. With regard to Delta robots, in these models
usually the rotational inertias of the light-weight distal links are neglected and their
masses are distributed to the corresponding joints (see Figure 1). Due to the light-
weight design of the connecting rods, the significance of this simplification in re-
spect to the accuracy of the model is expected to be fairly low. However, neglecting
the distal link’s rotational inertia and thus, changing the direction of the resultant
dynamic forces may cause significant errors (i.e., deviations in actuator torques) of
up to 10 % depending on the system parameters [9]. Current market developments
demand adaptations of materials and designs leading to increased inertias and com-
ponent weights. This may influence the accuracy of the models even more and thus,
motivates this study.

On the one hand, adaptations of materials may be required due to hygiene issues
within the food processing industry (i.e., the most relevant field of application of
Delta robots). Here, machines need to adhere to strict regulations. This also concerns
carbon fiber components as commonly used for the links of a Delta robot.

On the other hand, adaptations of designs can be observed as a consequence of
adding serial mechanisms to the original purely parallel Delta architecture in order
to obtain orientation capabilities. These industrial concepts consist of the basic Delta
structure and a serial wrist which is mounted on the platform and usually driven by
three motors. These motors are fixed on the frame (e.g., FANUC M-1), attached to

Fig. 1 Geometric relations and notations for the basic structure (left) and for the complete and
simplified modeling approaches of the distal link (right)

120 Jan Brinker et al.



A Study on Simplified Dynamic Modeling Approaches of Delta Parallel Robots 3

the platform or to the distal links (e.g., FANUC M-3). Hence, modifications of the
basic structure including reinforcements of the distal links are required.

In this context, this contribution is concerned with two key aspects. First, com-
plete and simplified dynamic modeling approaches are reviewed and compared in
respect to their computation times. Second, the dependency of the accuracy on the
mass distribution of the distal link is analyzed and assessed.

2 Problem statement

As mentioned before, for simplified modeling approaches, the rotational inertias of
the light-weight distal links are usually neglected and their masses are distributed
to the corresponding joints. To determine the ratio of mass distribution, the mass
distribution factors n1 and n2 are introduced (where n1,n2 2 [0,1] and n1 + n2 = 1
with subscripts 1 and 2 denoting the proximal and distal connecting points, see Fig-
ure 1 right). Analyses on the determination of these factors are performed first by
Codourey [5]. Computing the actuation torques of a specific system and a given
trajectory, it was found that best results are obtained for n1 = 2/3, i.e., two-thirds
of the mass are allocated to the tip of the proximal link. This distribution is also
applied in, e.g., [6] and [7]. Stamper [13] presents a Delta-based structure with rev-
olute joints only. Here, the masses of the connecting rods are distributed evenly to
the tip of the proximal joint and the platform joint, respectively (n1 = n2 = 1/2).
Contrary to the Delta variant investigated in this study, the intermediate links of this
particular manipulator connecting the proximal link to the parallelogram rotate and
thus, the related inertial effects are considered crucial. However, the comparison
of the accuracies of complete to simplified dynamic modeling approaches in [12]
solely considers an even mass distribution based on a single test trajectory. Also, it
is not distinguished between the deviations resulting from neglecting the motions
of the transmission bars and the deviations resulting from the simplification that the
mass is distributed to the joints. The present paper considers varying mass distri-
bution factors and randomly generated Lissajous curves imposed as trajectories for
(more) general validity. Contributions with even distributions are found in, e.g., [11]
and [14].

The dissemination of the first type of distribution (i.e., n1 = 2/3 and n2 = 1/3)
is due to the fact that the simplified consideration of the distal link corresponds to
the complete model under certain assumptions. These are that: 1) the velocity of
the joint connecting the proximal and distal link, i.e., the position of the distributed
mass n1m2i, is assumed to be zero, 2) the distal links are modeled as rigid cylinders
with a moment of inertia of I = 1/3ml2, and 3) static force deviations among the
models are neglected. For the second type of distribution (i.e., n1 = n2 = 1/2) the re-
sultant gravitational forces of the simplified and complete consideration correspond.
It is thus, rather suitable for slow (quasi-static) applications since the effects of the
dynamic forces on the actuation torques are not taken into account adequately (cf.
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Sec. 5). The following analyses are based on the kinematic and mass parameters,
test trajectory, and detailed specifications as introduced in [2].

3 Complete and simplified dynamic modeling approaches

All three dynamic modeling approaches can be used for complete and simplified dy-
namic analyses. For the sake of brevity and for further analyses (cf. Sec. 5), solely
the energy-based Lagrangian approach is reviewed briefly. Comprehensive analy-
ses are conducted in [2]. The desired actuator torques can be computed by the La-
grange’s equations of the first kind. Thus, the kinetic and potential energies (T and
P ) need to be derived for each component of link i in order to obtain the Lagrangian
equation:

L = T �P (1)

The actuation torques can then be derived by:

ti =
d
dt

✓
∂L

∂ j̇1i

◆
�

∂L
∂j1i

�li
∂Gi

∂j1i
(2)

with px, py, pz,j11,j12,j13 as generalized coordinates (see Figure 1), the constraint
equations Gi, and the multipliers li. The kinetic and potential energies are given
by the sum of energies of each component (i.e., proximal links, distal links and
platform). The following analyses solely consider the distal links. Thus, the energies
of the other components are not introduced. For the complete approach (cf. [9]), the
kinetic energies of the distal links are:

T2i =
1
2

m2i

✓
ṗTv1i +

1
3

(ṗ�v1i)
T (ṗ�v1i)

◆
(3)

where ṗ and v1i denote the platform velocity and the velocity at the tip of the prox-
imal link, respectively. Their potential energies can be stated as:

P2i =
1
2

m2ig(pz � l1i sinj1i) (4)

whereby the zero point lies within the origin of the coordinate system 0.
In simplified models (indicated with *), the rotational inertias of the light-weight

distal links are neglected. Thus, the energy equations can be simplified to:

⇤T2i =
1
2

m2i
�
n1 · l2

1ij̇
2
1i +n2 ·

�
ṗ2

x + ṗ2
y + ṗ2

z
��

(5)

⇤

P2i = m2ig(n1 · pz �n2 · l1i sinj1i) (6)

assuming identical distribution factors for each link. Models based on the Principle
of Virtual Work and Newton-Euler can be formulated and simplified accordingly.
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4 Analysis of computation times

The three approaches for dynamic modeling are theoretically equivalent, but their
computational intensity may vary. A comparative study of complete models shows
that for the basic structure fastest processing times can be reached applying the
Lagrangian Formulation [2]. Assume a normalized reference time of 1 as a base for
the longest computation time (i.e., the time required to compute the complete model
based on Newton-Euler), the processing times of simplified and complete models
can be compared as displayed in the following Figure 2.

It can be seen that independent of the underlying model shortest processing times
are achieved applying the Lagrangian approach. The relative saving of time between
complete and simplified models is 42 %, 10 %, and 29 % for the Newton-Euler
Formulation, the Principle of Virtual Work, and the Lagrangian Formulation, re-
spectively. Referring to the simplified Newton-Euler Formulation, the application
of the Principle of Virtual Work reduces the computation time by 32 %. Applying
the simplified Lagrangian approach, relative saving of time is 63 % compared to the
Newton-Euler Formulation.

To sum up, the minimum computation time is 74 % less than the reference time
and obtained using the simplified Lagrangian approach. It should be noted that the
efficiency of a model not only depends on the analyzed mechanical structure, but
also on the computational scheme and the program structure (e.g., number and kind
of operations).

5 Assessment of accuracy

This section provides analyses in order to show that the deviations of torques be-
tween complete and simplified models are related to the mass distribution factor.
Moreover, the impact of optimizing the mass distribution factor in respect to the
reduction of the torque deviations is assessed.

Fig. 2 Comparison of the computation times of complete and simplified approaches

A Study on Simplified Dynamic Modeling Approaches of Delta Parallel Robots 123



6 Jan Brinker, Philipp Ingenlath, and Burkhard Corves

From (2) it can be seen that the calculation of actuator torques can be performed
by an energy-based approach. Thus, to analyze the torque deviations and their ori-
gins, the energy deviations of the distal links are used. To increase the weighting of
relatively high deviations, the sum of squares of the energy deviations is considered
which gives:

E2 (P) = Âi (P2i �
⇤

P2i)
2 (7)

E2 (T ) = Âi (T2i �
⇤T2i)

2 (8)

E2 (P ,T ) = Âi (P2i �
⇤

P2i)
2 +(T2i �

⇤T2i)
2 (9)

referring to the potential (7), kinetic (8), and superposition of both (9) energy devi-
ations.

Provided that n2 = 1�n1, these energy deviations can be visualized as a function
of time (resulting from the imposed trajectory) and the mass distribution factor n1.
The results are displayed in Figure 3 with gray and red colors denoting low and high
deviations, respectively. Minimal deviations are indicated by the black line.

Exclusively considering the deviations of the potential energy (Figure 3a), it can
be seen that independently from the trajectory (denoted by Time [s]) minimal de-
viations are achieved for n1 = 0.5. The reason for this is that for any position the
resultant of the gravitational forces of the distributed masses within the simplified
model corresponds to the gravitational force of the complete model (also cf. (4) and
(6)).

Figure 3b shows the deviations of the kinetic energy. The imposed trajectory rep-
resents a standard pick-and-place cycle with maximum velocity reached half way
between pick and place positions. Inherently, velocities are minimal at these po-
sitions. Thus, it can be found that deviations are maximal and minimal at maxi-
mum and minimum speed, respectively. More importantly, minimal deviations vary
along the distribution factor (cf. black line in Figure 3b). Deviations are maximal for
poorly chosen mass distribution factors (e.g., n1 = 0 or n1 = 1). However, the opti-
mal distribution factor (referring to minimal deviations along the trajectory) cannot
be identified a priori. At this point it becomes evident that simply choosing a factor

Fig. 3 Comparison of the potential (a), kinetic (b), and superposition of both (c) energy deviations
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for distribution may not be ideal. Figure 3c depicts the superposition of the devia-
tions of both potential and kinetic energies (cf. (9)).

The consideration of the energy deviations helps to understand the influences of
the imposed trajectory and the chosen distribution factors on the accuracy of the
simplified modeling approaches. However, the primary motivation of the dynamics
modeling is the accurate computation of the actuator torques. Therefore, the optimal
mass distribution factor is identified by minimizing the torque deviations along the
trajectory. For that, the average deviation of all three actuators is taken into account.
This value in turn is averaged along the trajectory and finally gives a target value for
the optimization. Accordingly, minimum torque deviations are obtained for a mass
distribution factor of n1 = 0.74. For the overall system, the upper part of Figure 4
shows the torque curves of the three actuators as modeled with a complete (C, black)
and simplified (S, red) approach.

The results for the commonly chosen factors n1 = 0.5 (Figure 4a) and n1 = 0.67
(Figure 4b) are compared with the results applying the optimal distribution factor,
i.e., n1 = 0.74 (Figure 4c). The lower part of Figure 4 displays the absolute torque
deviations for each actuator. The horizontal dash-dot line refers to the averaged
torque deviation as used as target value for the optimization.

As outlined previously, the factor n1 = 0.5 is most suitable for very slow (quasi-
static) applications (for example, in surgical robotics [8]). Thus, for the fast ap-
plication in hand, the average torque deviation of 3.9 Nm is highest for n1 = 0.5.
Applying the distribution factor of n1 = 0.67 closely approximates the outcome of
a complete modeling approach with an average torque deviation of 2.8 Nm. Further
improvements can be achieved by an optimized value of n1 = 0.74. In this way, the
average torque deviation can be reduced to 2.5 Nm.

In order to obtain general validity, the analyses are extended taking into account
randomly generated Lissajous curves within a prescribed workspace as similarly

Fig. 4 Comparison of the deviations of actuator torques
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proposed in [10]. Lissajous curves are infinitely differentiable periodic functions
given by:

x(t) = A1 sin(a1s(t)+d1)

y(t) = A2 sin(a2s(t)+d2) (10)

z(t) = A3 sin(a3s(t)+d3)

where the constants A1,A2,A3,a1,a2,a3,d1,d2, and d3 are chosen randomly and
where the path profiles are specified based on a fifth order polynomial s(t). Figure
5a depicts 200 open Lissajous curves covering a cuboid prescribed workspace of
1100 · 800 · 300 mm3 within the reachable workspace (illustrated in Figure 5a in
blue). The acceleration and velocity profiles for a randomly generated curve depend
on the imposed cycle time. For each curve of the set of 200 Lissajous curves the
cycle time is varied between 1 s and 4 s (with a step size of 0.1 s) which give an
overall number of 6200 trajectories. Each trajectory is analyzed in respect of the
optimal mass distribution factor deploying optimization algorithms. The results of
the optimization are shown in Figure 5b. For each evaluated cycle time, the average
and maximum velocity and acceleration, respectively, for each of the curves are
averaged over the set of 200 Lissajous curves (see Figures 5c and 5d).

The results demonstrate that, irrespective of the imposed path, the optimum of the
mass distribution factor depends on the application speed. In contrast to the outcome
of the analyses based on a single trajectory, the optimum distribution factor solely
exceeds the identified limit values (i.e., n1 = 0.5 and n1 = 0.67) for very short cycle
times (less than 1.2 s).

6 Conclusion

In this study complete and simplified approaches for dynamic analyses of a Delta
robot were reviewed and compared in respect to their computation times and accu-
racies. It was found that compared to the complete Newton-Euler approach com-

Fig. 5 Analyses of the mass distribution factor based on Lissajous curves
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putation times can be reduced by 74 % applying a simplified Lagrangian approach.
Analyses of the energy deviations of the distal link revealed that mass distribution
factors are highly dependent on the imposed trajectory. For quasi-static motions an
optimum mass distribution factor of n1 = 1/2 was identified. The deviations of ki-
netic energies showed that simply choosing a factor for mass distribution may not
be ideal. Applying an optimized mass distribution factor of n1 = 0.74, the average
deviations of the actuator torque were reduced by 9.7 % compared to the commonly
chosen factor of n1 = 0.67. Analyses taking into account randomly generated Lis-
sajous curves prove a more general validity of the achievements. The results should
be taken as an example to show that a careful evaluation of the mass distribution
factor may help to further improve the accuracy of the simplified model. The im-
pact needs to be assessed in the overall context and confronted with the influence
of frictional effects and the accuracy of the complete model itself. A long-term goal
of future investigations is the derivation of a single parameter which can be used to
find an optimal mass distribution factor related to a given system and handling task.
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Hidden cusps

Michel Coste, Philippe Wenger and Damien Chablat

Abstract This paper investigates a situation pointed out in a recent paper, in which a
non-singular change of assembly mode of a planar 2-RPR-PR parallel manipulator
was realized by encircling a point of multiplicity 4. It is shown that this situation is,
in fact, a non-generic one and gives rise to cusps under a small perturbation. Fur-
thermore, we show that, for a large class of singularities of multiplicity 4, there are
only two types of stable singularities occurring in a small perturbation: these two
types are given by the complex square mapping and the quarto mapping. Inciden-
tally, this paper confirms the fact that, generically, a local non-singular change of
solution must be accomplished by encircling a cusp point.

Key words: parallel robot, cusp, non-generic singularity, perturbation

1 Introduction

The non-singular change of assembly mode in parallel manipulators, first observed
by C. Innocenti and V. Parenti-Castelli [1], is often associated with the presence of
cusps and the non-singular change of assembly mode is realized by turning around a
cusp point, or a cuspidal edge of the singularity surface (see for instance [2, 3, 4, 5]).
It has also been reported that non-singular change of assembly modes can be real-
ized by following an “alpha curve” (i.e. a fold curve intersecting itself transversally)
[6, 7], and that the presence of cusps is not necessary for the existence of non-
singular assembly mode changes [8].
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A recent paper [9] exhibits an example of a 2-dof parallel manipulator with an
isolated singularity of multiplicity 4 of the inverse kinematics mapping, such that
circling around the image of this singularity in the joint space results in a non-
singular assembly mode change; moreover, after a second loop around the singular-
ity, one is back in the same assembly mode. There is no cusp in the picture, but we
intend to explain in the present paper that actually the cusps are hidden. Precisely,
the singularity of multiplicity 4 is not a stable singularity, which means that it dis-
appears under a small perturbation of the geometry of the manipulator, giving rise
to three cusp points; in the joint space, the isolated singularity is perturbed into a
deltoid curve with three cusps. Hence, circling around the singularity of multiplicity
4 was actually circling around 3 degenerate cusps.

H. Whitney [10] has shown that the only stable singularities of mappings be-
tween spaces of dimension 2 are folds and cusps. Any other higher order singularity
becomes a combination of folds and cusps after perturbation, which amounts to say
that these higher order singularities are degenerations of folds and cusps. We shall
show that the case study of the perturbation of the 2-dof manipulator actually de-
scribes two main cases of singularities of multiplicity 4 (complex square and quarto
mappings) leading to two different perturbations (the former with three cusps, the
latter with one cusp).

2 A case study

2.1 2RPR-PR with higher order singularities

We begin with the example given in [9]. It is a 2RPR-PR planar manipulator with
architecture described in Figure 1.

Fig. 1 Architecture of 2RPR-PR

The output coordinates are the angle j and the y-coordinate of the revolute joint
B which is constrained to move on the vertical axis. The input coordinates are the
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square `2
1 and `2

2 of the lengths of the legs A1B1 and A2B2. The equations for the
inverse kinematic mapping are

`2
i = y2

�2bi y sin(j)+a2
i �2ai bi cos(j)+b2

i for i = 1,2 (1)

The Jacobian matrix Jac of the inverse kinematic mapping and its Jacobian determi-
nant J (up to a factor 4) are:

Jac = 2
✓

�b1 y cos(j)+a1 b1 sin(j) y�b1 sin(j)
�b2 y cos(j)+a2 b2 sin(j) y�b2 sin(j)

◆

J = (b1 +b2) cos(j)y2 +(a1 b1 �a2 b2) sin(j)y� (a1 +a2)b1 b2 sin(j)2 .

(2)

The possible cusp points and higher order singularities may be detected by adding
to J = 0 the equations

Jac
✓

�Jy
J

j

◆
=

✓
0
0

◆
, (3)

where J
j

and Jy denote the partial derivatives of J with respect to j and y. These
equations express that the curve of singular points in the workspace either has a
singularity or has a tangent vector in the kernel of the Jacobian matrix. We observe
that (j,y) = (0 mod p,0) satisfy Jac = the zero matrix (and hence also J = 0 and
equations (3) hold); these singularities are not cusps, but higher order singularities.

2.2 An example

We compute the singularities in the workspace and in the joint space for an example
with a1 = 3, a2 = 7, b1 = 6, b2 = 5, which is the same as the one considered in [9].
In this case we can check that the only real solutions of J = 0 and the equations (3)
are (j,y) = (0 mod p,0).

For (j,y) = (0,0), we have `1 = 3, `2 = 2. Developing the equations for the
inverse kinematic mapping and for J in a neighbourhood of (0,0) we get

`2
1 �9 = y2 +12yj +18j

2 +h.o.t. , `2
2 �4 = y2

�10yj +35j

2 +h.o.t.
J = 11y2

�17yj �300j

2 +h.o.t. , (4)

where h.o.t. stands for “higher order terms”. This shows that the singularity is of
multiplicity 4, and that the point (j = 0,y = 0) is a node of the curve of singular-
ities (the discriminant D = (�17)2

� 4 ⇥ 11 ⇥ (�300) of the quadratic part of the
development of J at (0,0) is positive).

For (j,y) = (p,0), we have `1 = 9, `2 = 12. Developing `2
1 �81, `2

2 �144 and J
in a neighbourhood of (p,0), with y = f �p , we get

`2
1 �81 = y2

�12yy �18y

2 +h.o.t. , `2
2 �144 = y2 +10yy �35y

2 +h.o.t.
J = �11y2 +17yy �300y

2 +h.o.t. . (5)
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This shows that the singularity is also of multiplicity 4, and that the point (j =
p,y = 0) is an isolated double point of the curve of singularities (the discriminant
D = 172

� 4 ⇥ (�11) ⇥ (�300) of the quadratic part of the development of J at
(p,0) is negative).

Figure 2 (a) represents the workspace of the manipulator; it must be understood
that the right side (j = 3p/2) has to be identified with the left side (j = �p/2). The
singularity curve is represented in thick blue; one can see the node at j = 0,y = 0
and the isolated double point at j = p,y = 0. The dash-dot black curve is the level
curve `1 = a1 + b1 = 9 and the dashed red curve is the level curve `2 = a2 + b2 =
12. The numbers in the zones delimited by these curves indicate the corresponding
images by the inverse kinematic mapping in the joint space.
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(b) Joint space

Fig. 2 Workspace and joint space of the manipulator

The joint space is represented in Figure 2 (b) (the same figure appears in [9]).
One can see the image of the singularity curve in blue. Inside the domain delimited
by this curve, the direct kinematic problem has four solutions, except at the image
(`1 = 9,`2 = 12) of the isolated singularity point where there is one solution of
multiplicity 4 and two other solutions. Above each point of the image singularity
curve, there are two double solutions, except at the point `1 = 3, `2 = 2 (image of
the node) where there is one solution of multiplicity 4. The zones numbered 1,2,3,4
are the images of the zones with the corresponding numbers in the workspace.

It can be seen that circling around the isolated singularity point in the joint space,
following the numbering 1-2-3-4-1, yields a non-singular assembly mode change
leading from a zone numbered 1 in the workspace touching the isolated singularity
point to the other one. A second loop makes one return to the initial assembly mode.
This phenomenon cannot be faithfully represented in a 3-dimensional reduced con-
figuration space: one cannot have a ramp turning around the singular configuration
and returning to the start level after two turns without an artificial self-intersection.
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One can see in this example a non-singular assembly mode change by circling
around a singularity which is not a cusp. The hidden cusps are revealed by slightly
perturbing the geometry of the manipulator.

2.3 Revealing the hidden cusps

The manipulator is modified so that the revolute joint B on the platform is no longer
on the line B1B2, but at a distance d from this line: see Figure 3.

Fig. 3 The modified manipulator

We compute the example with a1 = 3, a2 = 7, b1 = 6, b2 = 5 and d = 3. The
equations for the inverse kinematic mapping are now

`2
1 = y2

�6y(cos(j)�2sin(j))�36cos(j)�18sin(j)+54

`2
2 = y2

�2y(3cos(j)+5sin(j))�70cos(j)+42sin(j)+83 ,
(6)

and the Jacobian determinant is, up to a constant factor,

J = 11y2 cos(j)� y(30 cos(j)+17 sin(j)+33)

+390 cos(j)2
�30 cos(j) sin(j)�300

(7)

We can detect the cusps or higher order singularities by solving the system formed
by J = 0 and equations (3). We get four real solutions, which are

(j ' �0.0023,y ' 2.9069), (j ' 2.6492,y ' �2.2190),

(j ' �2.7368,y ' �1.2968), (j ' 3.0855,y ' 2.6935)
(8)

It can be checked that all four points are actually cusp points.
The curve of singularities in the workspace is represented in thick blue in Figure

4 (a). Note that it retains the overall features of the original singularity curve in
Figure 2 (a), except for the node at (0,0) which is simplified in two non-intersecting
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branches and the isolated double point at (p,0) which has evolved into an oval. The
characteristic curves in the workspace (defined in [11]) are represented in green.
One can recognize the cusp points as the points of tangency of the characteristic
curves with the curve of singularities: there is one cusp point on one branch of the
simplification of the node, and three cusp points on the oval obtained by perturbing
the isolated double point of the singularity curve.

j

y

P1

P2

(a) Workspace `1

`2

Q

(b) Joint space

Fig. 4 Workspace and joint space of the modified manipulator

Figure 4 (b) represents the joint space. One can see the four cusps, three on the
central deltoid (image of the oval) and one on a branch of the outer curve (the two
branches have also a crossing point). There are six solutions to the direct kinematic
problem inside the deltoid, and 4, 2 or 0 solutions as one proceeds towards the outer
regions.

Note that the connected zone in the workspace encircling the large green deltoid
is not a uniqueness domain [11]: it is a 2-sheeted covering of the zone around the
deltoid in the joint space. This latter zone is not simply connected, so we cannot
deduce that a connected component of its preimage is a uniqueness domain.

The picture of the joint space shows that circling around the isolated singularity
in the joint space was actually circling around three degenerate cusps. The dashed
circle from Q to Q around the deltoid in the joint space lifts to the dashed trajectory
from P1 to P2 in the workspace; a second turn on the circle completes the circuit
from P2 back to P1.
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3 The general mathematical picture: unfolding of a singularity of
multiplicity 4 of a mapping of surfaces

We explain here how the observations made for the modified 2RPR-PR fit into a gen-
eral mathematical framework. We begin with by recalling two examples described
in [12].

3.1 Complex square mapping and its unfolding

The first example is given by f : (x,y) 7�! (u = x2
� y2, v = 2xy) which is the

complex square function z 7! z2, written in real and imaginary parts; this shows that
every point in R2 is the image by f of two points in R2, except the origin which
is the image of the origin only. The Jacobian determinant of f is, up to a constant
factor, x2 + y2. The only singularity of f is at the origin, and this singularity has
multiplicity 4 (the dimension of the quotient algebra R[x,y]/(x2

� y2,2xy)).
Now we perturb the mapping f to

f̃ : (x,y) 7�! (u = x2
� y2 +4ax, v = 2xy+4by) . (9)

The Jacobian determinant of f̃ becomes, up to a constant factor, (x+a+b)2 +y2
�

(a�b)2. If b 6= a, the set of singular points of f̃ is the circle with centre (�a�b,0)
and radius |a � b|. There are three cusp points on this circle, and the image curve
in the (u,v) plane is a deltoid with three cusps. A point inside the deltoid has four
preimages, outside two. Circling around the deltoid permutes the two preimages (as
circling around the origin does for the complex square root).

Figure 5 (a) shows the situation at the source (coordinates (x,y)) and at the target
(coordinates (u,v)), in the case a = 1, b = �1. The blue curves are the curves of
singularities. The green curve at the source is the characteristic curve; the cusps
points are the points where the blue and green curves are tangent.

y v

x u
(a) Perturbation of complex square

y v

x u
(b) Perturbation of quarto

Fig. 5 Perturbations of the complex square mapping and of the quarto mapping
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3.2 Quarto mapping and its unfolding

The second example is the mapping g : (x,y) 7�! (u = x2, v = y2); this mapping is
named “quarto” because it folds the plane x,y) onto the first quadrant of the plane
(u,v), which is covered by four sheets. The Jacobian determinant of g is, up to a
constant factor, xy. The set of singular points of g is the union of the two axes.

Let us perturb the mapping g to

g̃ : (x,y) 7�! (u = x2 +2ay, v = y2 +2bx) . (10)

The Jacobian determinant becomes, up to a constant factor, xy � ab. This is the
equation of an equilateral hyperbola, if ab 6= 0. Its image by g̃ is a curve in the (u,v)
plane with two branches, one of which has a cusp; inside the cusp, each point has
four preimages by g̃, between the branches two, and zero elsewhere.

Figure 5 (b) represent the situation at the source and at the target in the case
a = b = 1 in the same way as for the preceding example. One can see the cusp point
at the source.

3.3 General case

The two examples above are actually the complete list of the stable singularities
that can be obtained by perturbing a singularity of multiplicity 4 where the 2 ⇥ 2
Jacobian matrix is the zero matrix. These are the elliptic (complex square case) and
hyperbolic (quarto case) S

2 singularities which are studied in [13], Part I §3. The
notation S

2 means that the Jacobian matrix has corank 2, i.e. is the zero matrix in
dimension 2, and in this case multiplicity 4 is equivalent to the fact that the discrim-
inant D of the quadratic part of the Taylor expansion of the Jacobian determinant at
the singularity is nonzero. The elliptic case corresponds to D < 0 and the hyperbolic
case to D > 0.

We can now return to the example of the 2RPR-PR. We have D > 0 at the sin-
gularity (j,y) = (0,0) (see (4)): we are here in the case ”quarto mapping” and we
can clearly see the relevant parts of Figure 4 corresponding to Figure 5(b). We have
D < 0 at the singularity (j,y) = (p,0) (see (5)): we are now in the case ”complex
square mapping” and we can compare the relevant parts of Figure 4 with Figure
5(a).

4 Conclusion

We have shown that the singularities of multiplicity 4 that appear in the study of
the kinematics of the 2RPR-PR are not generic and give rise to cusps under a small
perturbation. We have also shown that these singularities belong to a family of sin-
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gularities which splits in two cases according to the sign of the discriminant of the
quadratic part of the Jacobian determinant : the ”complex square mapping” case
and the ”quarto mapping” case which are well known in the theory of singularities
of differentiable mappings. In the first case, the singularity is isolated and circling
around it in the joint space results in an exchange of two solutions to the direct kine-
matic problem. A small perturbation to stable singularities gives three cusp points
which were in some sense ”hidden” in the singularity of multiplicity 4, and so one
can argue that this example does not invalidate the rule that, generically, local non-
singular assembly mode changes arise by circling around cusps.

We have limited our study to the 2-dof case. In a future work, we shall exam-
ine the perturbation of the second example in [9], which is interesting because it
gives a fully parallel generic 3-RPR manipulator with properties similar to the ones
we have seen for the constrained 2RPR-PR. We shall also discuss in more details
characteristic surfaces and uniqueness domains [11].
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Some Mobile Overconstrained Parallel
Mechanisms

J.M. Selig

Abstract The Griffis-Duffy platform is an example of an overconstrained parallel
mechanism. Although it has 6 SS legs joining its platform to its base it is still mo-
bile. In this work similar structures are found but with different types of legs. The
key to finding these structures is a pair of theorems concerning 3 degree-of-freedom
mechanisms subjected to a translation or a half-turn. Although these results are not
new concise statements and proofs are given. These constructions are then applied to
parallel mechanisms consisting of 3 RPS legs and 3UPU legs. Some details of the
rigid-body motions that the platform of these mechanisms can execute are found.
This is facilitated by the observations that rigid displacements permitted by an RPS
leg are the displacements which constrain a point to a fixed plane, while the dis-
placements of a UPU leg constrain a line to be coplanar to a fixed line.

Key words: Parallel mechanisms, overconstraint, line-symmetry.

1 Introduction

There has been much interest in overconstrained, single loop mechanisms such as
the Bennett, Goldberg and various Bricard mechanisms. With interest turning to
parallel mechanisms workers have also begun to look at over constrained parallel
mechanisms. These are sometimes described as mechanisms which are architec-
turally singular. A key example of such a mechanism was the Griffis-Duffy platform
as explained by Husty and Karger, [2]. Here these ideas are extended to platforms
with other types of legs, in particular RPS and UPU. First we consider a pair of
constructions which guarantee that the mechanisms will be mobile.

School of Engineering
London South Bank University, London SE1 0AA, U.K. e-mail: seligjm@lsbu.ac.uk
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2 Line-Symmetry and Translations

The results studied in this section are well known in general terms but giving a
formal statement of the results clarifies the underlying geometry. In both cases the
symmetries discussed confine the rigid motion to the intersection of a 5-dimensional
projective space (a 5-plane) with the Study quadric.

In the following we will consider arbitrary mechanisms. These are to be thought
of as systems of links and joints but we don’t specify their arrangement so the mech-
anism could be a serial chain, a single loop or a parallel mechanism, for example.
All we require is that one of the links be fixed and called the base link of the mech-
anism. We will concentrate our attention on another link in the mechanism and will
refer to this as the coupler or platform of the mechanism. Saying that the coupler
has 3-degrees-of-freedom then means that the possible displacements of the coupler,
relative to the base link, can be specified using three parameters.

Lemma 1. Let M be an arbitrary mechanism having a coupler with 3 degrees-of-
freedom. Duplicate the mechanism M and subject the new one to a fixed translation.
The translation must include all links and joints including the base link. After the
translation the translated base-link is again fixed. Rigidly join the coupler bars of
the two mechanisms to form a combined coupler. This combined coupler bar will be
able to move and will, in general, follow a 1 degree-of-freedom Schönflies motion.

Proof. Assume that g(µ1, µ2, µ3) is the dual quaternion representing the three pa-
rameter motion that the original mechanism M can perform. After a translation t,
the shifted mechanism will be able to perform the motion, tg(µ1, µ2, µ3)t�, where
t� is the dual quaternion conjugate of t. When the couplers are joined together, any
motion performed must satisfy,

g(µ1, µ2, µ3) = tg(µ1, µ2, µ3)t�.

This relation will have solutions for all displacements g(µ1, µ2, µ3) that commute
with t. The set of all elements in the group which commute with a translation con-
sist of the subgroup of all translations and all rotations about axes parallel to t.
That is, the centraliser of a translation is a Schönflies group. In the Study quadric
a Schönflies group is the intersection of the Study quadric with a 5-plane. Inter-
secting with the 3-dimensional set of displacements g(µ1, µ2, µ3) generally gives a
1-dimensional set, necessarily lying in the Schönflies subgroup. ut

Only the direction of the translation is important here, any translation in the same
direction will give the same Schönflies group. For the parallel mechanisms consid-
ered below this means that the same motion can be generated by a machine with an
arbitrary number of legs.

The second result is probably even more well known, the statement and simple
proof are still instructive.

Lemma 2. Let M be an arbitrary mechanism that has a coupler with 3 degrees-
of-freedom. Again, duplicate the mechanism M but now subject the new one to a
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half-turn about a line `0. This time the base-link of the new mechanism is rigidly
fixed to the coupler link of the original and the coupler link of the new machine is
fixed to the base. The coupler bar of the new combined mechanism will generally
follow a 1 degree-of-freedom line-symmetric motion.

Proof. After the half-turn the motion of the coupler will be `0g(µ1, µ2, µ3)`
�

0 but
the motion of the base with respect to the coupler will be, `0g�(µ1, µ2, µ3)`

�

0 . After
connecting the mechanism as specified the motion of the combined coupler will
satisfy,

g(µ1, µ2, µ3) = `0g�(µ1, µ2, µ3)`
�

0 .

This can be rearranged to produce,

g(µ1, µ2, µ3)`
�

0 + `0g�(µ1, µ2, µ3) = 0,

since `�

0 = �`0. In [4] it was shown that this equation characterises line-symmetric
motions, moreover, line-symmetric motions were shown to lie in the intersection of
the Study quadric with a 5-plane. ut

In the following we look at 3-degree-of-freedom mechanisms formed by the par-
allel composition of three 5-degree-of-freedom serial chains or legs.

3 RPS Legs

The legs considered here are each composed of a revolute, prismatic and a final
spherical joint, see Fig. 1. Keeping the base of the leg fixed and moving the plat-
form attached to the final spherical joint gives a set of possible rigid-body displace-
ments allowed by the leg. In all these displacements the centre of the spherical joint
remains in contact with a fixed plane normal to the axis of the first revolute joint.
Clearly, the set of displacements allowed by such a leg coincides with the point-
plane constraint varieties discussed in [6] for example. These point-plane constraint
varieties can be thought of as the intersection of the Study quadric in P7 with another
quadric hypersurface.

3.1 Sch¨onflies 6RPS

Here the construction of Lemma 1 is applied to a parallel mechanism consisting of
three general RPS legs, see Fig. 3.

Assume the axis of the Schönflies motion is the z-axis so the rotation matrix and
translation vector can be written

R =

0

@
cosf �sinf 0
sinf cosf 0

0 0 1

1

A and t =

0

@
tx
ty
tz

1

A .
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Fig. 1 An RPS Leg. Fig. 2 A UPU Leg.

The three point-plane constraints can be written

(nT
i , �di)

✓
R t
0 1

◆✓
pi
1

◆
= nT

i (Rpi + t)�di = 0, i = 1, 2, 3, (1)

where ni is the unit normal to the plane, di the perpendicular distance from the plane
to the origin and pi the position vector of the point at the centre of the spherical joint.
These equations can be written in matrix form as

Nt = d

d

d , where N =

0

@
nT

1
nT

2
nT

3

1

A and d

d

d =

0

@
d1 �nT

1 Rp1
d2 �nT

2 Rp2
d3 �nT

3 Rp3

1

A . (2)

Assuming that the points pi lie on their respective planes at the start of the motion,
when R(0) = I3, the row of d

d

d can be written nT
i (I3 � R)pi. Since R determines a

sequence of rotations about the z-axis, elements of I3 �R can be written in terms of
the sine and cosine of the rotation angle f .

The matrix N can be inverted symbolically,

N�1 =
1

n1 · (n2 ⇥n3)

⇣
n2 ⇥n3

��� n3 ⇥n1

��� n1 ⇥n2

⌘
.

So
t = N�1

d

d

d = a

a

a(1� cosf)+b

b

b sinf

where

a

a

a =
1

n1 · (n2 ⇥n3)

�
(n1x p1x +n1y p1y)n2 ⇥n3+

(n2x p2x +n2y p2y)n3 ⇥n1 +(n3x p3x +n3y p3y)n1 ⇥n2
�

and
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Fig. 3 A mobile 6RPS parallel mechanism constructed by translating a 3RPS linkage and joining
the coupler bars. The dots represent the elliptical path of the centre of one of the spherical joints.

b

b

b =
1

n1 · (n2 ⇥n3)

�
(n1x p1y �n1y p1x)n2 ⇥n3+

(n2x p2y �n2y p2x)n3 ⇥n1 +(n3x p3y �n3y p3x)n1 ⇥n2
�

Using the familiar tan-half-angle substitutions, cosf = (1� t2)/(1+ t2) and sinf =
2t/(1 + t2), it can be seen that the motion of an arbitrary point in the platform will
be a conic curve in general. Hence this is a Darboux motion, see [1, Chap. IX,
§3]. The fact that three point-plane constraints restricted to a Schönflies motion
produces a Darboux motion is well known, see for example [8]. Notice however,
that in [3] it was shown that a parallel mechanism with 3 RPS legs could perform a
vertical Darboux motion, a particular Darboux motion that is also line-symmetric.
The above shows that the mechanism can perform a general Darboux motion and
indicates how to construct a mechanism to follow such a motion.

3.2 Line-Symmetric 6RPS

Next, the construction from Lemma 2 is applied to three RPS legs. As in the previous
section there are three point-plane constraints given in equation (1).

Since a line-symmetric motion consists of successive half-turns about the genera-
tors of a ruled surface, the rigid-body displacements can be given by the exponential
of a line

✓
R t
0 1

◆
= epL, where L =

0

BB@

0 �P03 P02 P23
P03 0 �P01 P31

�P02 P01 0 P12
0 0 0 0

1

CCA .
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Here Pi j are the Plücker coordinates of the line L. For a line-symmetric motion
L will be parametrised by time, however the explicit dependence on time has been
suppressed for brevity. Using the Rodrigues formula, the exponential can be written:

epL = I4 +2L2,

since L3 = �L and assuming P2
01 +P2

02 +P2
03 = 1. If we write

W =

0

@
0 �P03 P02

P03 0 �P01
�P02 P01 0

1

A , w

w

w =

0

@
P01
P02
P03

1

A , and v =

0

@
P23
P31
P12

1

A ,

then the rotation matrix and translation vector can be written

R = I +2W

2, t = 2w

w

w ⇥v,

where w

w

w and v consist of the Plücker coordinates of a line and so satisfy w

w

w ·v = 0.
It is convenient to assume that the motion passes through the identity element of

the group and that the points lie on their respective planes in this position. Then a
line-symmetric motion is given by reflecting the three points p1, p2 and p3 in the
initial line of the ruled surface L0, and then reflecting in the successive lines of the
surface, so that, ✓

R t
0 1

◆
= (I4 +2L2)(I4 +2L2

0).

To be definite assume that the initial line L0 is the z-axis. For simplicity, write p0

i =
(I3 + 2W

2
0 )pi, where W0 is the direction of the line L0. The equations for the three

point-plane constraints become, ni
T (I3 +2W

2)p0

i +2ni
T (www ⇥v)�di = 0. Since di =

ni
T (I3 +2W

2
0 )p0

i, we get,

ni
T (W 2

�W

2
0 )p0

i +ni
T (www ⇥v) = 0, i = 1, 2, 3.

These equations can be made homogeneous by multiplying the W

2
0 term by the

square of the norm of the vector w

w

w , denoted |w

w

w|

2. This results in three homogeneous
equations,

ni
T (W 2

� |w

w

w|

2
W

2
0 )p0

i +ni
T (www ⇥v) = 0, i = 1, 2, 3. (3)

Including the equation for the Klein quadric w

w

w · v = 0, gives 4 homogeneous
quadratic equations for the ruled surface generating the line-symmetric motion. The
intersection of these quadrics is not a complete intersection as they clearly vanish
on the 2-dimensional plane of “lines at infinity” w

w

w = 0.
The equation given in (3) can be written in the same matrix vector form as in (2)

but with

t = w

w

w ⇥v and d

d

d =

0

@
nT

1 (W 2
� |w

w

w|

2
W

2
0 )p0

1
nT

2 (W 2
� |w

w

w|

2
W

2
0 )p0

2
nT

3 (W 2
� |w

w

w|

2
W

2
0 )p0

3

1

A .
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The variables v can be eliminated by multiplying the equation Nt = d

d

d , by the inverse
or adjugate of N and then taking the scalar product with w

w

w . The result is

w

w

w · (n2 ⇥n3)nT
1 (W 2

� |w

w

w|

2
W

2
0 )p0

1 +w

w

w · (n3 ⇥n1)nT
2 (W 2

� |w

w

w|

2
W

2
0 )p0

2+

w

w

w · (n1 ⇥n2)nT
3 (W 2

� |w

w

w|

2
W

2
0 )p0

3 = 0.

This equation determines a plane cubic curve in the plane determined by the vari-
ables P01, P02 and P03. This is the direction cone or spherical indicatrix of the gener-
ating surface of the motion. Generally a plane cubic curve is rational or elliptic (has
genus 0 or 1) depending on whether or not it has a singularity. Computing with a
few random examples shows that the curve can be non-singular. Hence, in general,
the curve is elliptic. However, there may be particular examples where the cubic
acquires a singularity and hence becomes rational.

Eliminating the moment vector v of the Plücker coordinates can be seen as a lin-
ear projection with centre of projection given by the 2-plane of lines “at infinity”
w

w

w = 0. To recover the moments of the generators in the ruled surface we can multi-
ply the equation Nt = d

d

d , by the inverse of N and then take the vector product with
w

w

w to get,

|w

w

w|

2v =
1

n1 · (n2 ⇥n3)

�
w

w

w ⇥ (n2 ⇥n3)nT
1 (W 2

� |w

w

w|

2
W

2
0 )p0

1+

w

w

w ⇥ (n3 ⇥n1)nT
2 (W 2

� |w

w

w|

2
W

2
0 )p0

2 +w

w

w ⇥ (n1 ⇥n2)nT
3 (W 2

� |w

w

w|

2
W

2
0 )p0

3
�
.

The equation for the Klein quadric has been used here to expand the triple product
w

w

w ⇥(www ⇥v). The above give a rational cubic map from the plane with homogeneous
coordinates w

w

w = (P01 : P02 : P03) to the Klein quadric. The image of the cubic spher-
ical indicatrix will be a degree 9 ruled surface which meets the center of the linear
projection, the space of lines at infinity, with multiplicity 6.

4 6UPU Legs

Here we study parallel mechanism composed of 6 UPU legs with either line symme-
try or a translational symmetry. We require that the axes of the first and last revolute
joints of the two U joints are coplanar, see Fig. 2. This is not the most general con-
figuration for such a leg but it is a design that is commonly used in practice. The key
observation is that the rigid displacement allowed by such a UPU leg will maintain
the coplanarity of these lines. In [7] the problem of finding the set of rigid displace-
ments which move a line in such a way that it remains in a linear line complex was
studied. The set of lines meeting or parallel to a fixed line form a special linear
line complex so the displacements of a UPU leg are a special case of the quadratic
constraint found in [7]. That is, the displacements achievable by the leg lie on the
intersection of the Study quadric with another quadric hypersurface in P7. There
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Fig. 4 A mobile 6UPU parallel mechanism constructed by reflecting a 3UPU linkage in the line
shown. For clarity, the base and platform are not shown, the base is joined to the lower R joint of
each leg and the platform to the uppermost R joints.

are several serial kinematic chains with the same property, the UPU chain, the PSP
chain and RRPC are three examples. The remarks below therefore apply to any of
these chains.

It is convenient here to represent rigid displacements using the adjoint repre-
sentation of the group SE(3). Consider a pair of lines given in terms of Plücker
coordinates as,

`a =

✓
w

w

wa
va

◆
, and `b =

✓
w

w

wb
vb

◆
.

These lines will be coplanar if and only if they are reciprocal, this condition can be
represented by the matrix equation,

(wwwT
a , vT

a )

✓
0 I3
I3 0

◆✓
w

w

wb
vb

◆
= 0,

where I3 is the 3⇥3 identity matrix. The rigid displacement which move `b in such
a way that it remains coplanar to `a will thus satisfy the equation

(wwwT
a , vT

a )

✓
0 I3
I3 0

◆✓
R 0

T R R

◆✓
w

w

wb
vb

◆
= 0,

where R is a rotation as above and T is the translation vector written as a 3 ⇥ 3
anti-symmetric matrix. Expanding the equation above produces

w

w

w

T
a T Rw

w

wb +w

w

w

T
a Rvb +vT

a Rw

w

wb = 0.

Three such legs yield an equation of the form Nt = d

d

d again. This time with

N =

0

B@

�
w

w

wa1 ⇥ (Rw

w

wb1)
�T

�
w

w

wa2 ⇥ (Rw

w

wb2)
�T

�
w

w

wa3 ⇥ (Rw

w

wb3)
�T

1

CA and d

d

d =

0

B@
w

w

w

T
a1Rvb1 +vT

a1Rw

w

wb1

w

w

w

T
a2Rvb2 +vT

a2Rw

w

wb2

w

w

w

T
a3Rvb3 +vT

a3Rw

w

wb3

1

CA .
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Notice that the matrix N depends on the rotation R now. As above, duplicating and
translating the three legs produces a mechanism which can perform a Schönflies
motion. Assuming that the rotation is parametrised by quadratic functions, as in
section 3.1, we can solve for the translation t. This will give a solution of degree 6
in the tan-half angle of the rotation. In particular the trajectories of general points
on the platform of the mechanism will follow rational curves of degree 6.

Finally consider duplicating the legs and subjecting them to a half-turn, as in
section 3.2, see also Fig. 4. The spherical indicatrix of the base surface of the line-
symmetric motion will be a planar curve of degree 7. From the genus-degree formula
the maximum genus of such a curve is 1

2 (7�1)(7�2) = 15.

5 Conclusion

Space restrictions preclude a fuller discussion of the motions generated by these
mechanisms. Although much is known about motions which constrain points to
planes and to spheres, the case of motion in which lines remain coplanar to fixed
lines seems to have not received much attention to date.
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On the line-symmetry of self-motions of linear
pentapods

Georg Nawratil

Abstract We show that all self-motions of pentapods with linear platform of Type
1 and Type 2 can be generated by line-symmetric motions. Thus this paper closes
a gap between the more than 100 year old works of Duporcq and Borel and the
extensive study of line-symmetric motions done by Krames in the 1930’s. As a
consequence we also get a new solution set for the Borel Bricard problem. Moreover
we discuss the reality of self-motions and give a sufficient condition for the design
of linear pentapods of Type 1 and Type 2, which have a self-motion free workspace.

Key words: Linear Pentapod, Self-motion, Line-symmetric motion, Borel-Bricard
problem

1 Introduction

The geometry of a linear pentapod is given by the five base anchor points Mi in the
fixed system S0 and by the five collinear platform anchor points mi in the moving
system S (for i = 1, . . . ,5). Each pair (Mi,mi) of corresponding anchor points is
connected by a SPS-leg, where only the prismatic joint is active.

If the geometry of the manipulator is given as well as the lengths Ri of the five
pairwise distinct legs, a linear pentapod has generically mobility 1, which corre-
sponds to the rotation about the carrier line p of the five platform anchor points.
As this rotational motion is irrelevant for applications with axial symmetry (e.g. 5-
axis milling, spot-welding, laser or water-jet engraving/cutting, spray-based paint-
ing, etc.), these mechanisms are of great practical interest. Nevertheless configura-
tions should be avoided where the manipulator gains an additional uncontrollable
mobility, which is referred as self-motion.

Georg Nawratil
Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Austria,
e-mail: nawratil@geometrie.tuwien.ac.at
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2 G. Nawratil

1.1 Review on self-motions of linear pentapods

The self-motions of linear pentapods represent interesting solutions to the still un-
solved problem posed by the French Academy of Science for the Prix Vaillant of
the year 1904, which is also known as Borel-Bricard problem (cf. [2, 3]) and reads
as follows: ”Determine and study all displacements of a rigid body in which distinct
points of the body move on spherical paths.”

For the special case of five collinear points the Borel-Bricard problem was stud-
ied by Darboux [5, page 222], Mannheim [6, pages 180ff] and Duporcq [7] (see
also Bricard [3, Chapter III]). A contemporary and accurate reexamination of these
old results, which also takes the coincidence of platform anchor points into account,
was done in [1] yielding a full classification of linear pentapods with self-motions.

Beside the architecturally singular linear pentapods [1, Corollary 1] and some
trivial cases with pure rotational self-motions [1, Designs a , b , g] or pure transla-
tional ones [1, Theorem 1] there only remain the following three designs:

Under a self-motion each point of the line p has a spherical (or planar) trajectory.
The locus of the corresponding sphere centers is a space curve P of degree 3, where
the mapping from p to P is named s . P intersects the ideal plane in one real point W
and two conjugate complex ideal points, where the latter ones are the cyclic points I
and J of a plane orthogonal to the direction of W. P is therefore a so-called straight
cubic circle. The following subcases can be distinguished:

• P is irreducible:

� s maps the ideal point U of p to W (Type 5 according to [1]).
� s maps U to a finite point of P (Type 1 according to [1]).

• P splits up into a circle and a line, which is orthogonal to the carrier plane of the
circle and intersects the circle in a point Q. Moreover s maps U to a point on the
circle different from Q (Type 2 according to [1]).

1.2 Basics on line-symmetric motions

Krames (e.g. [4, 10]) studied special one-parametric motions (Symmetrische Schro-
tung in German), which are obtained by reflecting the moving system S in the gen-
erators of a ruled surface of the fixed system S0, which is the so called basic surface.
These so-called line-symmetric motions were also studied by Bottema and Roth [8,
§7 of Chapter 9], who gave an intuitive algebraic characterization in terms of Study
parameters (e0 : e1 : e2 : e3 : f0 : f1 : f2 : f3), which are shortly repeated next.

All real points of the Study parameter space P7 (7-dimensional projective space),
which are located on the so-called Study quadric Y : Â3

i=0 ei fi = 0, correspond to
an Euclidean displacement with exception of the 3-dimensional subspace e0 = e1 =
e2 = e3 = 0, as its points cannot fulfill the condition N 6= 0 with N := e2

0 + e2
1 +

e2
2 + e2

3. The translation vector s := (s1,s2,s3)T and the rotation matrix R of the
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corresponding Euclidean displacement mi 7! Rmi + s are given for N = 1 by:

s1 = �2(e0 f1 � e1 f0 + e2 f3 � e3 f2), s2 = �2(e0 f2 � e2 f0 + e3 f1 � e1 f3),

s3 = �2(e0 f3 � e3 f0 + e1 f2 � e2 f1),

R =

0

@
r11 r12 r13
r21 r22 r23
r31 r32 r33

1

A =

0

@
e2

0 + e2
1 � e2

2 � e2
3 2(e1e2 � e0e3) 2(e1e3 + e0e2)

2(e1e2 + e0e3) e2
0 � e2

1 + e2
2 � e2

3 2(e2e3 � e0e1)
2(e1e3 � e0e2) 2(e2e3 + e0e1) e2

0 � e2
1 � e2

2 + e2
3

1

A .

There always exists a moving frame (in dependence of a given fixed frame) in
a way that e0 = f0 = 0 holds for a line-symmetric motion. Then (e1 : e2 : e3 : f1 :
f2 : f3) are the Plücker coordinates (according to the convention used in [8]) of the
generators of the basic surface with respect to the fixed frame.

1.3 Line-symmetric self-motions of linear pentapods

It is well known (cf. [7, §15], [3, §12]) that the self-motions of Type 5 are obtained
by restricting the Borel-Bricard motions1 (also known as BB-I motions) to a line.
Note that this special case was also discussed in detail by Krames [4, Section 5],
who also pointed out the line-symmetry of BB-I motions.

Beside these BB-I motions, there also exist line-symmetric motions (so-called
BB-II motions), where all points of a hyperboloid carrying two reguli of lines have
spherical trajectories. It is known (cf. [9, page 24] and [10, page 188]) that the corre-
sponding sphere centers of lines, belonging to one regulus2, form irreducible straight
cubic circles, which imply examples of self-motions of Type 1. Note that there also
exist degenerated cases where the hyperboloid splits up into two orthogonal planes,
which contain examples of self-motions of Type 2.

A simple count of free parameters shows that not all self-motions of Type 1 (5-
parametric set3 of motions where all points of a line have spherical paths) can be
generated by BB-II motions (which produce only a 4-parametric set4). The same
argumentation holds for Type 2 self-motions and the mentioned degenerated case.

As a consequence the question arise whether all self-motions of linear pentapods
of Type 1 and Type 2 can be generated by line-symmetric motions. If this is the case
we can apply a construction proposed by Krames [4, page 416], which is discussed
in Section 4, yielding new solutions to the Borel-Bricard problem.

Finally it should be noted that a detailed review on line-symmetric motions with
spherical trajectories is given in [11, Section 1].

1 These are the only non-trivial motions where all points of the moving space have spherical tra-
jectories (cf. [3, Chapter VI]).
2 The corresponding sphere centers of lines belonging to the other regulus are again located on a
line (cf. [9, page 24]), which imply architecturally singular designs of linear pentapods.
3 With respect to the notation introduced in Section 2 these five parameters are C,ar,ac,a4 and p5
or R1 (cf. Eq. (7)) by canceling the factor of similarity by setting A = 1.
4 These are the parameters a,c,g,k used in [9, Section 2.3].
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2 On the line-symmetry of Type 1 and Type 2 self-motions

For our calculations we do not select arbitrary pairs (mi,Mi) of p and P, which are
in correspondence with respect to s (, s(mi) = Mi), but choose the following
special ones:

M4 equals W, M2 coincides with I and M3 with J. The corresponding platform
anchor points are denoted by m4, m2 and m3, respectively. As Mi are ideal points
the corresponding points mi are not running on spheres but in planes orthogonal to
the direction of Mi. Therefore these three point pairs imply three so-called Darboux
conditions Wi for i = 2,3,4. Moreover we denote U as m5 and its corresponding fi-
nite point under s by M5. This point pair describes a so-called Mannheim condition
P5 (which is the inverse of a Darboux condition). The pentapod is completed by a
sphere condition L1 of any pair of corresponding finite points m1 and M1.

In [1] we have chosen the fixed frame F0 in a way that M1 equals its origin and
M4 coincides with the ideal point of the z-axis. Moreover we located the moving
frame F in a way that p coincides with the x-axis, where m1 equals its origin.

For the study at hand it is advantageous to select a different set of fixed and
moving frames F 0

0 and F 0, respectively:

• As M2 and M3 coincides with the cyclic points, we can assume without loss of
generality (w.l.o.g.) that M5 is located in the xz-plane (as a rotation about the z-
axis does not change the coordinates of M1, . . . ,M4). Moreover we want to apply
a translation in a way that M5 is in the origin of the new fixed frame F 0

0. Summed
up the coordinates with respect to F 0

0 read as:

M5 = (0,0,0), M1 = (A,0,C) with A 6= 0 (1)

as A = 0 implies a contradiction to the properties of P for Type 1 and Type 2
pentapods given in Section 1.1. Moreover, M2, M3 and M4 are the ideal points in
direction (1, i,0)T , (1,�i,0)T and (0,0,1)T , respectively.

• With respect to F 0

0 the location of p is undefined, but the coordinates mi of mi
can be parametrized as follows for i = 1, . . . ,4:

mi = n+(ai �ar)d with a1 = 0, a2 = ar + iac, a3 = ar � iac (2)

where ar,ac 2 R and ac 6= 0 holds. m5 is the ideal point in direction of the unit-
vector d = (d1,d2,d3)T , which obtains the rational homogeneous parametrization
of the unit-sphere, i.e.

d1 = 2h0h1
h2

0+h2
1+h2

2
, d2 = 2h0h2

h2
0+h2

1+h2
2
, d3 =

h2
1+h2

2�h2
0

h2
0+h2

1+h2
2
. (3)

Now we are looking for the point n = (n1,n2,n3)T and the direction (h0 : h1 : h2)
in a way that for the self-motion of the pentapod e0 = f0 = 0 holds. We can discuss
Type 1 and Type 2 at the same time, just having in mind that a4 6= 0 6= C has to hold
for Type 1 and a4 = 0 = C for Type 2 (according to [1]).
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By setting ri := (ri1,ri2,ri3)T for i = 1,2,3 the Darboux and Mannheim con-
straints with respect to F 0

0 and F 0 can be written as:

W2 :(s1 + r1m2)� i(s2 + r2m2)� p2N = 0, W4 :(s3 + r3m4)� p4N = 0, (4)

W3 :(s1 + r1m3)+ i(s2 + r2m3)� p3N = 0, P5 :(Rd)(s+Rp5)N�1 = 0, (5)

with p5 = n +(p5 � ar)d, which is the coordinate vector of the intersection point
of the Mannheim plane and p with respect to F 0. Moreover (p j,0,0)T for j = 2,3
(resp. (0,0, p4)T ) are the coordinates of the intersection point of the Darboux plane
and the x-axis (resp. z-axis) of F 0

0.

Remark 1. As from the Mannheim constraint P5 of Eq. (5) the factor N cancels
out, all four constraints W2,W3,W4,P5 are homogeneous quadratic in the Study
parameters and especially linear in f0, . . . , f3. ⇧

According to [1, Theorems 13 and 14] the leg-parameters p2, . . . , p5,R1 have to
fulfill the following necessary and sufficient conditions for the self-mobility (over
C) of a linear pentapod of Type 1 and Type 2, respectively:

p2 = Aa3v
(a3�a4)2 , p3 = Aa2v

(a2�a4)2 , p4 = �

Ca4v
(a2�a4)(a3�a4) , (6)

(a2 �a4)
2(a3 �a4)

2 ⇥
2wp5 � vR2

1 � (2w� va4)a4
⇤
+ vw2(A2 +C2) = 0, (7)

with v := a2 + a3 � 2a4 and w := a2a3 � a2
4. Therefore if we set p2, p3, p4 as given

in Eq. (6) then only one condition in p5 and R1 remains in Eq. (7). Therefore these
pentapods have a 1-dimensional set of self-motions.

Theorem 1. Each self-motion of a linear pentapod of Type 1 and Type 2 can be
generated by a 1-dimensional set of line-symmetric motions. For the special case
p5 = a4 = ar this set is even 2-dimensional.

Proof. W.l.o.g. we can set e0 = 0 as any two directions d of p can be transformed
into each other by a half-turn about their enclosed bisecting line. Note that this line
is not uniquely determined if and only if the two directions are antipodal.

W.l.o.g. we can solve Y ,W2,W3,W4 for f0, f1, f2, f3 and plug the obtained ex-
pressions into P5, which yields in the numerator a homogeneous quartic polynomial
G[1563] in e1,e2,e3, where the number in the brackets gives the number of terms.
Moreover the numerator of the obtained expression for f0 is denoted by F [600],
which is a homogeneous cubic polynomial in e1,e2,e3.

General Case (v 6= 0): The condition G = 0 already expresses the self-motion as G
equals L1 if we solve Eq. (7) for R1. Moreover F = 0 has to hold if the self-motion
of the line p can be generated by a line-symmetric motion. As for any solution
(e1 : e2 : e3) of F = 0 also G = 0 has to hold, G has to split into F and a homogeneous
linear factor L in e1,e2,e3.

Now L = 0 cannot correspond to a self-motion of the linear pentapod, but has to
arise from the ambiguity in representing a direction of p mentioned at the beginning
of the proof. This can be argued indirectly as follows:
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Assumed L = 0 implies a self-motion, then it has to be a Schönflies motion (with
a certain direction v of the rotation axis) due to e0 = 0. As under such a motion the
angle enclosed by v and p remains constant5 the ideal point U of p has to be mapped
by s to the ideal point V of v. This implies that V has to coincide with W, which
can only be the case for pentapods of Type 5; a contradiction.

Therefore there has to exist a pose of p during the self-motion, where it is op-
positely oriented with respect to the fixed frame and moving frame, respectively.
As a consequence we can set L = d1e1 + d2e2 + d3e3 which yields the ansatz D :
lLF � G = 0. The resulting set of four equations arising from the coefficients of
e3

1e2, e3
1e3, e1e3

3 and e2e3
3 of D has the unique solution:

n1 = acd2, n2 = �acd1, n3 = (ar �a4)d3, l = 2(h2
0 +h2

1 +h2
2). (8)

Now D splits up into (e2
1 +e2

2 +e2
3)

2(h2
0 +h2

1 +h2
2)H[177], where H is homogeneous

of degree 4 in h0,h1,h2. For the explicit expression of the planar quartic curve H = 0,
which can be checked to be entirely circular, please see [13, Remark 3].

Special Case (v = 0): If v = 0 holds, we cannot solve Eq. (7) for R1. The conditions
v = 0 and Eq. (7) imply p5 = a4 = ar. Now G is fulfilled identically and the self-
motion is given by L1 = 0, which is of degree 4 in e1,e2,e3. Moreover for this
special case F = 0 already holds for n given in Eq. (8). Therefore any direction
(h0 : h1 : h2) for p can be chosen in order to fix the line-symmetric motion. ⇤

Remark 2. Finally it should be noted that all self-motions of the general case can be
parametrized as the resultant of G and the normalizing condition N �1 with respect
to ei yields a polynomial, which is only quadratic in e j for i 6= j 2 {1,2}. ⇧

3 On the reality of Type 1 and Type 2 self-motions

A similar computation to [1, Example 1] shows that for any real point pt 2 p with
t 2R and coordinate vector pt = n+(t �ar)d with respect to F 0 the corresponding
real point Pt 2 P has the following coordinate vector Pt with respect to F 0

0:

Pt =
⇣

A(a2
r +a2

c�tar)
(t�ar)2+a2

c
,� Aact

(t�ar)2+a2
c
, Ca4

a4�t

⌘T
. (9)

As L = 0 corresponds with one configuration of the self-motion we can compute the
locus Et of pt with respect to F 0

0 under the 1-parametric set of self-motions by the
variation of (h0 : h1 : h2) within L = 0. Moreover due to the mentioned ambiguity
we can select an arbitrary solution (e0 : e1 : e2) for L = 0 fulfilling the normaliza-

tion condition N = 1; e.g.: e1 = h2(h2
1 +h2

2)
�

1
2 , e2 = �h1(h2

1 +h2
2)

�

1
2 and e3 = 0.

Now the computation of Rpt + s yields a rational quadratic parametrization of Et in
dependency of (h0 : h1 : h2).

5 This angle condition can be seen as the limit of the sphere condition (cf. [12, Section 4.1]).
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Note that this approach also includes the special case (v = 0) as there always
exists a value for R2

1 (in dependency of (h0 : h1 : h2)) in a way that L1 = 0 holds.
For t 6= a4 all Et are ellipsoids of rotation (see Fig. 1a), which have the same

center point C and axis of rotation c. In detail, C is the point of the straight cubic
circle (9) for the value t = c with c := a2

4�a2
c�a2

r
2(a4�ar)

(for a4 = ar we get c = • thus
p• = U = m5 holds, which implies C = M5) and c is parallel to the z-axis of F 0

0.
Moreover the vertices on c have distance |a4 � t| from C and the squared radius of
the equator circle equals (ar � t)2 +a2

c . Note that for a4 6= ar the only sphere within
the described set of ellipsoids is Ec. For a4 = ar no such sphere exists.

Ea4 is a circular disc in the Darboux plane z = p4 (w.r.t. F 0

0) centered in C.

Remark 3. The existence of these ellipsoids was already known to Duporcq [7, §9],
who used them to show that the spherical trajectories are algebraic curves of degree
4 (intersection curve of Et and the sphere Ft centered in Pt illustrated in Fig. 1b). ⇧

Based on this geometric property, recovered by line-symmetric motions, we can
formulate the condition for the self-motion to be real as follows:

• w 6= 0: We can reduce the problem to a planar one by intersecting the plane
spanned by P0 = M1 and c with E0 and the sphere with radius R1 centered in
P0. Now there exists an interval I0 =]I

�

, I+[ such that for R1 2 I0 the two re-
sulting conics have at least two distinct real intersection points. It is well known
(e.g. [14]) that the computation of the limits I

�

and I+ of the reality interval I0
leads across an algebraic problem of degree 4 (explicitly solvable). Thus for a
real self-motion we have to choose R1 2 I0 and solve Eq. (7) for p5.

• w = 0: Now P0 coincides with C and the interval collapses to the single value
R1 = |a4|, which can be seen from Eq. (7). Moreover p5 can be chosen arbitrarily.

These considerations also show that any pentapod of Type 1 and 2 has real self-
motions if the leg-parameters are chosen properly. Note that this is e.g. not the case
for some designs of Type 5 pentapods described in [1, Section 6], where it was also
proven that pentapods with self-motions have a quartically solvable direct kinemat-
ics. It is possible to use this advantage (closed form solution) of pentapods with
self-motions without any risk6, by designing linear pentapods of Type 1 and Type 2,
which are guaranteed free of self-motions within their workspace.

A sufficient condition for that is that (at least) for one of the five legs ptPt of
the pentapod the corresponding reality interval It is disjoint with the interval of
the maximal and minimal leg length implied by the mechanical realization. This
condition for a self-motion free workspace gets especially simple if pcPc is this leg.

Remark 4. Due to limitation of pages, we refer for detailed examples to the paper’s
corresponding arXiv version [13], which also show that for the general case (v 6= 0)
the basic surface is of degree 5 (see Fig. 1c) and that a general point has a trajectory
of degree 6 under the corresponding line-symmetric motion.7 Note that the latter
also holds for a general point of the cubic P explained in the next section. ⇧

6 A self-motion is dangerous as it is uncontrollable and thus a hazard to man and machine.
7 Note that all basic surfaces and trajectories can be parametrized due to Remark 2.
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Fig. 1 Type 1 pentapod with self-motion given by a4 = 2, A = �1, C = �5, ar = 7 and ac = 4.
(a) The loci Ea4 , Ec and Et with t = 69

20 are sliced (along the not drawn axis of rotation c) in order
to visualize their positioning with respect to the cubic P on which the points P• = s(U), Pc = C
and Pt are highlighted. Note that Pa4 = W is the real ideal point of P. (b) By setting p5 = 6 a
one-parametric self-motion µ is fixed. The trajectory of pt under µ is illustrated as the intersection
curve of Et and the sphere Ft centered in Pt . (c) A strip of the basic surface of µ is illustrated for
h0 = 1, h1 = �

489262
226525 + 488

226525

p

675091 and h2 = 535336
226525 + 446

226525

p

675091. In addition P and p
are visualized, where the latter denotes the pose of p such that its half-turns about the generators
of the basic surface yield the self-motion µ . (d) Krames’s construction is illustrated with respect
to the generator g of the basic surface: As Pa4 (resp. p•) is the real ideal point of P (resp. p), the
trajectory of pa4 (resp. P•) under µ is planar. The (Mannheim) plane 2 S , which contains the point
P• (resp. pa4 ) and is orthogonal to the direction of the real ideal point p• (resp. Pa4 ) of p (resp.
P) in the displayed pose, slides through the point P• (resp. pa4 ) during the complete motion µ .
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4 Conclusion and open problem

Krames [4, page 416] outlined the following construction (see Fig. 1d): Assume that
p is in an arbitrary pose of the self-motion µ with respect to P, where g denotes the
generator of the basic surface, which corresponds to this pose. Moreover p and P are
obtained by the reflexion of p and P, respectively, with respect to g, where p belongs
to the fixed system S0 and P to the moving system S . Then under the self-motion µ

also the points of P are located on spheres with centers on the line p.
We can apply this construction for each line-symmetric motion of Theorem 1,

which yields new solutions for the Borel Bricard problem, with the exception of one
special case where W 2 p holds (i.e. h1 = h2 = 0 or h0 = 0), which was already
given by Borel in [2, Case Fa4]. Moreover for this case Borel noted that beside p

and P only two imaginary planar cubic curves (2 isotropic planes through p) run on
spheres. The example of [13] shows that this also holds true for the general case.

Thus the problem remains to determine all line-symmetric motions of Theorem
1 where additional real points (beside those of p and P) run on spheres. Until now
the only known examples with this property are the BB-II motions (cf. Section 1.3).

Acknowledgements This research is funded by Grant No. P 24927-N25 of the Austrian Science
Fund FWF within the project ”Stewart Gough platforms with self-motions”.
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On some notable singularities of 3-RPR and
3-RRR PPRMs
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Abstract This paper highlights the existence of some notable type-II singular con-
figurations for certain planar parallel robotic manipulators (PPRMs). These singu-
larities are characterized by intrinsic geometric conditions of alignment or coinci-
dence between geometric entities of the fixed base, the mobile platform and the
limbs. Thus, in the general case of the 3-RPR manipulator, a set of 6 such singular
configurations can be identified for each orientation of the mobile platform. More-
over, for 6 particular orientations of the mobile platform, a set of positions of the
end-effector, defined by two concurrent lines, can be identified as notable degener-
ated singularity curves. On another side, in the general case of the 3-RRR manip-
ulator, a set of 24 curves in the 3-dimensional operational space (x, y, b ) can be
identified as singular poses. All these singularities are easy to determine by means
of simple geometric graphical constructions. In this paper, we try to exploit the ex-
istence of such particular singularities for kinematic analysis and design of PPRMs.
For instance, we can construct the singularity surface of the 3-RPR manipulator
by using a pure graphical approach and without any need of algebraic or analytic
formulations
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2 K. A. Arrouk, B. C. Bouzgarrou, and G. Gogu

1 Introduction

Despite the apparently simple architecture of parallel planar robotic manipulators
(PPRMs), the characterization of their singularities remains a challenging problem
in robotic research field. In [5], the singularities of PRMs have been classified ac-
cording to three categories: the serial or type-I singularities, parallel or type-II sin-
gularities, and the combined or type-III singularities (combination of types I and
II). Constraint singularities have been introduced the first time by Zlatanov as phe-
nomenon occurring in parallel mechanisms with reduced freedoms when the screw
system, formed by the constraint wrenches in all legs, loses rank [9]. More recently,
parallel mechanism singularities have been characterized in terms of structural pa-
rameters [1] [4]. Three types of singularities have been defined: constraint singu-
larities, redundant singularities and constraint-redundant singularities [1]. Parallel
singularities depend on the choice of the passive and active joints in the mechanism.
In a parallel singularity, the actuators cannot control the motions of the mobile plat-
form.

The kinematic mapping method has been used to discuss all singularities of the
3-RPR manipulator in a uniform way, showing that all singularities are on a degree
four surface in the kinematic image space [6]. By fixing one of the actuated joints
and analyzing the configuration-space as a surface in a three-dimensional space,
Zein et al have determined all possible non-singular assembly-mode changing by
using loop trajectories encircling a cusp points of the 3-RPR manipulator [8]. The
present paper falls within the context of previous researches in which we have pre-
sented a new unified CAD-based graphical approach, quite apart from the existing
methods in the literature, for determining and representing the main kinematic prop-
erties of PPRMs such as the 3D total workspace, the parallel singularity surface, and
the assembly modes associated with the direct kinematic problem solutions [2]. It
has been shown that the graphical superimposing of the 3D total workspace, the
singular surface and the direct kinematic problem solutions enables a rapid and
accurate identification of all singularity-free regions (aspects), as 3D solids, and
generating singularity-free trajectories between different assembly modes [3].

In this work, we highlight the existence of particular parallel singular configu-
rations of certain PPRMs, characterized by intrinsic geometric conditions of align-
ment or coincidence between geometric entities of the fixed base, the mobile plat-
form and the limbs. Therefore, they are easy to determine by means of geometric
graphical constructions. These particular singularities are mainly useful in kinematic
analysis and design of PPRMS. In the case of the 3-RPR manipulator, they are useful
for graphically determining the singularity curves associates with all singular con-
figurations for a given orientation angle of the MPF. For these reasons, we consider
these particular singular configurations as remarkable or notable singularities.

The paper is organized as follows. In section 2, notable singularities of 3-RPR
and 3-RRR manipulators are introduced. The geometric graphical operations used
for their determination are presented. As an immediate exploitation of such a re-
sult, a new geometric-based graphical construction of singularity surface of 3-RPR
manipulator is illustrated in section 3.
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Fig. 1 Parameterizing of 3-RPR and 3-RRR manipulators

2 Notable singularities of 3-RPR and 3-RRR PPRMs

In this section we consider two types of PPRMs: 3-RPR and 3-RRR manipulators
(Figure 1). Even though they have been extensively studied in the literature, some
notable singular configurations of these manipulators deserve to be considered.
These singularities are characterized by intrinsic geometric conditions of alignment
or coincidence between geometric entities of the fixed base, the mobile platform
and the limbs. For the 3-RPR manipulator, these singularities are formed by a finite
set of points for each fixed orientation of the MPF. Whereas, a set of curves in the
operational space (x, y, b ) are identified as notable singular poses for the 3-RRR
manipulator.

2.1 Notable singular points of the 3-RPR manipulator

The 3-RPR manipulator is composed of three identical kinematic limbs connect-
ing the fixed base (FB) B1B2B3 to the mobile platform (MPF) A1A2A3. Each limb
has two passive revolute joints (on the extremities of each limb), and one actuated
prismatic joint relating the first and the second links. The directed distance between
Bi and Ai along the direction of the prismatic joint direction is ri (i = 1,2,3). A
parametrization of the mechanism is given in Figure 1. It is well known that the
3-RPR manipulator is in a parallel singular configuration when the lines passing
through its passive revolute joint centers in each limb intersect in one point or are
parallel [7].

For a given orientation of the MPF, the first subset of notable singularities cor-
responds to the configurations for which two passive revolute joints of a limb i are
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superposed : Ai = Bi. These configurations verify the condition ri = 0 for a given
limb i (i 2 {1,2,3}). Therefore, this subset is formed by 3 points which are the po-
sitions in the (x,y) plane of the end-effector characteristic point (EECP) associated
with each of these configurations. They are shown in Figure 2 (a, b and c), where
A1 is considered as the EECP.

Likewise, for a given orientation of the MPF, the second subset of notable sin-
gularities corresponds to the configurations for which two limbs, BiAi and B jA j,
are aligned, respectively, with two edges of the mobile platform, AiAk and A jAk
(i, j,k 2 {1,2,3}). In this case, the three limbs are concurrent in Ak, which corre-
spond to a type-II singular configurations. These 3 configurations can be obtained
by superposing the vertex Ak of the mobile platform with the intersection point of
two lines : the line parallel to the edge AiAk and passing through Bi, and the line
parallel to the edge A jAk and passing through B j. This second subset is also formed
by 3 points which are the positions in the (x,y) plane of the EECP associated with
each of these configurations. They are shown in Figure 2 (d, e and f), where A1 is
considered as the EECP.

Fig. 2 Notable singular points of the 3-RPR manipulator
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2.2 Notable degenerate singularity curves of the 3-RPR

manipulator

In addition to the set of six singular points that can be determined for a given orien-
tation of the MPF, notable singular lines can be identified for particular orientations
of the mobile platform. Indeed, if the orientation of the MPF is such that its edge
AiA j is aligned with the edge BiB j of the FB, then the two links BiAi and B jA j are
also aligned with the edge BiB j. In this case all the links of the manipulator are
concurrent in one point belonging to the line BiB j, which corresponds to a type-II
singular configuration. The set of positions described by the EECP verifying this
condition is a line parallel to the edge BiB j and passing by the EECP when the edge
AiA j of the MPF is placed wherever on the line BiB j. This set of positions is the first
notable singular line. It is illustrated in Figure 3 where i = 2, j = 3, k = 1 and A1 is
the EECP.

Since a singularity curve, for a given orientation of the 3-RPR manipulator, is a
conic in the general case, the existence of a singularity line must correspond to a
degeneration of the conic. Thus, a second line necessarily exists. Even if this line is
less evident then the first one, it is easy to be determined by using the singular points
we have introduced in paragraph 2.1. Then, it is sufficient to use two notable sin-
gular points, which are not on the first singularity line, to define the second notable
singularity line. As shown in Figure 3, the second line passes through the singular
points B1 and A1 when the limbs B2A2 and B3A3 are respectively aligned with the
MPF edges A2A1 and A3A1.

There are two possible orientations, at 180 deg of rotation from each other, to
have aligned the edges BiB j and AiA j with i, j 2 1,2,3. Therefore, it can be stated,
in the general case, that the singularity curves associated with different MPF orien-
tations of the 3-RPR meet at least 6 cases of degeneration from an hyperbola into
two concurrent lines.

2.3 Notable singularities of the 3-RRR manipulator

The 3-RRR manipulator is composed of three limbs connecting the FB B1B2B3 to
the MPF A1A2A3. Each limb is composed by two links and three revolute joints.
The actuated revolute joint relates the first link to the FB. The first link of a limb i
(i = 1,2,3) is defined by the segment BiCi and the distal link by the segment CiAi.
A parametrization of the mechanism is given in Figure 1.

In this paragraph, we show that we can also identify a set of notable type-II sin-
gular configurations of the 3-RRR manipulator that we can graphically determine.
Indeed, this mechanism is in a parallel singularity when its distal links are concur-
rent in one single point. Among these configurations, we can identify a first category
of notable singularities for which two distal links are aligned with two distinct edges
of the MPF. If these links are CiAi and CjA j, attached to the vertices Ai and A j of the
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MPF, the considered edges are respectively AiAk and A jAk. In this case, these links
are necessary concurrent in the triangle vertex Ak, which belongs to the remaining
third link CkAk.Therefore, all distal links are concurrent in the point Ak, which cor-
responds to a parallel singularity of the manipulator. Figure 4 (a, b and c) illustrates
these singularities through three possibilities associated with three kinematic loops
of the 3-RRR manipulator.

The second category of notable singularities of the the 3-RRR manipulator corre-
sponds to the configurations for which two distal links are aligned with an edge of
the mobile platform. If these links are CiAi and CjA j, the considered edge is AiA j.
In this case, these two links are aligned and concurrent in the same point with the
remaining distal link CkAk. In this case, we also obtain a type-II singular configu-
ration. Figure 4(d, e and f) illustrates these singularities through three possibilities
associated with three kinematic loops of the 3-RRR manipulator.

A geometric graphical approach can be used in order to determine the set of
configurations associated with these two categories of singularities. For the first
category, the set of points described by the EECP when the singularity condition
is maintained as kinematic constraints, i.e. maintaining aligned the links CiAi and
CjA j respectively with the MPF edges AiAk and A jAk, is a coupler curve in the
(x,y) plane. This coupler curve is obtained by considering the four-bar mechanism
BiCiCjB j, formed by links BiCi and B jCj and having as a coupler part the triangle
CiCjAk. The considered EECP for the four-bar mechanism is the same as in the
3-RRR manipulator.

For the second category of these singularities, the set of points described by the
EECP when maintaining aligned the links CiAi and CjA j the MPF edge AiA j is
also a coupler curve in the (x,y) plane. This curve, called singular coupler curve,

Fig. 3 Degenerate singularity curve of the 3-RPR manipulator
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Fig. 4 Notable singular configurations of the 3-RRR manipulator ant their representation in the
operational space

is obtained by considering the four-bar mechanism BiCiCjB j, formed by links BiCi
and B jCj and as a coupler part the triangle CiCjAk with the same EECP as in the
3-RRR manipulator. Figure 4 (d, e and f) illustrates these singularities.

In previous works [3], we have shown that the domain reached by the MPF be-
longing to a 2 dof limb isolated from the rest of the mechanism can be represented
in the 3-dimensional operational space (x,y,b ) by a helical surface. The domain
reached by the coupler part of a four-bar mechanism in the 3-dimensional opera-
tional space results from the intersections of the two domains associated with its
two limbs. Thereafter, this domain is the intersection of two helical surfaces, which
gives a 3-dimensional curve. The projection of this curve on the (x,y) plane is noth-
ing but a singular coupler curve. These results are illustrated in Figure 4 for the first
category of 3-RRR notable singularities we have defined. The determination of the
second category of 3-RRR notable singularities can be performed similarly.

3 Exploitation of the notable singularities for singularity surface
construction of the 3-RPR manipulator

For a given orientation of the MPF, it has been shown in [7] that the geometrical
loci of the EECP in the operational operational workspace, associated with paral-
lel singular configurations of the 3-RPR manipulator, form a quadratic conic curve
(i.e., a hyperbola, a parabola or an ellipse), unless there is an architectural singu-
larity. This latter can be easily predicted at the earlier stage of robot design [7]. In
this section, we propose to exploit this property as well as the existence of the no-
table singularities. Indeed, one can perfectly determine the conic curve associated
with all singular configurations for a given orientation angle of the MPF by using
only 5 points among the 6 singular points introduced in subsection 2.1. Figure 5(a)
illustrates the graphical determination of the conics associated with different orien-
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(a) (b)

Fig. 5 Graphical determination, based on notable singular points, of singularity curves (a) and
surface (b) of the 3-RPR manipulator

tation of the MPF. This determination is purely graphic and has been implemented
in GeoGebra software. The construction procedure of the notable singular points as
well as the generation of the associated conic is parametrized by the orientation of
the MPF and the mechanism design parameters. It can be noticed the transitions be-
tween different types of conics: from an ellipse to a hyperbola passing by a parabola.
All these graphical constructions didn’t require any analytical or algebraic formula-
tion by the user.

The automatic generation of all the singularity curves, in the (x,y) plane, asso-
ciated with the different orientations of the MPF, can also be exploited to generate
the singularity surface of the manipulator in the 3-dimensional operational space
(x,y,b ). Singularity curves can be generated in a 3D CAD environment, based on
geometric determination of notable singular points, for different orientations of the
MPF. Since then, this can be performed in purely graphic approach by generating
these conics in a 3D CAD environment, at different altitudes corresponding the ori-
entation of MPF with enough small step. Thereafter, these curves can be fitted by
a surface, such as NURBS in CATIA R

�software, with quite a good precision. This
surface represents the singularity loci of the 3-RPR manipulator in the operational
space as illustrated in Figure 5(b).

4 Conclusion

In this paper notable type-II singular configurations of certain PPRMs have been
highlighted. These singularities are easily determined by using geometric graphical
constructions. It has been shown for the 3-RPR manipulator that the identification
of 6 singular poses for each orientation of the MPF allows the construction of the
singularity surface in the 3-dimensional operational space by using a pure geomet-
ric graphical approach and with no need of any analytical or algebraic formulations.
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This result has undoubtedly practical advantages in mechanism design and analysis.
Moreover, 6 degenerated singularity curves, in the general case, can be determined
immediately by simple geometric considerations. For the 3-RRR manipulator, the
identified singular poses form a set of 24 curves in the operational space. Each
curve is obtained by the intersection of two helical surfaces associated with the
reachable domains of each limb of a four-bar mechanism. The projections of these
singular curves on the (x,y) plane are coupler curves. Further exploitation these no-
table singularities can be addressed in future developments for optimal mechanism
synthesis. The geometric parameters of the 3-RPR manipulator, for a prescribed sin-
gularity curve corresponding to a given orientations of the MPF, can be determined
so as the working zone of the manipulator can be kept far from this curve.
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Minimized-Torque-Oriented Design of Parallel
Modular Mechanism for Humanoid Waist

Mouna Souissi, Vincent Hugel, Samir Garbaya, and John Nassour

Abstract This article focuses on the design and integration of a parallel modular
mechanism inside the waist of a human-sized biped robot to enable tilting motion
of the torso. The mechanism for each tier is adapted from the parallel 2-degree-of-
freedom tilting part of an existing 3-rotation flight simulator structure. The main
contribution of this work is the design of a minimized-torque-oriented optimization
process that takes into account the upper mass load to be supported by the mech-
anism, the constrained volume of the waist, a minimal dexterity threshold, and the
tilting range required. The design process aims to determine the relative size and
position of the different parts of the mechanism. The objective consists of minimiz-
ing the actuator average torque over the entire tilt range, and to evaluate how much
torque reduction this parallel mechanism can bring compared with the use of a serial
mechanism. Up to three modules can be stacked inside the waist to limit the actuator
torques and to reach the required tilting range for sitting and bending movements.

Key words: parallel mechanism, humanoid waist, design optimization, global torque
minimisation, actuator sizing.

1 Introduction

This work was developed in the framework of the ROMEO project that aims at
building an innovative humanoid robot capable of assisting humans at home and
equipped with an actuated waist. The mobility of the waist is useful to achieve
human-like bending-down and sitting-down movements.
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V. Hugel, Université de Toulon, France, e-mail: vincent.hugel@univ-tln.fr
S. Garbaya, ENSAM, France
J. Nassour, Technische Universität Chemnitz, Germany

1



The trunk of most existing humanoid robots is equipped with one up to four
serial degrees of freedom (DOF). Asimo [2], Hubo [8], or Lola [12] have a single
yaw joint in the trunk. Additional pitch and roll joints are used to execute specific
whole-body movements or to design human-like locomotion gaits [18].

Bio-inspired prototypes named musculoskeletal humanoids [15, 19] were de-
signed to imitate the human spine, using wire cables to drive replica of the vertebrae
and inter-vertebral discs. Other bio-inspired prototypes without wire systems fea-
ture flexible properties thanks to the use of silent block as intervertebral disc [1] or
the use of hydraulic pistons associated with springs [20].

Liang et al. [11] used rigid parallel mechanisms to model a waist-trunk system
with a 6-DOF a Gough/Stewart platform and a 3-rotary-DOF mechanism. 3-DOF
orientation manipulators were also designed as parallel wrists, e.g. wrists equipped
with a central mast and three UPS legs [17], spherical wrists with converging ac-
tuator axes [4], wrists with converging passive joint axes [24], or wrists including
cylindrical joints [9].

Parallel rigid architectures have the advantages of higher rigidity and high load
capacity [10] in comparison with serial-based architectures. The waist mechanism
proposed in this paper is inspired by the parallel part of the Sabrié’s flight simulator
mechanism [21] which is composed of two asymmetric legs and a central mast with
a total of eight passive joints. Together with the adaptation of this mechanism to the
waist of a human-scale humanoid, this work presents a design optimization process
that aims to minimize the actuator torques required over the entire tilting range.
The process takes into account the mass load to be supported, the available volume,
and a given dexterity threshold. This approach is different from traditional design
methods that aim to minimize the condition number, maximize the dexterity [16],
the global conditioning index [13], some combined index [23], the workspace [14],
or aim to fit some prescribed workspace with accuracy requirements [5, 6].

Section 2 describes the parallel mechanism. Section 3 is devoted to the statics
analysis, and section 4 with the design optimization. Results are presented in section
5 and discussed in section 6.
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height hs = 0.30[m], width, ws = 0.25[m] and depth ds = 0.20[m].
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2 Parallel Mechanism

The parallel module consists of a base platform CA3B3 and a payload moving plat-
form OA1B1 linked by a fixed central rod CO and two legs arranged at 90[deg] in the
initial position (Fig. 1). The central rod joins the top platform through a Universal
joint. The leg A1A2A3 is a planar URR mechanism. The leg B1B2B3 is a 3D USR
mechanism. The revolute joint at A3, resp. B3, are to be actuated to drive the system
and produce the pitch, resp. roll, motion. The kinematic analysis leads to an actual
mobility of 2 for this mechanism.

The mechanism for the trunk DOF has to be located in the waist, which matches
the biological observation in humans that the vertebrae located in the lumbar part
are the most mobile ones [7]. It is required to support a total weight estimated at
15[kg] that includes the masses of the trunk, the head and the arms. Preliminary
studies showed that a forward tilting range of 30[deg] of the thorax is sufficient to
execute flexion motions such as sitting down on a chair [22]. Given the constraint
of total height and limitation of miniaturization, it is possible to stack three modules
inside the ROMEO’s waist, with a tilting range of up to 10[deg] each.

3 Statics Analysis

The objective is to express the torques exerted by the rotary actuators as a function
of the geometric parameters of the mechanism. These torques are denoted by ta
for the 2D leg and tb for the 3D leg. The masses of the parallel mechanism are
neglected with respect to the mass M to be supported by the top platform. The mass
M is assumed to be concentrated on a point G located at a height hG above O along
the normal kkk111 to the top platform.

The equations that govern the equilibrium of the 2D leg, the 3D leg, and the top
platform lead to:


ta
tb

�
= JJJTTT


t

g
a

t

g
b

�
,


q̇10
q̇21

�
= JJJ


ȧ05
ḃ05

�
, JJJ =


ra 0

�rarc rb

�

ra =
[AAA333AAA222,uuuA2A1 , jjj0]

[OOOAAA111,uuuA2A1 , jjj0]
rb =

[BBB333BBB222,uuuB2B1 , iii0]
[OOOBBB111,uuuB2B1 , iii1]

rc =
[ jjj1,uuuB2B1 , jjj0]

kkk111.uuuB2B1

t

g
a = �M [OOOGGG,ggg, jjj0] t

g
b = �M [OOOGGG,ggg, iii1]

where JJJ is the Jacobian matrix of forward kinematics. t

g
a and t

g
b can be considered

as the torques to be produced by the legs at O about axes iii111 and jjj000 respectively,
to compensate the moment due to the weight of mass M. These torques would be
the active torques in the case of the serial mechanism constituted of the central rod
only and where both rotary joints of the U-joint (q10 and q21) at the top would be
motorized.
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4 Optimization process

The aim of the optimization process consists of determining the adequate lengths of
the segments that compose the kinematic chains, namely `1, `2, `3 and `4 (Fig. 1),
in order to minimize the actuators’ average torque over the entire tilting range. The
maximal tilting angle of the torso is the same in all directions, which means that
the robot can bend forward, backward and sideways, right and left, until reaching
this maximal tilting angle, named q

max. The four parameters to be optimized are
normalized with respect to the height of the mechanism hv, i.e. (`⇤

i = `i/hv)i2{1,2,3,4}

.
The mechanical structure is arranged to form a V-shape in top view (Fig. 1B),

which means that legs are placed at ±45[deg] with respect to the longitudinal axis.
This enables to benefit from a maximal lever arm inside the available volume. The
central rod is placed at the rear of the lumbar part like in the human spine. The corre-
sponding offset ps from the external boundary of the lumbar region is set to ds/4, but
this value can be adjusted. The center of mass of the thorax, the head and the arms
in the rest position must be at the vertical of the central rod. The maximal length for
`1 is calculated taking into account the volume constraints (`max = 0.15[m]).

Active torques ta and tb depend on the tilting angles, but also on the lengths `i
of the mechanism. The optimal values (`

⇤

i )i2{1,2,3,4}

are defined such that:

G (`
⇤

i ) = min
`⇤i

G (`⇤

i )

where G is the cost function of the optimization process:

Table 1 Results from the optimization process. hv = 0.1[m]. hG = 0.1[m]. M = 15[kg]. `⇤

1 is always
kept to the upper bound of 1.50 by the process. Underlined values refer to active constraints.

Max. tilt `⇤

2 `⇤

3 `⇤

4 G < t > /tmax < t > tmax dexterity
[deg] [0.15,2.25] [0.15,1.5] [Nm]/[Nm] t

g
t

g [0,1]
no dexterity constraint

10 1.45 0.18 0.44 �1870 0.14 / 0.22 0.06 0.09 [0.02,1.00]
111555 111...444444 000...222777 000...444555 �

�

�333888999444 000...333111 / 000...555000 000...000888 000...111333 [000...000222,,,111...000000]
222000 111...444666 000...333555 000...444222 �555888222444 000...555222 / 000...888888 000...111000 000...111777 [000...000222,,,111...000000]
25 1.44 0.44 0.43 �6913 0.79 / 1.38 0.13 0.23 [0.02,1.00]
30 1.42 0.53 0.44 �7175 1.12 / 2.02 0.15 0.27 [0.01,1.00]

with minimal dexterity constraint of 0.8 (Ineq. (3))
10 1.60 0.26 0.21 �1769 0.28 / 0.50 0.11 0.20 [0.80,1.00]
111555 111...555999 000...444000 000...111555 �

�

�333111000111 000...666111 / 111...000999 000...111666 000...222999 [000...888000,111...000000]
222000 111...444999 000...555999 000...111555 �

�

�333444999000 111...111111 / 222...000000 000...222222 000...444000 [000...888000,111...000000]
25 1.28 0.89 0.15 �3221 1.90 / 3.47 0.31 0.57 [0.80,1.00]
30 1.06 1.23 0.15 �2947 3.02 / 5.57 0.41 0.76 [0.75,1.00]
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G (`⇤

i ) = �K
Z 2p

j=0

Z
q

max(j)

q=0
(exp[�t

2
a (j,q ,`⇤

i )]

+exp[�t

2
b (j,q ,`⇤

i )])sinqdqdj

where K is a scaling factor, with �2K < G (`⇤

i )  0.
The cost function allows selecting the parameter values that involve reduced av-

erage torques over the entire tilting range of the torso. In the case of high torques
over the tilting range, the cost function will tend to 0. When torques decrease over
the tilting range the value of the cost function also decreases.

The following constraints are taken into account in the optimization process:

1. The upper bounds of the normalized parameters are defined taking into account
the available volume in the lumbar part of the trunk. We set:

`⇤

min  `⇤

1,`
⇤

4  `⇤

max, `⇤

min  `⇤

2,`
⇤

3  1.5 `⇤

max

with `⇤

max = `max/hv and `⇤

min = `⇤

max/10.
The height of the lumbar part is limited to 0.30[m]. Since we plan to incorporate
3 tiers for the mechanism, the height hv of one module is set to 0.1[m], and
`⇤

max = 0.15/0.1 = 1.5.
2. Three additional constraints for each leg are necessary to ensure the feasibility

of the mechanism, i.e. the legs must connect the bottom platform to the top plat-
form:

z⇤

A3
< z⇤

A1
z⇤

B3
< z⇤

B1
(1)

|`⇤

2 � `⇤

3| < max
q ,j(A1A⇤

3) < `⇤

2 + `⇤

3 |`⇤

2 � `⇤

3| < max
q ,j

(B1B⇤

3) < `⇤

2 + `⇤

3 (2)

3. A supplementary constraint on dexterity is also used to ensure a minimal dexter-
ity of the mechanism.

dext(j = ±45[deg],±q

max(j)) > dextmin (3)

The dexterity of the mechanism is calculated as follows:

dext =
smin

smax
=

s
p�

pq
p+

pq
(4)

where smin and smax are the square roots of resp. the minimal and maximal
singular values of JJJ, i.e. the eigenvalues of JJJTTT JJJ, and p = (1 + r2

c).r2
a + r2

b,
q = p2

� 4.r2
ar2

b. Here we assume that the dexterity is at the minimum when
the mechanism tilts in the direction of either leg, i.e. at ±45[deg] frontward or
backward. This constraint was introduced to prevent the mechanical legs from
reaching singularities whereby points A1, A2 and A3, or points B1, B2 and B3 get
aligned. In these configurations, forces on the end effector do not get transmitted
to the actuators any more.
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The optimization process is carried out using matlab fmincon function. The fmincon
function uses a sequential quadratic programming method (SQP) that calculates an
estimate of the Hessian of the Lagrangian at each iteration, then generates a QP
subproblem that is solved using the active set strategy [3].
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Fig. 2 Optimization results with q

max = 20[deg]. 1st row: comparison of torques (serial and paral-
lel) over circular trajectory - 2nd row: dexterity - 3rd row: length configuration of leg A1A2A3. 1st
column: no dexterity constraint - 2nd column: minimal dexterity of 0.8.

The initial values of the four parameters (`⇤

1,`
⇤

2,`
⇤

3,`
⇤

4) are set using a prelimi-
nary grid exploration, to start the search for solutions from specific regions that are
promising in terms of minimal cost function, and to avoid local solutions.
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5 Results

Table 1 presents the optimization results obtained with a single module for a uni-
form inclination range of 10, 15, 20, 25 and 30[deg]. It gives the optimal values for
the lengths (`⇤

i ), the final value of the cost function, the average torque < t >, the
maximal torque tmax, the ratios of the average torque and the maximal torque over
the maximal gravity torque t

g = Mg hG sinq

max, and the dexterity. The values in the
first part of the table were obtained without dexterity constraint, and the values in
the second part were obtained with a minimal dexterity constraint of 0.8 (inequal-
ity 3). Regarding lengths, `1 is always set to the upper bound, this allows obtaining
a maximal lever arm.

The results also show that length `3 must be smaller than `2, which enables to
reduce the lever arm about A3 from A1A2 and therefore decrease ratios ra and rb.

With no dexterity constraint, `3 is increased and `2 remains constant as the incli-
nation rises. In the case with minimal dexterity, `3 is much more increased than in
the no-dexterity-constraint case, and `2 decreases. There is also a tendency to place
A3, resp. B3 closest to the center – `4 set to minimal value –, whatever the inclina-
tion range. We can explain this fact as a consequence of the increase of `3 in order to
keep the lever arm about O from A1A2 as large as possible. Without the lower bound
constraint of `4, there would be no such decrease of `2 for bending angles above
15[deg]. However this lower bound was set due to technological considerations of
integration. The case of 30[deg] bending is specific. The lowest dexterity is 0.75 be-
cause it was not possible to find a solution that could combine a dexterity above 0.8
over the entire range and a torque value always below the maximal gravity torque.

Figure 2 shows the results related to a maximal bending of 20[deg]. The plottings
on the left-hand side show the torques issued from the parallel mechanism and the
torques issued from the virtual serial mechanism where the top U-joint at O would
be actuated; here the mass M tilts frontward to q

max first, then makes a 360[deg]
turn before getting back to the straight initial position. The ratio of maximal torque
between the parallel mechanism and the serial mechanism is 17% with no dexterity
constraint, and 40% with the dexterity constraint, which is a significant reduction.
Obviously the dexterity constraint is met at the expense of torque reduction.

However the single module obtained with no dexterity constraint leads to a solu-
tion where the legs reach a singularity at j = ±45[deg] when bending is maximal.
For each of these 4 configurations, the dexterity falls to 0.02 (Fig. 2, 1st colum-
2nd row), and one of the legs is either completely stretched or flexed (Fig. 2, 1st
colum-3rd row).

The results obtained with a single module show that it is preferable to avoid
the use of the parallel mechanism for bending above 15[deg]. Actually the larger
the bending angle, the less the reduction ratio between maximal torque and gravity
torque. This ratio is equal to 0.29 for 15[deg] bending with a 0.8 minimal dexterity
threshold.
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6 Discussion

The optimization process proposed aims at minimizing the actuated torques in the
working volume of the mechanism. Torque minimization does not prevent the pro-
cess from selecting a solution that includes singular configurations because torque
tends to 0 in the vicinity of singularities. It could be possible to avoid singularities
by adding geometric constraints similar to (1)-(2) using margin coefficients, which
is specific. The solution of adding a dexterity constraint proposed here is better
because it allows controlling the dexterity over the entire working volume, and it
avoids the singular configurations.

In order to increase the bending angle of the torso it is possible to stack 3 parallel
modules to build up a vertebral column.The tilt angle of each module can be set to
one third of the bending angle of the thorax. However motors that drive the active
joints need to be sized with increased power and nominal torque from the bottom
to the top. Compared with the serial mechanism equipped with actuated q10 and q21
joints, the parallel mechanism allows reducing the average torque ratio and the max-
imal torque ratio by respectively 0.16 and 0.29 for each module tilted by 15[deg].
This result shows that the use of a parallel mechanism can save actuator weight by
using motors with tree times less nominal torque than in the case of serial actuation.

The actuated torques and the dexterity were computed analytically using the du-
ality between statics and kinematics of the mechanism. The maximal tilting angle
of 30[deg] was identified for quasi-static bending and sitting down movements. In
the case of walking, a revised cost function must be built up to take into account
horizontal accelerations the waist mechanism must resist. The optimization process
should help determine the maximum tilting angle, which can be used for trunk os-
cillations to enhance the dynamic balance of the walk.

7 Conclusion

This paper proposed an approach that consists of adapting a flight simulator parallel
mechanism for the design of a three-tier waist mechanism that can execute pitch and
roll motion. A minimized-torque-oriented optimization procedure was proposed to
determine the adequate lengths of both lateral legs’ segments of each module. A
minimal dexterity threshold was introduced to avoid singularities and ensure the
controllability of the mechanism. The study carried out shows that the maximal
bending angle per module must be limited to enable enough dexterity in the direction
of the legs, and to have acceptable nominal torques for the motors of the actuated
joints. Compared with the actuated serial mechanism of the top U-joint, the use of
the parallel mechanism allows reducing the nominal torques of the actuators by one
third and consequently saving motor weight inside the humanoid trunk.
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22. Souissi, M., Hugel, V., Blazevic, P.: Influence of the number of humanoid vertebral column
pitch joints in flexion movements. In: Int. Conf. on Aut., Rob. and App., pp. 277–282 (2011)

23. Stamper, R.E., Tsai, L.W., Walsh, G.C.: Optimization of a three-dof translational platform for
well-conditioned workspace. In: IEEE Int. Conf. on Rob. and Aut., pp. 3250–3255 (1997)

24. Zlatanov, D., Bonev, I., Gosselin, C.: Constraint singularities of parallel mechanisms. In: IEEE
Int. Conf. on Rob. and Aut., vol. 1, pp. 496–502 (2002)

Minimized-Torque-Oriented Design of Parallel Modular Mechanism for . . . 179





Kinematic analysis of the Delthaptic, a new
6-DOF haptic device

Margot Vulliez, Said Zeghloul, and Oussama Khatib

Abstract The need for multi-purpose haptic devices is extensively emerging. This
paper presents a novel 6-DOF versatile haptic device, the Delthaptic, with a large
and singularity-free workspace. The originality of the device comes from its struc-
ture combining two Delta robots to obtain rotational and translational movements.
The advantage of this type of paired parallel robots is to form 6-DOF manipulators
by connecting well-known parallel structures. The paper focuses especially on the
kinematic analysis of the Delthaptic. A method to evaluate the kinematics of paired
parallel robots is described. The approach allows evaluating the full robot kinemat-
ics by considering each parallel manipulator separately. Then, the behavior of the
device along its workspace is highlighted by a singularity analysis.

Key words: Kinematics, 6-DOF haptic device, Singularity, Parallel manipulator

1 Introduction

The increasing need for kinesthetic and tactile senses in varied activity areas has
led to manifold developments of dedicated haptic devices. But the design of an op-
timal and versatile haptic interface remains a major research concern. Only a few
multi-purpose 6-DOF interfaces can be found in the literature. Ones of the most ad-
vanced solutions are the Sigma.7 of Force Dimension [12], and its previous model
the Omega.7. These 7-DOF haptic devices allow a large workspace based on a hy-
brid structure composed of a parallel Delta mechanism, a serial wrist, and an active
grasping extension. Other hybrid interfaces have been developped as multi-purpose
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2 Margot Vulliez, Said Zeghloul, and Oussama Khatib

haptic devices such as the Delta Haptic Device [5], the Falcon of Novint Technolo-
gies, or the Delta-R [1]. As inertia represents a critical issue for the transparency
of haptic devices, parallel mechanisms can be preferred to serial structures. Some
authors propose 6-DOF fully parallel mechanisms such as Yoon et al. [13] through
pantograph linkages, Lee et al. [8] with a double-chain leg structure, or the desktop
application of Gosselin et al. [4]. However the major drawbacks of parallel manipu-
lators are the proximity of singular points and their limited workspace, particularly
for rotational motions as studied by Merlet [10]. The challenge for the Delthap-
tic, proposed in this paper, is to constitute a low-inertia and high-stiffness versatile
haptic interface with a large and singularity-free workspace.

A new parallel robot family, characterized by the pairing of two independant
parallel manipulators, is introduced by Lallemand et al. [6] with the 2-Delta. This
6-DOF robot, in Figure 1, is made of two Delta robots [3] whose moving plat-
forms are connected to the end-effector. The external Delta controls the translational
movements when the internal Delta generates the rotational movements of the end-
effector. The main advantage of this new family is to build a 6-DOF manipulator
by connecting simple and well-known parallel structures. Unfortunately the 2-Delta
rotational workspace is reduced due to the limitation of the spherical joint motion
range between the moving platform and the end-effector.

Fig. 1 2-Delta parallel robot of Lallemand et al. [6]

The proposed 6-DOF haptic device is part of this paired parallel robot family.
The Delthaptic is a structure coupling two Delta robots to obtain rotational and
translational movements. In that way the Delthaptic conserves the benefits of par-
allel structures while providing a large workspace with respect to the human-being
rotations. This paper highlights the kinematic analysis of this new type of paired
parallel robots that is essential to valid their operation as haptic interface and to
understand their behavior toward singularity.

The paper is organized as follows. In Section 2 the design and the prescribed
workspace of the Delthaptic are introduced. Section 3 details the calculation of the
kinematic model of the system. Then, the singularity analysis along the Delthaptic
workspace is carried out in Section 4.
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2 Principle of the Delthaptic device

2.1 Prescribed workspace

The Delthaptic is designed to constitute a versatile haptic device with 6 active DOFs.
It aims at ensuring a large singularity free workspace suitable for various applica-
tions. To fulfill this goal the prescribed workspace has to be defined based on the hu-
man hand mobilities. The Figure 2 shows the hand rotations. Bending-extension and
pronation-supination movements have an amplitude of ±90� when ulnar and radial
deviations admit around ±45� as angular displacement. For the sake of simplicity
the prescribed rotational workspace shall be assimilated to a half-sphere around the
handle axis. This wide rotational workspace represents a challenge for the design of
the Delthaptic that traditional parallel manipulators can not achieve.

Fig. 2 Human hand rotational workspace

The size of the prescribed translational workspace remains a subjective deci-
sion. The workspaces of some 6-DOF multi-purpose haptic devices are shown in
Table 1. According to this short review the prescribed translational workspace is
chosen within a cube of 200⇥200⇥200mm.

Table 1 Workspaces of different 6-DOF haptic devices
Workspace Translations Rotations

Sigma.7, Force Dimension F190⇥130mm 235⇥140⇥200�

Omega.7, Force Dimension F160⇥110mm 240⇥140⇥180�

Delta-R [1] F500⇥200mm ±80±80±80�

6-DOF Desktop haptic device [4] sphere F150mm ±45±45±45�

6-DOF haptic device [13] 186⇥214⇥203mm ±45±45±45�
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2.2 Mechanical Design

To provide an efficient transparency a versatile 6-DOF haptic interface must meet
many requirements such as having a large and singularity-free workspace, a low
inertia, a high stiffness, minimal joint clearance and friction. The proposed structure
is part of the paired parallel robot family. Since the interface is composed by two
parallel manipulators, it ensures high dynamics, high stiffness and high precision.
Thanks to the paired structure it provides the wide prescribed workspace. Then, it is
designed to avoid singularity issues along the operational workspace. In the current
literature, only serial or hybrid devices are able to allow a such full workspace.
However these mechanisms have the disadvantages of serial structures.

Fig. 3 Delthaptic kinematical diagram and parameterization

The mechanism, showed in Figure 3, consists of two coupled Delta robots con-
nected to the same fixed base. Their two mobile platforms are linked to the both
extremities of the handle. In that way the displacements of the two Delta robots
can generate the (X ,Y,Z) translational movements and the (f ,q) tilt movements
of the handle. The self-rotation (y) is obtained through a ball screw system lo-
cated inside the handle. Rotational movements are described by using the tilt-and-
torsion modified Euler angles presented by Bonev et al. [2] which are shown in
Figure 4. Each Delta robot i is actuated by three motors driving respectively the
angles qi = [j11,ij12,ij13,i]T .

The zoom on the detailed CAD design of the handle in Figure 4 shows the
achievement of the links between the handle and the platforms. These links are
especially important for ensuring the transparency of the device. Indeed the handle
must transfer all the user movements to both Delta robots without any restriction
and be able to transmit the forces of haptic feedback. To cope with its limited range
of motion, the spherical joint (S-joint) between the handle and the platform of the
Delta 2 is replaced by a pivot linkage and a modified universal joint (U-joint) with
an axis offset d. A ball screw with a thread of p = 20mm is selected to get a full re-
versibility of the self-rotation and be able to transmit the torques. The lower U-joint
is achieved through a 2-DOF gimbal mechanism. It allows to reduce the moments
of inertia of the handle and the size of the Delta 2.
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Fig. 4 Delthaptic handle design and parameterization

The unknown vector I of design parameters for the Delthaptic, defined in the Fig-
ure 3 and Figure 4, is I = [L1,1,L1,2,L2,1,L2,2,r1,r2,a1,a2,H], where L1,i and L2,i are
the leg lengths, ri = rB,i � rA,i is the difference between the both platform radius, ai
is the distance between the mobile platform and the handle joint and H represents
the height of the center of the prescribed workspace from the base platform. An
optimal solution for these parameters is chosen from the resulting Pareto front of
a multi-objective optimization process. The optimization problem is solved thanks
to penalty method. Two penalty components are considered: one to ensure the ac-
cessibility to the Prescribed Workspace (PW) and the other to avoid singularity as
well as change of assembly mode. The first fitness function is chosen to minimize
the distance between the Delthaptic workspace and the PW and the second one
to maximize the distance to singularities, assimilated to the dexterity of the both
Delta robots. The optimization process is carried out on the discretized prescribed
workspace. Each point of the discretized half-sphere of tilt motion is checked for
the two extreme self-rotations and to respect the translational workspace.

The additional parameters of the handle such as (c,d,s1,1,s1,2) are fixed to be
easily handled by an operator. Lp = Lini +y ⇥

p
2p

is the handle lenght that depends
on the self-rotation through the ball screw tranformation for the proposed design.
The geometric analysis of the Delta has been widely studied in the literature. More
details about its modeling and dimensional synthesis can be found in [7].
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3 Kinematic analysis

3.1 Kinematic model of the Delta Robot

The kinematic model of the Delta robot is defined in this subsection. The platform
velocity of the Delta i is considered as the sum of the contributions of each bar. The
following equation is obtained for the leg j.

vi = w1j/0 ⇥O1jO2j +w2j/0 ⇥O2jO3j (1)

[Ẋi] ·O2jO3j = [ ˙q j,i] · (O1jO2j ⇥O2jO3j)

Then, the combination of the Equation 1 applied to the three legs leads to the
expression of the Delta robot kinematics. In the Equation 2, Ji is the Delta i Jaco-
bian matrix, [Ẋi] the mobile platform velocity vector and [q̇i] the actuated angular
velocities.

Ai[Ẋi] = Bi[q̇i] with Ji = A�1
i Bi (2)

This Delta robot kinematic model is fully detailed by Pierrot et al. [11]. An
overview of singularity can be found in [9].

3.2 Kinematic model of the Delthaptic

The kinematic analysis of the Delthaptic is essential to ensure its proper functioning.
The proposed method to evaluate the kinematics of a paired robot is to consider
separately the kinematic model of each parallel manipulator composing the robot.
Then, the complete robot model is obtained by writing the relationships between the
end-effector and the different manipulators.

Kinematic analysis of this type of paired parallel robots is illustrated through the
following modeling of the Delthaptic. The kinematic model of the Delta robot is
first reminded in Subsection 3.1. Then the velocity of the handle VI0,h/0 is expressed
with respect to the kinematics of the joints with the two Delta mobile platforms. The
link between the handle and the Delta 2 mobile platform leads to Equation 3. The
relationship between the handle and the Delta 1 through the gimbal mechanism is
expressed by Equation 4, where h represents the handle and s the screw.

VI0,h/0 = VP2,h/0 +wh/0 ⇥P2I0 = v2 + ȧx1,2 ⇥P1P2 +wh/0 ⇥P2I0 (3)

VI0,h/0 = VI0,s/0 +
p

2p

wh/s = v1 +ws/0 ⇥ II0 +
p

2p

wh/s (4)

The handle angular velocity is deduced from these equations.
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IP2 ⇥wh/0 = L̇p · zp +v1 � (v2 + ȧx1,2 ⇥P1P2) = V0

wh/0 = w

0
h/0 +

2p

p
L̇pzp with w

0
h/0 =

V0 ⇥ IP2
k IP2 k

2 (5)

The translational velocity is given by:

VI0,h/0 = v1 +ws/0 ⇥ (Lp �Lini) · zp + L̇p · zp (6)

with L̇p = (v2 + ȧx1,2 ⇥P1P2 �v1) · zp

Then, the global kinematic model of the Delthaptic can be written by integrating
the two individual Delta robot kinematics.
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This method allows to simply express the paired robot kinematic model as a
function of the kinematic model of each Delta robot and a linkage matrix Jc.

The actuator torques t required to provide the force feedback F are then evalu-
ated through the static model as follows.

t = JT F (8)

4 Singularity analysis

The system kinematics is particularly important to understand the behavior of the
interface toward singularity. Singular configurations can be highlighted by evaluat-
ing the Jacobian matrix determinant along the workspace. The proposed approach
of the kinematic model in Equation 7 allows to isolate the effects of the singularities
of each parallel manipulator.

| det(J) |=| det(Jc)⇥det(J1)⇥det(J2) | (9)
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The singular configurations are reached when det(J) = 0. Equation 9 demon-
strates that the Delthaptic singularities are those of each Delta i, when det(Ji) = 0,
and coupling singularities if det(Jc) = 0. There is any coupling singularity for the
presented mechanism.

The Jacobian matrix determinant is plotted in Figure 5 over the constant orienta-
tion workspace at [f ,q ,y] = [0,0,0].
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Fig. 5 Singularity analysis along the constant orientation workspace at [f ,q ,y] = [0,0,0]

The Figure 5 emphasizes the conclusions lead by the Equation 9 about the sin-
gularity analysis of paired robots. The Delthaptic admits the singular configurations
of its both Delta robots and particularly, for this design, the serial singularity of the
Delta 1 when det(B1) = 0. Due to the multi-objective optimization of the design pa-
rameters, the device is designed to have no singularity in the prescribed workspace.
This is verified for the constant orientation [f ,q ,y] = [0,0,0] in the Figure 5 along
the prescribed translational workspace.

5 Conclusion

The Delthaptic, a novel 6-DOF versatile haptic device, is proposed in this paper.
This paired parallel robot combines two Delta robots to obtain rotational and trans-
lational movements. In that way the structure conserves the benefits of parallel struc-
tures (low inertia, high stiffness, high precision) while providing a large workspace
with full human-based rotations. A method to evaluate the kinematics of this type of
paired parallel robots is described. The approach allows considering the full robot
kinematics by considering each parallel manipulator separately. Then, the behavior
of the Delthaptic along its workspace is validated by a singularity analysis.
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A family of non-overconstrained 3-DoF
reconfigurable parallel manipulators

M.C. Palpacelli, L. Carbonari, G. Palmieri, and M. Callegari

Abstract An extensive conceptual production of three degrees of freedom trans-
lating and rotating parallel kinematics machines has been already provided in the
scientific literature. In this paper an attempt to gather the two mentioned mobilities
in a single reconfigurable machine is made by means of a spherical lockable joint
for a family of fully parallel kinematics machines. An overconstrained configura-
tion is exploited for each manipulator of the family in order to realize the transition
between the non-overconstrained kinematics associated to the translational and rota-
tional mobilities. Kinematic synthesis is carried out by means of Lie group algebra.

Key words: Reconfigurable manipulator; Parallel kinematics machines; Lockable
joint.

1 Introduction

Parallel kinematics machines (PKMs) find today a widespread use in automated
processes where high speeds and accelerations, or otherwise high thrusts, are re-
quired, even though conventional serial robots are preferred in most cases because
of their larger workspace. Several attempts were made by researchers to deal with
the complexity of analytic models of full mobility PKMs [13, 28]. Alternatively,
a low degree of mobility is often proposed, having recognized that a large part of
industrial operations can be realized by means of subgroups of displacements, like
pure translations, pure rotations or Schönflies motions.

One of the most successful kinematic machines adopted in industry is the Delta
robot [6], a parallel manipulator usually devoted to pick & place operations because
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of its high dynamics performance. It belongs to the family of translating parallel
manipulators (TPMs), in particular of fully parallel manipulators of pure translation,
where the number of actuated legs that connect the moving platform to the fixed
base is equal to the platform degrees of freedom. An elegant demonstration of the
translational mobility of the Delta robot is provided by Hervé et al. [12] by means
of Lie Groups. The paper also shows how to synthesize overconstrained TPMs by
choosing a suitable sequence of joints for each leg of the robot. A complete list of
combinations of one degree-of-freedom (1-DoF) kinematic pairs is presented in both
the mentioned paper and a more recent work of the same author [21]. Later works
extend the study to non overconstraned TPMs [17, 22], orthogonal TPMs [26] and
fully-isotropic TPMs [9]. Several examples of TPMs are currently available in the
literature [2, 16, 27].

Similarly, rotational PKMs received great attention. Group theory and Screw the-
ory have been extensively used to synthesize fully parallel manipulators of pure
rotation [7, 15, 18], sometimes called spherical parallel manipulators (SPMs). The
Agile eye proposed by Gosselin [10] is the major example of SPM, where all bodies,
and in particular the moving platform, move on spherical surfaces. Many other ex-
amples can be found in the scientific literature [1,4,11]. SPMs usually need specific
geometric conditions to be fulfilled by the kinematics of their legs, which are mainly
realized with sequences of revolute joints. In more detail, the revolute axes must in-
tersect at a common point, which results to be the centre of rotation. However, the
synthesis of SPMs presents a complexity greater than TPMs, because rotations do
not commute and a sequence of revolute joints used in the mechanics of a leg can-
not be changed in their order. A different behaviour is provided instead by prismatic
pairs, which on the contrary can be reversed in the order.

The existence of 3-DoF PKMs of pure translation and rotation that share the same
leg sequence of joints while having different arrangements of their axes suggested
further study, aimed at the design of a reconfigurable machine that could modify its
mobility with small local changes in its mechanical structure. Algebraic geometry
was used by the authors to analyse the working modes of a manipulator with 3-CPU
kinematics [3], a PKM with three identical legs that consist of two links connected
by a prismatic pair. Each leg is connected to the fixed base with a cylindrical joint,
whose linear displacement is actuated, and to the mobile platform with a universal
joint. This latter was replaced by a lockable spherical joint (Sr) realized with a
series of three revolute axes [24], which can be activated or locked according to
user needs. The investigation resulted in a reconfigurable 3-CPU manipulator [25],
whose mechanical design is shown in Figure 1. Two different U-joint configurations
can be alternately enabled, obtaining respectively a translational and a rotational
3-CPU. In the following it is shown how the Sr-joint can be exploited to generate a
whole family of reconfigurable PKMs.
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Sr - reconfigurable
spherical joint

P - prismatic joint
C - cylindrical joint

Fixed base

Moving platform

Fig. 1 Mechanical design of the 3-CPU reconfigurable manipulator.

2 Lockable spherical joint

In this section a description of the reconfigurable spherical joint is presented. As
already mentioned the Sr-joint is thought of as a sequence of three revolute joints,
similarly to robotic roll-pitch-roll wrists. The idea is to endow the joint with a switch
device, which will allow to lock alternately one axis between two of the three avail-
able, resulting in two different U-joint configurations.

The quadrants I and III shown in Figure 2 are associated to the different U-joint
configurations, whereas II and IV refer respectively to a revolute (R) and a spherical
(S) joint configuration. The joint is based on a bevel gear coupling. A sliding cursor
c (red) is driven in four different positions by an actuator, which confers to the joint
the four different operating modes.

The relevant rigid bodies that make up the Sr-joint are indicated in the sketch
of Figure 2. Member a (green) is a hollow cylinder, which the cursor c can slide
within. A second member b (blue) consists of a hollow cylinder with a C-shaped
flange rigidly connected at its top. Member b can rotate about its axis with respect
to a because of roller bearings. Angle y refers to such rotation. A square ring e
(orange), solid with a bevel gear, can rotate with respect to body b by means of two
roller bearings. Angle q refers to such rotation. A body d (grey), with a second gear
that completes the bevel gear connection with e, can rotate with respect to b about its
axis. A further rotation j is allowed between the last body f (black) and e about an
axis always orthogonal to the axis of q . Body f can be considered fixed to the frame,
while body a is the output member of the chain. Cursor c moves within a and b. It
has a cylindrical shape with an external gear and an internal one at its left extreme,
as shown in Figure 2. The former is used to engage the teeth of cursor c with those
of internal gears realized within the cylinders a and b, whereas the latter is used to
connect c with an external gear realized at the right extreme of d. It is now possible
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to analyse the four configurations: in I cursor c mechanically engages with b and d,
so that they globally behave like a rigid body. It follows that the rotation q between
b and e is prevented, whereas the other two are free to rotate. This configuration is
called Urot . Its meaning will be clear in the following section. When the cursor c
is moved to the right there exists a phase, II in the figure, where all elements a, b,
c, d are rigidly joined. In this case also the rotation y is prevented, giving rise to a
revolute joint, given by the only rotation j .

A further motion of cursor c to the right provides a disengagement between d and
c, while a, b and c still remain a whole body. Therefore, configuration III is obtained,
also called Utra: the joint gains the rotation q , but rotation y is still prevented. In
this case, while q changes, body d rotates about its axis because of the bevel gear
connection. The joint globally behaves like a universal joint, different with respect to
the other mentioned before. Finally, cursor c can be disengaged from b with a further
displacement, giving rise to a spherical joint: all rotations j , q and y are possible.
This last configuration is not exploited for the family of manipulators presented in
the following section. Summarizing:

• configurations I and III confer to the mechanism the mobility of a universal joint
with two different arrangements of the last axis of rotation;

• configuration II represents a revolute joint;
• configuration IV is an additional mode, which can be exploited as a spherical

joint.

Some other examples of lockable joints were proposed and analysed in the liter-
ature [5, 8]. However, even if they show higher versatility, they do not generally
deal with some issues related to their integration in a physical prototype: during the
transition between different operation modes a reconfigurable manipulator gener-
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Fig. 2 Sketch of the lockable spherical joint.
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ally gains degrees of freedom, becoming temporarily underconstrained. Therefore
an external manual intervention is needed to hold the robot in its pose. As shown in
the following section, configuration II of the Sr-joint makes the manipulator over-
constrained, preventing the robot from moving during the transition when the axes
of motors are braked.

3 Family of reconfigurable 3-DoF PKMs

The joint described in the previous section, with small changes in its functional
design and in the sequence of revolute axes, was already used to realize a recon-
figurable PKM of kinematics 3-CPU. The universal joint that is used to connect
the three legs with the mobile platform is actually a Sr-joint. It was showed that,
when the joint is arranged in one of the U-joint configurations, the robot behaves
like a TPM, whereas the other U-joint configuration makes the robot a SPM [25].
A downgrade of all the Sr-joints to R-joints, allowed only when the robot is in its
home configuration with the three rotation axes (y,q ,j) mutually orthogonal, gives
rise to an overconstrained 3-CPR manipulator. The transient phase needed to pass
from one mobility to the other can be managed without any external intervention on
the machine, which stays in its home pose when the actuated axes are braked.

Starting from the concept exposed above, new architectures with analogous fea-
tures can be looked for. The study is narrowed to 3-DoF fully parallel manipulators,
where the three legs are connected to the mobile platform with the Sr-joint pre-
sented in Section 2. Each leg in a non-overconstrained PKM provides a well-defined
5-DoF kinematic bond, which can be obtained by different mechanical generators.
Prismatic (P), revolute (R), cylindrical (C) and universal (U) joints, together with
the Sr-joint, are chosen as kinematic pairs of the leg.

With reference to Figure 2 and for all the architectures that will be investigated,
body a is rigidly joined to the mobile platform of the manipulator, whereas body f
to the second link of each leg. The mechanical generators must be chosen so that,
when the lockable joints are all in configuration III, the Utra-joint makes the tripod
a TPM, when in configuration I, the Urot -joint makes the tripod a SPM.

The algebraic structure of Lie groups and subgroups can be conveniently used
to synthesize TPMs and SPMs. After a brief analysis of the kinematic bond of
the 3-CPU architecture, which already demonstrated a property of reconfigurabil-
ity [25], further kinematics with similar properties can be found out. A sketch of
the CPU kinematics developed in a plane p is shown in Figure 3, where Figure 3(a)
refers to the Utra configuration and Figure 3(b) to the Urot . The mobile platform is
indicated as MP and the fixed platform as FP. The unit vector u represents the axis
of the C-joint, which connects the first link of the leg with FP. The unit vector w,
orthogonal to u, indicates the direction of the P-joint between the two links of the
leg. The axes of u and w intersect at point J. They both generate the plane p with
normal the unit vector v. The second link of the leg belongs to p . It is connected to
MP by means of the Sr-joint of Section 2: in Figure 3(a) it is configured in the Utra
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Fig. 3 Leg kinematics CPU: (a) Configuration Utra, (b) Configuration Urot .

mode, namely with the first axis (rotation j of Figure 2) aligned with v and the last
revolute axis (rotation q ) directed as u, whereas in Figure 3(b) it is configured in the
Urot mode, with the same direction of the first axis, but with the last axis (rotation
y) identified by the unit vector s that is directed toward the point O. The latter is
given by the intersection with the axis of the C-joint. Finally point L is the center of
the U-joint.

Said {C(J,u)}, {T (w)} and {S(L)} respectively the Lie subgroups generated
by C, P and S joints, the mechanical generator of a 6-DoF kinematic bond is
given by their product {C(J,u)} · {T (w)} · {S(L)}. It is easy to prove that such
product generates the improper Lie subgroup {D}. The subgroup {C(J,u)} can
be thought of as the product of a prismatic pair and a revolute pair, which gives
{T (u)} · {R(J,u)}, whereas the spherical joint can be generated by the product
{R(L,v)} · {R(L,u)} · {R(L,s)} of three revolute pairs with linear independent axes
intersecting at the common point L, because of the product closure in the sub-
group {S(L)}. It should be mentioned that such assumption is valid only for small
finite displacements around the identity, which corresponds to the home config-
uration of the manipulator. It follows that the generator of the 6-DoF bond is
given by {T (u)}{R(J,u)}{T (w)}{R(L,v)}{R(L,u)}{R(L,s)}, where the dot rep-
resenting the product is neglected for the sake of conciseness. An equivalent rep-
resentation of the mechanical bond is {R(J,u)}{G(v)}{R(L,u)}{R(L,s)}, where
a commutation between {T (u)} and {R(J,u)} is considered and the statement
{G(v)} = {T (u)}{T (w)}{R(L,v)} is assumed when the boundaries of the neigh-
borhood are neglected.

It follows that when the Sr-joint is configured as the Utra the mechanical bond
loses the term {R(L,s)}, whereas in the Urot configuration it loses {R(L,u)}. Sum-
marizing, the 5-DoF mechanical bond is given by:

{R(J,u)}{G(v)}{R(L,u)} (Utra mode) (1)
{R(J,u)}{G(v)}{R(L,s)} (Urot mode) (2)

The mobility of the reconfigurable 3-CPU manipulator for both the configura-
tions can be evaluated according to the procedures shown in [14,20]. Some assump-
tions are made: the three legs of the tripod belong to three orthogonal planes, the
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direction of the C-joint becomes the direction of v and w for the second and the
third leg respectively, and the axis of the P-joint becomes the direction of u and v.
The robot mobility results from the intersection of the mechanical bonds of the legs.

The results obtained for the 3-CPU manipulator allow to find out new architec-
tures when different generators of the planar motion set {G(v)} used in (1) and (2)
are taken into account. The reconfigurable fully parallel manipulators of kinematics
3-CRU, 3-UPU, 3-URU, 3-RPaPaU are obtained, without claiming to be exhaus-
tive. The sketch of their leg kinematics is shown in Figures 4 to 7. The mentioned
kinematics are obtained as follows:

• 3-CRU of Figure 4 - {G(v)} = {T (u)}{R(K,v)}{R(L,v)}
• 3-UPU of Figure 5 - {G(v)} = {R(J,v)}{T (s)}{R(L,v)}
• 3-URU of Figure 6 - {G(v)} = {R(J,v)}{R(K,v)}{R(L,v)}
• 3-RPaPaU of Figure 7 - {G(v)} = {T (Plv)}{R(L,v)}

where J 6= K 6= L. A small index from 1 to 5 is indicated in the figures according
to the sequence of joints from the fixed base to the mobile platform. In order to
have a non overconstrained manipulator, the parallelogram Pa of the last kinematic
architecture should be designed without redundancies, namely two revolute joints
should be replaced respectively with a spherical and a cylindrical joint.

The authors already proved that the reconfigurable 3-CPU and 3-CRU manipula-
tors allow large finite motions around the home configuration, which turns to be an
isotropic configuration both for the translational and rotational mobilities [23]. The
other architectures proposed in this work should be analysed in terms of singularity
maps and workspaces, in order to identify their kinematic performance.
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Finally, it must be pointed out that the kinematic architectures that result from
this study are not new if they are considered as one-operation-mode machines, as
already mentioned in Section 1. On the contrary they are conceived to share a con-
figuration, called home configuration, in which the lockable joint of Section 2 al-
lows a smooth automatic transition between translation and rotation modes. Other
studies in the literature have a more theoretical content, showing how it is possible
to synthesize metamorfic manipulators with lockable joints, but without giving full
information about how to solve the change of configuration automatically in a phys-
ical device. An example is the work proposed by Kong and Jin [19], who obtained
an architecture very similar to the reconfigurable 3-URU here presented, even if by
following a different approach.

4 Conclusions

A family of 3-DoF reconfigurable fully parallel manipulators is presented. A lock-
able spherical joint is used for all the kinematic architectures to change the config-
uration of a universal joint, which is used to connect the legs of the manipulator to
its mobile platform. The joint reconfiguration results in a change of mobility of the
mobile platform, which can have motions of pure translation and rotation. The nov-
elty of the paper is mainly in the smooth transition between the mentioned working
modes, which is allowed only at a specific pose of the manipulator, called home
configuration. An overconstrained kinematics for each manipulator of the family is
exploited so that the transition can be driven automatically. All the kinematic ar-
chitectures proposed in this work share the same reconfigurability, however further
study is needed to investigate their behaviour for large finite motions and to find out
their singularity maps.
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Dealing with redundancy of a multiple
mobile coil magnetic manipulator: a
3RPR magnetic parallel kinematics
manipulator

Baptiste Véron, Arnaud Hubert, Joel Abadie and Nicolas Andre↵

Abstract This paper presents a magnetic manipulation system composed
of three mobile electromagnets. This system is used to control the position
and the orientation of a capsule embedding a small permanent magnet in
the horizontal plane. The kinematico-magnetic redundancy of the system is
dealt with by imposing the planar 3RPR parallel kinematics constraints. The
resulting controller is demonstrated in silico.

Key words: Magnetic manipulation, Mobile electromagnets, Redundancy,
Control, Parallel kinematics.

1 INTRODUCTION

The main existing systems dedicated to contactless manipulation of a mag-
netic object can be divided in several categories. In [14], we introduced a
kinematic criterion which clusters most of the existing systems into two cate-
gories: those using static electromagnets [2,7,8,11,15] and those using mobile
permanent magnet(s) [1, 3–5,9, 10].

For the remaining systems, a third category emerges: systems using mobile
electromagnets. This category has been very little studied so far. More, most
of the systems that belong to this category have a limited number of degrees
of freedom per electromagnet and use a classical architecture with coils in
Helmholtz and Maxwell configuration [16,17].

We propose here to study a system with 3 mobile electromagnets used to
control motion of magnetic capsule in the plane. Unlike what is done on most
of the systems found in the literature, both movements and supplied currents
of the coils are controlled here, which results in a complex non-linear control

Institut FEMTO-ST, UBFC/CNRS, Besançon, France. Nicolas.Andre↵@femto-st.fr.
This work was partly supported by ANR Labex ACTION (”ANR-11-LABX-01-01”).



problem. Specifically, the system is kinematico-magnetically redundant, be-
cause it possesses 6 inputs (3 currents + 3 electromagnet orientations in the
horizontal plane) for only 3 outputs (position and orientation of the magnetic
capsule in the plane). One way to deal with this redundancy, presented here
for the first time, is to impose a kinematic constraint and convert this system
into a 3RPR magnetic parallel manipulator, where mechanical prismatic ac-
tuators are replaced by magnetic contactless actuators. Potential interests for
such an architecture are: i) it can work in a cluttered environment without
the arms sweeping the workspace and ii) it reduces the ratio between the
displaced mass and the manipulator masses.

The system studied is described in Section 2. Then, the system model and
control law is explained in Sections 2.1 and 3. Finally, results obtained in
simulation are shown in Section 4 with emphasis on kinematic issues.

2 SYSTEM DESCRIPTION

Our system is composed of a permanent magnet placed inside a capsule which
is controlled in the horizontal plane (3 degrees of mobility). The control is
performed by three electromagnets (n = 3) placed in an original architecture
presented in [12]. As shown in Fig. 1, each electromagnet has one kinematic
degree of freedom: a rotation around the vertical axis.

(a) Real system.

x0

y0

O0

O1

�1

O2

�2O3 �3

P ,M

(b) Schematic description
(top-view).

(c) A 3RPR magnetic parallel
manipulator.

Fig. 1 System description.

The system control diagram is presented in Fig. 2. It is a closed loop
control composed with a Perception block for detecting the capsule current
position and orientation. This data is provided to a Trajectory block where
it is compared with the time-varying desired position to determine the de-

sired accelerations for following this trajectory. The
h
m

c

I
c

i
block computes

the e↵orts to be applied to the capsule thanks to Newton’s law. Finally, the

202 Baptiste Véron et al.
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Fig. 2 Control diagram of the system.

Controller block computes the system inputs (currents in the coils I, motion
of the coils ��).

This control law relies on the direct electromagnetic model (which is es-
tablished following the methodology explained in [8] while complementing
the model with the coils mobility) and deals with the redundancy.

2.1 DIRECT ELECTROMAGNETIC MODEL

Most of the literature assumes that the magnetic field iBi produced at the
capsule position iP by the ith electromagnet is proportional to the current
Ii flowing through the electromagnet:

iBi = Ii ·

ibi(
iP) (1)

with ibi(iP) the magnetic field per current unit created by electromagnet i.
A global reference frame F0 is defined at the system centre (see Fig. 1(b)).

Each electromagnet orientation is defined by an angle �i, thus the rotation
matrix 0

Ri = Rot(�i, z) represents the transformation between the local
reference frame Fi and F0. As a result, the magnetic field 0Bi produced by
an electromagnet is computed in the global frame as:

0Bi(
0P, �i) = Ii ·

0
Ri ·

ibi(
0
R

T
i

0P + 0ti) (2)

with 0ti = O0Oi, the translation vector defining the origin of Fi.
Unlike the model used in [8], equation (2) clearly shows the dependence

of the magnetic field to the coil variable poses, thanks to 0
Ri = Rot(�i, z0).

The notation 0Bi(0P, �i) is simplified by 0Bi in the sequel.
The interaction between this field and a magnetic capsule creates e↵orts

on this capsule given by [6]:

0Fi = V · r(0M ·

0Bi) (3)
0Ci = V ·

0M ^

0Bi (4)
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with r the gradient operator, ^ the cross product, V the volume of the
magnet inside the capsule, and 0M its magnetisation.

It is interesting to note that the permanent magnet moment is fixed inside
the capsule, thus its magnetisation 0M is a good indication of the capsule
orientation. Moreover, we assume that the magnetic fields produced by the
system are not powerful enough to modify this magnetisation. More, the
Jacobian matrix of the magnetic vector 0Bi is defined as:

0
JBi =


@ 0Bi

@ x

@ 0Bi

@ y

@ 0Bi

@ z

�
(5)

Thus, equations (3) and (4) can be expressed in a matrix form as:

0Fi = V ·

0
J

T
Bi ·

0M (6)
0Ci = V · [0M]^ ·

0Bi (7)

with [0M]^ the skew-symmetric matrix associated with the vector cross-
product. On our system, the electromagnets are considered far enough from
each other so that the coupling between them can be neglected. Thus, air and
water being linear mediums for magnetic fields, the superposition principle
applies and the overall magnetic field 0B(�, 0P, I) produced by the system
is the sum of the magnetic fields produced by each electromagnet:

0B(�, 0P, I) =
3X

i=1

Ii ·

0
Ri ·

ibi(
0
R

�1
i

0P + 0ti) (8)

with � =
�
�1 �2 �3

�T
the vector representing the electromagnets configura-

tion and I =
�
I1 I2 I3

�T
the vector gathering the supplied currents.

Similarly, the gradient of the overall magnetic field is the sum of the gra-
dients produced by each electromagnet:

0
JB(�, 0P, I) =

3X

i=1

0
JBi =

3X

i=1

Ii ·

0
Jbi (9)

with 0
Jbi, the Jacobian matrix of the magnetic field per current unit 0bi. The

total e↵orts produced on the capsule are thus given by:

0F = V
3X

i=1

Ii ·

0
J

T
bi ·

0M (10)

0C = V [M ]^

3X

i=1

Ii
0
Ri

ibi(
0
R

�1
i

0P + 0ti) (11)
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Introducing B = [ 0R1·b1
0R2·b2

0R3·b3 ] and J = [ 0JT

b1·
0M 0JT

b2·
0M 0JT

b3·
0M ],

leads to express (10) and (11) in matrix form as:

0F = V · J · I , AF (�, 0P, 0M) · I (12)
0C = V · [M ]^ · B · I , AC(�, 0P, 0M) · I (13)

Matrices AC and AF , which depend on the capsule position P and mag-
netisation 0M, are computed from the magnetic fields 0Bi created by each
coil. As shown in (2), these magnetic fields depend on the orientation of each
coil �.

Finally, these equations can be gathered into the direct electromagnetic
model (DEM ):

✓
0F
0C

◆
=


AF
AC

�
· I = A(�, 0P, 0M) · I (14)

This equation enlightens that the magnetic e↵orts linearly depend on the
currents applied in the electromagnets. Each current modifies the e↵orts ap-
plied on the capsule. This model also highlights the non-linear dependence of
the matrix A(�, 0P, 0M) to the capsule position and orientation, but also to
the orientation of each electromagnet, the total magnetic field depending on
the coils configuration. To simplify notations, we write: A(�, 0P, 0M) = A

in the sequel and we note that this matrix is of size 6 ⇥ 3.

3 CONTROL

Because of the actuation redundancy of the system, several control laws are
admissible to control the capsule. The simplest way would be to keep the
electromagnets static and to focus on the currents to apply the e↵orts allow-
ing the capsule to follow a defined trajectory, as in most of the literature.
But here, our aim is to optimize the capsule manipulability and to avoid
singularities such as those shown in [13].

To find how to move the electromagnets, several strategies are possible
because of the system redundancy (3 degrees of mobility in the plane vs. 3
electromagnetic degrees of freedom plus 3 kinematic degrees of freedom). In
this paper, we present a funny way to handle this redundancy by applying
a kinematic constraint. Instead of aiming at the capsule center as in [12],
we chose to mimic a planar 3RPR parallel kinematics mechanism. Thereby,
the coil axes must always aim at a virtual corner of the 3RPR platform
(Fig. 1(c)), replacing mechanical prismatic actuators by magnetic contactless
actuators.

Once the angular errors ��|k between the current coil axis orientation
�|k�1 and the desired one computed from the 3RPR kinematic constraint
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(a) Capsule trajectory. (b) Motor angles.

Fig. 3 Simulation result: (a) trajectory of the capsule and (b) evolution of the motor
angles (right).

are known, a proportional control (with gain ��) is used to bring the motors
to their next configuration:

�|k = �|k�1 + ����|k (15)

The DEM is updated afterwards and the currents are computed by taking
the pseudo-inverse of A:

I = A(�|k,
0P, 0M)† ·

✓
0F ⇤
0C⇤

◆
(16)

Thus, the modification of the coils orientation allows first to have a bet-
ter system configuration to realise the requested e↵orts, second to minimise
the supplied current variations. This second point is important, especially if
coils have a large number of turns, since it minimises the impact of the coil
inductance on current control.

4 RESULTS

This control law was implemented on our C++/OpenGL simulator. To make
the simulation more realistic, noise on the capsule position detection (±0.5
mm, ±1 ), the currents flowing in the coils (5%) and the coils orientation
(±1 ) was added.

In this simulation, the capsule follows a circle with its magnetisation tan-
gent to the circle (Fig. 3(a)), while moving the coils according to the kinematic
constraint (Fig. 3(b)). The trajectory is well performed, with a position error
less than 0.3 mm (Fig. 4(a)) and an orientation error less than 0.3 (Fig. 4(b)).
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(a) Position errors. (b) Orientation error.

Fig. 4 Simulation result: (a) position errors and (b) orientation errror along the trajectory.

5 CONCLUSIONS AND PERSPECTIVES

A magnetic manipulation system with mobile electromagnets was presented
in this article. A model of the system was established to compute the magnetic
e↵orts. Unlike the models found in the literature, this one takes into account
the mobility of each electromagnet composing the system. This yields a highly
non-linear control problem, with several additional di�culties: redundancy,
kinematico-magnetic couplings, among others.

This opens to the development of new control laws as the one presented
here, where redundancy was handled by imposing virtual kinematic linkage.
The coil motors thus behave as the first passive joints of a planar 3RPR
parallel kinematics manipulator, whereas the magnetic field created by each
coils plays roughly the role of the prismatic actuators. Thereby, kinematic
control and magnetic control are decoupled, and magnetic control reuses the
literature results.

The e↵ectiveness of this strategy was implemented and tested in simula-
tion. Of course, singularities might occur in the system, but surely in di↵erent
locations than the kinematic singularities. For instance, the system does not
loose torsional rigidity in the kinematic singularity where all legs intersect,
because in that case, the magnetic field always produces a torque. This opens
up to new kinematico-magnetic analyses, and wider, to new possibilities in
the design of manipulation systems. Also, such coupled systems deserve and
support research in non-linear and redundant control.

Finally, an important hypothesis was made while developing the direct
electromagnetic model: the electromagnets were considered far enough from
each other so that coupling between them were neglected. In practice, this
hypothesis might not always be true and opens research paths related to
electromagnetics. But this is pretty far away from ARK!
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A new generic approach for the inverse
kinematics of cable-driven parallel robot with 6
deformable cables

J-P. Merlet

Abstract Cable-driven parallel robot (CDPR) have a kinematics that is usually com-
plex as soon as there are possible deformation of the cable due to elasticity or cable
mass. The classical approach to solve the kinematics in that case is to inject a ca-
ble model in the kinematics equations, that are then solved. According to the cable
model this solving may be extremely complex and a change in the model requires
to customize the solving algorithm. In this paper we consider the inverse kinemat-
ics problem of CDPR with 6 cables and exhibit a generic solving approach that
will work for any cable model, provided that it satisfies a minimal assumption. We
demonstrate it’s use on a CDPR with catenary cables.

Key words: cable-driven parallel robot, deformable cable, inverse kinematics

1 Introduction

Cable-driven parallel robot (CDPR) have the mechanical structure of the Gough
platform with rigid legs except that the legs are cables whose length may be con-
trolled. Numerous applications of CDPRs have been mentioned e.g. large scale
maintenance studied in the European project Cablebot [7], rescue robot [6, 9] and
transfer robot for elderly people [4] to name a few. We will assume that the output of
the coiling system for cable i is a single point Ai, while the cable is connected at point
Bi on the platform. A cable may be assumed to be mass-less and non-deformable
i.e. the cable shape is the linear segment going from A to B and its length does not
change whatever is the tension in the cable or may be deformable i.e. the previous
assumptions on the cable shape and/or its lengths do not hold. For example figure 1
presents a robot with sagging cables. In this paper we will consider the inverse kine-
matics problem (IK) for CDPR having 6 cables. If we assume that the cables are
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Fig. 1 Cable driven parallel robots with sagging cables

non-deformable, then being given the pose of the platform the lengths of the cables
are obtained directly as the 2-norm of the vector AiBi that is obtained directly from
the platform pose. But as the cable may exert only a positive tension we have to
consider the static equation obtained as

F = J�Tt (1)

where F is the external wrench applied on the platform, t is the vector of the cable
tensions and J�T is the transpose of the inverse kinematic jacobian of the robot, that
is fully determined as soon as the pose of the platform is known. Equation (1) is a 6
dimensional linear system that may easily be solved to provide the cable tensions. If
all these tensions are positive, then we have got a solution for the IK, otherwise the
IK has no solution. If the cable are deformable there has been very few works ad-
dressing the IK solving: Riehl [8] and Hui [1] assume both Irvine sagging model [2]
for the cable but their numerical solver provides only a single solution, if any. Us-
ing the same cable model we have exhibited a solving algorithm that allows one to
calculate all the solutions [5] (and exhibit a case for which a CDPR has 3 solutions)
but the solving algorithm is computer intensive. Simple linear elasticity model has
been used to study the kinematics of a special configuration of CDPR [3]. But to the
best of the author knowledge no upper bound on the number of solutions of the IK
has even been provided and no other cable model has been studied. The purpose of
this paper is to provide a generic solving approach that can be used whatever is the
cable model and possibly allow to provide a (probably largely overestimated) bound
on the number of solutions. An essential issue is the concept of cable model that is
addressed in the next section.

2 Cable model

We denote by L0 the length of a cable before it is submitted to any deformation and
by P a set of parameters that allows one to describe the physical properties of the
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Inverse kinematics of CDPR with deformable cables 3

cable with respect to deformation under tension. A cable model is a set of relations
T(A,B,L0,t,P) = 0 that allows one to determine the cable force action t at point
B according to the values of A,B,L0.

For using our IK solving approach the following assumptions on the cable model
will be required:

1. the set T is constituted of continuous and differentiable functions,
2. the writing of T may involve new unknowns but the number of equations in T is

such that for given A,B,L0,P the system has only a discrete number of solutions
3. for each parameter in P there is a limit value such that the cable model will be

asymptotically identical to the non-deformable cable model

As example of cable model we may mention the Irvine sagging cable model that
is valid for elastic cable with mass. In this model we consider the vertical plane that
includes the cable and assume that the cable is attached at point A with coordinates
(0,0) while the other extremity is attached at point B with coordinates (xb � 0,zb).
The vertical and horizontal forces Fz,Fx are exerted on the cable at point B and the
cable length at rest is L0. With this notation the coordinates of B are related to the
forces Fx,Fz [2] by the Cn functions:

xb = Fx(
L0

EA0
+

sinh�1(Fz)� sinh�1((Fz �

µgL0
Fx

)

µg
) (2)

zb =

p
F2

x + F2
z �

p
F2

x +(Fz � µgL0)2

µg
+

FzL0

EA0
�

µgL2
0

2EA0

where E is the Young modulus of the cable material, µ its linear density, A0 the sur-
face of the cable cross-section and Fx > 0. For the IK problem the coordinates xb,zb
are known, the L0 have to be determined and two new unknowns are introduced,
Fx,Fz, while this cable model provide two relations. Consequently this model satis-
fies assumption 1 and 2. Assume now that E goes to infinity and µ to 0. The limit
values xl

b,z
l
b of xb,zb are then

xl
b =

L0Fxp
F2

x + F2
z

zl
b =

L0Fzp
F2

x + F2
z

(3)

which corresponds to a cable directed along the line A,B and exerting a force of
amplitude

p
F2

x + F2
z . Therefore this cable model also satisfies assumption 3.

3 The continuity model

Let us consider a CDPR with n cables and a cable model that involves p unknowns:
consequently the IK has n (the cable lengths) plus np unknowns. As for the equa-
tions we have 6 equations coming from (1) and np equations coming from the cable
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model for a total of 6+np equations. The system of IK equations is therefore square
if n = 6 which is the case we are considering in this paper.

3.1 The inverse model

Assume that a cable model has been decided and a solving algorithm has allowed
us to determine the IK solution(s) for a given pose and for given values of the cable
model parameters Pd . The cable model and IK equations being C1 we know that
for a ”small” perturbation on P we will get IK solutions that are close to the initial
one. Furthermore for a given IK solution S (i.e a set of length for the 6 cables) with
the initial P we also know that the Newton-Raphson algorithm with S as initial
guess may converge toward the solution of the IK with the new values of P , the
convergence being ensured as soon as the perturbation is small enough provided
that the system is not singular at S. The Kantorovitch theorem [10] allows one to
determine the meaning of a small perturbation: provided that that the jacobian of the
new system has an inverse at S and that some conditions are satisfied for the norm
of the equations at S, for the norm of the jacobian inverse and for the norm of the
Hessian matrix of the system, then the theorem ensures that there is a single solution
of the new system in a ball centered at S and guarantees that the Newton-Raphson
scheme will converge toward this solution. Let Ps be the cable model parameters
limit values and a linear iterative interpolation scheme defined by

Pk+1 = Pk + a(Ps �Pk)

initialized with P0 = Pd . For the values Pd we assume that we know a set of n
solutions S0 = {S1,S2, . . . ,Sn}. We will choose the positive a in such a way that
the IK system obtained with the parameters Pk+1 satisfies the conditions of the
Kantorovitch theorem for the solutions obtained for the system whose parameter
values are Pk). If the conditions does not hold we divide a by 2. For example
starting from P0 we set a to an arbitrary small value and test the condition of the
Kantorovitch theorem for P1 and decrease a until they hold. At this stage we will
use Newton to calculate the set S1 of the n solutions for the parameter set P1. We
will stop this scheme when a is close to 1. To determine how a should be close to 1
to stop the process we look at the cable tensions and lengths for all solutions in Sk
to determine what will be the non-deformable case to which will lead the parameters
going to their limit values. Namely we compare all cable lengths Li

0 to the distance
di between the Ai,Bi points and if Li

0 > di, then the i � th cable is slack otherwise
it is under tension. This provide us a system of equations for each solution of Sk
which should have as approximate solution the corresponding element in Sk. If the
Kantorovitch conditions hold for the system, then we will be able to determine the
non-deformable configuration to which the deformable solution will lead, otherwise
we increase a .
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3.2 The direct model

As we have shown in the inverse model the manipulator ends up close to a config-
uration with non-deformable cables for which the platform is at the desired pose
with some cables that are possibly slack. We may now revert the process to obtain
the IK solutions for the deformable cables. We will consider all combinations of
cables under tension in the set of 6 cables, assuming that they are non-deformable.
We then solve their IK, retaining only the solutions for which the non slack cable
have a positive tension.

There is clearly at most one solution when considering that all 6 cables are un-
der tension. This can be checked by solving equation (1) that is a six-dimensional
linear system in the 6 cable tensions. For the combinations with less than 6 cables
under tension we will assume that the slack cable have 0 tension or a minimal one
depending on the cable model. Hence if the CDPR has m cables under tension the
system (1) is still a linear system, possible overconstrained, that may have a positive
solution in terms of the tensions in the m cables.

After this processing we get feasible configurations for the non-deformable case.
For each of them we have a set of valid lengths L0 for the cables. P is set to a value
Pi close to Ps and then we change the parameter using the iterative scheme:

Pk+1 = Pk + b (Pd �Pk) (4)

with P0 = Pi. As in the inverse scheme we choose b small enough so that the
Kantorovitch conditions are fulfilled for P = Pk+1. We then stop the process when
Pk+1 = Pd and at this stage we have obtained the IK solution(s) for the CDPR with
deformable cables.

Note that this scheme starts with a non-deformable cables state with possibly
some slack cables. However during the iterations it may perfectly happen that an
initially slack cable, which therefore does not support the platform, becomes sup-
portive and vice-versa.

3.3 Maximum number of solutions

The inverse scheme shows that the IK solutions originates from an IK solution with
non-deformable cables. Being given a distribution of slack and under tension cables
there is always at most a single solution to the IK problem and hence the total num-
ber of solutions of the IK with deformable cables cannot exceed the total number of
slack/under tension combinations. This number may be established as 1 (6 cables
under tension) +6 (5 cables under tension) + 15 (4 cables under tension) + 20 (3 ca-
bles under tension) + 15 (2 cables under tension) + 6 (1 cables under tension) which
amounts to a maximum of 63 solutions. However this number will be the real bound
under some assumptions on singularities.
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3.4 The singularity case and workspace calculation

Both the inverse and direct scheme assume that the jacobian of the system does not
become singular. Such a case may occur if the cable model equations are singular
or a singularity will occur if (1) become singular. If the unit vector ni denotes the
direction of action of cable i at point Bi (ni may differ from the unit vector of the
line going through Ai,Bi because of the cable deformation) and ti the tension in the
cable at Bi then we define the interaction matrix G whose i � th row Gi is defined
by Gi = (ni CBi ⇥ ni)T so that the static of the CDPR may be written as

F = Gt (5)

A singularity will occur if the Plücker vectors Gi are dependent, a well known prob-
lem for the analysis of parallel robots. Such a singularity may be detected through
an increase in the tension of some cables. Open issues regarding this aspect are:

• can we avoid a singularity by modifying the iterative scheme (4) ?
• in the inverse scheme can we encouter a singularity that will prohibit us to con-

verge toward a solution with non-deformable cables ? If this is the case, then
the approach may miss IK solutions. Should we consider complex values for the
unknowns in order to avoid singularities ?

• is is possible to have IK solutions with deformable cables for which the inverse
continuation problem does not lead to a non deformable cable IK configuration ?

All these issues are quite complex and will be the subject of another paper(s). Our
conjecture is that in general we will have only isolated singular points so that by
using bifurcation theory at the singular point so that all IK solutions will originate
from (possibly multiple) non-deformable configuration. If this conjecture is true
it has an important practical consequence: the reachable workspace of a CDPR
with deformable cables, whatever the cable model, is identical to the reachable
workspace of the same CDPR that has non-deformable cable.

4 Example

We consider as example our large scale robot MARIONET-CRANE [6], probably
the largest CDPR ever deployed, for which we will assume Irvine sagging cables.
The IK problem has already been studied in [5] but we will correct some mistakes of
this paper. We assume here that the external wrench applied on the platform is only
the gravity. This robot is a suspended CDPR (i.e. there is no cable having a B point
under the platform) with 6 cables, whose Ai,Bi coordinates are given in table 1.

The cables characteristics are E = 1009N/m2, µ = 0.079 kg/m and their diameter
is 4 mm. For finding the IK solutions for the non deformable case we assume that
the slack cables act along the vertical with a tension equal to µgL0/2, where µ has a
very low value. With that assumption equation (1) is 6 dimensional linear system in
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x y z x y z
-325.9 -47.5 882.6 942.1 -348.2 1155.5
953.8 379.7 1153.3 557.0 2041.4 870.4
-250.5 1681.0 864.9 -334.2 942.1 878.8

x y z x y z
-10 -93 -3 10 -93 -3
27 50 -7 27 50 -7
-27 50 -7 -27 50 -7

Table 1 Coordinates of the Ai and Bi points on the base and on the platform (in cm, by rows)

the tensions of the cables that are supposed to be under tension and in the L0 for the
slack cables. We keep as potential IK solution the one for which the tensions and
the L0 are positive.

We are basically finding the same IK solution as in [5] except that for the pose
x = 400,y = 700,z = 200 and a platform mass of 69 kg our new IK algorithm pro-
vides a solution although we have claimed that there was none. This can be ex-
plained as the IK solution leads to FX values that are not inc;luded in the intervals
we have provided in our previous algorithm. However we confirm that for x = y = 0,
z = 200 there is no IK solution. It must also be noted that we have found cases with
a singular configuration for the direct scheme but it appears when the Fx of cable(s)
are close to 0 (corresponding to a singularity of the cable model). In that case we
use a simplified model: we rewrite the equations with Fx = 0, Fz = µgL0/2 (corre-
sponding to a cable that acts vertically on the platform) and we remove the Irvine
equations for the corresponding cable(s) so that thi system is still square. Then we
use the Newton scheme to solve the simplified system and go on decreasing E and
increasing µ . After eachg successfull solving step of the simplified model we use
Kantorovitch and Newton to get a solution of the full system, using the solution ob-
tained for the simplified system and setting a small positive value for the Fx of the
singular cables. If we succeed, then we switch to the full model.

The previous paper have shown an example with up to 3 solutions but our new
algorithm has allowed to find examples with 5 solution, for example for x = 96.733,
y = 1138.33, z = 165, µ =0.004 kg/m and a mass of 10 kg,the platform being hor-
izontal. We get 5 IK solutions for non-deformable cables with the following cables
that are not under tension: none, [3], [6], [3,5], [4,6] but 4 of them have an unreason-
able cable lengths (for all of them one cable has a length over 105 meters and may
reach 4103 meters). Note that if we increase µ to 0.079, then the branches none and
[3] meet the same point for µ= 0.0042 and apparently no solution can be found for
larger values of µ so that we end up with only 3 solutions. This shows that appar-
ently there may be a limit on the value of µ that may lead two branches to collapse
and not generating an IN solution.

However a more rigourous singularity analysis has to be performed in order to
guarantee that will not miss one of the IK solution. An extensive search on the x,y,z
using a grid and a fixed orientation has provided at most 5 potential IK solutions
for the non-deformable case. During this search the only singularity we have found
were cable model singularity with one Fx going to 0. For a grid of over 150 000
points we get 1, 2, 3, 4, 5 potential solutions respectively in 76%, 19%, 5%, 0.01 %
and 0.05 % of the cases.
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5 Conclusion

Finding all IK solutions of CDPR with deformable cables may be complex accord-
ing to the used cable model. We propose in this paper a generic approach that allow
to manage all cable models that satisfy minimal assumptions, while providing for
the first time an upper bound for the maximal number of solutions, provided that
our conjecture on singularity hold. Although it has be proven to be efficient even
for a complex cable model, the issue of the crossing of singularity remains to be ad-
dressed. If the CDPR has more than 6 cables the IK equations have more unknowns
than equations but we may still apply the method after having chosen specific ten-
sions for the non-deformable case. At each step we may choose a close but different
set of tensions that satisfy some optimality criterion and then solve the IK equations
for the current values of the parameters. If the CDPR has less than 6 cables the pro-
cedure may also be used provided that we choose which dof of the platform has to
be controlled.
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Synergies Evaluation of the SCHUNK
S5FH for Grasping Control

Fanny Ficuciello, Alba Federico, Vincenzo Lippiello, and Bruno Siciliano

Abstract In this work, a study on postural synergies has been conducted
on an under-actuated anthropomorphic hand, the SCHUNK Five Fingered
Hand (S5FH). Human hand grasps are mapped on the robotic hand using
fingertips measurements, obtained with an RGBD camera sensor, and inverse
kinematics. Since the S5FH is under-actuated, an approximate solution can
be obtained using the di↵erential kinematics mapping between the motor
space and the Cartesian space and a closed-loop inverse kinematics (CLIK),
based on a high-rectangular hand Jacobian that takes into account the me-
chanical synergies of the hand. The so-computed motor synergies have been
tested for hand control during grasping. The motor current measurements
have been used to limit the grasping forces trough a motor position control
in the synergies subspace.

Key words: Grasping, Anthropomorphic Hands, Postural Synergies.

1 Introduction

Nowadays, in robotics and prosthetic applications, postural synergies have
been widely recognized to be a powerful tool to plan grasps and control arti-
ficial hands using few parameters compared to the degrees of freedom (DOFs)
of the hand itself [1]. Several methods have been proposed to compute the
synergies subspace. In [2], [3], [4] the basis space of synergies is represented
by a matrix of constant eigengrasps (basis of eigenvectors), while in [5] syn-
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ergies are mapped directly from human to robotic hands using non-constant
eigengrasps.

The authors’ previous work refers to fully actuated anthropomorphic
hands [6], [7], [8], [9]. In these works, the experimental results highlight that,

Fig. 1 The Schunk 5 Fingered Hand.

despite the di↵erences in kinematics and mapping methods, the first three
synergies have some basic features that are preserved if the hand kinematics
is anthropomorphic and if the grasps data set is suitably chosen to cover a
large variety of human grasping postures [10], [11].

In this work, the method developed in [8] has been adapted and tested
to evaluate the first three synergies on an under-actuated five-fingered hand
suitable for service robot applications in the household domain, the S5FH de-
picted in Fig. 1. The hand possesses 20 Degrees of mobility and it is designed
with ”mechanical synergies” that regulate the kinematic couplings between
the finger joints while decreasing the number of motors from 20 to 9.

One of the main problems of under-actuation is that the inverse kinematics
problem that maps fingertips Cartesian space into joints motor space does
not necessarily have a closed-form solution, but in some cases only an ap-
proximate solution that minimizes the norm of the error can be obtained.
Moreover, the human hand grasps cannot be accurately mapped onto the
robotic hand since some information is unavoidably lost due to mechanical
couplings between the joints.

A valuable possibility to obtain a solution to the inverse kinematics prob-
lem is to use the di↵erential kinematics mapping between the motor space
and the Cartesian space and a closed-loop inverse kinematics (CLIK) based
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on the high-rectangular hand Jacobian that takes into account the mechanical
synergies of the hand.

In this work, a data set of grasps, measured on five human subjects and
available from the authors’ previous work, is used to evaluate the grasping
capabilities of the robot hand in a synergy-based framework. For this pur-
pose, a synergies Jacobian can be computed and suitably used in the CLIK
algorithm to map the grasps from the human hand to the robotic hand. The
deails of the grasping data and mapping method can be found in [2, 8].

The results demonstrate that the computed synergies are suitable to con-
trol the hand in a three-dimensional subspace and the evaluated features of
the first three synergies confirm the results obtained in [12], i.e. the grasping
capabilities are very similar to those of the fully actuated anthropomorphic
hands.

The paper is structured as follows: in Sect. 2 the hand kinematics and
the mechanical synergies are described, in Sect. 3 the method for synergies
computation is briefly described and the computed synergies are analyzed.
Section 4 reports the experimental results obtained using the synergy-based
control for grasping actions and grasping forces regulations. Finally, Section
5 provides the conclusions and sketches the future work.

Fig. 2 The finger movements of the Schunk 5 Fingered Hand are illustrated.

Synergies Evaluation of the SCHUNK S5FH for Grasping Control 231
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2 The Schunk S5FH

The Schunk S5FH has an anthropomorphic structure very similar to the hu-
man hand for shape, size and overall for the cosmetic appearance. Indeed,
the dimensions are of 1 : 1 ratio with the human hand and the weight is of
1.3kg. The control and power electronics are integrated in the wrist allowing
an easy connection with market-standard industrial and lightweight robots.
The current technology, however, does not allow arranging twenty or more
motors within a mechanical structure with dimensions similar to those of the
human hand while ensuring appropriate requirements of speed and strength.
As a matter of fact, the S5FH has 20 joints and 9 DOFs led by servo mo-
tors. The reader can find the whole technical data, hardware and software
specifications in [13] and [14].

Hence, the number of motors is significantly lower than the number of
joints and suitable motion couplings are obtained by means of mechanical
synergies defined via mechanical transmissions.

Let q be the vector of the 20 joint angles describing the robotic hand con-
figuration. The joint motions (Fig. 2) are coupled according to the mechanical
synergies matrix, defined below,
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where m 2 IRm, with m = 9, is the vector of motor variables and q0 is
an o↵set representing the vector of joint values when the motor positions
are zero. In vector q the finger joints are pointed in progressive order from
the thumb to the little finger using the subscripts t, i, m, r, l. Not all the
fingers have the same number of joints and motors. About the thumb, the
opposition joint qt

o

is coupled with the qp
o

joint allocated into the palm that
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moves only the ring and the little finger with respect to the palm frame. The
carpometacarpal flexion joint qt

cm

, metacarpophalangeal flexion joint qt
mcp

,
distal interphalangeal flexion joint qt

dip

are clearly indicated in Fig. 2 as well
as the metacarpophalangeal flexion joint (DIP), proximal interfalangeal joint
(PIP) and distal interphalangeal flexion joint (MCP) for the other fingers.
Finally, the index, ring and little fingers have also coupled spread motion
(qi

s

, qr
s

, ql
s

).

3 Postural Synergies Computation

A data set of 36 grasping configurations, measured on five human hands, have
been considered as in [8] and the same mapping method has been applied to
the S5FH hand. The di↵erential kinematics mapping between the mechanical
synergies subspace and the Cartesian space, used in the CLIK, is represented
by the following equation

ẋ = Jh
s

ṁ, (2)

where Jh
s

is the mechanical synergies Jacobian and is computed as

Jh
s

= JhSm. (3)

In (2), ẋ is the derivative of the position vector of the five fingertips x 2 IR15,
Jh is the (15 ⇥ 20) S5FH hand Jacobian, Sm is the (20 ⇥ 9) matrix of the
mechanical synergies, and finally m 2 IR9 is the vector of the motor angles.
The CLIK algorithm for inverse kinematics resolution can be based on the
transpose of the Jacobian JT

h , or on the pseudoinverse of the Jacobian J†
h.

When the CLIK is used for mapping gasps from the human to the robot
hand, the desired fingertips position in the Cartesian space, xd, is constant
and the required feed forward term of the velocities is null. In this work, the
synergies subspace of the hand, constituted by the first three eigengrasps,
has been computed with both solutions in the CLIK algorithm, namely JT

h

and J†
h. Actually, these solutions didn’t lead to significant di↵erences in the

results. On the other hand, the use of the transpose Jacobian may be easier
and more convenient for real-time implementation. Moreover, even in the
presence of a variable Cartesian desired position, the latter solution does not
require the addition of a feedforward term. For these reasons, in this paper
the results obtained with JT

h are considered.
For the sake of brevity, the synergies subspace, resulting from computa-

tion, is schematically represented in Fig. 6. Here, the configurations that
the hand assumes according to the patterns of the first, second and third
synergies when their coe�cients vary from minimum to maximum values are
represented on the three principal axes of the eigengrasps. The minimum and
maximum values of the synergy coe�cients are in agreement with the posi-
tive direction of the arrows. The obtained results are very similare to those

Synergies Evaluation of the SCHUNK S5FH for Grasping Control 233



6 F. Ficuciello et al.

Fig. 3 The first three eigengrasps.

in [6] and the di↵erences are due to the kinematic limitation introduced by
the under-actuation. It is possible to observe that the first synergy opens
and closes the hand acting mainly on the flexion joints by moving them in
the same direction. The second synergy generates opposite motions for the
metacarpophalangeal flexion and proximal interfalangeal flexion joints. Ob-
viously, this is true for the only two fingers that have no couplings on these
joints (index and middle fingers). On the other hand, the third synergy in-
fluences mainly the thumb motion both for flexion and opposition.

4 Grasping Control in the Synergies Subspace

Once the (9⇥3) Ss synergy matrix has been computed, in order to test the ef-
ficiency of the mapping method, di↵erent grasps have been reproduced in the
three dimensions synergies subspace. Reproduced power grasps of spherical
and cylindrical objects are represented in Figs. 4(a) and 4(b). Actually, since
mechanical synergies a↵ect the mapping from the human hand, the projection
of a grasp from the data set in the synergies subspace is not so e↵ective as for
the full-actuated anthropomorphic hands [6], [8]. Thus, the reproduction is
not successful for all the grasps. This means that a control strategy is required
to adjust the reference grasp in order to let the hand adapting to the object
while moving in the synergies subspace. The kinematic control of the hand in
the synergies subspace is again a CLIK algorithm, but in this case it is based
on the synergies Jacobian given by ẋ = Jh

s

s

�̇, where Jh
s

s

= JhSmSs and
�̇ are the synergy coe�cients. The di↵erential mapping between synergies
coe�cients and joint velocities is given by the following equation
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(a) Spherical object (b) Cylindrical object

Fig. 4 Some examples of reproduced grasps

q̇ = Smṁ = SmSs�̇.

A simple strategy to modify the reference grasp can be adopted. The finger-
tips desired positions are modified in the control algorithm in order to reduce
their distance with respect to the centroid of a virtual object computed as
the centroid of the fingertips involved in the desired grasp. Moreover, in order
to limit the grasping forces, the desired target of the CLIK is modified on the
basis of the measured motor current and of a defined threshold that is related
to the texture of the object. The experiments demonstrate that the synergies
subspace is suitable for hand control in grasping a wide variety of objects, i.e.
the algorithm is stable and e↵ectively regulates the grasping forces by mod-
ifying the motor positions in the synergies subspace. Thus, to improve the
grasping capabilities as a future work, strategies based on quality indexes to
close the hand toward the object in the synergies subspace will be tested. In
Fig. 5 two di↵erent grasps of the same object are controlled in the synergies
subspace using di↵erent current thresholds.

Fig. 5 A cylindrical object is grasped

In Fig. 6, the synergies coe�cient are reported for one of the cylindrical
grasps described above. It is possible to observe that the control modifies the
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Fig. 6 Time history of synergy coe�cients during grasping a cylindrical object with con-
tact forces regulation.

synergies coe�cients until reaching a steady-state value which depends on
the allowed motors current limits.

5 Conclusions

The S5FH synergies subspace has been computed mapping human hand
grasps using a method based on fingertips measurements. The features of
the first three synergies have been evaluated and the results are very similar
to those of fully actuated anthropomorphic hands. Afterwards, the synergies
subspace has been tested for hand control using a CLIK algorithm based on
the synergies Jacobian. The experiments have demonstrated that the method
used to compute synergies provides good results since the hand can be suc-
cessfully and stably controlled in a three-dimensional synergies subspace for
grasping purpose while guaranteeing suitable regulation of the contact forces.
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Velocity Fields and Tangent Bundles for
In-Hand Manipulative Synthesis

Neda Hassanzadeh, Shramana Ghosh, Nina Robson, and Alba Perez-Gracia

Abstract The kinematic design of robots for tasks involving positions and its deriva-
tives has been explored in the past in order to shape the trajectory of the robot at a
given set of points. This approach has been successful for the synthesis of linkages;
however defining a single velocity in the vicinity of a specified location might not be
enough for a desired task. In the design of multi-fingered robotic hands, it is inter-
esting to ask whether a hand can be designed for a certain in-hand manipulation that
ensures contact and at the same time relative motion of the fingertips on the object
surface. In this article we define a method for designing robotic hands that guide an
object through a kinematic task with velocity specifications in the vicinity of key
task positions. Given the mobility for a hand topology, the necessary velocities are
derived at each task position to fully define the subspace of allowable directions for
object manipulation. As an example, a multi-fingered robotic hand for grasping and
manipulating an object with a known geometry has been designed. The proposed
synthesis technique can be used to create a velocity field associated to a desired
trajectory, or to fully specify the allowable velocities, or the tangent space at each
position, to successfully guide the object with specified constraints.

Key words: Multi-fingered hands, Kinematic Synthesis, Grasping and Manipula-
tion

1 Introduction

The design of end-effector robotic tools is directed towards grasping actions or to-
wards higher dexterity, usually anthropomorphic; see for instance [1]. In this re-
search, we focus on creating multi-fingered hand designs specially tailored to spe-
cific groups of manipulation tasks.

We define a multi-fingered robotic hand as a series of common joints branching
at least once in several other serial chains, ending in a finite set of end-effector links
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(the fingertips). The methodology developed in [6] for the design of multi-fingered
hands for kinematic tasks , both for finite and infinitesimal motion, offers a system-
atic process to design innovative end-effectors for a simultaneous free-motion task
of all the fingertips.

When the hand grasps and object, the constraints on the relative motion among
fingers need to be taken into account. In this application, we focus on in-hand manip-
ulation, when the fingertip contact is kept along the motion [7] while some relative
motion, compatible with the contact, is specified.

Given a hand topology and the mobility for a generally-grasped object, we pro-
pose to use the kinematic synthesis technique in order to fully define the subspace of
potential velocities at a given position. This is based on defining as many infinitesi-
mal motion tasks at each position as general degrees of freedom of the hybrid topol-
ogy. Those will fully specify the subspace of velocities at that point, yielding control
over the allowable motion at discreet points of the workspace. Contact-compatible
velocitiy subspaces are then calculated for each fingertip. Alternatively, subspace of
potential velocities can be defined to ensure motion of the fingertip with respect to
the object. This new technique is applied to a three-fingered wristed hand. Experi-
mental motion capture data is used for defining positions and velocities.

2 Topology of the Hand-Object System

A tree topology for a kinematic chain has a set of common joints spanning several
chains, possibly in several stages, and ending in multiple end-effectors.

Open hands not holding an object in the fingers can be represented as rooted
tree graphs [10], [6], where all links are ternary or above. Figure 1 presents the
compacted graph for a hand with five branches and two palms. The root vertex is
indicated with a double circle. When the multi-fingered hand is holding an object,
a set of constraints are created at the contact point between fingertip and object.
Standard finger denominations, such as pointy finger or soft fingers [8], impose
constraints on the motion that can be modeled as a joint or set of joints. During the
grasp and manipulation of the grasped object, the topology is represented with a
hybrid graph, as shown in figure 1, where the object is indicated as a square vertex.

Fig. 1 A five-fingered tree topology with j = {0,1,1,1,3,3,3} (left), and holding an object with
F degree-of-freedom contacts (right).
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A first approximation to the ability to manipulate when the hand is grasping
an object can be calculated using standard mobility and connectivity formulas, see
for instance [8]. Object and hand geometry are taken into account by calculating
the subspaces of wrenches or twists created by the contacts on the object, see for
instance [11].

3 Kinematic Synthesis for Subspaces of Velocities

3.1 Subspaces of velocities

The design methodology follows [6] and uses a kinematic task as input to create
multi-fingered hand designs. The kinematic task consists of a set of simultaneous
displacements for each fingertip, and velocities and accelerations defined at some of
those positions.

Given a hand topology with b end-effectors and nc joints in branch c, solvable
[12] for mp positions and mv velocities, the design equations seek to minimize the
difference between the task and the motion of the robot. For displacements, this is
created as the product of exponentials defining each serial chain from root to end-
effector, while the velocities are created as the linear combination of the joint twists
times the joint rate at a given position,

P̂i
1k = ’

j2{Bi}

e
Dq̂

k
j

2 S j ,

Ṗ

i
k = Â

j2{Bi}

q̇

k
j S

k
j, i = 1, . . . ,b; k = 2, . . . ,m, (1)

where the number of end-effectors, or branches as root-to-fingertip chains, is indi-
cated by b, and {Bi} is the set of ordered indices of the joints belonging to branch
i. Notice that some of the joints will be common to several branches. The joint axes
at the kth position are Sk

j (at the reference configuration they are denoted as S j), and
P̂i

1k are the relative task positions for each branch. For most topologies, this method
yields many potential designs.

Equation 1 can be used to specify the twist for each fingertip at a given position,
creating a velocity field that approximates a trajectory. When several fingers are in
contact with an object, the twist need to be compatible with the contact and the
displacement of the object.

At a given configuration, the maximum number of twists that can be specified
for a serial chain corresponds to the dimension of the twist subspace created by the
chain, which coincides with its mobility M for generally-oriented axes. Specifying
M twists fully defines the subspace of potential velocities of the end-effector at a
particular position. The equations so defined are linear and the coordinates of the
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axes can be written as a function of the joint rates,
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for each branch i with number of joints bi.
Equation (2) allows us to fully define the tangent plane at a given position, con-

straining the motion to create a controlled subspace of potential velocities for the
path planning or the manipulation actions. In order to do so, the contact, the motion
and the geometry of the object-fingertip system must be considered.

3.2 Geometry of Spatial Contact Directions

To derive the position and velocity of the body at an instant t = 0 imposed by contact
with the fingers, we follow Robson and Tolety [13]. Let the movement of a rigid
body be defined by the parameterized set of 8-dimensional dual quaternions Q̂(t) =
q̂(t)+ e q̂0(t), defined in terms of the screw axis of the displacement, S(t) = s(t)+
es0(t), and the rotation about and slide along the axis, f(t) and d(t).

A point p fixed with respect to the moving body traces a a trajectory P(t) in a
fixed coordinate frame F , given by:

P̂(t) = Q̂(t)p̂Q̂⇤(t) = (cos
q̂

2
+ sin

q̂

2
S)(1+ ep)(cos

q̂

2
� sin

q̂

2
S), (3)

where cos q̂

2 = cos q

2 � e

d
2 sin q

2 , sin q̂

2 = sin q

2 + e

d
2 cos q

2 , and the point has coordi-
nates p = pxi+ py j + pzk

Consider a moving frame attached to the object to be grasped and the fingertips,
denoted by i, shown in Figure 2. Assume that while rolling/sliding along the object
surface in the vicinity of a specified contact location(s), the fingertips are moving
on spherical paths with radii Ri. When the body is in contact with n stationary fric-
tionless fingers in an equilibrium grasp, there are two possible free motions: either
roll-slide on the fingers, or escape from the fingers [14].

The mobility and locked-joints mobility of the hand-object system [8] is spec-
ified. The goal is to determine the movement Q̂(t) so that the moving body has n
points with trajectories n(t) consistent with contact with n fingertips.

3.3 Position Specification

Assume that the contact of our moving body {M} with the three fixed objects con-
strains the point trajectories A(t), B(t) and C(t) to follow spherical trajectories in
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Fig. 2 Left: A triangular shaped object is in contact with three spheres with radii of curvature
RA,RB,RC in the vicinity of the specified position. Right: The moving frame M is located such that
its origin coincides with A(t) and its x-axis is directed along the line B�A

the vicinity of the reference position att = 0. The movement of {M} in the vicinity
of t = 0 can be expressed by the Taylor series expansion:

Q̂(t) = Q̂0 + Q̂1t +
1
2

Q̂2t2 + ..., where Q̂i =
diQ̂
dti . (4)

In this equation, the subscript denotes the derivative: Q̂1 = ˙̂Q, and so on. The dual
quaternion Q̂0 = cos q̂0

2 + e sin q̂0
2 S0 is calculated using the position of the moving

frame {M} with the coordinates of the contact points A0 = A(0), B0 = B(0) and
C0 = C(0). See [15] and [13] for a similar approach.

3.4 Velocity Specification

Given a point a in the object expressed in the moving frame, its expression with
respect to the fixed frame is given by Â = Q̂âQ̂⇤. The velocity of this point can be
obtained in general as

˙̂A = ( ˙̂QQ̂⇤)Â( ˙̂QQ̂⇤)⇤ = Ŵ ÂŴ

⇤. (5)

Consider the object with the contact points. In order to satisfy force constraints at
the prescribed positions, we determine directions of the velocity vectors Ȧ, Ḃ and Ċ
that are perpendicular to the contact forces FA, FB and FC passing along the direction
of the radii of the spheres (see Figure 3), where points O1, O2, O3 are the centers of
these spheres. The equations defining these constraints are obtained by considering
the contact point as belonging both to the moving body and the spherical finger,

Ȧ = W ÂŴ

⇤ = ŴO1A(Â� Ô1)Ŵ
⇤

O1A, Ḃ = W B̂Ŵ

⇤ = ŴO2B(B̂� Ô2)Ŵ
⇤

O2B,

Ċ = WĈŴ

⇤ = ŴO3C(Ĉ � Ô3)Ŵ
⇤

O3C, (6)
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where ŴO1A(Â � Ô1)Ŵ ⇤

O1A yields the expression for the velocity of a point rotating
about a fixed point, wO1A ⇥ (A�O1), and similarly for the rest of the points.

If some of the point velocities are defined, the velocity specification Q̂1 in equa-
tion (4) is obtained, see [15] and [13].

The same formulation can be used to derive a second velocity at A(t) in Figure
2, by specifying two more spheres with radii of curvature RD and RE and centers
O4 and O5, respectively. Therefore, now the two derived velocities at A(t) create a
twist subspace for the fingertip.

4 Experimental Procedure

The manipulation of a cube with three fingers was captured using a ViconTMmotion
capture system with fingertip markers. Figure 3 shows the captured frames.

Fig. 3 Left: Fingertip motion. Green, yellow and blue frames correspond to thumb, middle and
index fingertips respectively. Right: downsampled trajectories and the synthesis frames.

For the synthesis of the manipulative hand, positions and velocities from this mo-
tion were used. The system provides with fingertip poses as well as a point velocity.
In order to fully define a twist subspace, compatible velocities were added.

4.1 Definition of the subspace of velocities

The twist vector at position i and for fingertip j is Wi j = {w

w

w i j,uuu i j}, where w

w

w i j and
u

u

u i j indicate the angular and linear velocity. This twist vector contains the linear
velocity of a point instantaneously coincident with the origin of the fixed frame.

The angular velocity of the fingertip j is not directly provided in the experimental
dataset. It can be computed using the finite difference between the rotation Q̂ j of two
consecutive fingertip poses,
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Ŵi j = ˙̂Qi jQ̂⇤

i j,

˙̂Qi j = Q̂(i+1) j � Q̂i j,

Ŵi j = Q̂(i+1) jQ̂⇤

i j �1. (7)

This yields an approximate twist. From this calculation, the angular velocity of
the body w

w

w i j is obtained. The linear velocity of the origin is then calculated as

u

u

u i j = u

u

u pi j +pi j ⇥w

w

w i j, (8)

where u

u

u pi j is the captured linear velocity at position i for finger j, and pi j is its
position vector.

In order to define a higher-dimensional subspace of velocities at the given posi-
tion, more independent twists need to be calculated, compatible with the grasp. For
this example, a extra velocities u

u

u

0

i j are calculated in order to allow for the rolling of
the cube about perpendicular axes. Consider the position vectors piT M = piT � piM
and similarly for the other fingers, where the subscripts T , I and M refer to thumb,
index and middle fingers, respectively. The twists W 0

i j = {w

w

w

0

i j,uuu
0

i j} are calculated as

w

w

w

0

iI =
piT M ⇥ (piT M ⇥piT I)

piT M ·piT M
,

u

u

u

0

iM = piT M ⇥piT I +w

w

w

0

iM ⇥piM,

u

u

u

0

iT = �piT M ⇥piT I +w

w

w

0

iT ⇥piT , (9)

and similarly for the third velocity.

4.2 Topology selection

To select a suitable topology for this task, all the three-fingered hands with in-palm
mobility and overall mobility being equal to 2 or 3 were investigated. When bound-
ing the overall number of joints and adding solvability conditions for the hands, the
topology presented in Table 1 was selected as candidate. This topology solvable for
a total of m = 5 exact positions.

4.3 Synthesis Results

For this procedure we used both an approximate synthesis for ten positions and ten
velocities of the experimental trajectory, and exact synthesis with two positions and
three velocities at the first position for each finger. Figure 4, shows the resulting hand
designs. In Figure 5, the subspace generated by the twists and the corresponding
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Table 1 Candidate topology for synthesis.
Parent-pointer array Joint array Tree graph

{0,0,1,1} {2,3,2,2}

subspace of the finger are compared. It can be seen that both subspaces match up to
the error of the solver.

Fig. 4 Hand design for twist subspace, left; hand design for approximate trajectory synthesis, right.

Fig. 5 Comparison of input workspaces (transparent planes) and calculated twists of fingertips
(solid lines and planes), for Finger 1. First two plots (left) correspond to the angular velocity
subspaces and the second two (right) show the linear velocity subspaces.

5 CONCLUSIONS

This paper introduces a new technique for designing robotic hands with full control
of the allowed grasping and in-hand manipulation at a set of finite positions. Dimen-
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sional kinematic synthesis is used with as many velocities as the dimension of the
potential subspace of motions at a given position. The method can be used to plan
in-hand manipulation at key contact locations, creating designs suited for particu-
lar tasks. The method is tested with a three-fingered hand design and the resulting
twists subspaces are calculated and compared. It is shown that it is possible to fully
define the displacements at the vicinity of a point by specifying the tangent plane.
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Synthesis of Linkages to Trace Plane Curves

Yang Liu and J. Michael McCarthy

Abstract Kempe’s universality theorem introduced in 1876 has recently been proven
to ensure that given any algebraic curve a mechanism exists that traces the curve.
In this paper, we present two methods to simplify Kempe’s linkages. One method
uses gear trains, differentials and belt drives to replace his multiplicator, additor
and translator linkages. A second method uses the Scotch yoke mechanism and a
summing belt drive to generate a mechanical Fourier series that traces the curve.
Examples are provided that demonstrate the two approaches.

Key words: Linkage synthesis, Kempe Universality Theorem.

1 Introduction

This paper considers the design of a mechanical device that guides a point along
a specified curve. The goal is to find a middle ground between the synthesis of
linkages using Kempe’s construction and the synthesis of linkages using a set of
points that approximate the desired curve, called path generation or path synthesis.

Kempe’s construction [6] uses a set of standard linkages termed the Reversor,
Additor, Multiplicator, and Translator that he combines to constrain the two joint
angles of an RR planar chain so its end-point traces a specified algebraic curve.
Artobolevskii [2] presents a synthesis theory that yields simpler linkages that trace
curves up to degree four.

Yang Liu
Graduate student researcher e-mail: liuy14@uci.edu
J. Michael McCarthy
Professor, Robotics and Automation Laboratory
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The approach presented in this paper increases the set of standard linkages used
for the synthesis of curve-tracing mechanisms to include gear trains to add and mul-
tiply, and pulley and belt drives to translate values. In addition, the desired curve is
approximated by its Fourier series representation. The result is physically realizable
mechanical devices that trace complex plane curves.

2 Literature review

Interest in the mechanical generation of plane curves is traced by Nolle [12,13] and
Koetsier [10, 11] to Watt’s 1784 patent that describes his approximate straight-line
linkage, and the associated parallel motion linkage, which he used in his design of a
double acting steam engine; also see Hartenberg and Denavit [3]. In his 1877 book,
Kempe [7] summarized the design theory for linkages that generate a straight line,
and about the same time presented a construction that yields a linkage to trace a
given algebraic curve, see [6].

Fig. 1 The linkage that traces the quadratic curve presented in Saxena [16].

Kempe’s construction introduces a correspondence between linkages and alge-
braic curves, which has been formalized by Jordan and Steiner [4] and Kapovich
and Millson [5], and termed Kempe’s Universality Theorem. Saxena [16] provides
a step-by-step description of this construction to obtain a linkage consisting of 48
links and 70 joints that traces a quadratic curve. Gao et al. [18] derived the order
O(n4) for the number of bars in Kempe’s construction where n is the degree of alge-
braic curve. Abbott [1] tightened this bound to O(n2). However, using the dynamic
geometry software Cinderella, Kobel [9] provides a number of examples that illus-
trate the complexity of the resulting linkages.
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Artobolevskii [2] states that the direct application of Kempe’s construction
“would lead ... to such complicated mechanisms that in practice they would be im-
possible to achieve.” He then proceeds to provide a wide range of practical designs
for linkages that generate algebraic curves through degree four and higher. For ex-
ample, the eight-bar conograph linkage shown in Figure 2 can be adjusted to trace
any quadratic curve.

y 

! I . 

d 
r 

I 
• I 

FIG. 136 

Fig. 2 Artobolevskii [2] shows that this conograph linkage can be adjusted to trace any quadratic
plane curve.

Roth and Freudenstein [15] introduced a different approach to linkage design for
curve tracing. They used the loop equations of a four-bar linkage and nine accuracy
points along a desired curve to obtain a system of equations that defined the dimen-
sions of a linkage that guides a coupler point through the given points. Wampler et
al. [17] obtained a complete solution for these synthesis equations using polynomial
homotopy and showed that there are as many 4326 distinct four-bar linkages that
pass a curve though nine accuracy points. Kim et al. [8] obtained a similar set of
synthesis equations for a six-bar linkage and showed that solutions can guide a cou-
pler point though 15 accuracy points. Recent research by Plecnik [14] shows that the
equations for 15-point six-bar path generation has a Bezout over 1046, and, while
individual solutions can be obtained, it is beyond our ability to compute a complete
set of solutions for a given set of 15 accuracy points.

3 Kempe’s Linkage with Gears and Pulleys

In this section, we introduce Kempe’s method to design planar linkages to trace an
algebraic curve. Then we modify his approach to simplify the resulting design.

Synthesis of Linkages to Trace Plane Curves 253



4 Yang Liu and J. Michael McCarthy

Let f (x,y) = 0 be an algebraic curve. Kempe introduced planar serial chain
formed from two revolute joints with link lengths L1 and L2 to trace this curve.
Thus, the goal is to coordinate the angles q and f fo this RR chain, so that x and y
are given by,

P =

⇢
x(q ,f)
y(q ,f)

�
=

⇢
L1 cosq +L2 cosf

L1 sinq +L2 sinf

�
, (1)

such that
f (x(q ,f),y(q ,f)) = 0. (2)

Kempe shows that this equation can always be reduced to the form,

f (q ,f) = S

n
i Ai cos(rif + siq +a)�C = 0, (3)

where a = 0 or p/2, where the Ai and C are constants.
Rather than follow Kempe and introduce his multiplicator, additor, and translator

linkages, we use gears, differential and pulleys to perform these operations. For each
ri and si we perform the multiplication using a set of meshing gears, which means
for n terms there are at most g = 2n gear pairs. The addition of the terms rif + siq

are each performed by a gear differential, thus for n terms, we have at most d = n
differentials. Finally, we assemble Kempe’s serial chain consisting of bars of lengths
Ai. We constrain this serial chain to move along the line x = C by a prismatic joint.

In order to obtain the constraint on q and f to trace the curve f , we connect the
gears, differentials and joints of Kempe’s serial chain using belts and pulleys. Each
pair of gears requires one belt, differential requires two belts, and the n joints of the
serial chain requires n(n + 1)/2 belts. Finally, three belts are required to drive the
RR chain. Thus, the number of belts can be estimated to be,

b = g+2d +n(n+1)/2+3. (4)

In order to demonstrate this procedure, we obtain the mechanism that traces the
cubic curve,

f (x,y) = x3
� y�1 = 0. (5)

Let the lengths of the links of the RR chain that is to trace this curve be L1 = L2 = 1
and substitute the resulting x(q ,f) and y(q ,f) into to f (x,y) to obtain,

f (q ,f) = cos3
q + cos3

f +3cos2
q cosf +3cos2

f cosq � sinq � sinf �1 = 0.
(6)

The powers of cosine are reduced to first degree using the identities,

cos2
q =

1+ cos(2q)

2
, cos3

q =
3cosq + cos(3q)

4
. (7)

Similarly, the trigonometric sum and difference identities can be used to obtain

254 Yang Liu and J. Michael McCarthy



Synthesis of Linkages to Trace Plane Curves 5

f (q ,f) =
9
4

cosq +
9
4

cosf +
1
4

cos3q +
1
4

cos3f +
3
4

cos(2q �f)+
3
4

cos(2q +f)

+
3
4

cos(2f �q)+
3
4

cos(2f +q)+ cos(
p

2
+q)+ cos(

p

2
+f) = 1,

(8)

which has n = 10 terms.
Examining (8) we see that Kempe’s serial chain that constrains q and f has 10

links, which are listed in Table 1. This equation requires six gear pairs and four
differentials. The number of belts are computed to be 72.

The initial configuration of the links in Kempe’s serial chain can be determined
by setting the initial position of P = (1,0), so we have

⇢
1
0

�
=

⇢
cosq + cosf

sinq + sinf

�
. (9)

Solve this equation to obtain

q =�60�, f = 60�,

q =60�, f = �60�. (10)

Both solutions work, so we pick the first solution. This defines each of the angles of
the links in the Kempe’s serial chain, see Table 1. This mechanical system traces the
algebraic curve when the end of Kempe’s serial chain is constrained to move along
the line x = 1 by a prismatic joint, Figure 3.

Table 1 Serial Chain Configuration.
Link Number Link Length Phase Offset(Degree) Angular Velocity

A1 2.25 -60 q

A2 2.25 60 f

A3 0.25 -180 3q

A4 0.25 180 3f

A5 0.75 -180 2q �f

A6 0.75 -60 2q +f

A7 0.75 180 2f �q

A8 0.75 60 2f +q

A9 1 30 q

A10 1 150 f

In order to compare our linkage to Kempe’s construction, we consider the sim-
plest cases of Kempe’s additor, multiplicator and translator linkages. The additor
has six bars and is required for each addition including the constants. A multiplica-
tion by k requires a multiplicator with at least m(k) = 2(k � 2)+ 6 bars. We model
the translator as a parallelogram linkage that requires three bars for each belt used
in our design, which means t=3b. Therefore, in order to estimate Kempe’s linkage,
we note that (8), requires a = 6 additors, m(2) = 4 multiplicators with k = 2 and
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A7
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Fig. 3 This mechanical system uses Kempe’s theory to design a mechanical system to trace a cubic
curve. Gear pairs, differentials and belt drives are used to provide the multiplications, additions and
transmission necessary to constrain the RR chain to trace this curve.

m(3) = 2 with k = 3, thus

p = 6a+m(2)6+m(3)8+3b = 36+24+16+216 = 292. (11)

Thus, we can estimate Kempe’s construction to require at least 292 parts for this
example.

If we count the individual parts for our method, we have two gears per multi-
plication and four gears per addition, and two pulleys for each belt. Thus, the part
count is

p = 2g+4d +2b+b = 12+15+144+72 = 244. (12)

This comparison shows that the primary difference arises from the complexity of
the multiplicator linkage. Our method simplifies this further by using the sizes of
pulleys to perform the multiplication. This also shows the dominant role that the
translator linkages play in the part count of Kempe’s designs. It is our expectation
that effective use of gears, differentials, belts and pulleys can simplify the applica-
tion of Kempe’s results to a wide range of algebraic curves.

4 Fourier Series Method

In this section, we provide another approach to the design of a mechanism to trace
a plane curve. We assume the curve can be parameterized, then we compute its
Fourier decomposition for each component function. We use an array of Scotch
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Fig. 4 The parameterized heart curve has a finite Fourier expansion for each coordinate function.

yoke mechanisms to generate individual terms and use a belt to add the terms of the
Fourier series.

In order to demonstrate this procedure, we obtain a mechanism that traces the
heart curve, ⇢

x
y

�
=

⇢
16sin3 t

13cos t �5cos2t �2cos3t � cos4t

�
. (13)

Now reduce powers of sine to first degree using the identity,

sin3
q =

3sinq � sin3q

4
(14)

The result is the equation,
⇢

x
y

�
=

⇢
12sin t �4sin3t

13cos t �5cos2t �2cos3t � cos4t

�
. (15)

Reduce minus sign using shift angle properties of trigonometric function, and con-
vert sine terms into cosine terms to obtain

⇢
x
y

�
=

⇢
12cos(�p

2 + t)+4cos(�3p

2 +3t)
13cos t +5cos(p +2t)+2cos(p +3t)+ cos(p +4t)

�
. (16)

The mechanical system that traces this heart curve is obtained by using two
Scotch yoke mechanisms for the two terms of the x coordinate, and four of these
mechanisms for the y coordinate. These terms are summed using belts. See Figure
5.

This mechanisms provides another approach to the design of mechanisms to trace
a plane curve. We have also used this Fourier series approach to design a curve that
fits an image generated by an array of points.
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Fig. 5 Each Scotch yoke mechanism computes a term in the Fourier expansion of the x and y
coordinate functions for the heart curve. There are two terms for x component and four terms for
the y component.

5 Conclusion

In this paper, we present two ways to assemble a mechanical system to trace plane
curves. The first method uses Kempe’s universality theorem that guarantees a mech-
anism exists for any algebraic plane curve. We use gear pairs, differentials and
belt drives to simplify the resulting device. The second method uses a mechanical
Fourier series constructed from Scotch yoke mechanisms to generate a parametrized
plane curve. Kempe’s formulation provides an exact representation of algebraic
curves, while the Fourier formulation is exact for certain parameterized curves.
These are early results in the formulation of a design methodology for mechani-
cal systems that trace arbitrary plane curves.
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Subject-specific model of knee natural motion: a
non-invasive approach

Michele Conconi, Nicola Sancisi, and Vincenzo Parenti-Castelli

Abstract The capability to model human joint motion is a fundamental step towards
the definition of effective treatments and medical devices, with an increasing request
to adapt the devised models to the specificity of each subject.
We present a new approach for the definition of subject-specific models of the knee
natural motion. The approach is the result of a combination of two different tech-
niques and exploits the advantages of both. It relays upon non invasive measure-
ments based on which a kinematic model of the natural motion is built, suitable to
be extended to the definition of static and dynamic models.
Comparison of the model outcomes with in vitro measurements performed on one
specimen shows promising results supporting the proposed approach.

Key words: Knee; kinematic modelling; subject-specific; non-invasive.

1 Introduction

The natural motion of the knee is the motion of the joint in unloaded conditions. It
is the joint starting condition before loads are applied, thus contributing in the deter-
mination of the tibio-femoral relative position in loaded conditions. For this reason,
the knowledge of the natural motion is useful for all applications which aim at repli-
cating or restoring the natural behaviour of the knee, such as lower-limb modelling,
surgical planning and prosthesis design.
The modelling of the joint natural motion can be based on mean data taken from the
literature, thus providing a representation of an average joint [3, 17, 24]. However,
there is an increasing request of subject-specific models that would allow personal-
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ization of treatments and prosthesis geometry to the patient needs. In these cases,
the subject-specific motion would be required.
An accurate estimation of the joint motion is difficult to obtain in vivo [16]: non-
invasive techniques could be inaccurate (skin-markers) or too complicated (fluo-
roscopy) for standard practice, while more invasive techniques (bone-pins) are not
acceptable in most cases. Thus, new solutions are needed to predict the joint motion
with a good accuracy, based on non-invasive measurements.
In this study a new approach is presented which exploits two techniques with com-
plementary advantages for the modelling of the knee natural motion. The first tech-
nique (T1), was originally developed and validated for the ankle joint [4] and is
here tested on the knee. T1 predicts the joint motion by optimizing the articular
load distribution, assuming this condition as representative of the joint behaviour in
physiological working conditions. T1 only requires a 3D representation of the artic-
ular surfaces that can be obtained from standard in vivo images of the articulation. It
is however not suitable for the characterization of the joint behaviour under generic
working conditions.
The second technique (T2) models the knee as a one-degree-of-freedom (1-Dof)
spatial mechanism, featuring the two articular contacts and the three isometric fi-
bres of the anterior cruciate (ACL), posterior cruciate (PCL) and medial collateral
(MCL) ligaments [17, 18]. T2 was very accurate to replicate the natural motion of
specimens over the full flexion arc and can be easily extended to define more com-
plex static and dynamic models that can take into account different loading condi-
tions [22, 23], but a reference motion is needed to adjust the model parameters.
In this study we want to exploit the advantages of both techniques by combining
them into a new approach (T1+T2) which allows the definition of subject-specific
models of the knee (as T2 does) from non invasive observations of its natural motion
(via T1).
The aim of this work is twofold: first, to evaluate the application of T1 to the knee
articulation and, second, to test the applicability of T1+T2 on the same joint. To this
purpose, a leg specimen is analyzed and the knee joint motion is obtained by T1
starting from magnetic resonance imaging (MRI) data. The motion resulting from
T1, together with additional information about the anatomy of the joint specimen
also taken from MRI, is used as an input for the definition of T2. Finally, the results
of both T1 and T1+T2 are validated against in vitro experimental measurements of
the joint natural motion.

2 Materials and methods

2.1 T1 technique

Biologic tissues are able to modify their structure in response to the mechanical en-
vironment to which they are exposed [2, 6, 12, 19]. Experimental evidence from the
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literature suggests that the aim of this process is the mechanical optimization of the
tissues (functional adaptation). In particular, this process produces articular surfaces
that, in physiological working conditions, optimize the contact load distribution or,
equivalently, maximize the joint congruence [8, 13].
It is thus possible to identify the adapted motion as the envelope of the maximum
congruence configurations (i.e., positions and orientations of all bones constituting
the joint). In [5] a measure of joint congruence was proposed, based on the Winkler
elastic foundation contact model [14]. This measure makes it possible to estimate
the peak-pressure to resultant-force ratio from the geometry of the articulating sur-
faces at a given configuration, i.e., from a purely geometrical perspective. As a con-
sequence, the adapted motion can be obtained starting solely from the knowledge of
the shape of the articular surfaces.
As discussed in [4], the adapted motion should also keep the isometry of the joint
main ligaments. This condition is verified during the natural motion, which for this
reason can be taken as a good approximation of the adapted one. In the same study,
T1 was used to determine the adapted motion of ten human ankles, providing good
agreement with experimental measurements of the natural motion of the same spec-
imens. Based on these results, T1 is here applied to determine the knee natural
motion.

2.2 T2 technique

Many studies showed that the natural motion of the tibia with respect to the femur
is represented by a complex 1-Dof spatial path, i.e. the relative position and orien-
tation of the tibia and femur is a function of a single motion parameter, for instance
the flexion angle [17,24]. Moreover, some fibres of the ACL, PCL and MCL proved
to be almost isometric during this motion. From a mechanical point of view, this
means that the natural motion can be reproduced by an appropriate 1-Dof mecha-
nism. Three-dimensional parallel mechanisms were thus defined based on this con-
cept. One of them [17, 18] featured three rigid links representing the ACL, PCL
and MCL, while the contacts between tibial and femoral condyles were replaced by
the contacts between two pairs of spheres, or, equivalently, by two rigid links con-
necting the sphere centres at each pair. The result was a 1-Dof 5-5 spatial parallel
mechanism, which features two rigid bodies (the femur and tibia) interconnected by
5 binary links.
In previous studies, the initial geometry of the mechanism, namely the attaching
points and lengths of the five rigid links was determined from knee specimens. This
initial geometry was then optimized in order to best-fit the experimental natural
motion of the corresponding specimens [22]. This approach has been extensively
validated with very good agreement between model outcomes and corresponding
experimental natural motion [17]. The same approach is applied here, but the mo-
tion obtained by T1 is used as a reference for the model definition instead of the
subject experimental motion.
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2.3 Data acquisition and processing

A single fresh-frozen lower-limb specimen (female, 63 years old, weight 68 Kg,
height 158 cm) was analyzed in this study. A surgeon declared the leg free from
anatomical defects and removed the forefoot and the soft tissues external to the
joint, leaving the knee joint capsule and ligaments intact.
A stereophotogrammetric system (Vicon Motion Systems Ltd) was used to measure
the tibia and femur relative motion by means of two trackers directly fixed to the
bones, thus introducing no soft tissue artefacts. The specimen was mounted on a
test rig for in vitro analysis of the knee joint behaviour [7] which also allows mea-
surement of the femur-tibia relative motion when no external forces are applied. In
this condition, the joint is guided only by the knee passive structures, namely liga-
ments and contacts, and thus the natural motion can be registered. This experimental
natural motion was used only for validation purposes, but it was not used for model
definition.
A MRI of the knee was acquired using an isotropic three-dimensional fast spin-echo
pulse sequence T2-weighted (3D-FSE-CUBE-T2) within a 1.5 Tesla scanner. Artic-
ular surfaces and ligament insertions were then manually segmented using the free
open-source software Medical Imaging Interaction Toolkit (MITK), obtaining 3D
models of the femur and tibia including bone, cartilage and ligaments. In the same
way, anatomical reperi were determined on the femur and tibia models, and were
used to build anatomical reference systems [22] on both bones (Figure 1). The rel-
ative motion of these reference systems was then expressed by means of a standard
convention [10], both for the computed and experimental motions.
The anatomical 3D models of the femur and tibia, comprehensive of both bone and
articular cartilage, were used within T1 for the evaluation of the knee joint con-
gruence. Flexion angle was imposed and the other five motion components were
obtained by maximizing the congruence; the procedure was repeated over the full
flexion arc [4].
on of an average joint [3,17,24]. However, there is an increasing request of subject-
specific models that would allow personalization of treatments and prosthesis ge-
ometry to the patient needs. In these cases, the subject-specific motion would be
required. T2 definition was then performed based on the T1 motion and on the 3D fe-
mur and tibia models. The articular surfaces at the femur condyles and tibia plateaus
used for congruence evaluation in T1 were approximated by best-fitting spheres in
T2, and were then substituted by equivalent rigid links connecting the sphere cen-
tres. The most isometric fascicles of the ACL, PCL, MCL (i.e., the anteromedial,
posteromedial, anterior fascicle respectively) were identified within the segmented
ligament insertion areas [11]. The ligament isometric fibres were obtained as the
pair of points (one on the femur, the other on the tibia insertion areas of isometric
fascicles) that showed the minimum change in distance during the motion obtained
by T1. The so-determined isometric fibres were then substituted by three rigid links.
Finally, these preliminary mechanism parameters were adjusted by an optimization
procedure [22] to best-fit the T1 motion. The final mechanism parameters were con-
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Fig. 1 Anatomical reference systems for the femur (a) and the tibia (b). The tibia anatomical frame
has origin in the tibia centre, i.e., the deepest point in the sulcus between the medial and lateral
tibial intercondylar tubercles; x-axis orthogonal to the plane defined by the two malleoli and the
tibia centre, anteriorly directed; y-axis directed from the midpoint between the malleoli to the tibia
centre; z-axis as a consequence, according to the right hand rule. The femur anatomical frame has
origin in the midpoint between the lateral and medial epicondyles; x-axis orthogonal to the plane
defined by the two epicondyles and the hip joint centre, anteriorly directed; y-axis directed from
the origin to the hip joint centre; z-axis as a consequence, according to the right hand rule.

strained to remain inside the experimental insertion areas and to have a maximum
distance of 2mm with respect to the preliminary parameters.

3 Results

The relative motion of the tibia and femur identified by T1 was consistent with the
joint constraints. All ligaments indeed showed very small length changes during T1
motion: isometric fibre length excursions were smaller than 4% of the relevant fibre
maximum length for the ACL, PCL, MCL and the lateral collateral ligament (LCL),
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in agreement with what reported in the literature [1]. The subsequent application of
T2 made the ACL, PCL, MCL perfectly isometric, while the LCL showed a length
change smaller than 2%. Figure 2 shows the add-abduction (AA), the in-external
rotation (IE) and the antero-posterior (AP), proximo-distal (PD) and medio-lateral
(ML) translation of the tibia, plotted versus the knee flexion angle as experimentally
measured and computed by T1 and T1+T2.
In table 1, the mean absolute errors (MAE) between T1 and experimental natural
motions, between T1+T2 and T1 motions and between T1+T2 and experimental
natural motions are presented.

4 Discussion

The tibio-femoral motion predicted by the combination of the two techniques T1
and T2 well replicates the experimental data. There are however some differences
in the IE rotation and AP translation, for which the MAEs between the model and
the natural motion are about 12 and 4.5 mm, respectively. Despite these quantitative
differences, computed and experimental curves show a very similar trend, in par-
ticular for the IE rotations which differ essentially by a constant offset. The typical
screw-home motion of the knee is therefore correctly predicted by the model, but at
each flexion angle the configuration of the tibia results less internally rotated than
in the natural motion.
It is worth mentioning that, despite ligaments and contacts do guide the knee natu-
ral motion on a 1-Dof spatial path, the IE rotation is less constrained than the other
motion components. As a result, the knee shows the smallest stiffness about the IE
axis [9, 15], which is thus the most sensitive among the knee motion components
both for experimental measure and for numerical models. For what concern the AP
translations, variations in the IE rotation of the tibia are associated with AP dis-
placements of the same bone. In fact, the tibiofemoral motion is close to a spherical
one [21], whose centre does not coincide with the centre of the tibial anatomical
reference system. As a result, an IE rotation of the tibia is associated with a trans-
lation of the origin of its reference system, mainly along the AP direction. It is thus
reasonable that differences in the IE rotation are associated with differences in the
AP translation.
Despite the above mentioned differences, both the motion computed by T1 and the
experimental natural one respects the ligament isometry, producing length changes
smaller than 4% and 5% respectively for the ACL, PCL, MCL and LCL. This re-
sult supports the analogy between adapted and natural motion, as validated for the
ankle [4] and here hypothesized for the knee. It should also be stressed that only
the ligament isometry during the T1 motion made it possible the subsequent appli-
cation of T2. In fact, in general it is not possible to define a 5-5 mechanism that
both follows a generic prescribed path and respects the joint anatomical constraints
at the same time. A wider validation of T1 is therefore necessary in order to fully
understand the relation between the natural and adapted motion of the knee joint, in
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Fig. 2 Tibio-femoral relative motion as resulting from T1 (red dashed), T1+T2 (blue continue) and
experimental natural motion (black dotted).

Table 1 MAE for each motion component between T1 and experimental motion, between T1+T2
and T1 motion and between T1+T2 and experimental motion.
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continue) and experimental measures (black dotted). 
 

 
Tab. 1: MAE between T1 and experimental motion, between T2 and T1 motion 

and between T1+T2 and experimental motion for each component. 
 
 

 AA [°] IE[°] AP [mm] PD [mm] ML [mm] 
T1 vs exp. 0.90 12.24 4.55 0.32 1.22 

T1+T2 vs T1 0.54 0.64 0.34 0.28 0.26 
T1+T2 vs exp. 0.79 12.43 4.55 0.33 1.19 
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terms of both the differences and analogies in terms of motion and ligament isomet-
ric behaviour shown in this study.
A similar combination of T1 and T2 was investigated in [20]. In that case however,
only CT images of the knee were available, thus providing poor accuracy in the re-
construction of soft tissues that introduced some noise in the motion computed by
T1. These limitations were overcome in this study by means of MRI of the articular
surfaces. Moreover, the use of MRI makes the proposed approach less invasive with
respect to CT images, not exposing the patient to ionizing radiation, and therefore
more suitable for the in vivo clinical application.

5 Conclusion

The aim of this study was to test a new approach for the generation of subject-
specific model of the natural motion of the knee joint based on non invasive mea-
surements. This approach relays on two techniques defined as T1 and T2 that con-
tribute to determine the final model. The advantages of both techniques are ex-
ploited: T1 provides an evaluation of the knee natural motion by non invasive mea-
surements of the articular surfaces; then, based on this motion, T2 provides a mech-
anism which complies with the constraints imposed by the ligaments and articular
contacts, and that can be easily extended to define more complex static and dynamic
models.
The motion resulting from T1 fulfils the ligament isometry typical of the knee nat-
ural motion, thus making it possible the subsequent application of T2. The results
of the combination of T1 and T2 are in good agreement with experimental data,
although some differences were found.
Future work is therefore in progress on other specimens in order to further vali-
date the proposed approach and to investigate whether the observed differences are
common to all the knee joints, and in case to give a solid explanation of them.
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An Approach for Bone Pose Estimation via
Three External Ellipsoid Pressure Points

Nikolas Bufe, Ansgar Heinemann, Peter Köhler, Andrés Kecskeméthy

Abstract The accurate reproduction of bone motion during normal gait using non-
invasive external sensors is still an open issue: Using skin markers may lead to large
artifacts due to skin sliding, while using newer technologies such as fluoroscopy al-
lows only for short exposure in small regions due to radiation limits, and bone pins
used in the past are today prohibited due to the risk of inflammations and pain. This
paper presents a simple method for noninvasive bone motion estimation based on
palpating prominent bone landmarks via tracked pressure foil planes, where three
such landmarks suffice for bone pose estimation. Its mathematical formulation cor-
responds to determining the pose of a rigid body carrying three ellipsoids when the
“pressure points”, i.e. the perpendicular feet of the extremal distance points of the
ellipsoids on the three pressure foil planes are given. In a previous paper, we showed
that the planar case is akin to the 3PPR manipulator, but yielding instead of two so-
lutions up to 64 complex and (up to now found) 48 real solutions. In this paper we
treat the 3D case, which is solved numerically, and validate the concept by experi-
mental measurements. It is shown that the method is numerically stable, yielding an
accuracy of 1� for flexion/extension and abduction/adduction of the lower leg.

Key words: Noninvasive artifact free bone motion tracking, three-ellipsoid contact.

1 Introduction

Bone motion tracking from external measurements is an important task in biome-
chanics, as it is indispensable for model validation and patient-specific objective di-
agnoses. Currently, most bone tracking systems use markers attached to the skin [9].
However, the skin moves with respect to the underlying bones during motion caus-
ing an error known as ”soft tissue artifact” (STA). STAs can be substantial (up to
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3cm), as shown in comparisons with bone-pin measurements [8, 12, 17] and fluo-
roscopy [3, 7, 18]. Some authors have tried to minimize this error by using point
clusters [7], but there still remains a systematic error when using skin markers for
bone kinematics reconstruction [15]. Thus the problem of artifact-free noninvasive
bone motion estimation during gait has remained unsolved.
This paper presents a novel approach for noninvasive bone motion estimation

based on tracked external palpation of pressure points of prominent bone landmarks
via pressure foils. The concept was first proposed in [13], and a numerical analy-
sis of its planar counterpart was discussed in [5]. Later, the 2D case was formulated
in [6] via Gröbner bases, and it was found that the general 2D case with three rigidly
connected ellipses for which their “pressure points”, i.e. the perpendicular feet of
the ellipse extremal distance points (minimal or maximal) on the pressure lines are
given, yields 64 complex solutions, for which up to now a case was found with
48 different real solutions [6]. This proves that (1) the geometric problem is solv-
able, but (2) that the solution is non-trivial, yielding more solutions than the general
Steward-Gough platform (which maximally has 40 solutions). However, only one
solution, namely the one bringing the bone landmarks as close as possible to the
pressure points, is of interest. The present paper extends this solution to 3D.
Fig. 1 shows the basic concept of the approach using the human shank as an

example. Three pressure points, which are more or less rigid with respect to the
tibia, can be easily palpated at the bone landmarks: head of fibula as well as the
lateral and medial malleolus. The contact-relevant regions of the bone landmarks
can be locally approximated by ellipsoids which are rigidly attached to a body-
fixed frame Kb. However, while the pressure points are known, the actual distances
between the pressure points and the bone landmarks (representing soft tissue) are
unknown. The geometric problem is to find the Kb poses fulfilling these conditions.

minimal distance (unknown)

tibia

fibula

Kb

pressure sensor
rigid body

ellipsoid

pressure point

head of
fibula

lateral
malleolus medial

malleolus

Figure 1 Pose detection of a rigid-body with three pressure points on tracked pressure foil planes.
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2 Formulation of the constitutive equations

Assume that the rigid body is palpable as an array of three rigid ellipsoids E i i =
1, . . . ,3 which are rigidly attached to a body-fixed frame Kb (Fig. 2). The rigid-body
pose is described by the rotation matrix R transforming body-fixed coordinates to
coordinates in the inertial frame K0, and the position rb from the origin of K0 to the
origin of Kb in coordinates of K0. Each ellipsoid has a local coordinate frame KE i
rigidly attached to it, whose position relative to the body-fixed frame Kb is given
akin to the previous description by the vector ∆ r̄i and the rotation matrix Ri. The
surface of each ellipsoid E i with semi-principal axes of length ai, bi and ci can be
parameterized with respect to its local frame KE i as

E i(ui,vi) =

2

4
ai cos(ui)cos(vi)
bi cos(ui)sin(vi)

ci sin(ui)

3

5 (1)

where �π/2 ui  π/2 and �π  vi  π .
Likely, let the pose of each pressure foil plane Pi be defined by a plane-fixed

frame KPi with in-plane orthonormal vectors uxi and uyi. For an arbitrary point rti
on the surface of E i it holds

rti = rb+R∆ r̄i+RRi E i(ui,vi) . (2)

Let rti be the extremal ellipsoid point, i.e. with minimal or maximal distance to the
pressure foil plane. Then this point must fulfill two sets of constraints:

1) [Gradient orthogonality] For the gradient of E i at point rti,

nE i = RRi

✓
∂E i
∂ui

(ui,vi)⇥

∂E i
∂vi

(ui,vi)
◆

. (3)

it must hold

gi,x : nTE i uxi = 0 (4)

gi,y : nTE i uyi = 0 . (5)

2) [Distance orthogonality] Also, the distance vector from the measured pressure
point rpi on plane Pi to point rti must be normal to the plane Pi:

di,x : (rti� rpi)T uxi = 0 (6)
di,y : (rti� rpi)T uyi = 0 . (7)

Collecting all equations for the three ellipsoids gives a system of 12 scalar constraint
equations for the 12 unknowns

q= [ rb Φ u1 v1 u2 v2 u3 v3 ]T , (8)
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Figure 2 Definition of the pressure point for a generic ellipsoid.

whereΦ are the rotation parameters defining the orientation of the rigid body frame
Kb, taken as roll-pitch-yaw angles in the present case.
As mentioned in the introduction, the general system of equations (4) to (7) will

yield a plurality of solutions, so that a direct numerical root solving of these equa-
tions is not be feasible due to the poor conditioning and the closeness of solutions
with respect to each other. Thus, instead, the problem is solved as an unconstrained
optimization problem with a cost function composed of the weighted sum of the
squared constraint values and the squared distances d2i = krti� rpi k2

F(q) = c1
3

∑
i=1

�
g2i,x+g2i,y

 
+ c2

3

∑
i=1

�
d2i,x+d2i,y

 
+ c3

3

∑
i=1

di2 , (9)

where the weights ci are defined such as to balance between preciseness (first two
terms) and feasibility (di), and also to homogenize units among terms.

3 Error analysis

The procedure described above consists of four basic blocks (Fig. 3), each contribut-
ing to the overall error of the bone pose estimation algorithm. Here we discuss the in-
dividual error sources and transmissions. For marker tracking (Block 1), we used an
A.R.T. camera system [2], yielding a resolution error below 0.4 mm for the camera
volume used. For the pressure foil (Block 2), we used a 27.9 mm⇥27.9 mm Tekscan
sensor 5027 with 44⇥44= 1936 cells, yielding a resolution of ±0.6 mm [1]. Each
cell reports a binary pressure pB from 0 to 255 which is scaled to a physical pres-
sure range, in our case 0–34.5 N/cm2. The pressure center (Block 3) is computed

Block 1
marker tracking

Block 2
sensor foil

Block 3
pressure center

Block 4
SE(3) numerics

Figure 3 Basic blocks for bone pose determination from pressure foil measurements
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at each time step by four basic operations done using computer vision software
(OpenCV, [4]): (1) determining the maximum binary pressure value pBmax over
all cells (function cv::minMaxLoc), (2) zeroing all cells with pressure below
(pBmax �∆ pB), ∆ pB being the “thickness” of the highest pressure plateau (similar
to a mesa in the mountains), in the present case chosen as 30; (3) determining the
contours of all remaining areas (using cv::findContours) (see Fig. 4a), and
(4) computing the center of pressure of the largest contour inner area.
The resolution error of block 3 can only be determined together with block 2. To

this end, a pressure sensor foil was placed on a flat surface whose pose was tracked
by the A.R.T. camera system w.r.t. the inertial frame K0. A thin foam layer was
placed on top of the pressure foil in order to obtain a larger contact area, emulating
skin-on-bone effects. Finally, a metal sphere was dragged along the foam using a
KUKA KR6/2 robot, so that the vector srp remained constant during measurement
(Fig. 4). The pose of the body-fixed frame KS of the sphere was tracked with mark-
ers. The position vector srp was determined by an initial calibration. The resulting
coordinates of the center of pressure are displayed in Fig. 5. One can see that the
total error is in the order of the pressure foil resolution of±0.6mm, showing that the
pressure contour algorithm contributes only marginally to the pressure point error.
For error analysis of the fourth block, a simulation of bone pose estimation using

the equations of section 2 was carried out with a noisy input signal. For the solution
of the equations the subroutine LMDIF of the numerical library MINPACK [11] was
used. Starting from the known solution for noise-free data as initial guess, (a) the
poses of each sensor were overlaid with Gaussian white noise with a signal-to-noise
ratio of 32 dB and 48 dB for position rPi and orientation KPi respectively, which
correspond to a deviation of approximately 0.1 mm in position and ∆α = 1� in
orientation, and (b) the relative position Pi

rpi of the pressure points on the sensors

(a) (b)

K0

Ks

p

sphere

sensor foil
foam srp

moving direction ux

Figure 4 (a) Peak pressure plateau with contour and (b) device for testing the pressure point
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Figure 6 Bone pose variations after Gaussian noise on (a) sensor pose and (b) pressure points.

were overlaid with Gaussian white noise with a signal-to-noise ratio of 12 dB which
corresponds approximately to the Tekscan foil cell spacing of 0.6 mm. For each
of these variations, the new pose was computed by re-applying the optimization
run. The deviations of the solutions were regarded as first-order variations ∆r for
translation and ∆R for rotations. Both were then coupled using the concept of the
characteristic length κ [16], yielding the equivalent translational change

∆s= k∆r+κ ·∆ϕk with κ =
q
2`2max(1� cos(∆α)) ,

where `max is the distance between the rigid body center Kb to the furthest ellipsoid
center, giving in the present case κ = 3.41. By applying the noisy data as the input
and computing the pose as the output, the relative error magnification for 7000 data
points was computed. The result is shown in Fig. 6. It can be seen that for both cases
the order of the output remains in the same order of magnitude as the input noise,
and that there is no substantial amplification of errors in this block.

4 Experimental verification

The approach has been tested for the motion of the lower leg. The test subject was
a male of age 27 and was sitting on a chair and lifting and swaying the lower leg in
flexion/extension (+76� – +92�) and adduction/abduction (-15� – +5�), respectively.
The three ellipsoids where fitted manually to a CT scan of a typical tibia, and the po-
sitions of the ellipsoids in the tibia where determined by external measurements on
the test persons with rulers. Three Tekscan pressure foil sensors 5027 were slightly
(⇡ 8 N/cm2) pressed on the skin at the landmarks head of fibula, lateral malleolus
and medial malleolus (Figures 1 and 7a,b). At the same time, a rail with reflective
markers was tightly fixed on the anterior crest of the tibia by straps, so that there was
almost no relative motion between the rail and the tibia (Fig. 7c) [19]. This allowed
us to compare the results of the pressure foil bone motion estimation with a refer-
ence value. Fig. 8 shows the difference between pressure foil bone pose estimator
and reference pose. For both cases, flexion/extension and adduction/abduction, the
differences between the determined angle and the reference angle are below ±0.6�.
This shows that the proposed approach yields acceptable results for bone motion
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Figure 7 Sensor placement on shank, rail on shin for reference and bone geometry from CT scan.
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Figure 8 Flexion-extension (left) and adduction-abduction (right) angle error for shank motion.

tracking, eliminating all skin artifacts. This is remarkable, as knee STAs are known
to be especially significant in the initial stage of a sit-to-stand cycle [14].

5 Conclusions and Outlook

The paper presents a novel method for bone motion estimation using pressure foils.
The method corresponds to the determination of the pose of a rigid body, to which
three rigid ellipsoids are attached, when the “pressure points”, i.e. the perpendicular
feet of the minimal distance points of the ellipsoids on the three pressure foil planes
are given. The geometrical problem has many possible solutions (as shown for the
planar case in a previous paper), from which the most feasible one is robustly deter-
mined by optimization. The feasibility of the approach was verified by experiments,
leading to a global error of approximately ±0.6� on the tibia for flexion/extension
and abduction/adduction motion of the shank. For more precise estimators, sensors
with higher resolution and smaller contact areas could be used. Moreover, the shape
of the ellipsoids could be determined more precisely by slightly rotating the pressure
foil sensor on the landmarks and fitting a suitable ellipsoid to these palpating mo-
tions. It is to be noted that by simplifying all ellipsoids to spheres and assuming that
all three planes are perpendicular the pose analysis problem becomes similar to the
3PPPS parallel manipulator presented in [10], which is shown to have exactly eight
solutions. However, we expect that for the general three ellipsoid problem the num-
ber of solutions will be much larger, as 64 complex solutions were already found in
the special planar case [6]. These topics could be handled in further research.

An Approach for Bone Pose Estimation via Three External Ellipsoid Pressure Points 277



8 Nikolas Bufe, Ansgar Heinemann, Peter Köhler, Andrés Kecskeméthy
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Robot Dynamics Constraint for Inverse
Kinematics

Enrico Mingo Hoffman, Alessio Rocchi, Nikos G. Tsagarakis, and Darwin G.
Caldwell

Abstract Inverse Kinematics is a fundamental tool of Cartesian/Operational Space
control. Recent approaches make use of Quadratic Programming Optimization to
obtain desired joint velocities or accelerations from Cartesian references. QP based
IK also permits to specify constraints to affect the solution. Constraints are funda-
mental and necessary when working with real robotic hardware since they prevent
possible damages: joint limits, self collision avoidance and joint velocity limits are
examples of such constraints. In this work we present a constraint to take into ac-
count joint torque limits based on the robot dynamics and force/torque sensor mea-
surements. Despite the robot dynamics can be naturally expressed at acceleration
level, our main goal is to specify this constraint in a resolved motion rate control
IK. For this reason we formulate it also at the velocity level to be used in any IK QP
based scheme. Hence, this formulation allows to generate dynamically feasible mo-
tions of the robot even in simple IK velocity based schemes. We apply this constraint
to our humanoid robot COMAN while performing a Cartesian task which requires
high torques in some joints. The constraint is developed inside the OpenSoT library.

Key words: Inverse Kinematics, Quadratic Programming Optimization, Dynamics.

1 Introduction

Inverse Kinematics (IK) is a fundamental step in robots control since it maps high
level Cartesian commands into joint space commands. This step is in general highly
non-linear, for this reason linearization through the robot Jacobian has been pro-
posed and it is commonly used (named Differential IK):

Enrico Mingo Hoffman, Alessio Rocchi, Nikos G. Tsagarakis and Darwin G. Caldwell
DEPARTMENT OF ADVANCED ROBOTICS, ISTITUTO ITALIANO DI TECNOLOGIA,
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ẋ = J(q)q̇ (1)

where q̇ are joint space velocities, the Jacobian J (we will skip the dependency on
the actual configuration q from now on) is expressed from a certain base link to a
certain distal link, and operational space velocities ẋ of the distal link are expressed
in the base link reference frame. A general and commonly used solution, for the
redundant case of (1), is based on the Jacobian pseudo-inverse J†:

q̇d = J†ẋd +
�
I�J†J

�
q̇0 (2)

where q̇0 is an arbitrary joint space velocity.
Recent approaches make use of Quadratic Programming (QP) Optimization that

makes also possible to specify linear constraints for the IK to affect the solution:

q̇d = argmin
q̇

kJnq̇� ẋn,dk+l kq̇k

s.t. A1q̇ = A1q̇1
...

An�1q̇ = An�1q̇n�1
Ac,1q̇  bc,1

...
Ac,nq̇  bc,n

(3)

where A matrices and b vectors are constraints. In (3), priorities are taken into
account considering the previous solutions q̇i, i < n and constraints of the type
Aiq̇ = Aiq̇i, 8i < n, so that the optimality of all higher priority tasks is not changed
by the current solution [5]. The second term in the cost function of (3) permits to
handle kinematics singularities in order to avoid high joint velocities [6]. A similar
structure can be used to solve the IK problem at the acceleration level [9, 11].

Many tasks and constraints have been presented in literature for the frame-
work depicted in (3), examples are: joint limits, joint velocity limits, self collision
avoidance [4], Cartesian velocity limits, minimum joint acceleration [2], Capture
Point [8] and Momentum Rate control [3] for humanoid robot balancing.

In this work, a fundamental constraint for the IK step is presented: the robot dy-
namics. The computed velocities/accelerations in (3) may generate unfeasible mo-
tions, in terms of high joint torques, causing the damage of the robot. For this reason
it is important to constrain the generated joint torques during the task execution. De-
spite this constraint is commonly used in resolved acceleration control IK schemes,
it is not taken into account in simpler resolved rate control ones. The main goal of
this work is to present the torque limit constraint expressed both at the accelera-
tion and velocity level so that it can be applied to any IK scheme. Furthermore we
use this constraint in a stack implementing a high level task in the simulation of
a complex humanoid robot. This work follows the basic idea, presented in [2], to
have a velocity control scheme that shares (approximately) the characteristics of an
acceleration based scheme.
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2 OpenSoT

OpenSoT is a framework developed at the Istituto Italiano di Tecnologia and aimed
to control robots in Operational space [10]. OpenSoT implements the idea of de-
coupling atomic tasks/constraints descriptions and solvers to execute multiple tasks
and achieve complex motion behaviors.

Fig. 1: COMAN robot kinematics and reference frames

It employs a solver, based on the formulation in (3), implementing a cascade
of QP problems, and a set of tasks and constraints in velocity space in order to
solve a generic hierarchical inverse kinematics problem on a floating or fixed base
robot. The IK solver consists of a state machine that hides all the complexity of
the underneath QP solver based on a state-of-art library in QP resolution using the
active set approach: qpOASES [1]. This yields the following features that make the
implementation of OpenSoT unique and attractive:

• Demonstrates high modularity through the separation of task descriptions, con-
trol schemes and solvers maximizing customization, flexibility and expandabil-
ity.

• Provides user friendly interfaces for defining tasks, constraints and solvers to
promote integration and cooperation in the emerging field of whole-body hierar-
chical control schemes.

• Demonstrates computation efficiency to allow for real time performance imple-
mentations.
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• Allows ease of use and application with arbitrary robots through the Universal
and Semantic Robotic Description Formats (URDF and SRDF).

The architecture of OpenSoT encourages collaboration and helps integration and
code maintenance 1. With all this in mind, we developed a library of tasks and
constraints and the robot dynamics constraint is part of the latter.

3 Robot Dynamics Constraint

One of the fundamental problem in IK is that some assigned Cartesian reference
trajectories might be dynamically unfeasible by the robot. This means that the robot
might get damaged since the required joint torques for a certain motion could be too
high. Various technique have been presented in the past to avoid this problem, one of
the most famous is the Dynamic Filter [12]. This technique basically uses an Inverse
Dynamics step to filter the generated joint accelerations from the IK solution.

In this work we formulate the Dynamic Filter as a constraint. The dynamics of
the robot can be written as:

M(q)q̈+C(q, q̇)q̇+G(q) = t �JT
c fc (4)

where M(q) is the joint space inertia matrix, C(q, q̇) takes into account centrifugal
and Coriolis terms, G(q) are the gravity torques, t are the joint torques and JT

c fc are
the torques due to contacts (that we measure from the force/torque sensors).

Considering an acceleration level control and taking into account that each joint
can provide [t, t], it is possible to write the constraint as:

D(q, q̇)+ t  M(q)q̈  D(q, q̇)+ t (5)

with D(q, q̇, fc) = �(C(q, q̇)q̇+G(q))�JT
c fc.

Despite the constraint is naturally described at the acceleration level, in this work
we are considering velocity level control, so it is possible to approximate the joint
acceleration q̈ as:

q̈ '

q̇⇤

� q̇
DT

(6)

then the constraint can be rewritten at the velocity level as:

DT (D(q, q̇)+ t)+M(q)q̇  M(q)q̇⇤

 DT (D(q, q̇)+ t)+M(q)q̇ (7)

where q̇⇤ are the new joint velocities references.
A similar idea was presented also in [7] but contact forces were not taken in

consideration, while they are fundamental when working with floating base robots.
Practically speaking, it is useful to have a scaling factor s 2 (0, 1] in front of

1 The OpenSoT library is open-source and downloadable at
https://github.com/robotology-playground/OpenSoT
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the constraint, which allows to smoothen the solution as the robot approaches its
dynamic limits:

s (DT (D(q, q̇)+ t)+M(q)q̇)  M(q)q̇⇤

 s (DT (D(q, q̇)+ t)+M(q)q̇) (8)

4 Experiments

In this section we will show the application of the robot dynamics Constraint into
a complex IK problem to perform a Cartesian task with the simulated model of our
humanoid robot COMAN (in Fig 1). The task consists of moving both arms down-
wards generating a whole body squat motion. To show the effect of the dynamics
constraint we highly reduce the available torques at the legs joints of 60%: from
50 [Nm] to 20 [Nm]. We will show,in particular, that the joint torque at the knee is
bounded in the limits. Apart from the robot dynamics constraint, we consider joint
limits, joint velocity limits (up to 0.6

⇥ rad
sec

⇤
).

Fig. 2: COMAN performing the squat motion. The upper sequence results in an
unfeasible motion considering the imposed torque limits while the second results in
a feasible one

For the robot dynamics constraint we are using s = 0.85 and we are filtering the
sensed (simulated) wrenches at the force/torque sensors using a simple filter:

wt += (wt �wt-1)0.9 (9)

The Cartesian task consists of a linear trajectory for the left and right hands, from
the initial pose, to 0.18 [m] down and then back again. Desired joint trajectories are
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sent to the robot open-loop integrating the results obtained from the IK:

qd = q+ q̇DT (10)

Measured joint velocities and force/torques at the ankles are used as feedback.
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Fig. 3: Measured torques on the joints of the pitch joints in the legs while perform-
ing the task without (dashed lines) and with (continuous lines) the robot dynamics
constraint. The constant line shows the limit on the torque of the knee joint
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In Fig. 2 it can be observed the final motion performed by the robot when the
robot dynamics constraint is not active (upper sequence) and when it is active (lower
sequence)
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Fig. 4: Cartesian error on the left hand while performing the task without (dashed
lines) and with (continuous lines) the robot dynamics constraint

Cartesian errors are shown in Fig. 4. Despite the higher Cartesian errors when
using the robot dynamics constraint, the robot exceeds the imposed torque limits, at
the joint knees, trying to keep the Cartesian error small when the robot dynamics
constraint is not used. Fig. 3a and Fig. 3b shows in particular that the torques at left
and right knees, respectively, remains in the imposed limits when using the robot
dynamics constraint, while exceeds when not using it.

5 Conclusions

In this paper we have formulated the joints torque limit constraint at the velocity
level, for fixed/floating base robots, to filter dynamically unfeasible motions. We
presented the theoretical formulation and we showed results in simulation using
our humanoid robot COMAN considering a whole body task involving also other
constraints such as joint limits and joint velocity limits. We show that the robot
dynamics constraint can make the task dynamically feasible and it is able to keep the
torque at the knee joint on the given boundary limits. We think this is fundamental
when working on real hardware as well as joint limits and joint velocity limits.
This constraint is fundamental when Cartesian trajectories references are aggressive.
Future works will consider the application of such constraint in more complicated
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tasks, investigate the effect of the tuning of the s parameter as well as the interaction
with other constraints and the test on the real robot.
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Path Planning in Kinematic Image Space
Without the Study Condition

Martin Pfurner, Hans-Peter Schröcker, and Manfred Husty

Abstract This article proposes a new dual quaternion based approach for motion
interpolation. The highlight is that dual quaternions act in the usual way on points,
even if the Study condition is not fulfilled. This fact induces a fibration of kine-
matic image space into straight lines that describe the same rigid body displace-
ment. Hence, it is possible to do motion interpolation by means of standard (piece-
wise) rational interpolation schemes in the surrounding projective space of the Study
quadric.

Key words: motion interpolation, dual quaternion, kinematic map, rational motion

1 Introduction

Motion design is generally considered to be a more demanding task than curve de-
sign. One reason is that usual point models of SE(3), the group of rigid body dis-
placements, are curved. Hence the motion – a curve in a kinematic image space –
must not only satisfy approximation, interpolation, or fairness conditions, it is also
constrained to lie on a curved manifold. One example is [4] where variational mo-
tion design is done in a Euclidean space of dimension twelve but a back-projection
step onto the six-dimensional motion group is required. Other examples come from
interpolation in the dual quaternion model of SE(3) [2, 3, 10] where the quadratic
Study condition is always taken into account. It is the highlight of this paper that the
Study condition can actually be ignored for the purpose of motion design, thus al-
lowing direct motion interpolation in a projective space. In this way, it is possible to
use standard (piecewise) rational interpolation schemes to generate motions of arbi-
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trary smoothness. In this article we introduce the necessary theoretical background,
discuss properties of the proposed approach and present a simple example.

2 Kinematic Mapping

A rigid body displacement is often described by a homogeneous 4 ⇥ 4 matrix M,
acting on a point x in the moving frame according to x0 = Mx. Here, x0 is the image
point in the base frame, the lower right 3⇥3 sub matrix of M is a proper orthogonal
matrix corresponding to the orientation of the moving frame with respect to the base
frame, and the first column of M contains the vector connecting the origins of the
two frames representing the translational part of the transformation. Using Study’s
kinematic mapping k (see [5,11]), the displacement given by M is mapped to a point
d = [x0,x1,x2,x3,y0,y1,y2,y3]T in seven dimensional projective space P7. Its coor-
dinates are called the displacement’s Study parameters. They fulfill the quadratic
Study condition

x0y0 + x1y1 + x2y2 + x3y3 = 0, (1)

its zero set is the Study quadric S2
6 ⇢ P7.

Conversely, a point on S2
6 minus the exceptional three space E : x0 = x1 = x2 =

x3 = 0 yields the matrix

M := k

�1(d) =
1
D

2

664

1 0 0 0
t1 x2

0 + x2
1 � x2

3 � x2
2 �2x0x3 +2x2x1 2x3x1 +2x0x2

t2 2x2x1 +2x0x3 x2
0 + x2

2 � x2
1 � x2

3 �2x0x1 +2x3x2
t3 �2x0x2 +2x3x1 2x3x2 +2x0x1 x2

0 + x2
3 � x2

2 � x2
1

3

775 (2)

where D = x2
0 + x2

1 + x2
2 + x2

3 and

t1 = 2x0y1 �2y0x1 �2y2x3 +2y3x2,

t2 = 2x0y2 �2y0x2 �2y3x1 +2y1x3,

t3 = 2x0y3 �2y0x3 �2y1x2 +2y2x1.

(3)

However, the Study condition (1) is not necessary for M to describe a rigid body
displacement. Thus, the range of k

�1 may be extended to P7
\ E. By doing this

we lose injectivity but get rid of the non-linear Study condition. Properties of this
extended inverse kinematic map are investigated in the following section.

3 Fibers of the Extended Inverse Kinematic Map

We consider the map k

�1 : P7
\E ! SE(3), defined in (2). Since it is not injective,

we should look at its fibers, the sets of points in P7 with the same image in SE(3).
Given a = [a0, . . . ,a7] 2 P7

\E we have to solve the matrix equation
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M(a) = M(b) (4)

for b = [b0, . . . ,b7]. Because the restriction of Study’s kinematic map k to the
spherical motion group SO(3) is a bijection [6, Section 2] we immediately get
[a0,a1,a2,a3] = [b0,b1,b2,b3]. Now, b4, b5, b6, b7 are obtained by solving the lin-
ear system arising from (3) and (4). It can be shown that this system of three linear
equations in four unknowns has solutions if and only if a /2 E. In this case the solu-
tion of the corresponding homogeneous system is (b4,b5,b6,b7) = l (a0,a1,a2,a3)
with l 2 R so that the inhomogeneous system has the solution set

{a+l (0,0,0,0,a0,a1,a2,a3) | l 2 R}.

In projective sense, this is the parametric equation of a straight line characterized by

Theorem 1 The fiber of point a = [a0, . . . ,a7] 2 P7
\E with respect to the extended

inverse kinematic map k

�1 is a straight line through a that intersects the exceptional
generator E in [0,0,0,0,a0, . . . ,a3].

4 Path Planning Using the Extended Inverse Kinematic Map

For a typical path planning task several poses of the end effector frame are given,
possibly with higher order derivatives (velocity, acceleration, . . . ). The problem is
to find a valid path such that the manipulator is able to guide its end effector frame
through these poses. We propose to treat this as a (piecewise) rational curve inter-
polation problem in P7 and map the solution to SE(3) via k

�1. This is possible with
or without prescribing parameter values. The fact that interpolation takes place in a
projective space rather than an affine space gives degrees of freedom that may be
used for additional optimization. Motion interpolation of this type is applicable for
path planning in Cartesian space of parallel or serial manipulators with six degrees
of freedom. If the inverse kinematics has closed form solutions, we automatically
get a motion parametrization in joint space. This is in particular true for Stewart-
Gough manipulators.

Because k

�1 is quadratic, the degree of any point path is at most twice the degree
of the interpolant in P7. Thus, we can achieve a geometric continuity of order n for
the motion with point paths of degree at most 2(n + 1). At possible intersection
points of interpolant and exceptional generator E, the map k

�1 becomes singular
and a degree reduction of the paths occurs.

In this paper we consider an example of the simplest case, a linear interpolant
(n = 0), in more detail. Its paths are at most of degree two. According to [8] this
type of rational motion is either a translation in constant direction, a rotation about
a fixed axis, a quadratic translation or a Darboux motion [1, Section IX.3] which is
the generic case.

Path Planning in Kinematic Image Space Without the Study Condition 291
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5 Path Planning for SG-Platforms

This section presents a numerical example for a path planning application. We take
a 3-3 Stewart-Gough manipulator with given start and end pose of the platform. The
anchor points in the base frame are

b1 = [1,0,0,0], b2 = 1
3 [3,200

p

3,600,0], b3 = 1
3 [3,�200

p

3,600,0]; (5)

the anchor points in the moving frame are

p1 = [1,0,100,0], p2 = [1,�50
p

3,�50,0], p3 = [1,50
p

3,�50,0]. (6)

The legs of the parallel platform connect the point bi with the points p j and pk, for
any three distinct indices i, j,k 2 {1,2,3}. Start and end pose are given as

pS = [�1.969,�0.759,1.149,�0.554,�39.282,204,98.154,63.692],

pE = [�0.861,�1.169,1.578,�0.362,�66.147,220.447,106.460,�90.362]
(7)

and the linear motion in P7 connecting them can be parameterized by m = (1 �

l )pS +lpE with l 2 [0,1]. The mapping k

�1(m) = M yields

M =
1

25g

✓
25g 0

t A0 +lA1 +l

2A2

◆
(8)

where g = 110821l

2
�203420l +416500,

t =

0

@
8293675l

2 +908782l +41650000
5372659l

2
�10882886l +29155000

24120195l

2
�29264718l +62475000

1

A ,

A0 =

0

@
193694.118 �268865.882 �252321.177
29976.471 295556.471 �291924.706

367500 117600 156800

1

A ,

A1 =

0

@
�309436.235 26810.165 69673.553
�245088.941 �259464.141 2367.812

�47460 �7056 �423808

1

A ,

A2 =

0

@
80490.918 �53290.586 54429.952
5074.071 82761.743 73525.790
�76005 �50910.720 62551.040

1

A .

In Figure 1, 15 discrete poses of the platform’s motion between pS and pE with
respect to the base frame are shown.

The paths of the anchor points of the platform are parametrized by pi(l ) = Mpi,
i = 1 . . .3, for example
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Fig. 1 Motion of the platform coordinate frame.

p1 =
1
5g

0

BB@

1
7(2471602l

2 +1648393l +358540)
21935078l

2 +20334377l +9980810
3(15483078l

2 +11336647l +4206650)

1

CCA . (9)

It is easy to compute the leg length as distance between corresponding anchor points.
The squared distance of b1 and p2 is

l2
1 =

1
p

g

(230970295100000l

4 +233944277500000l

3

+122850542200000l

2 +24493035330000l +2567030405000). (10)

Plots of the joint functions of l1 and l2 are shown in Figure 2 and their first time
derivative, the joint velocity functions, in Figure 3. Note that the vectors in (7)
are unique only up to scalar multiplication, that is, m = (1 � l )spS + lepE with
[s ,e] 2 P1. As an example of how to use this degree of freedom we chose [s ,e]
such that the resulting parameterization minimizes the maximal joint velocity of the
first leg. Here we used a naive way for such a minimization because this is not the
scope of this paper. Other optimization is obviously possible and might be more
relevant in practical applications.

Because the paths of the platform anchor points are given in parametric form,
the Jacobian matrix can also be computed depending on the motion parameter. Its
determinant reads

Path Planning in Kinematic Image Space Without the Study Condition 293
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Fig. 2 Explicit joint functions of leg l1 Fig. 3 First time derivative of the explicit joint
function of leg l1

Fig. 4 Determinant of the Jacobian of the manipulator along the path.

|J| = �

1
g

4 82944000000
p

3(2846708474987877679535869344l

8

+7439781085532680427286620464l

7 +3009884293952398044013325872l

6

�6978549515800829192770757528l

5
�10657661639071658458227857926l

4

�7021871831411348585713842061l

3
�2502177832360314067874514040l

2

�464246599952835104361411000l �25197137764017298716000000). (11)

From the plot of the Jacobian function in Figure 4 we see that the designed path is
free of singularities.
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6 Discussion and Conclusion

We have demonstrated that the Study condition is not necessary for motion inter-
polation in the dual quaternion model of SE(3). It is possible to use existing algo-
rithms for direct interpolation of motion data in projective space P7. As an example,
we created a path connecting two poses and related it to the joint parameters of a
Stewart-Gough platform.

We can only speculate, why the Study condition has so far been omnipresent in
dual quaternion based motion interpolation approaches, for example in [2, 3, 10].
One reason may be analogy to the representation of SO(3) by points of the quater-
nion unit sphere [6, Section 2]: The Study condition is what remains of the unit norm
condition after projectivization. Another reason could be mathematical aesthetics.
The points of Study quadric minus E are in bijection to SE(3) while our extended
inverse kinematic map is no longer injective.

We have not dealt in detail with interpolation algorithms in P7 so that it is prob-
ably too early for a fair comparison with existing work. What we can already claim
is the possibility to generate arbitrarily smooth interpolants to given Hermite mo-
tion data by standard spline interpolation. By design, such approaches will yield
paths of a slightly higher degree than those coming from geometric motion interpo-
lation [7,9,10]. However, in contrast to these papers existence of interpolants can be
guaranteed, their computation is straightforward and additional degrees of freedom
may be used for optimization.

In this paper we did not deal with avoidance of singularities or obstacles. It is
possible to include this in the proposed method in particular if the obstacles or sin-
gularities are described by algebraic equations. In this context, (piecewise) rational-
ity of paths is a great advantage because intersection with algebraic hypersurfaces
immediately yields a univariate polynomial. In order to fully profit from our con-
struction, it is necessary to extend the varieties of forbidden poses by the fibration
described in Theorem 1. This gives rise to numerous interesting questions for future
research.
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The 2D Orientation Interpolation Problem: A
Symmetric Space Approach

Yuanqing Wu, Andreas Müller, and Marco Carricato

Abstract In this paper, we propose a novel construction of Bézier curves of two-
dimensional (2D) orientations using the geometry of real projective planeRP2. Un-
like the commonly adopted unit 2-sphere model S2, RP2 is naturally embedded in
the 3D special orthogonal group SO(3). It is also a symmetric space that is equipped
with a particular class of isometries called geodesic symmetry, which allows us to
generate any geodesics using the exponential map of SO(3). We implement the gen-
erated geodesics to construct Bézier curves for direction interpolation.

Key words: direction space, real projective plane, symmetric space, Bézier curve,
interpolation

1 Introduction

The 2D direction space (or orienting region [17]) refers to the set of all spatial
directions attainable by a reference unit 3D vector, and may be naturally identi-
fied with a subset or the entirety of 2D unit sphere S2. It should be distinguished
from the 3D orientation space SO(3) of a rigid body [12]: two rotation matrices
R,R0

2 SO(3) take the initial direction, say the north pole z = (0,0,1)T
2 S2, to

the same direction p(R) = Rz 2 S2 so long as they differ by a spin R00

2 SO(3)
about z, i.e. R = R0R00. The problem of motion design [19] on the direction space S2

arises in applications where a decomposition of SO(3) into tilt (changing direction)
and torsion (spin) [1] is required or preferred, such as motion planning for two to
three degrees-of-freedom (3-DoF) robotic wrists, tool path generation for multi-axis
machine tools, and trajectory generation for unmanned aerial vehicles.

Yuanqing Wu and Marco Carricato
Department of Industrial Engineering (DIN), University of Bologna, Italy
e-mail: yuanqing.wu@unibo.it, marco.carricato@unibo.it
Andreas Müller
Institut für Robotik, Johannes Kepler Universität Linz, Austria e-mail: a.mueller@jku.at
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(a) (b) (c)

Fig. 1 The tilt motion of a (a) robotic wrist or (b) a five-axis machine spindle, and (c) the collective
roll/pitch motion of an UAV are a few relevant applications of motion design on S2 (photos from
internet).

Solving the aforementioned motion design problem poses several difficulties.
First, the motion design problem on S2 is not equivalent to the interpolation problem
on S2 [2–4]. In order to compute the inverse kinematics and/or equations of motion
for a robot or machine under consideration, we need to designate a 2D submanifold
M of SO(3) that (when acting on z) can reach any direction in S2. Besides, although
motion design on SO(3) [2, 6, 7, 13–16, 21] and interpolation on S2 [2, 3] have been
extensively studied in the past, existing methods may not be directly applied to
general submanifolds of SO(3): the group structure of SO(3), its double covering
by unit quaternions (S3) and the availability of exponential coordinates are usually
exploited in its motion design, which may no longer be available for submanifolds
of SO(3).

Fortunately, there is a special 2D submanifold of SO(3), which is diffeomorphic
to the real projective planeRP2, that retains properties similar to those of SO(3). We
may solve the motion design problem on S2 by reusing almost any SO(3) motion
design method for RP2 with a slight modification. In particular, RP2 is complete
(a geodesic segment can be infinitely extended), totally geodesic (sharing the same
form of geodesics as SO(3)) and auto-parallel (sharing the same formulation for
computing acceleration as SO(3)). In fact, this is a direct consequence ofRP2 being
a symmetric subspace of SO(3) [23]: RP2 is nothing but the exponential image of a
2D vector subspace of so(3) (Lie algebra of SO(3)).

The paper is organized as follows. In Section II, we give a brief review of SO(3)
and RP2, and investigate explicit expressions for geodesics on RP2. In Section III,
we present a de Casteljau type cubic Bézier interpolation algorithm for RP2 sim-
ilar to that for SO(3) [2, 15]. Finally in Section IV, we conclude our paper with a
discussion of future works.
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2 Model Space for Motion Design on S2

We give a brief review of SO(3) and its unit quaternion representation, which will
prepare the reader for a brief introduction of the real projective planeRP2 as the 2D
model space for motion design on S2.

The reader may refer to [12] for further analysis of SO(3) in robot kinematics and
dynamics, and [23] for a brief introduction to its symmetric space characterization.
SO(3) is a 3D compact Lie group with Lie algebra so(3) given by the 3D vector
space of all 3⇥3 real skew-symmetric matrices:

so(3) =
�
bw 2R3⇥3

�� bwT = �

bw
 

(1)

with bw being induced by a 3D vector w = (w1,w2,w3)T via bwv = w ⇥ v,8v 2R3.
The orthonormal matrix representing a rotation about unit axis w 2 S2 with angle
q 2R is given by the Rodriguez formula:

eq

bw = I+ sinq

bw+(1� cosq)bw2
kwk = 1 (2)

where e(·) denotes the exponential map exp : so(3) ! SO(3). The same rotation is
represented by two unit quaternions q,�q 2 S3:

q = e
q

2 w = cos
q

2
+ sin

q

2
w kwk = 1 (3)

where w = w1i+w2j+w3k and i, j, k are quaternionic units that admit the following
associative multiplication rules (see for example [20]):

ii = jj = kk = �1 ij = �ji = k, jk = �kj = i, ki = �ik = j (4)

This two-to-one correspondence r : ±e
q

2 w
7! eq

bw between S3 and SO(3) illus-
trates the fact that SO(3) is diffeomorphic to the 3D real projective space RP3,
which arises from identifying antipodal points of S3.

The geodesic between two orientations R,R0

2 SO(3) is explicitly given by [15]:

g(t,R,R0) = exp(t log(R0RT ))R, t 2 [0,1] (5)

If the initial velocity b
w 2 so(3) is specified instead of the end point R0, we denote

the geodesic by:
g(t,R, bw) = exp(t bw)R, t 2R (6)

Other than being a Lie group, SO(3) is also a symmetric space [5, Ch. IV.6].
Roughly speaking, a symmetric space M can be reflected isometrically onto itself
about each point p 2 M. These reflection maps (denoted Sp, p 2 M) are usually
referred to as geodesic symmetries, since they reverse the geodesics passing through
p 2 M. SO(3) becomes a symmetric space with SR,R 2 SO(3) given by SR(R0) =
RR0T R,8R0

2 SO(3). In this case, it is easy to see that:

The 2D Orientation Interpolation Problem: A Symmetric Space Approach 299
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SR(g(t,R, bw)) = g(t,R,�b
w) = g(�t,R, bw) (7)

The reason for us to introduce the concept of symmetric space is that the 2D sub-
manifold we propose for motion design on S2 is a symmetric subspace of SO(3).

A symmetric subspace N of a symmetric space M is a submanifold that is closed
under geodesic symmetry [10]:

Sp(q) 2 N 8p,q 2 N (8)

SO(3) admits, up to conjugation, a unique symmetric subspace N given by the ex-
ponential image expbp of a 2D vector subspace bp of so(3) defined by:

b
p = span(bx,by) x = (1,0,0)T ,y = (0,1,0)T (9)

Several useful geometric properties of N = expbp along with those reported in [23]
are summarized below without proof:

Properties of RP2.

1. N corresponds, under unit quaternion representation, to the unit 2-sphere S2:

S2 = {a0 +a1i+a2j+0k 2 S3
} (10)

More precisely, N is isometrically diffeomorphic to the real projective planeRP2,
which arises from identifying antipodal points of S2. Hereafter, we shall denote
N simply by RP2.

2. The exponential map exp : bp ! RP2 is surjective, which allows us to take the
square root of any R 2RP2:

R1/2 = ebw/2 R = ebw 2RP2, bw 2

b
p (11)

3. The spatial (right-trivialized) velocity space ofRP2 at R 2RP2 is given by [23]:

AdR1/2bp = span((R1/2x)^,(R1/2y)^) (12)

where the Adjoint transformation AdR1/2 is defined by
AdR1/2(bw) = R1/2bwR�1/2 = (R1/2w)^,8ŵ 2 so(3). This is referred to as the
half-angle property in [23].

4. RP2 is a totally geodesic submanifold of SO(3) [23]; its geodesic, passing
through 8R 2RP2 with velocity (R1/2w)^, bw 2

b
p, is given by:

g(t,R,R1/2w) = exp(t(R1/2w)^)R

= R1/2etbwR�1/2R = R1/2etbwR1/2
t 2 [0,1] (13)

5. RP2 is also an auto-parallel submanifold (see [8, Vol.2]) of SO(3): computation
of acceleration is exactly the same as that of SO(3) (see for example [2, 14]).

The various properties of RP2 can be summarized into two useful propositions.
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Fig. 2 Geodesics ofRP2 (red) in comparison with great arcs on S2 (blue): (a) on bp, (b) on S2.

Proposition 1. The geodesic between R,R0

2RP2 is given by:

g(t,R,R0) = R1/2 exp(t log(R�1/2R0R�1/2))R1/2

= exp(tAdR1/2 log(R�1/2R0R�1/2))R
t 2 [0,1] (14)

Proof. This is a direct consequence of Eq. (13). ut

We emphasize that the 2D direction space S2 is not the same as that of the S2

model forRP2 (unit quaternion in a hyperplane). In particular, the geodesics g(t) of
RP2 do not map (by p : RP2

! S2) to great arcs on S2. It can be seen from Fig. 2
that as the direction deviates further from z, the projected geodesics p(g(t)) = g(t)z
deviate further from great arcs.

Proposition 2. Given a trajectory R(t) = ebw(t)
2RP2, t 2R where bw(t) 2

b
p,8t 2R,

the right-trivialized velocity b
w(t) and acceleration b

a(t) of R(t) are given by:

b
w(t) = Ṙ(t)R(t)T =

⇣
dexpR(t) ẇ(t)

⌘
^

=

✓Z 1

0
exp(ubw(t))ẇ(t)du

◆
^

b
a(t) =

✓
D2

dt2 R(t)
◆

R(t)T = ḃ
w(t)

(15)

where dexp denotes the right-trivialized differential of the exponential map, and
D/dt denotes the covariant differentiation along R(t). In particular, we have by the
half-angle property:

w(t) 2 ebw(t)/2
p a(t) 2 ebw(t)/2

p (16)

Proof. The expression for acceleration is exactly the same as that for SO(3) [2],
since RP2 is an auto-parallel submanifold of SO(3). ut

In summary, RP2, except for not being a Lie group, retains all properties of
SO(3) pertaining to motion design. It is also easy to see that RP2 (when acting on
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z) may reach any direction on S2. This motivates us to designate RP2 as the model
space for motion design on S2. Note that RP2 characterizes Bonev’s zero torsional
rotation [1,22], though he did not pursue the symmetric space properties ofRP2. In-
terpolation on the real projective plane RP2 is studied in [9] without resorting to its
symmetric space characterization. This is later pointed out in [11]. In neither case
RP2 is treated as a symmetric subspace of SO(3), nor is exponential coordinates
utilized.

3 Motion Design on S2 using RP2

SinceRP2 retains almost identical properties of SO(3), it is theoretically possible to
adapt any motion design methods for SO(3) onto RP2. It suffice to make our point
by investigating a de Casteljau algorithm for cubic Bézier interpolation between two
directions. The following treatment follows closely that in [2].

Given n + 1 control points R0
i = ebwi

2 RP2, bwi 2

b
p,0  i  n, and a parameter

value t 2 [0,1], the de Casteljau algorithm computes a point R(t) 2RP2 on the nth

order Bézier curve in a recursive manner:

Rk
j(t) = g(t,Rk�1

j (t),Rk�1
j+1(t))

= exp(tbwk�1
j (t))Rk�1

j (t)

R(t) = Rn
0(t)

1  k  n,0  j  n� k (17)

In reference to Prop. 1 and (12),

wk�1
j (t) = (Rk�1

j (t))1/2ewk�1
j (t) ewk�1

j (t) 2 p (18)

and
(ewk�1

j (t))^ = log((Rk�1
j (t))�1/2Rk�1

j+1(t)(R
k�1
j (t))�1/2) (19)

See Fig. 3(a) for the case n = 3.
We shall first investigate the two-point boundary value problem (BVP) where

velocity for both initial and end point are specified. Given R0
0 = ebw0 ,R0

3 = ebw3
2

RP2 with w0,w3 2 p, and initial and end velocities w0 = ebw0/2 e
w0, w3 = ebw3/2 e

w3
with e

w0, ew3 2 p, we need to compute the two remaining control points R0
1,R0

2. In
reference to [2, Sec. 3], we have:

ew1
0 =

e
w0

3
w1

2 =
w3

3
(20)

R0
1 = exp(bw0/2)exp((ew1

0 )^)exp(bw0/2) R0
2 = exp(�bw1

2)R0
3 (21)

Next, for a initial-value problem (IVP), the initial acceleration a0 = ebw0/2e
a0,

e
a0 2 p instead of end point velocity is given. The second missing control point is
then given by:

w1
1 = w1

0 +
1
6

Z 1

0
exp(ubw1

0)a0du (22)
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(a)

(b) (c)

Fig. 3 (a) cubic Bézier curve on RP2 (red) with control polygons (blue); (b) and (c) minimum
distance and acceleration cubic Bézier interpolation of four directions on S2 (red) with control
polygons (blue).

R0
2 = exp(bw1

1)R0
1 (23)

The IVP algorithm can be easily implemented in a multi-point interpolation in a
way similar to that proposed in [16], with suitably chosen initial acceleration, such
as for minimum distance (Fig. 3(b)) and for minimum acceleration (Fig. 3(c)). The
details are omitted due to page limit.

We also remark, although a direct interpolation on S2 is techanically more conve-
nient, it does not respect the geometry of RP2 which we have to face when control-
ling a robot to follow a particular motion trajectory that results in the desired point
trajectory on S2. When the robot has a constant identity inertia tensor, for example,
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the aforesaid minimal distance and acceleration trajectory are also the minimum
energy and minimum control effort trajectory, respectively.

4 Conclusion

In this paper, we have proposed a novel model space, the real projective plane RP2

as a symmetric subspace of SO(3), for the motion design on S2. We emphasize on
the possibility of reusing existing interpolation methods for SO(3) on RP2 due to
the symmetric space and symmetric subspace structure of SO(3) and RP2, respec-
tively. We illustrate the use of this novel model space in direction interpolation using
a Riemannian Bézier cubic IVP interpolant. Nevertheless, interpolants based on unit
quaternions may be equally adapted toRP2. It may also be proved that the Rieman-
nian cubic spline onRP2 admits exactly the same form as that on SO(3) [3,14]. This
opens up new applications, for example in optimal control problems onRP2 (see for
example [18]) using the computationally convenient exponential coordinates. Our
work may be carefully generalized to other symmetric subspaces of SE(3) [23],
which we hope to report in the near future.
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Closure Polynomials for Strips of Tetrahedra

Federico Thomas and Josep M. Porta

Abstract A tetrahedral strip is a tetrahedron-tetrahedron truss where any tetrahedron
has two neighbors except those in the extremes which have only one. Unless any of
the tetrahedra degenerate, such a truss is rigid. In this case, if the distance between
the strip endpoints is imposed, any rod length in the truss is constrained by all the
others to attain discrete values. In this paper, it is shown how to characterize these
values as the roots of a closure polynomial whose derivation requires surprisingly
no other tools than elementary algebraic manipulations. As an application of this
result, the forward kinematics of two parallel platforms with closure polynomials of
degree 16 and 12 is straightforwardly solved.

Key words: Position analysis, closed-form solutions, Distance Geometry, spatial
linkages.

1 Introduction

Let us consider the strip of tetrahedra in Fig. 1. Any such strip has two endpoints. In
this case, Pa and Pb. If the distance between these two points is imposed, the length
of any rod cannot be freely chosen. This paper is essentially devoted to obtain a
closed-form solution for the length of any rod in a strip of tetrahedra, once the
distance between its endpoints and the lengths of all other rods are known.

Although closure polynomials have been typically obtained on a case-by-case
analysis, a common pattern can be identified for most cases. First, a set of loop equa-
tions involving both translation and orientation variables is derived. Then, transla-
tion variables are eliminated resulting in a system of trigonometric equations that is
algebraized using the tangent half-angle substitution. Finally, elimination theory is

Federico Thomas · Josep M. Porta
Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
e-mail: {fthomas,porta}@iri.upc.edu
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Pa

Pb

Fig. 1 A strip of eight tetrahedra whose endpoints are Pa and Pb. Observe that no triangular face is
shared by more than two tetrahedra.

used to obtain a univariate closure polynomial. Here we solve this problem departing
from this standard approach. The proposed method can be summarized as follows.
The distance between the strip endpoints is first derived by iterating a basic opera-
tion involving only two neighboring tetrahedra over the whole strip. This leads to a
scalar equation containing radical terms. We will see how clearing these radicals is a
trivial task, and how the resulting polynomial contains, in general, factor terms that
correspond to singularities of the formulation that depend on the chosen variable
length. Since these terms can be easily spotted beforehand, their elimination is just
a matter of iterative polynomial division until a no null remainder is obtained. The
result is the sought-after univariate closure polynomial obtained without variable
eliminations or trigonometric substitutions.

Next, we detail this procedure and then we apply it to derive the minimal degree
closure polynomial for two widely studied parallel platforms: the decoupled parallel
platform, and a 4-4 platform with planar base and moving platform.

2 Obtaining the Closure Polynomials

Given a set of points, the valid distances between them can be characterized us-
ing the theory of Cayley-Menger determinants [1, 6, 8]. The Cayley-Menger bi-
determinant of the two sets of points Pi1 , . . . ,Pin and Pj1 , . . . ,Pjn is defined as

D(i1, . . . , in; j1, . . . , jn) = 2
�
�

1
2
�n

���������

0 1 . . . 1
1 si1, j1 . . . si1, jn

1
...

. . .
...

1 sin, j1 . . . sin, jn

���������

, (1)

where si, j stands for the squared distance between Pi and Pj.
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If the two sets of points are the same, then D(i1, . . . , in) = D(i1, . . . , in; i1, . . . , in)
is called the Cayley-Menger determinant of the involved set of points. The Cayley-
Menger determinant D(i1, . . . , in) is proportional to the squared volume of the sim-
plex spanned by Pi1 , . . . ,Pin in Rn�1.

Pi PjPj

PkPk

PlPl

PmPm

ψl,i, j,k,m

Fig. 2 Substitution rule.

Now, let us suppose the two neighboring tetrahedra in Fig. 2-left belong to a strip
of tetrahedra in R3. The squared distance between Pl and Pm can be expressed as
(see [7] for details):

sl,m =
2

D(i, j,k)

 
D(i, j,k, l; i, j,k,m)

����
sl,m=0

±

p
D(i, j,k, l)D(i, j,k,m)

!
. (2)

where the ± sign accounts for the two possible solutions depending on the relative
orientation between the two tetrahedra. To lighten the notation, (2) will be simply
written as sl,m = Yl,i, j,k,m. If some of the distances involved in Yl,i, j,k,m are taken as
variables, they will be made explicit in parenthesis. For example, if si, j and si,k are
variables, we will write sl,m = Yl,i, j,k,m(si, j,si,k).

If one of the points in the set {Pi,Pj,Pk} does not belong to any other tetrahedron
in the strip, it can be removed from the strip provided that a rod connecting Pl and Pm
is introduced with the double-valued length given by (2) [Fig. 2-right]. This reduces
the number of tetrahedra in the strip by one. Then, by repeating this operation until
the strip contains only two tetrahedra, the distance between the tetrahedral strip
endpoints is finally obtained as a 2n�2

�valued function, where n is the number of
tetrahedra in the strip.

To obtain the closure condition as a polynomial in terms of a given rod length,
the first step consists in taking the numerator of the rational form of the obtained
function and then clearing radicals. As radicals will appear nested, they are cleared
using an iterative process starting from the outer one. At each step of this process,
the expressions involving a radical will have the general form

a0 +a1
p

r +a2(
p

r)2 +a3(
p

r)3 + · · · = 0, (3)
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which can be rewritten as

(a0 +a2r +a4r2 + . . .)+
p

r(a1 +a3r +a5r2 + . . .) = 0. (4)

This equation can be unfolded into two equations, one for each sign of
p

r. Since
we are interested in the roots of both equations, we obtain their product, which can
be written as

(a0 +a2r +a4r2 + . . .)2
� r(a1 +a3r +a5r2 + . . .)2 = 0. (5)

While clearing radicals as explained above introduces no extraneous roots, one
cannot expect for the obtained polynomial to be of minimal degree. This is due
to the presence of singularities of the formulation. Indeed, let us suppose that the
closure polynomial is expressed in terms of the squared rod length si, j. If a rod
with variable length belongs to a shared face, this face degenerates for some values
of si, j. When this happens, the three points defining the face get aligned and the
tetrahedral strip can be decomposed into two parts so that one can freely rotate
with respect the other about the axis defined by these three aligned points. As we
will see, terms corresponding to these degenerate configurations will appear in the
closure polynomial. They can be easily removed by iteratively dividing the closure
polynomial by them until the remainder is not null.

3 Examples

Next, we apply the technique explained above to solve the foward kinematics of
a decoupled platform and a 4-4 platform with planar base and platform (see Fig. 3
and Fig. 5, respectively). The decoupled platform owes its name to the fact that three
legs permit the rotation of the platform about a point whose location is controlled
by the other three. Since the forward kinematics for the translational part is trivial,
the interest of this linkage lies in the spherical part for which a minimal closing
polynomial of degree 8 on a squared variable was first derived in [2]. In [7], this
derivation is simplified by using the closure polynomial of the so-called double
banana. Despite the simpler derivation, variable eliminations were still necessary.
For the chosen 4-4 platform with planar base and platform, a minimal 12th-degree
closure polynomial was first derived in [3]. The derivation was far from trivial and
applicable only to this particular platform. To properly compare our results with
those reported in [7] and [3], we use the same numerical examples.

First, let us consider the decoupled platform defined by the squared distance
matrix S appearing in Fig. 3, where si, j = S(i, j). It can be topologically described
as the strip of tetrahedra shown in Fig. 4-left. Applying the substitution presented in
the previous section three times (see Fig. 4), we have
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P1

P2

P3

P4

P5

P6

P7

S =

0

BBBBBBB@

0 34 49 62 ? ? 108
34 0 41 58 108 ? ?
49 41 0 68 ? 126 ?
62 58 68 0 38 91 34
? 108 ? 38 0 85 74
? ? 126 91 85 0 197

108 ? ? 34 74 197 0

1

CCCCCCCA

Fig. 3 Decoupled parallel manipulator, with non-planar moving platform, used as example.

P1 P1P1

P2 P2P2

P3 P3P3

P4 P4P4

P5 P5

P6

P7 P7P7

Ψ3,4,5,6,7(s3,5)Ψ3,4,5,6,7(s3,5)

Ψ2,3,4,5,7(s3,7,s3,5)

Fig. 4 The decoupled parallel platform in Fig. 3 can be topologically described as the strip of
four tetrahedra in which the distance between P3 and P5 is variable and the distance between its
endpoints, P1 and P7, is known. The application of the substitution rule presented in Section 2 to
this strip (left) permits to sequentially eliminate P6 (center) and P5 (right).

s3,7 = Y3,4,5,6,7(s3,5), (6)
s2,7 = Y2,3,4,5,7(s3,7,s3,5), (7)
s1,7 = Y1,2,3,4,7(s2,7,s3,7). (8)

The numerator of the rational form resulting from substituting (6) in (7), and the
result in (8), can be written as:

R1 �1346.0R2 +7899650R3 +24942632734s3,5 +1402R3 s3,5
2

�323070338s3,5
2 +741658s3,5

3
�208500R3 s3,5 +528767086008 = 0,

where

R1 =
q

�2027718R2
2 +4695768R2 R3 s2

3,5 �729124704R2 R3 s3,5 + ... ,

R2 =
q

100464R2
3 s2

3,5 �19847712R2
3 s3,5 +115799664R2

3 � ... ,

R3 =
q

�3481450s2
3,5 +806976100s3,5 �27440188650 .

The full expressions for R1 and R2 are not included here due to space limitations.

Closure Polynomials for Strips of Tetrahedra 311



6 F. Thomas and J. M. Porta

Now, clearing the radicals as described in Section 2, we obtain a polynomial
of 24th-degree. It is not of minimal degree because the rod connecting P3 and P5
belongs to the shared face defined by P3, P4, and P5 which is singular when
D(3,4,5) = 0, that is, when s2

3,5 � 214s3,5 + 961 = 0. By iteratively dividing the
obtained polynomial by this singular factor until the remainder is not null, we get

s16
3,5 �1.6652 ·104 s15

3,5 +1.2722 ·106 s14
3,5 �5.8952 ·108 s13

3,5 +1.8487 ·1011 s12
3,5

�4.1525 ·1013 s11
3,5 +6.9146 ·1015 s10

3,5 �8.7384 ·1017 s9
3,5 +8.5338 ·1019 s8

3,5

�6.5533 ·1021 s7
3,5 +4.0715 ·1023 s6

3,5 �2.1848 ·1025 s5
3,5 +1.1165 ·1027 s4

3,5

�5.4256 ·1028 s3
3,5 +2.0923 ·1030 s2

3,5 �5.0066 ·1031 s3,5 +5.2479 ·1032,

which coincides with the closure polynomial reported in [7], but obtained in a much
simpler way.

P1

P2

P3

P4

P5
P6

P7 P8

0

BBBBBBBBB@

0 10.1982 19.7992 182 ? ? ? 15.16572

10.1982 0 16.49242 s2,4 14.29172 ? ? ?
19.7992 16.49242 0 14.56022 11.87702 10.85452 ? ?

182 s2,4 14.56022 0 ? 15.17192 15.79072 ?
? 14.29172 11.87702 ? 0 62 s5,7 4.47212

? ? 10.85452 15.17192 62 0 4.47212 5.65692

? ? ? 15.79072 s5,7 4.47212 0 22

15.16572 ? ? ? 4.47212 5.65692 22 0

1

CCCCCCCCCA

Fig. 5 4-4 parallel manipulator used as example. Since the base and the moving platform are con-
vex planar quadrilaterals, s2,4 and s5,7 are unambiguously determined by the other known distances.

As a second example, let us consider the 4-4 parallel platform appearing in Fig. 5.
Its forward kinematics is known to have 24 solutions [3]. However, they can be split
in two sets that are symmetric with respect to the base. Since the distance-based
formulation is invariant to this symmetry, we will get a 12th-degree closure poly-
nomial. The two sets of configurations are obtained in the coordinatization process
using trilateration [4, 5, 8].

Applying the substitution presented in the previous section four times (see
Fig. 6), we have that

s4,8 = Y4,5,6,7,8(s4,5),

s3,8 = Y3,4,5,6,8(s4,8,s4,5),

s2,8 = Y2,3,4,5,8(s3,8,s4,8),

s1,8 = Y1,2,3,4,8(s2,8,s3,8,s4,8).

After a proper sequence of forward substitutions in the above four equations, s1,8
can be expressed only in terms of s4,5. Since this parallel platform has planar base
and platform, Y4,5,6,7,8 and Y1,2,3,4,8 are single-valued functions. Only Y3,4,5,6,8 and
Y2,3,4,5,8 contribute with square roots to the obtained closure condition. Eliminating
them as explained leads to a 52nd-degree polynomial in s4,5. In this case, the rod
connecting P4 and P5 belongs to two shared faces (the ones defined by P4P5P6 and
P3P4P5), whose associated singular terms are s2

4,5 � 706.1251s4,5 + 5031.9580, and

312 Federico Thomas and Josep M. Porta



Closure Polynomials for Strips of Tetrahedra 7

P1

P1P1

P1

P2

P2P2

P2

P3

P3P3

P3

P4

P4P4

P4

P5

P5

P5

P6 P6

P7

P8

P8P8

P8

Ψ4,5,6,7,8(s4,5)Ψ4,5,6,7,8(s4,5)

Ψ4,5,6,7,8(s4,5)

Ψ3,4,5,6,8(s4,8,s4,5)Ψ3,4,5,6,8(s4,8,s4,5)

Ψ2,3,4,5,8(s3,8,s4,8)

Fig. 6 The 4-4 parallel manipulator in Fig. 5 can be topologically described as the strip of five
tetrahedra in which the distance between P4 and P5 is variable and the distance between its end-
points, P1 and P8, is known. The application of the substitution rule to this strip (top left) permits
to sequentially eliminate P7 (top right), P6 (bottom left), and P5 (bottom right).

s4,5
2
� 532.3731s4,5 + 37708.4160. After iteratively dividing the obtained polyno-

mial by these two factors until the remainder is not null, the following 12th-degree
polynomial is obtained

s12
4,5 �0.676 ·103 s11

4,5 �3.873 ·106 s10
4,5 +5.400 ·109 s9

4,5 �9.858 ·1012 s8
4,5

�2.327 ·1015 s7
4,5 +1.967 ·1018 s6

4,5 �7.316 ·1020 s5
4,5 +1.518 ·1023 s4

4,5

�1.834 ·1025 s3
4,5 +1.257 ·1027 s2

4,5 �4.432 ·1028 S45 +6.171 ·1029.

This polynomial has six roots that lead to real configurations of the moving platform
obtained by coordinatization via trilaterations [5,8]. These roots and the correspond-
ing configurations appear in Fig. 7. They coincide with the solutions reported in [3]
obtained using an ad hoc intricate method.

4 Conclusions

It has been explained how to obtain closure polynomials for tetrahedral strips in
terms of the involved rod lengths and the distance between the strip endpoints, and
how this technique can be applied to solve some position analysis problems. How-
ever, this technique cannot incorporate orientation constraints between tetrahedra
at different parts of the strip. As a consequence, if applied to a case in which such
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Fig. 7 Forward kinematics solutions of the 4-4 manipulator used as example. The mirror configu-
rations with respect to the base are also solutions, but they are not represented.

constraints are necessary, the obtained closure polynomial would not be of minimal-
degree as some of its roots would violate these constraints. Despite this important
limitation, it supersedes the method presented in [7] in scope and simplicity, thus
providing a better starting point for a complete generalization to three dimensions
of the techniques developed for the position analysis of planar linkages using Dis-
tance Geometry.
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Robust Design of Parameters Identification

Aurélien Massein, David Daney and Yves Papegay

Abstract Quality of results computed during parameter identification problems re-
lies on the selection of system’s states while performing measurements. This choice
usually does not take into account the uncertainty of states and of measures. For
identifiability, classical methods focus on the contribution of uncertainty of un-
known parameters. We present an alternative approach that tackles this drawback.
A robotic application example that showcases the differences between approaches
is developed as well.

Key words: parameters identification, optimal design, observability index, uncer-
tainties, localisation.

1 Introduction

Design of experiments [2] is a way to improve results of a generic parameter identi-
fication problem. It is applied namely in robotics [8], for calibration [1], and in GPS
area through dilution of precision [9].

In such identification problem, unknown parameters are related with state vari-
ables of the system, and with measured outputs through a model prone to uncertain-
ties. Inaccuracy sources of the model are model discrepancy, measurement errors
and inexactitude of state variables. Observation of different sets of measurements
for different states of the system provides a way to compute unknown parameters
through a regression analysis process. In this process choice of states is crucial to
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2 Aurélien Massein, David Daney and Yves Papegay

enhance parameters identification. It refers to identifiability of the model and iden-
tifiability indexes.

In the non-linear case [5], unknown parameters are classically computed by an
iterative optimisation algorithm, starting from an initial estimation. During this iter-
ative process, state variables and measures remain unchanged and influence of their
uncertainties are neglected. At the end of the process, all the uncertainties have the
same order of magnitude. Despite this last remark, in the literature, choice of states
is done with the same assumption that uncertainties on state variables and measures
are negligible, by evaluating identifiability indexes to the so-called identification
matrix. In this paper, we promote the idea to take into account the different sources
of inaccuracy - namely uncertainty on measures - when selecting states for mea-
surements. Hence, we are applying similarly identifiability indexes but to what we
call the uncertainty matrix, a matrix describing the contribution of all uncertainties
to the error on the model.

In the next section of the model, we are describing with more details the parame-
ter identification problem, the regression analysis process, the iterative optimisation
process, and identifiability indexes. We carefully define the identification matrix and
the uncertainty matrix, and how they are used for selection of identification states
of the system. The last section is devoted to a pedagogical application, that clearly
shows the difference between the classical and the proposed approach of states se-
lection.

This application concerns the localisation of a source by a mobile robot. In this
application, measures are taken at regular time step, and the selection of states corre-
spond to a trajectory determination, that can be easily visualized. Another interest of
this example is the ability to perform the states selection incrementally, that allows
some enhancements of the identification method.

2 Parameter Identification

2.1 Model Definition

We consider a system, depending on unknown parameters x, state variables u, and
measured outputs m, through the following model (i will be omitted further):

fi (u,x,m) = 0 with i = 1 . . .n (1)

As we consider that state variables and measured outputs are prone to uncertain-
ties, we distinguish each variable x of its actual value x⇤, and denote uncertainty on
it by Dx. Once plugged into the model, the k-th observation of the system provides
a set of n equations:

f (u⇤

k ,x
⇤,m⇤

k) = f (uk +Duk,x⇤,mk +Dmk) = 0 (2)
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We need to acquire p system observations, such that the number of equations will
be greater than the number of unknown parameters (p⇤n > Dim(x)). The resulting
system is usually widely over-constrained.

2.2 Regression Analysis

Based on the set of these observations leading to residual errors,

f (uk,x⇤,mk) = ek with k = 1 . . . p (3)

a regression analysis estimator provides a solution x̂ minimizing a given criterion.
In the classical case of a Non-Linear Least Squares estimator, the criterion is the sum
of the squares of residual errors:

p

Â
k=1

f (uk, x̂,mk)
2 (4)

Method of optimisation is based on a first-order linear approximation of the
model:

f (u+Du,x+Dx,m+Dm) ⇡ f (u,x,m)+ Ju ·Du+ Jx ·Dx+ Jm ·Dm
or

D f ⇡ Ju ·Du+ Jx ·Dx+ Jm ·Dm
(5)

with Du = [Du1, . . . ,Dup]T , Dm = [Dm1, . . . ,Dmp]T and D f = [D f1, . . . ,D fp]T .
Starting from an initial estimate x0 of x, the method performs several solving

steps to reduce Dx. As Ju ·Du + Jm ·Dm is assumed to be negligible compared to
Jx ·Dx, see [4], j-th step consists in solving the following linear system in the un-
known variables x j+1:

D f j = Jx ·Dx j+1 with Dx j+1 = x j+1 � x j (6)

Iterative process ends when Dx is sufficiently small, and is the same order of mag-
nitude of Du and Dm - see [4] for the stop condition.

At the end of this iterative process, one classically considers that the quality of
the final estimation x̂ relies on the numerical quality of the Jacobian matrix Jx, de-
noted by Identification Matrix. Numerical quality is precisely defined in terms of
identifiability criteria (see below). As identification matrix depends on state vari-
ables, poses of the system for measurements are selected by optimisation of these
criteria.
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2.3 Identifiability Criteria

Identifiability criteria have been widely studied in robotics calibration problems and
synthesized by Sun and Hollerbach [10]. Given a rectangular matrix M such that
Y = M.X , identifiability criteria quantifies how uncertainties on X propagate to un-
certainties on Y through M. The objective is to maximize some observability index,
denoted O, associated to M, by choosing the state variable û which parametrize the
matrix M, such that:

û = argmax
u

O(M(u)) (7)

Three criteria are popular, related to the singular values of the matrix M, obtained
and sorted by a Singular Value Decomposition (and denoted by sL  . . .  s1):

• D-Optimality: O1 = ’L
l=1 sl

1/(np). This index corresponds to the determinant of
MT .M here,

p
det(MT .M) = ’L

l=1 sl . The sensitivity of Y with respect to X is
increased when O1 is maximised.

• Inverse of the condition number: O2 = sL/s1
• E-Optimality: O3 = sL

Sun and Hollerbach argued that O1 (D-optimality) is the best criterion for a pa-
rameter estimation of an unscaled model or a model without a convincing scaling
approach has to be maximized [10]. Fedorov and Leonov stated that D-optimal (O1)
designs are most popular among theoretical and applied researchers in optimal ex-
perimental designs [2].

We can denote briefly that O2 which related to condition number is for balanc-
ing the uncertainties importance, whereas O3 is for reducing the worst parameter’s
uncertainty.

2.4 Uncertainty Matrix

At the end of the iterative process, a linear approximation of f in the neighborhood
of the final estimation x̂ of x is given by the p following equations:

f (u⇤

k ,x
⇤,m⇤

k) ⇡ f (uk, x̂,m)+ Ju ·Duk + Jx ·Dx+ Jm ·Dmk (8)

that can be written synthetically :

D f ⇡ Ju ·Du+ Jx ·Dx+ Jm ·Dm (9)

or by introducing what we denote by U , the Uncertainty Matrix such that:

Dx = �J+
x ·

⇥
Ju Jm �Id

⇤
·

2

4
Du
Dm
D f

3

5 = U ·

2

4
Du
Dm
D f

3

5 (10)
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J+
x being the pseudo-inverse of Jx.

We then claim that it is interesting to apply the identifiability criteria to this uncer-
tainty matrix U - minimizing O(U) - when selecting state variables. To be efficient,
at this point, we would benefit of normalizing the uncertainties as done in [6, 7] or
alternatively [3].

3 Source Localisation Application

In this section, we illustrate the difference between using the identifiability matrix
and using the uncertainty matrix in the previously described states selection process,
on a pedagogical two-dimensional source localisation application.

3.1 Problem Statement

We aim to localize accurately and time-efficiently a fixed source with the help of a
mobile robot.

The mobile robot we consider has an embedded sensor measuring its direction
with respect to a source S =

⇥
xS yS

⇤T , with a fixed sampling frequency and prone
to bounded uncertainties. Our workspace is two dimensional and free of obstacle:
wherever we are we can get a measure at each sampling step k and move anywhere.
Speed of the robot is supposed constant and a constant distance r separates two
consecutive measurement positions.

We describe the robot motion in polar coordinates. To move robot from position
Rk =

⇥
xk yk

⇤T at step k onto the next position Rk+1, we need a leading direction
ak+1 as written below:

Rk+1 = r


cosak+1
sinak+1

�
+Rk (11)

At each measurement step, the goniometric sensor on the robot provides the az-
imuth qk - with respect to a fixed reference frame - such that


sinqk

�cosqk

�
· (S �Rk) = 0 (12)

In the equations of the model, the position of the source S, the position Rk and the
direction ak of the mobile robot together, and the measured azimuth qk play respec-
tively the roles of the unknown parameters x, the state variables u and the measures
m. Expressed at the k-th step, the model f is precisely given by the previous equa-
tions. Please note that Rk depends on ak.

Hence first-order linear approximation of the model expressed as:
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

sinqk
�cosqk

�
·DS +


�sinqk
cosqk

�
·DRk +


cosqk

�sinqk

�
·(S �Rk) ·Dqk (13)

The coefficient of last term of these equations is equal to rk, the distance between
Rk and S, modulo the approximation that cos(q ⇤

k �qk) is equal to 1.

3.2 State variables Choices

The expressions of the identifiability matrix and of the uncertainty matrix are re-
spectively (at the k-th step):

JSk =

2

4
s1
. . .
sk

3

5 with sk =
⇥
sinqk,�cosqk

⇤
(14)

Uk = J+
Sk

·Nk (15)

where Nk =

2

66664

n1 0 . . . 0

0 n2 0
...

... 0
. . . 0

0 . . . 0 nk

3

77775
with nk =

⇥
sinqk �cosqk �rk 1

⇤
(16)

Then, the optimal next direction ak+1 for the mobile robot, is defined with the help
of the identifiability criterion O1 using either JSk+1 or Uk+1.

3.3 Experiment and Results

In our experiment, source S is at position S =
⇥
0 1

⇤T , and the initial mobile robot
position is R1 =

⇥
0 0

⇤T . The fixed motion step is r = 0.01, with a relative error
lower than 1% and we have the same error on the direction ak about 0.1�. Finally,
the uncertainty of the measured angle Dq is uniformly distributed and bounded by
Dq = ±10�.

In a first experiment, we select each step ak+1 according to O1(JSk+1). In the
second, we select it to minimize O1(Uk+1).

The obtained results are presented in figures (1a) and (1b).
The first one displays the motion of the mobile robot into the euclidean workspace

step-by-step: blue motion curve stands for a gradient determinant optimisation on
identification matrix J

c

and orange motion curve for one on uncertainty matrix U .
The second one presents the error kx⇤

� x̂k as a function of the number of steps
in the two experiments with the same color code.
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Fig. 1: Source Localisation Application

Note that the blue motion favours a circle approach centered on the source po-
sition whereas the orange motion favours a spiral approach on it: By neglecting
uncertainties on measures (blue case), we intuitively want to change the angle q as
much as possible between two measurement positions, see [11], for a better condi-
tioning of JSk . On the orange trajectory, we also take into account the measurement
errors, so we try to become closer to the source to minimize the influence of such
errors.

4 Conclusion

We have introduced a new matrix to improve parameters estimation in comple-
ment to classical identification optimisation. We applied our matrix optimisation
in a source localisation application and demonstrated its possible application in a
practical case. Results outperformed classical identification optimisation.

This application highlights that, to improve parameters estimation accuracy, we
need to take into account more uncertainties than classically ones held in the identi-
fication matrix. Our proposed matrix can be used in parameters identification prob-
lems and can improve significantly their estimation accuracy.
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Isotropic Design of the Spherical Wrist of a
Cable-Driven Parallel Robot

Angelos Platis, Tahir Rasheed, Philippe Cardou, and Stéphane Caro

Abstract Because of their mechanical properties, parallel mechanisms are most ap-
propriate for large payload to weight ratio or high-speed tasks. Cable driven parallel
robots (CDPRs) are designed to offer a large translation workspace, and can retain
the other advantages of parallel mechanisms. One of the main drawbacks of CD-
PRs is their inability to reach wide ranges of end-effector orientations. In order to
overcome this problem, we introduce a parallel spherical wrist (PSW) end-effector
actuated by cable-driven omni-wheels. In this paper we mainly focus on the descrip-
tion of the proposed design and on the appropriate placement of the omni-wheels
on the wrist to maximize the robot dexterity.

Key words: Parallel mechanism, cable-driven parallel robot, parallel spherical
wrist, wrenches, dexterity

1 Introduction

Several applications could benefit from CDPRs endowed with large orientation
workspaces, such as entertainment and manipulation and storage of large and heavy
parts. This component of the workspace is relatively small in existing CDPR de-
signs.To resolve this problem, a parallel spherical wrist (PSW) end-effector is in-
troduced and connected in series with the translational 3-DOF CDPR to provide an
unbounded singularity-free orientation workspace.
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This paper focuses on the kinematic design and analyis of a PSW actuated by
the cables of a CDPR providing the robot independent translation and orientation
workspaces. CDPRs are generally capable of providing a large 3-dofs translation
workspace, normally needed four cables, which enable the user to control the point
where all of them are concentrated [2], [5].
Robots that can provide large orientation workspace have been developed using

spherical wrist in the past few years that allows the end-effector to rotate with un-
limited rolling, in addition to a limited pitch and yaw movements [3], [10]. Eclipse
II [9] is an interesting robot that can provide unbounded 3-dofs translational mo-
tions, however its orientation workspace is constrained by structural interference
and rotation limits of the spherical joints.
Several robots have been developed in the past having decoupled translation and

rotational motions. One interesting concept of such a robot is that of the Atlas Mo-
tion Platform [6] developed for simulation applications. Another robot with trans-
lation motions decoupled from orientation motions can be found in [11]. The de-
coupled kinematics are obtained using a triple spherical joint in conjunction with a
3-UPS parallel robot.
In order to design a CDPR with a large orientation workspace, we introduce a

parallel spherical wrist (PSW) end-effector actuated by cable-driven omni-wheels.
In this paper we mainly focus on the description of the proposed design and on
the appropriate placement of the omni-wheels on the wrist to maximize the robot
dexterity.

2 Manipulator Architecture

The end-effector is a sphere supported by actuated omni-wheels as shown in Fig. 1.
The four omni-wheels at the bottom are passive, the remaining three being driven
through drums. Each cable makes several loops around each drum. Both ends are
connected to two servo-actuated winches, which are fixed to the base. When two
servo-actuated winches connected to the same cable turn in the same direction, the
cable circulates and drives the drum and its associated omni-wheel. When both
servo-actuated winches turn in opposite directions, the length of the cable loop
changes, and the sphere centre moves. To increase the translation workspace of the
CDPR, another cable is attached, which has no participation in the omni-wheels
rotation. The overall design of the manipulator is shown in Fig. 2.
We have in total three frames. First, the CDPR base frame (F0), which is de-

scribed by its center O0 having coordinates x0,y0,z0. Second, the PSW base frame
(F1), which has its center O1 at the geometric center of the sphere and has co-
ordinates x1,y1,z1. Third, the spherical end-effector frame (F2) is attached to the
end-effector. Its centre O2 coincides with that of the PSW base frame (O2 ⌘ O1)
and its coordinates are x2,y2,z2.
Exit points Ai are the cable attachment points that link the cables to the base. All

exit points are fixed and expressed in the CDPR reference frameF0. Anchor points
Bi are the platform attachment points. These points are not fixed as they depend
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to winch #1

to winch #2 

actuated  
omni-wheel 

passive  
omni-wheel 

drum

to winch #7

Fig. 1: Isotropic design of the parallel spherical wrist

on the vector P, which is the vector that contains the pose of the moving platform
expressed in the CDPR reference frame F0. The remaining part of the paper aims
at finding the appropriate placement of the omni-wheels on the wrist to maximise
the robot dexterity.

3 Kinematic Analysis of the Parallel Spherical Wrist

3.1 Parameterization

To simplify the parameterization of the parallel spherical wrist, some assumptions
are made. First, all the omni-wheels are supposed to be normal the sphere. Second,
the contact points of the omni-wheels with the sphere lie in the base of an inverted
cone where its end is the geometrical center of the sphere parametrized by angle α .
Third, the three contact points form an equilateral triangle as shown in [6,7]. Fourth,
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Fig. 2: Concept idea of the manipulator

the angle between the tangent to the sphere and the actuation force produced by the
ith actuated omni-wheel is named βi, i = 1,2,3, and β1 = β2 = β3 = β . Figure 3
illustrates the sphere, one actuated omni-wheel and the main design variables of the
parallel spherical wrist. Πi is the plane tangent to the sphere and passing through
the contact point Gi between the actuated omni-wheel and the sphere.
ω i denotes the angular velocity vector of the ith actuated omni-wheel. si is a unit

vector along the tangent line T that is tangent to the base of the cone and coplanar
to plane Πi. wi is a unit vector normal to si. fai depicts the transmission force lying
in plane Πi due to the actuated omni-wheel. α is the angle defining the altitude
of contact points Gi (α 2 [0,π]). β is the angle between the unit vectors si and vi
(β 2 [�Π

2 , Π2 ]). As the contact points Gi are the corners of an equilateral triangle,
the angle between the contact point G1 and the contact points G2 and G3 is equal to
γ . R is the radius of the sphere. ri is radius of the ith actuated omni-wheel. ϕ̇i is the
angular velocity of the omni-wheel. ui,vi,ni are unit vectors at point Gi and i, j,k
are unit vectors along x2,y2,z2 respectively.
In order to analyze the kinematic performance of the parallel spherical wrist, an

equivalent parallel robot (Fig. 4) having six virtual legs is presented, each leg having
a spherical, a prismatic and another spherical joints connected in series. Three legs
have an actuated prismatic joint (green), whereas the other three legs have a locked
prismatic joints (red). Here, the kinematics of the spherical wrist is analyzed with
screw theory and an equivalent parallel robot represented in Fig. 4.
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Fig. 3: Parameterization of the parallel spherical wrist

3.2 Kinematic Modeling

Fig. 4(a) represents the three actuation forces fai, i= 1,2,3 and the three constraint
forces fci, i= 1,2,3 exerted by the actuated and passive omni-wheels on the sphere.
The three constraint forces intersect at the geometric center of the sphere and pre-
vent the latter from translating. The three actuation forces generated by the three
actuated omni-wheels allow us to control the three-dof rotational motions of the
sphere. Fig. 4(b) depicts a virtual leg corresponding to the effect of the ith actuated
omni-wheel on the sphere. The kinematic model of the PSW is obtained by using
the theory of reciprocal screws [4, 8] as follows:

At= B ϕ̇ (1)

where t is the sphere twist, ϕ̇ =
⇥
ϕ̇1 ϕ̇2 ϕ̇3

⇤T is the actuated omni-wheel angular
velocity vector.A and B are respectively the forward and inverse kinematic Jacobian
matrices of the PSW and take the form:

A =


Arω Arp
03⇥3 I3

�
(2)

B =


I3
03⇥3

�
(3)
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0
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A2
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Prismatic Joint

Actuated
Prismatic Joint

fa1

fa2

fa3

fc1

fc2
fc3

G

Fig. 4: (a) Actuation and constraint wrenches applied on the end-effector of the
spherical wrist (b) Virtual ith leg with actuated prismatic joint

I3 and 03⇥3 are the 3⇥ 3 identity and zeros matrices, and the matrices Arω and
Arp are:

Arω =

2

4
R(n1⇥v1)T

R(n2⇥v2)T

R(n3⇥v3)T

3

5 and Arp =

2

4
vT1
vT2
vT3

3

5 (4)

As the contact points on the sphere form an equilateral triangle, γ = 2π/3. As a
consequence, matrices Arω and Arp are expressed as functions of the design param-
eters α and β :

Arω =
R
2

2

64
�2CαCβ �2Sβ 2SαCβ

CαCβ +
p

3Sβ Sβ �

p

3CαCβ 2SαCβ
CαCβ �

p

3Sβ Sβ +
p

3CαCβ 2SαCβ

3

75 (5)

Arp =
1
2

2

64
�2CαSβ 2Cβ 2SαSβ

CαSβ �

p

3Cβ �(
p

3CαSβ +Cβ ) 2SαSβ
CαSβ +

p

3Cβ
p

3CαSβ �Cβ 2SαSβ

3

75 (6)

whereC and S denote the cosine and sine functions, respectively.

3.3 Singularity Analysis

As matrix B cannot be rank deficient, the parallel spherical wrist meets singularities
if and only if (iff) matrix A is singular. From Eqs. (5) and (6), matrix A is singular
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0
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G3

G1

fa1

fa2

fa3

(b) α = π/2 and β = 0

Fig. 5: Singular configurations of the parallel spherical wrist

iff:

det(A) =
3
p

3
2

R3SαCβ (1�S2αC2β ) = 0 (7)

namely, if α = 0 or π; if β = ±π/2; if α = π/2 and β = 0 or ±π .
Figs. 5a and 5b represent two singular configurations of the parallel spherical

wrist under study. The three actuation forces fa1, fa2 and fa3 intersect at point I in
Fig. 5a. The PSW reaches a parallel singularity and gains an infinitesimal rotation
(uncontrolled motion) about an axis passing through points O and I in such a config-
uration. The three actuation forces fa1, fa2 and fa3 are coplanar with plane (X1OY1)
in Fig. 5b. The PSW reaches a parallel singularity and gains two-dof infinitesimal
rotations (uncontrolled motions) about an axes that are coplanar with plane (X1OY1)
in such a configuration.

3.4 Kinematically Isotropic Wheel Configurations

This section aims at finding a good placement of the actuated omni-wheels on the
sphere with regard to the manipulator dexterity. The latter is evaluated by the condi-
tion number of matrixA based on the Frobenius norm [1]. From Eqs. (5) and (6), the
condition number κF(α,β ) of matrix A based on the Frobenius norm is expressed
as follows:

κF(α,β ) =
1
3

s
3S2αC2β +1

S2αC2β (1�S2αC2β )
(8)
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Fig. 6: Inverse condition number of the forward Jacobian matrix A based on the
Frobenius norm as a function of design parameters α and β

Figure 6 depicts the inverse condition number of matrixA based on the Frobenius
norm as a function of angles α and β . κF(α,β ) is a minimum when its partial
derivatives with respect to α and β vanish, namely,

κ̇α(α,β ) =
∂κ
∂α

=
Cα(3S2αC2β �1)(S2αC2β +1)
18S3αC2β (S2αC2β �1)2κ

= 0 (9)

κ̇β (α,β ) =
∂κ
∂β

= �

Sβ (3S2αC2β �1)(S2αC2β +1)
18S2αC3β (S2αC2β �1)2κ

= 0 (10)

and its Hessian matrix is semi-positive definite. As a result, κF(α,β ) is a minimum
and equal to 1 along the hippopede curve, which is shown in Fig. 6 and defined by
the following equation:

3S2αC2β �1= 0 (11)

This hippopede curve amounts to the isotropic loci of the parallel spherical wrist.
Figure 7 illustrates some placements of the actuated omni-wheels on the sphere

leading to kinematically isotropic wheel configurations in the parallel spherical
wrist. It should be noted that the three singular values of matrix Arω are equal to
the ratio between the sphere radius R and the actuated omni-wheel radius r along
the hippopede curve, namely, the velocity amplification factors of the PSW are the
same and constant along the hippopede curve.
If the rotating sphere were to carry a camera, a laser or a jet of some sort, then

the reachable orientations would be limited by interferences with the omni-wheels.
Therefore, a designer would be interested in choosing a small value of alpha, so as
to maximize the field of view of the PSW. As a result, the following values have
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α = 35.26�,β = 0� α = 65�,β = 50.43�

α = 50�,β = 41.1� α = 80�,β = 54.11�

Fig. 7: Kinematically isotropic wheel configurations in the parallel spherical wrist

been assigned to the design parameters α and β :

α = 35.26� (12)
β = 0� (13)

in order to come up with a kinematically isotropic wheel configuration in the parallel
spherical wrist and a large field of view. The actuated omni-wheels are mounted
in pairs in order to ensure a good contact between them and the sphere. A CAD
modeling of the final solution is represented in Fig. 1.
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4 Conclusion

This paper presents the novel concept of mounting a parallel spherical wrist in se-
ries with a CDPR, while preserving a fully-parallel actuation scheme. As a result,
the actuators always remain fixed to the base, thus avoiding the need to carry electric
power to the end-effector and minimizing its size, weight and inertia. Another orig-
inal contribution of this article is the determination of the kinematically isotropic
wheel configurations in the parallel spherical wrist. These configurations allow the
designer to obtain a very good primary image of the design choices. To our knowl-
edge, these isotropic configurations were never reported before, although several
researchers have studied and used omni-wheel-actuated spheres. Future work in-
cludes the development of a control scheme to drive the end-effector rotations while
accounting for the displacements of its centre, and also making a small scale proto-
type of the robot.
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Dynamic recovery of cable-suspended parallel
robots after a cable failure

Alessandro Berti, Marc Gouttefarde, and Marco Carricato

Abstract This paper studies how emergencies and failures can be managed in cable-
driven parallel robots, in particular in the case of a redundant cable-suspended robot
subjected to a cable breakdown. The objective is to present and test via numerical
simulation the feasibility of an emergency strategy that allows the robot platform to
be dynamically recovered to a safe position. Preliminary results, based on a simpli-
fied robot with a point-mass platform suspended by 4 cables, show that the proposed
strategy may be an effective way to guide the platform from an unstable pose deter-
mined by the cable failure to a new static equilibrium pose.

1 Introduction

Cable-driven parallel robots (CDPRs) control the pose of the end-effector by cables.
Consequently, they benefit from peculiar characteristics, such as a potentially large
workspace, relatively lightweight support structures, ease of assembly, and superior
modularity and reconfigurability. However, cables can only pull and not push on the
mobile platform, which makes the study of CDPRs challenging. CDPRs are fully
constrained if, once the actuators are locked, the mobile platform pose is completely
determined. They are underconstrained [1, 2, 4] if the platform is movable when the
cable lengths are assigned. In a cable-suspended robot (CSPR), all cables lie above
the moving platform. A CSPR may be affected by several types of malfunctioning.
This paper focuses on CSPR behavior in case of cable ruptures. The rupture of one
or more cables generally causes the CSPR static workspace to change significantly.
Indeed, after a cable failure, the platform pose may be located in a statically inad-
missible part of the workspace. In that case, even if the actuators are locked, the
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mobile platform will start moving towards a new statically admissible pose, which
may be quite far from the pose where the cable breakdown took place.
Only few previous works deal with the topic investigated in this paper. Gosselin

[7, 5, 6] presents an effective approach to control both planar and spatial CDPRs
(with 3 dofs) outside their static workspace. Roberts [11] discusses a procedure to
help the design of “fault-tolerant cable-suspended systems”, i.e. a method capable
to assess if a robot in a certain pose may tolerate a cable loss. Notash [10] presents a
method to recover the lost wrench after a cable failure, but only under the assump-
tion that the robot remains overconstrained after the failure has occurred.
This paper proposes an approach that aims at safely recovering the mobile plat-

form after a cable failure, even if the breakdown causes the current platform pose
to lie outside the static workspace. To the best of our knowledge, this issue is in-
vestigated here for the first time. Results are obtained via numerical simulation. The
paper is organized as follows. Section 2, 3 and 4 describe, respectively, the CSPR
model, the recovery strategy, and the control scheme. Section 5 presents simulation
examples and discusses results. Section 6 concludes the paper.

2 CSPR model

The simplified CSPR studied in this paper has 4 cables, whose lengths are varied by
motorized winches. The cables exit from 4 coplanar points Ai, i= 1, . . . ,4, fixed on
the robot support structure and connected to a point-mass mobile platform P (Fig.
1). The position vector of P in the fixed reference frame Oxyz is p, and the platform
mass is denoted by m. O is located on the ground, with the z-axis pointing upward.
Cables are assumed to be massless, and each one of them is considered to be a
straight-line segment from Ai to P.
The robot geometry and dimensions are inspired by the CoGiRo prototype [8, 9].

The position vectors ai of points Ai in Oxyz are a1 = [�7.246,�5.174,5.480]T,
a2 = [�7.232,5.305,5.480]T, a3 = [7.253,5.278,5.480]T and a4 = [7.232,�5.202,
5.480]T. Cable lengths are defined as:

ρi = kp�aik i= 1, ...,4 (1)

Differentiating eq. (1) with respect to time yields the cable-length time derivatives,
which can be expressed in matrix form as

ρ̇ρρ = Jṗ (2)

where

J=


. . .

p�ai
ρi

. . .

�T
(3)

By letting the wrench matrix beW= �JT, the platform dynamics is expressed as
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Wf= m(p̈� fg) (4)

with fg = [0,0,�g]T.
The cable-force array f is computed by a simplified elastic model based on

Hooke’s law, i.e.
f=K(ρρρ�ρρρ0) (5)

where ρρρ0 is the array of the unstrained cable lengths and K is a diagonal matrix
whose elements are the cable stiffnesses, namely

ki = EiSi/ρi (6)

with Ei and Si being, respectively, the cable’s Young modulus and cross-sectional
area.
If tm is the array of the motor torques assigned by the controller, the winch mo-

tors’ angular accelerations are

Imq̈= tm� rf (7)

where Im is the motor inertia, q̈ is the array of motor accelerations, and r is the winch
drum radius. Im and r are assumed to be equal for all winches. ρρρ0 is computed as
ρρρ0 = �rq, namely by the numeric integration of the left-hand side of eq. (7). The
integration of eq. (4) provides the simulated motion of the robot.

3 Recovery strategy

A cable failure may cause the CSPR mobile platform to lie outside its (new) static
workspace. The main purpose of this work is to find a recovery strategy that can
safely drive the platform to a statically admissible rest configuration. Gosselin [7]
showed that a 2-dof planar CSPR can be dynamically controlled outside its static
workspace. In [5, 6], these results were extended to a spatial 3-dof 3-cable CSPR
with a point-mass platform. The recovery strategy proposed here is based on the
results of [5, 6]. When cable k breaks, the new static workspace is defined as the
prism Π whose base is the triangle formed by the projections on the xy plane of
points ai, i = 1, . . . ,4, i 6= k, and whose height is equal to the (common) height of
the cable exit points, i.e. az. The platform position is statically feasible only if P
lies inside Π . If P lies outside Π and the actuators are locked, P will uncontrollably
move towards a new stable equilibrium within Π .
The strategy proposed in this paper is the following. Assuming that it is possible

to determine when a cable failure occurs, the controller tries to recover the mobile
platform towards the new static workspace by following a trajectory whose defi-
nition is based on the approach presented in [5, 6]. Then, as soon as the platform
enters the new static workspace, the controller aims at stopping it. For simplicity,
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Fig. 1 Geometric model of the CSPR Fig. 2 The 3 main stages of the recovery phase.

the whole recovery trajectory is designed such that the path followed by p lies in a
horizontal plane. We define three main stages during the recovery phase (Fig. 2):

• (b) a cable breaks down;
• (r) the platform reaches its new static workspace (triangle A1A2A3 in Fig. 2);
• (s) the platform reaches a complete stop.

Quantities relative to each stage are denoted by subscripts (b), (r), or (s), respec-
tively. The first part of the trajectory, which immediately follows the cable break-
down, between stages (b) and (r), leads the platform to its new static workspace. To
this end, the tensions in the remaining cables must be kept positive by the inertial
load on the platform. Thus, according to [5, 6], this part of the trajectory may consist
of two sinusoids with appropriate amplitudes and frequency along the x and y axes,
thus forming the following ellipse:

Γ(b)�(r) = [x,y,z]T = [xc+ rx sin(ωnt+αx),yc+ ry sin(ωnt+αy),z(b)]T (8)

where xc and yc are the coordinates of the center C of the ellipse, rx and ry are the
amplitudes of the sinusoids along x and y, respectively, αx and αy are their phases,
and ωn is the oscillation frequency. ωn can be taken, according to [6, 5], as the
natural frequency of the robot after the cable breakdown, namely as

ωn =
q
g/

�
az� z(b)

�
(9)

The center of the ellipse C must lie inside the new static workspace, i.e. in Π . The
choice ofC has a significant influence on the performance of the recovery operation.
Currently, coordinates xc and yc are not automatically computed, but their values are
tuned before the simulation. The remaining parameters, i.e. rx, ry, αx and αy, must
be chosen so as to ensure that the platform position and velocity are continuous in
(b). Thus, assuming that time t is zero in (b), the following equalities must hold

(
xc+ rx sin(αx) = x(b), yc+ ry sin(αy) = y(b)
ωnrx cos(αx) = ẋ(b), ωnry cos(αy) = ẏ(b)

(10)
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Fig. 3 The control and simulation scheme adopted during the recovery trajectory.

which allow rx, ry, αx and αy to be computed.
As soon as P begins moving along the elliptic path, the controller starts checking

whether or not it lies in the new static workspace. Once the platform reaches stage
(r), the controller begins following the second part of the recovery trajectory, i.e.
the one leading to the complete stop of the platform in (s). This part is formed by
two 7�degree polynomials along the x and the y axis:

Γ(r)�(s) = [x,y,z]T =

"
7

∑
i=0

cixti,
7

∑
i=0

ciyti,z(b)

#T
(11)

The 16 unknown coefficients in Γ(r)�(s) are obtained by imposing continuity of po-
sition, velocity, acceleration and jerk in (r), and canceling out velocity, acceleration
and jerk in (s), provided that the position p(s) is assigned by the controller on the
basis of the environment characteristics.
The duration of the second part of the recovery trajectory and the location of p(s)

must be chosen so as to maintain positive tensions in the remaining three cables, and
to avoid collisions with the robot support structure. If necessary, the second part of
the trajectory can be conveniently segmented, with additional control points added,
and 7�degree polynomials used to lead P from one control point to the next one.

4 Recovery control scheme

We assume that it is possible to estimate the cable tension values and, consequently,
to detect when a cable breaks down. At the moment of a cable failure, the controller
checks whether the actual platform pose and the remaining part of its trajectory are
inside the new static workspace, in which case the robot performs an emergency stop
along this trajectory [3]. If the actual pose is outside the new static workspace, or it
is impossible to stop the mobile platform before it exits the new static workspace,
the controller starts a recovery strategy. The new static workspace is known, since,
for any 3-cable configuration, it can be computed offline. When a cable breakdown
is detected, the controller computes the parameters of the elliptic trajectory in eq.(8).
If cable tensions can be estimated (i.e. measured by sensors), we should know

which cables are taut at every controller cycle. The input of the direct problem are
the motor angular rotations measured at the ith simulation step. The solution of the
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direct problem returns the “real” platform pose p. With the pose p, the error with
respect to the pose pd coming from the trajectory planner at the simulation step i+1
is computed, and through a PID controller we obtain the corrected velocity ṗd that
permits to follow the desired trajectory.
Inverse differential kinematics is then used to compute the motor velocities. The

motor model yields the corresponding motor torque, which is the input to the simu-
lated robot, thus yielding the new motor angular position that allow the control loop
to restart (Fig. 3). According to the results of the numerical simulations conducted
so far, it is not difficult to keep 3 cables in tension throughout the whole recovery
trajectory.

5 Simulation results

Test 1. The example presented here simulates a recovery trajectory after the fail-
ure of cable number 4. The platform mass is m = 400kg and, at stage (b), the
platform position and velocity are, respectively, p(b) = [0.830,�2.781,1.915]T

and ṗ(b) = [1.984,0.490,0.055]T. The center of the ellipse Γ(b)�(r) is set as C =

[�1.0,0.5,1.915]T and the platform position at rest is p(s) = [�5.0,�1.0,1.915]T.
The duration of the entire recovery phase is t(s) = 4s. This test shows that the con-
troller can lead the platform along the recovery trajectory with a positioning error
of a few centimeters (Fig. 4). It also shows that the tensions of the remaining ac-
tive cables are positive throughout the recovery trajectory (Fig. 5). The cable cross-
sectional area and elasticity are Si = 16.4mm2 and Ei = 76GPa, respectively. The
winch drum radius is r = 67.5mm, and the motor inertia is Im = 0.062kg m2.
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Fig. 4 Positioning error with respect to the re-
covery trajectory provided by the controller.
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Test 2. The same approach described for a 4-cable robot may be adapted and
applied to the 8-cable model of the CoGiRo prototype [8, 9]. Indeed, if the CoGiRo
exit points are approximated (taken 2 by 2) to lie at the vertices of a rectangle and
connected to the platform center of mass P by 4 cables (with doubled cross section
and Young modulus), the 4-cable robot simulated in Test 1 is obtained, and the re-
covery strategy proposed in this paper may be used to design the trajectory of P.
This trajectory can then be used to compute, by the inverse kinematics, the cable
lengths of the actual 8-cable robot, which are fed to the CoGiRo controller. Details
are not reported due to space limitations. Fig. 6 refers to a simulation that replicates
the same conditions on stage (b) in Test 1 for the 8-cable CoGiRo model. For con-
sistency, when cable 7 breaks, cable 8 is also deactivated, thus leading to a 6-cable
robot lying outside its static workspace. The recovery strategy brings the robot to
halt in the same position as in Test 1, with zero final orientation of the platform.
Fig. 6 shows that there is a very good match between the trajectory followed by the
simplified and the non-simplified model.
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Fig. 6 Tests 1-2: Recovery trajectories for both models.

6 Conclusions, open issues and future works

This paper focused on the issue of cable failure (breakdown) in cable-suspended par-
allel robots (CSPRs). A recovery strategy was introduced for a spatial 3-dof CSPR
with 4 cables and a point-mass mobile platform. This strategy consists in planning a
trajectory that, depending on which cable breaks down, may partly lie outside of the
failed CSPR static workspace. Simulation results showed that the mobile platform
may be recovered to a safe position, thereby preventing the mobile platform from
falling down or making large uncontrolled oscillations.
A number of issues remain to be dealt with in order to make the proposed recov-

ery strategy fully automated and reliable.
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a) The recovery strategy is notably based on the results presented in [5, 6]. The
extension of [5, 6] to 6-cable 6-dof CSPRs is an open issue.
b) In some circumstances, the recovery strategy may be counterproductive. For

example, if a cable breaks when the platform is close to the ground, it may be safer
to let it fall down. Criteria to determine whether or not the recovery strategy should
intervene need to be investigated.
c) Some parameters of the recovery trajectory, such as the center of the ellipse

Γ(b)�(r), the location of the point where the platform has to be stopped, and the du-
ration t(s) of the trajectory Γ(r)�(s), are currently provided by the user. The objective
of part of our ongoing works is to make the controller capable of determining these
parameters autonomously.
d) The feasibility of the proposed recovery strategy in real-time must be assessed,

in order to proceed with experiments on a CSPR prototype.
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Workspace and interference analysis of
cable-driven parallel robots with an unlimited
rotation axis

Andreas Pott and Philipp Miermeister

Abstract A drawback of many cable-driven parallel robots is a relatively small
orientation workspace. In this paper, two design variants for cable-driven parallel
robots with nine and twelve cables are proposed that allow for large rotations. It
is shown that the platform can perform a 360� rotation while maintaining posi-
tive tension in all cables and without collisions amongst the cables. Furthermore,
workspace studies of the total orientation workspace are provided. Surprisingly, this
family of cable robot is capable to perform an unlimited rotation within a transla-
tional workspace of reasonable size. Finally, the efficiency and computation time of
force distribution algorithms is compared for cable robots having twelve cables.

Key words: cable-driven parallel robots, workspace, interference, unlimited rota-
tion, orientation workspace

1 Introduction

Cable-driven parallel robots, in the following simply called cable robots, mainly
consist of a light weight platform, cables, and winches and therefore allow to design
systems with an exceptional good power to mass ratio compared to conventional
kinematics. The workspace of the robot mainly depends on the winch positions and
platform anchor points. Cable robots have a relatively small rotational workspace
compared to their translational workspace. Prototypes such as the CoGiRo [3] are
able to rotate the platform by around 90� which is considered to be a large orien-
tation workspace for a cable robot. Handling tasks such as conveyer belt pick-and-
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Philipp Miermeister
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Fig. 1 Design of two cable robot with an unlimited yaw rotation around its z-axis in the form of a
lever (left) and crank shaft (right) with nine cables.
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Fig. 2 The endless Z12 robot architecture with m= 12 cables

place applications demand for a larger rotational workspace which can yet only be
achieved by additional actuated axes on the platform.
In this paper, an approach is presented where the desired rotation is actuated by

cables. This keeps the mass of the system low and avoids the need for power supply.
Beside that, additional cables increase the safety of the system and even may be
used to increase the translational workspace.

2 Cable Robot with Large Rotation

The basic idea of a cable-driven parallel robot with one unlimited rotation axis
was recently presented [7]. In this paper, we detail the properties of such robots
by proposing a configuration with more cables that has the unlimited rotation prop-
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Table 1 Geometry data for the base ai and platform bi anchor points

endless Z9 base ai platform bi
i x y z x y z
1 �

rB
2

p

3
2 rB HB rP 0 HP

2 rB 0 HB rP 0 HP
3 �

rB
2 �

p

3
2 rB HB rP 0 HP

4 �

rB
2

p

3
2 rB hB 0 0 hP

5 rB 0 hB 0 0 hP
6 �

rB
2 �

p

3
2 rB hB 0 0 hP

7 �

rB
2

p

3
2 rB 0 0 0 0

8 rB 0 0 0 0 0
9 �

rB
2 �

p

3
2 rB 0 0 0 0

endless Z12 base ai platform bi
i x y z x y z
1 �rB rB HB rP 0 HP
2 rB rB HB rP 0 HP
3 rB �rB HB rP 0 HP
4 �rB �rB HB rP 0 HP
5 �rB rB hB 0 0 hP
6 rB rB hB 0 0 hP
7 rB �rB hB 0 0 hP
8 �rB �rB hB 0 0 hP
9 �rB rB 0 0 0 0
10 rB rB 0 0 0 0
11 rB �rB 0 0 0 0
12 �rB �rB 0 0 0 0

erty of the platform within a reasonably large wrench-feasible workspace. Addi-
tionally, we show that the robot does not suffer from cable-cable collisions in this
workspace. Considering the connection of many cables to the platform in a spa-
tial robot, it seems to be clear from intuition that large rotation is impossible for
a cable-driven robot. However, this intuition is wrong and one way to achieve this
effect is to use a platform that has the form of a crank shaft. Fixing three cables to
each end of the shaft is basically a generic 2R3T design. Then, one uses an eccen-
tric connection point on the shaft to independently control the rotation of the shaft
(see Fig. 1). In this simple example, three cables share a common anchor point at
each end of the shaft as well as on the crank. From a kinematic point of view, this
yields exactly the desired rotational mobility of the platform. As shown in [7], each
additional degree-of-freedom can be actuated on the platform and requires at least
one extra cable. However, for a cable robot, we might need to add more cables for a
degree-of-freedom to achieve a preferred geometry of the platform.
In the following, two archetypic robot designs are presented where the geometry

of the robot is characterized by the proximal anchor points ai and the distal anchor
points bi. The number of cables is denoted by m.
The endless Z9 design is a minimal realization of the idea sketched above to

achieve the rotation capabilities of the robot. The geometry of the robot consists of
three triangular levels on different heights that respectively share a common distal
anchor point bi. The structure in layers shall avoid collisions amongst these groups
of cables. Since all cables within a group share a common distal anchor point, the
cables cannot interfere in any other point within the robot frame [11]. The endless Z9
is a 9-3 cable configuration. A parametric representation of this geometry is given
in Tab. 1.
The endless Z12 is a cable robot in a 12-3 cable configuration (see Fig. 2). In

order to match the mostly desired shape of a rectangular robot frame, the proximal
anchor points are moved to the surface of a box providing also a larger possible
workspace for the robot. The design has again three layers on the platform and
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on the base, where for this robot each layer consists of four cables. Again, given a
proper geometry for the platform, cables on different layers shall not collide. For the
sample robot, we have chosen the parameters as follows: rB = 2, rP = 0.3, HB = 3,
hB = 2, HP = 0.5, and hP = 0.3.

3 Kinematic Properties

In the following, we briefly present the modelling and tools used to analyze the
cable robots. The standard kinematic modelling for cable-driven parallel robots is
used for the analysis in this paper. The platform position r and rotation R can be
controlled by changing the cable length li according to the inverse kinematics

li = ai� r�Rbi , (1)

where vectors ai relate to the cable’s outlet points at the winch side and bi are the dis-
tal anchor points on the mobile platform. Considering the platform as a free floating
body, a stable platform position is characterized by the force and torque equilibrium

ATf+w= 0 , (2)

where f and w denote the cable forces and external wrench, respectively, while AT
relates to the well-known structure matrix

AT =


u1 · · · um

b1⇥u1 · · · bm⇥um

�
. (3)

The unit vectors ui describe the direction of the cables. Cables can only resist pulling
forces so that Eq. 2 must be fulfilled under the constraint of positive forces fi > 0
for i= 1 . . . ,m. Under the consideration of the minimal and maximal allowed cable
forces fmin and fmax, it is possible to determine the set of allowed platform poses for a
given wrench w using Eq. (2), that is to find a positive solution for the cable forces
f within the allowed range fmin  fi max.
Cable robotswith more cables than the six degree-of-freedomare over-constrained

systems and therefore multiple valid force distributions for a single stable platform
pose exist. This holds true especially for the endless Z robots at hand which exhibit
a high degree-of-redundancy. Thus, for the determination of the cable force, differ-
ent methods are considered that are capable of dealing with such highly redundant
robots. For this study, we focus on the (advanced) closed-form method [10], the
Dykstra method [5], and the wrench-set method [1]. However, only little can be
found in the literature that analyze appropriateness and applicability of force dis-
tribution methods for robots with m = 12 cables. It is known that the computation
time and also the convergence can degenerate if the degree-of-redundancy increases.
Therefore, different approaches are used in this study to assess also the feasibility
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for this highly redundant case. Following the discussion in [10], we use amongst
others a least squares approach

f= fm�A+T �
w+ATfm

�
(4)

where A+T is the Moore-Penrose pseudo inverse of AT and fm is the medium feasi-
ble force distribution fm = (fmin+ fmax)/2.
The concept of wrench-feasibility poses is recalled above and is applied to the

workspace here. The wrench-feasible workspace (WFW) was defined in [12, 2, 4]
as follows: The wrench-feasible workspace is the set W of poses (r,R) of the
mobile platform. For any wrench w 2 Q there exists a vector of cable tension
f2 [ fmin, fmax]m such that Eq. (2) is fulfilled. The pose (r,R) is called wrench-feasible
if it allows at least one solution f 2 [ fmin, fmax]m. To test if a pose belongs to the
wrench-feasible workspace, the methods mentioned above to compute force dis-
tributions are employed. For studying the workspace of the endless Z robots, one
is interested in the total orientation workspace [6], i.e. the set of all positions
where every orientation R 2 R is wrench-feasible. In this study the orientation set
R = {R 2 SO3 |R= RZ(ϕ)8ϕ 2 [0,2π ]} contains a full rotation around the z-axis
of the platform.
For the workspace assessment, the hull method is used [9] which allows for very

accurate computation of the workspace border also taking into account sets of ori-
entations R. The hull methods uses a triangulation of a small sphere around the
estimated center of the workspace and inflates this region using line search until the
border of the workspace is found. However, similar results as presented here can be
achieved by simple sampling the workspace with discrete positions.
For cable robots with many cables, the problem of colliding cables becomes an

issue, especially if large rotation angles are considered. A very interesting tech-
nique to calculate the regions of cable interference within the constant orientation
workspace was presented by Perreault [8]. Through purely geometric considera-
tions, it is possible to determine the loci of cable-cable interference from the ge-
ometry of the frame ai and the relative geometry of the mobile platform bi. The
main concept of this approach is the simple fact that two cables can interfere only
if the corresponding anchor points ai,a j,bi,b j lie in a common plane. Since the an-
chor points on the frame are fixed in space, the plane can be constructed as follows:
As a model of the possible interference region, one computes the normals of the
connection lines between pairs of proximal and distal anchor points from

ai j =
a j � ai

||a j � ai||2
, bi j =

b j �bi
||b j �bi||2

for i, j = 1, . . . ,m i 6= j (5)

If ai j and bi j are not parallel, one can construct two triangles [8]

T+
i j : x= a j �bi+λai j +νbi j (6)
T�

i j : x= a j �bi�λai j �νbi j (7)
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with λ ,ν > 0. Exploiting the normalized length of the vectors ai j and bi j, one prac-
tically chooses a metric length for λ and ν in the range of the size of the robot to
receive finitely large triangles with the critical interference region. Note, that com-
mon anchor points as used in the robot geometries above decrease the collision
region from triangles to lines. The lines and triangles can be used for visual or au-
tomatic detection of cable-cable interference. For many robot designs, one can see
from first glance, if the triangles are within the workspace of interest or outside.
Further information on dealing with parallel vectors can be found in the paper [8].
Relaxing the considerations for the fixed orientation, the vector bi j is transformed

by the rotation matrix RZ(ϕ) in order to study a full rotation of the platform. This
leads to the collision area given by the following parametric volume

bT+
i j : x= a j �RZ(ϕ)bi+λai j +νRZ(ϕ)bi j (8)

bT�

i j : x= ai�RZ(ϕ)b j �λai j �νRZ(ϕ)bi j, (9)

where for RZ(ϕ) is the elementary rotation matrix around the z axis.

4 Results

For the endless Z12 cable robots with the parameters given in Tab. 1, a test trajectory
was computed where the platform simply performs a full rotation around its z-axis
with angle ϕ at the position r = [0,0,1.5]Tm. The Dykstra method was used to
compute force distribution for all angles in the given range ϕ 2 [�π ,π ] which force
limits fi 2 [ fmin, fmax] = [1,10]N. The resulting forces are shown in Fig. 3 where one
can easily see that all 12 cables can be kept under tension and no cable violated the
given bounds for the cable forces. Thus, the orientation workspace of the sample
pose indeed includes a full rotation of the platform.
Interestingly, the full rotation maneuver is possible at different positions. To

quantitatively study this property of the robot, the wrench-feasible total orientation
workspace of the robot was computed using the hull algorithm for the rotation set
R given above. Using the Dykstra method and the same force limits as given above,
a significantly large workspace was found (see Fig. 4).
The region of convergence and the computation time heavily differ amongst the

considered methods for force distribution. As conjectured in [10], the closed-form
method performs excellently in terms of computation time but is rather limited con-
cerning the region where force distributions can be computed. The advanced closed-
formmethod slows down the computation time by around a factor of four in average.
From the analysis of the complexity of the algorithm at most, a slow-down of the
degree-of-redundancy r is expected and the measured computation time is consis-
tent with the expectations. Using the advanced closed-form method, the size of the
computable workspace is largely extended by a factor of around eight. Finally, the
Dykstra as reference method provides similar results in terms of workspace size
compared to the advanced closed-form method. However, the alternative projec-
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Fig. 3 Possible positive force distribution for a 2π rotation of the mobile platform at position
r= [0,0,1.5]T.

Table 2 Workspace volume and computation time of the endless Z12 computed with different
force distribution algorithms.

method computation time [s] volume [m3] max. cable force
closed-form 1.292 0.889 fmax = 10
closed-form 1.338 4.204 fmax = 100
advanced closed-form 5.449 7.168 fmax = 10
advanced closed-form 5.162 21.062 fmax = 100
Dykstra 66.747 7.250 fmax = 10
Dykstra 76.062 20.632 fmax = 100

tions used in Dykstra’s iterative scheme are rather inefficient for highly redundant
cable robots and lead to computation times that are one order of magnitude larger.
Furthermore, the consideration of a larger region of feasible cable forces adds ad-
ditional efforts to the Dykstra scheme where the computation time for closed-form
and advanced closed-form remains almost constant.
Using the technique described above, the cable-cable interference was studied.

For this analysis, the following geometric parameters were used for the endless Z12
design: rB = 2, rP = 0.3, HB = 3, hB = 2, HP = 0.5, and hP = 0.2. Note, that the z
coordinates of the points b5–b8 are smaller in order to avoid collisions between
the cable groups 1–4 and 5–8. It can be seen from Fig. 5 that the total orientation
workspace and the region of interference is separated and thus cable-cable interfer-
ence is avoided throughout the workspace.
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Fig. 4 Total orientation workspace of the cable robot endless Z12 computed with the Dykstra
method.

A1,A4 A2,A3

A5,A8 A6,A7

A9,A12 A10,A11

W

II

KP

Fig. 5 Lateral view in the xz-plane of the region of cable-cable interference and total orientation
workspace W of the endless Z12 robot and the region of cable-cable interference I .

5 Conclusion

In this paper, design archetypes of cable-driven parallel robots with a huge orien-
tation workspace are proposed and studied. Surprisingly, such robots can execute a
full rotation of their platform while maintaining tension in the cables and avoiding
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collisions amongst the cables. Also the size of the total orientation workspace is
surprisingly large. However, the effect comes at the costs of employing a large num-
ber of actuators and additional challenges to cope with many cable. In the future,
it is planned to experimentally study such designs. We conjecture that there exists
an eight or even seven cable design that also has the unlimited rotation orientation
workspace but until now no such configuration is known.
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Abstract In this paper, a model is presented for the elasto-static problem of planar point 
mass robots suspended by m-cables. In particular, each cable configuration is 
described by an elastic catenary and static equations and compatibility 
conditions for the system are given, thus the 2m force reaction unknowns can 
be evaluated. The proposed formulation has been used to solve the direct 
problem and it is suitable for investigating the influence of elastic catenary 
on the end-effector exact positioning. The model allows evaluating the relation 
between end-effector position and the involvement of each cable in sustaining 
the payload. 

Keywords: Cable robots, Elasto-static analysis, Sagged cables. 

1. Introduction  
In recent years, cable-driven robots are attracting the attention of the 

scientific community as well as industry because their potentiality in 
applications related to manipulation for which large workspace, low 
inertia, high payload to robot mass ratio, transportability, economy in 
construction, and maintenance are required. Since cables are wounded 
around drums, the workspace may be very large (Bruckmann et al., 2008) 
allowing the application to cable-driven scaffold systems for aircraft 
maintenance (Nguyen & Gouttefarde, 2014), cable-driven camera used for 
big entertainment or sport events (Skycam, 2016), and contour crafting 
system (Bosscher et al., 2007). 

A class of cable driven robots is the under-constrained or cable-
suspended type, in which the moving platform acts in a crane 
configuration, (Merlet & Dit-Sandretto, 2014). Indeed, if all the 
attachment points on the fixed base are located above the workspace then 
cables do not clutter the portion of the robot workspace located below the 



platform. This occurrence reduces drastically the possible interference 
among cables, end-effector, and environment, but a crucial issue is that 
due to the geometric configuration of the system the pose capability is 
strictly related to the gravity and then to the solution of the static problem. 
Moreover, external disturbances on the end-effector determine complex 
dynamics involving cable vibrations. 

Works on statics and dynamics of cable-suspended robots are reported 
in (Kozak et al., 2006; Carricato & Merlet, 2012; Du & Agrawal, 2015) 
evidencing the importance of suspended cable vibrations, which can be 
attenuated by active control, as shown in (Gattulli et al., 2008). However, 
vibration occurrences may be effectively studied in fully-constrained 
manipulators also by simply considering cables as linear or nonlinear 
springs such as in (Behzadipour, & Khajepour, 2006; Kawamura et al., 
2000; Diao & Ma 2009). For cable-suspended robots, kinetostatic models 
taking into account hefty elastic cables were proposed with discretized 
masses in (Ottaviano & Castelli, 2010) and with approximated cable static 
configuration description (Gouttefarde et al., 2012). In this paper, we 
present an exact model for the direct elasto-static problem of the planar 
point mass sagged cable-suspended robot with m-elastic cables with 
distributed mass as insight investigation of the results presented in 
(Ottaviano et al., 2015). 

2. Elasto-static model for cable-suspended robots 
In the following we will consider the elasto-static problem of a cable-

driven manipulator with m cables and n DOFs, where E denotes a 
reference point of the moving platform that can be described with respect 
to a global reference frame OXY attached to the fixed base (Fig. 1).  

 

 
 
Figure 1. Static configuration of a planar m-cables point mass manipulator 
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An approximate solution, which constitutes the first trial for finding the 
solution of the exact nonlinear problem, is obtained by solving the 
kinetostatics of cable-suspended robots, based on the assumption of mass 
less inextensible cables, with the hypothesis that they are always in 
tension and can thus be treated as line segments representing bilateral 
constraints. In this case, cable configurations can be assumed as 
coincident with the chords denoted by vectors rE0i of length .  

According to the mass less inextensible cable model, cable lengths can 
be computed as (for i = 1,..,m) 

 

0i E0 E0( )r r aiL = − ;   1 i 0i
i 0i

i 0i

( ) cos X rr
X r

E
E

E

θ − ⎛ ⎞⋅
= ⎜ ⎟⎜ ⎟

⎝ ⎠
         (1) 

 
where rE0 = [xE0, yE0]T are the coordinates of center of gravity of the end-
effector expressed in the fixed frame,  and θi are respectively the length 
and angle for the i-th line segment cable, Ai are the attachments points. 
Accordingly, cable tensions can be evaluated by imposing the equilibrium 
at the end-effector by using the inverse of Moore-Penrose matrix (when 
n<m), (Bruckmann et al., 2008).  

However, a classical cable modeling approach permits to consider cable 
elasticity and sagged catenary assuming homogeneous properties and 
negligible flexural stiffness (Irvine, 1981). On this basis, here, a model 
describing the static configuration of a planar point mass manipulator 
suspended by m sagged cables, as depicted in Fig. 1, is derived.  

The elastic catenary of each cable is described in a local frame AiXiYi 
through the curve pi(si), being si the curvilinear abscissa of the reference 
unstretched cable configuration going from the support at si=0 to the final 
length si = L0i.  

The elastic catenary curves are described in the vertical plane, satisfying 
the following constraints  

 

                   (2) 

 
and the global equilibrium in the elastic configuration of each i-th cable 
particle point Pi(si) at length coordinate pi(si), requires that 

 

;    ;     i = 1,…m          (3) 

 
being wi the constant weight per unit natural length with Wi=wiL0i as the 
total cable weight, and Hi and Vi are the unknown horizontal and vertical 
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components of the support reaction at Ai, respectively (Fig.1).  
Adopting an exact kinematic formulation for the cable axial strain and 
linear elasticity of the material, the constitutive relation and finite cable 
axial strains are  

 

;    ;   i = 1,… m             (4) 

 
Consequently, the two parametric planar curves Si, exactly describing 

the i-th cable configurations in the local reference frame, whose map from 
the si-parametric domains to the vertical planes, are defined by the 
coordinate functions xi(si) and yi(si).  

Assuming satisfied the geometric boundary conditions xi (0)=0 and yi 
(0)=0 at each supports Ai (si =0) for i=1,…m, the following equations in the 
2m unknown reactions Hi, Vi, are describing each elastic catenary 

 

;   (5) 

 
in which  

 
; 

           (6) 
 

where  
 

;            (7) 

 
On the basis of the given cable model description, the solution strategy, 

here adopted, for the static problem of the system follows the direct force 
method in which the 2m reactions Hi and Vi at points Ai are assumed as 
principal unknowns.  

The unknowns Vi, Hi can be found solving simultaneously static and 
compatibility equations. Consequently, satisfying the equilibrium for the 
i-th cable as 

 
;                     (8) 

 
Static equations at the end-effector as described in Fig. 2, according to Eqs. 
(8), are given as  
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Figure 2.     Static equilibrium at the end-effector of the m-cable robot 
 
 

 ;              (9) 

 
while the relevant compatibility equations for the entire system relates 
the position of the end-effector in the elastic configuration to the position 
of each cable support (for i = 2,…,m, see Fig. 1), and it can be written in 
the global reference frame as 

 
                   (10) 

 
where ai is the position vector of the support Ai in the global reference 
frame, and rEi is the vector describing the end-effector position, as  

 
;            (11) 

 
The projection of equation (10) for components and the use of the equations 
(5) to express the end effector position as function only of the Hi and Vi 
unknowns, furnishes the following 2m-2 scalar equations 

 

 

 (12) 

 
which complete the set of 2m nonlinear algebraic equations in 2m 
unknowns. Equations (9) and (12) can be solved for any manipulator 
planar elasto-geometry. The direct problem can be completed determining 
the elastic catenary by (5)-(7) for each cable providing the end-effector 
position E and the stretched cable lengths Lis.  
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Figure 3.     Static configuration of a planar 3-cables point mass manipulator 

3. A 3-cable planar point mass cable suspended robot 
According to the proposed model a case of study with 3 cables is considered 
in Fig.3 with the following data: L2=1 m, L3=2 m, Di=0, and cables made of 
a textile wire rope with an average nominal diameter of 4 mm and linear 
density of 10.94 g/m. The Young's modulus is equal to 50 MPa and it was 
determined experimentally, see (Ottaviano et al., 2015). The end-effector 
mass was set equal to 53.26 g.  

The sensitivity of the solution to the cable lengths can be studied by 
using a monodimensional parameter Λ. Parameter Λ is the ratio between 
the unstretched cable length  and the nominal chord , which is 
known as the cable aspect ratio (Irvine, 1981; Lepidi & Gattulli, 2012).  

The Λ parameter was introduced for a cable hanging between two fixed 
supports to allow a distinction between pre-tensioned (Λ < 1) and non-pre-
tensioned (Λ > 1) cables in (Irvine, 1981). For cable-suspended robots, the 
Λ parameter can be used to assess the sensitivity of the end-effector 
positioning to variation of cable lengths with respect to the nominal chord. 
It is important to point out that the working cable length may differ from 
the estimated value during maneuvers due to several factors. 
Consequently, the studied example is used to evaluate the end-effector 
position in three different cases. In the first one the input data of the 
problem (the assumed value of  in the Equations (9) and (12)) are such 
that the unstretched cable lengths  are equal to the nominal chords  
(Λ = 1), in the second case cable lengths are greater than the nominal 
chords (Λ >1) and in the third case the lengths are less than the chords 
(Λ <1). Figure 4 shows selected static configurations in the workspace. It 
is worth noting that half of the workspace is spanned due to symmetry of 
the proposed example. Figure 4a) is related to the case of Λ = 1. For these 
configurations, going towards to the left boundary of the workspace, center 
and right cables (2 and 3) show a non-negligible sag.  
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   a)         b)           c) 

 
Figure 4.     Simulation results for the planar point mass manipulator in Fig. 3 

with 3 sagged cables when: a) Λ = 1; b) Λ =1.01 ; c) Λ =0.99. 
 

This feature is more evident for overestimated cable lengths (case with 
Λ > 1 Fig. 4b)) and is less relevant for underestimated cable lengths (case 
with Λ < 1 in Fig. 4c)).  

Table 1 reports the cable tensions evaluated solving the nonlinear 
problems of Equations (9) and (12) in which the unstretched lengths of the 
cables  have been selected on the basis of a nominal configurations of 
the end-effector within the workspace, as reported in Equation (1). The 
three different cases of cable aspect ratio assumed equal for all the cables 
permit to consider different initial unstretched cable lengths as input data 
to the problem. 

Analyzing the solutions of the elasto-static problem a series of 
consideration can be drawn.  

First, the model confirms that close to the left boundary of the workspace 
the first cable sustains almost all the payload, while the other two cables 
have vertical components of the tension comparable to the cable weight, 
as reported in Table 1 (first four rows). 

Second, an underestimation of the cable lengths, in the symmetric 
configurations of the case of study, brings the solution of the system 
composed by six solving equations to furnish tension vectors for which the 
central cable results to be compressed. This occurrence is related to the 
vertical components of the tension vectors, which assume negative values, 
as it is evidenced in bold letters in Table 1. It is worth noting that V2E=N2E 
for symmetry. 

These results put into evidence that if all three cables possess equal 
reduced lengths with respect to the cable chord (Λ =0.99), the central cable 
becomes slack for the central symmetric configurations of the workspace 
(reported as dash-dotted blue lines in Fig.4c). In this case, the presence of 
the slack cable needs to be carefully considered in the model. Indeed, the 
correct solution has to be evaluated considering only two cables (red 
configurations in Fig. 4c)), and new tension vectors should be evaluated as 
solutions of the 4-system solving equations. The new solutions are 
reported in red in Table 1. 
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Table 1     Cable tensions (absolute values) for the 3-cables planar point mass manipulator. 
 

  Λ = 1 Λ =1.01 Λ = 0.99 

xE0 yE0 N1E N2E N3E N1E N2E N3E N1E N2E N3E 

0.10 0.50 0.525 0.041 0.097 0.521 0.058 0.070 0.527 0.030 0.124 
0.10 1.00 0.526 0.041 0.074 0.528 0.043 0.067 0.525 0.038 0.083 
0.10 1.50 0.534 0.049 0.075 0.536 0.050 0.071 0.531 0.047 0.080 
0.10 2.00 0.542 0.058 0.081 0.545 0.059 0.078 0.540 0.057 0.084 
0.50 0.50 0.511 0.146 0.281 0.403 0.352 0.052 0.589 0.018 0.447 
0.50 1.00 0.438 0.087 0.207 0.347 0.267 0.065 0.466 0.031 0.259 
0.50 1.50 0.429 0.088 0.180 0.353 0.240 0.080 0.449 0.044 0.214 
0.50 2.00 0.433 0.094 0.173 0.369 0.223 0.096 0.450 0.057 0.199 

1.00 0.50 0.262 0.319 0.262 0.037 0.523 0.037 17.413 
0.631 

14.823 
0.0 

17.413 
0.631 

1.00 1.00 0.281 0.186 0.281 0.052 0.514 0.052 7.670 
0.398 

10.188 
0.0 

7.670 
0.398 

1.00 1.50 0.287 0.139 0.287 0.069 0.505 0.069 3.859 
0.345 

5.781 
0.0 

3.859 
0.345 

1.00 2.00 0.293 0.126 0.293 0.088 0.496 0.088 2.320 
0.328 

3.492 
0.0 

2.320 
0.328 

4. Conclusions  
In this paper, we have proposed an elasto-static model for the planar 

point mass cable suspended manipulator with m cables taking into 
account elasticity and sag. According to the force method, the model 
utilizes both static and compatibility equations to evaluate the support 
reactions, which are the only unknowns. In particular, the proposed 
compatibility conditions express the need of the solution to satisfy the 
given system geometry (system support relative positions), which is an 
input data of the problem. Hence, the end-effector positions are not given 
as an input, but they are used to express the compatibility conditions as 
function of the force unknowns. The proposed approach to the problem 
furnishes a set of 2m nonlinear equations in the 2m support reactions 
permitting to pursue analytical solutions in both fully- and over-
constrained cases with a minimum number of unknowns, as it is typical in 
elasticity problems solved by force-based methods. Simulation results 
presented for a planar 3-cable point mass manipulator have shown the 
ability of the model to determine the cable tensions and consequently the 
exact system configuration. The relation among the positioning in the 
workspace, the cable lengths and tensions have evidenced the involvement 
of each cable in sustaining the payload and the cases in which one cable 
becomes slack (compressed).  
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Determination of a Dynamic Feasible
Workspace for Cable-Driven Parallel Robots

L. Gagliardini, M. Gouttefarde, and S. Caro

Abstract The dynamic equilibrium of the moving platform of a cable-driven paral-
lel robot can be investigated by means of the Dynamic Feasible Workspace (DFW),
which is the set of dynamic feasible moving platform poses. A pose is said to be
dynamic feasible if a prescribed set of moving platform accelerations is feasible,
with cable tensions lying in between given lower and upper bounds. This paper in-
troduces an extended version of the DFW with respect to the one usually considered
in the literature. Indeed, the improved DFW introduced in this paper takes into ac-
count: (i) The inertia of the moving platform; (ii) The external wrenches applied on
the moving platform and (iii) The centrifugal and the Coriolis forces corresponding
to a constant moving platform twist. Finally, the static, wrench-feasible, dynamic
and improved dynamic workspaces of a spatial cable-suspended parallel robot are
plotted in order to compare their sizes.

Key words: Cable-Driven Parallel Robots, Workspace Analysis, Dynamic Feasible
Workspace

1 Introduction

Several industries, e.g. the naval and renewable energy industries, are facing the
necessity to manufacture novel products of large dimensions and complex shapes.
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Fig. 1 Example of a CDPR design created in the framework of the IRT JV CAROCA project.

In order to ease the manufacturing of such products, the IRT Jules Verne promoted
the investigation of new technologies. In this context, the CAROCA project aims at
investigating the performance of Cable Driven Parallel Robots (CDPRs) to manu-
facture large products in cluttered industrial environments [5, 6]. CDPRs are a par-
ticular class of parallel robots whose moving platform is connected to the robot fixed
base frame by a number of cables as illustrated in Fig. 1. CDPRs have several ad-
vantages such as a high payload-to-weight ratio, a potentially very large workspace,
and possibly reconfiguration capabilities.

The equilibrium of the moving platform of a CDPR is classically investigated
by analyzing the CDPR workspace. In serial and rigid-link parallel robots, the
workspace is commonly defined as the set of end-effector poses where a number of
kinematic constraints are satisfied. In CDPRs, the workspace is usually defined as
the set of poses where the CDPR satisfies one or more conditions including the static
or the dynamic equilibrium of the moving platform, with the additional constraint
of non-negative cable tensions. Several workspaces and equilibrium conditions have
been studied in the literature.

The first investigations focused on the static equilibrium and the Wrench Clo-
sure Workspace (WCW) of the moving platform, e.g. [4, 9, 14–16]. Since cables
can only pull on the moving platform, a pose belongs to the WCW if and only
if any wrench can be applied by means of non-negative cable tensions. Feasible
equilibria of the moving platform can also be analyzed using the Wrench Feasible
Workspace (WFW) [2, 3, 8]. By definition, the WFW is the set of wrench feasible
platform poses where a pose is wrench feasible when the cables can balance a given
set of external moving platform wrenches while maintaining the cable tensions in
between given lower and upper bounds. The Static Feasible Workspace (SFW) is a
special case of the WFW, where the sole wrench induced by the moving platform
weight has to be balanced [13]. The lower cable tension bound, tmin, is defined in
order to prevent the cables from becoming slack. The upper cable tension bound,
tmax, is defined in order to prevent the CDPR from being damaged.
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Determination of a Dynamic Feasible Workspace for Cable-Driven Parallel Robots 3

The dynamic equilibrium of the moving platform can be investigated by means
of the Dynamic Feasible Workspace (DFW). By definition, the DFW is the set of
dynamic feasible moving platform poses. A pose is said to be dynamic feasible if a
prescribed set of moving platform accelerations is feasible, with cable tensions lying
in between given lower and upper bounds. The concept of dynamic workspace has
already been investigated in [1] for planar CDPRs. Barrette et al. solved the dynamic
equations of a planar CDPR analytically, providing the possibility to compute the
boundary of the DFW. This strategy cannot be directly applied to spatial CDPRs
due to the complexity of their dynamic model. In 2014, Kozlov studied in [12] the
possibility to investigate the DFW by using a tool developed by Guay et al. for
the analysis of the WFW [11]. However, the dynamic model proposed by Kozlov
considers the moving platform as a point mass, neglecting centrifugal and Coriolis
forces.

This paper deals with a more general definition of the DFW. With respect to the
definitions proposed in [1, 12], the DFW considered in the present paper takes into
account: (i) The inertia of the moving platform; (ii) The external wrenches applied
on the moving platform; (iii) The centrifugal and the Coriolis forces corresponding
to a given moving platform twist. The Required Wrench Set (RWS), defined here as
the set of wrenches that the cables have to apply on the moving platform in order to
satisfy its dynamic equilibrium, is calculated as the sum of these three contributions
to the dynamic equilibrium. Then, the corresponding DFW is computed by means
of the algorithm presented in [10] to analyze the WFW.

2 Dynamic Model

The CDPR dynamic model considered in this paper consists of the dynamics of the
moving platform. A dynamic model taking into account the dynamics of the winches
could also be considered but is not used here due to space limitations. Additionally,
assuming that the diameters of the cables and the pulleys are small, the dynamics of
the pulleys and the cables is neglected.

The dynamic equilibrium of the moving platform is described by the following
equation

Wt + Ipp̈+Cṗ+we +wg = 0 (1)

where W is the wrench matrix that maps the cable tension vector t into a platform
wrench, and

ṗ =


ṫ
w

�
p̈ =


ẗ
a

�
, (2)

where ṫ = [ṫx, ṫy, ṫz]T and ẗ = [ẗx, ẗy, ẗz]T are the vectors of the moving platform linear
velocity and acceleration, respectively, while w = [wx,wy,wz]

T and a = [ax,ay,az]
T

are the vectors of the moving platform angular velocity and acceleration, respec-
tively.
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The external wrench we is a 6-dimensional vector expressed in the fixed reference
frame Fb and takes the form

we =
⇥
fT
e ,mT

e
⇤T

= [ fx, fy, fz,mx,my,mz]
T (3)

fx, fy and fz are the x, y and z components of the external force vector fe. mx, my and
mz are the x, y and z components of the external moment vector me, respectively.
The components of the external wrench we are assumed to be bounded as follows

fmin  fx, fy, fz  fmax (4)
mmin  mx,my,mz  mmax (5)

According to (4) and (5), the set [we]r, called the Required External Wrench Set
(REWS), that the cables have to balance is a hyper-rectangle.

The Center of Mass (CoM) of the moving platform, G, may not coincide with
the origin of the frame Fp attached to the platform. The mass of the platform being
denoted by M, the wrench wg due to the gravity acceleration g is defined as follows

wg =


MI3
MŜp

�
g (6)

where I3 is the 3⇥3 identity matrix, MSp = R [Mxp,Myp,Mzp]
T is the first mo-

mentum of the moving platform defined with respect to frame Fb. The vector
Sp = [xp,yp,zp]

T defines the position of G in frame Fp. MŜp is the skew-symmetric
matrix associated to MSp.

The matrix Ip represents the spatial inertia of the platform

Ip =


MI3 �MŜp
MŜp Ip

�
(7)

where Ip is the inertia tensor matrix of the moving platform, which can be computed
by the Huygens-Steiner theorem from the moving platform inertia tensor, Ig, defined
with respect to the platform CoM

Ip = RIgRT
�

MŜpMŜp

M
(8)

R is the rotation matrix defining the moving platform orientation and C is the matrix
of the centrifugal and Coriolis wrenches, defined as

Cṗ =


ŵŵMSp

ŵIpw

�
(9)

where ŵ is the skew-symmetric matrix associated to w .
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3 Dynamic Feasible Workspace

3.1 Standard Dynamic Feasible Workspace

Studies on the DFW have been realised by Barrette et al. in [1]. The boundaries of
the DFW have been computed for a generic planar CDPR developing the equations
of its dynamic model. Since this method cannot be easily extended to spatial CDPRs,
Kozlov proposed to use the method described in [11] in order to compute the DFW
of a fully constrained CDPR [12]. The proposed method takes into account the cable
tension limits tmin and tmax in checking the feasibility of the dynamic equilibrium
of the moving platform for the following bounded sets of accelerations

ẗmin  ẗ  ẗmax (10)
amin  a  amax (11)

where ẗmin, ẗmax,amin,amax are the bounds on the moving platform linear and ro-
tational accelerations. These required platform accelerations define the so-called
Required Acceleration Set (RAS), [p̈]r. The RAS can be projected into the wrench
space by means of matrix Ip, defined in (7). The set of wrenches [wd ]r generated by
this linear mapping is defined as the Required Dynamic Wrench Set (RDWS). No
external wrench is applied to the moving platform. Accordingly, the DFW is defined
as follows

Definition 1. A moving platform pose is said to be dynamic feasible when the mov-
ing platform of the CDPR can reach any acceleration included in [p̈]r according to
cable tension limits expressed by [t]a. The Dynamic Feasible Workspace is then the
set of dynamic feasible poses, [p]DFW .

[p]DFW =
�
(t,R) 2 R3

⇥SO(3) : 8p̈ 2 [p̈]r, 9t 2 [t]a s.t. Wt +Ap̈ = 0
 

(12)

In the definition above, the set of Admissible Cable Tensions (ACT) is defined as

[t]a = {t | tmin  ti  tmax, i = 1, . . . ,m} (13)

3.2 Improved Dynamic Feasible Workspace

The DFW described in the previous section has several limitations. The main draw-
back is associated to the fact that the proposed DFW takes into account neither the
external wrenches applied to the moving platform nor its weight. Furthermore, the
model used to verify the dynamic equilibrium of the moving platform neglects the
Coriolis and the centrifugal wrenches associated to the CDPR dynamic model.
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At a given moving platform pose, the cable tensions should compensate both the
contribution associated to the REWS, [we]r, and the RDWS, [wd ]r. The components
of the REWS are bounded according to (4) and (5) while the components of the
RDWS are bounded according to (10) and (11).

The dynamic equilibrium of the moving platform is described by (1), where C is
related to the Coriolis and centrifugal forces of the moving platform and wg to its
weight. These terms depend only on the pose and the twist of the moving platform.
For given moving-platform pose and twist, these terms are constant.

Therefore, the DFW definition can be modified as follows.

Definition 2. A moving platform pose is said to be dynamic feasible when, for a
given twist ṗ, the CDPR can balance any external wrench we included in [we]r,
while the moving platform can assume any acceleration p̈ included in [p̈]r. The
Dynamic Feasible Workspace is the set of dynamic feasible poses, [p]DFW .

[p]DFW : 8we 2 [we]r,8p̈ 2 [p̈]r, 9t 2 [t]a s.t. Wt +Ipp̈+Cṗ+we +wg = 0 (14)

In this definition, we may note that the feasibility conditions are expressed ac-
cording to three wrench space sets. The first set, [wd ]r, can be computed by project-
ing the vertices of [p̈]r into the wrench space. For a 3-dimensional case study (6 DoF
case), [p̈]r consists of 64 vertices. The second component, [we]r, consists of 64 ver-
tices as well. Considering a constant moving platform twist, the last component of
the dynamic equilibrium, wc = {Cṗ+wg}, is a constant wrench. The composition
of these sets generates a polytope, [w]r, defined as the Required Wrench Set (RWS).
[w]r can be computed as the convex hull of the Minkowski sum over [we]r, [wd ]r
and wc, as illustrated in Fig. 2:

[w]r = [we]r � [wd ]r �wc (15)

Thus, Def. 2 can be rewritten as a function of [w]r.

Definition 3. A moving platform pose is said to be dynamic feasible when the
CDPR can balance any wrench w included in [w]r. The Dynamic Feasible Workspace
is the set of dynamic feasible poses, [p]DFW .

[p]DFW : 8w 2 [w]r, 9t 2 [t]a s.t. Wt + Ipp̈+we +wc = 0 (16)

The mathematical representation in (16) is similar to the one describing the
WFW. As a matter of fact, from a geometrical point of view, a moving platform
pose will be dynamic feasible if [w]r is fully included in [w]a

[w]r ✓ [w]a (17)

Consequently, the dynamic feasibility of a pose can be verified by means of the
hyperplane shifting method [3,10,11]. The distances between the facets of the avail-
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Fig. 2 Computation of the RWS [w]r . Example of a planar CDPR with 3 actuators and 2 transla-
tional DoF.

able wrench set, [w]a, and the vertices of the RWS, [w]r, is verified according to the
following inequality

Cwr  dd , 8w 2 [w]r (18)

4 Case Study

This section aims at comparing the SFW, WFW, DFW and Improved DFW (IDFW)
of the spatial suspended CDPR illustrated in Fig. 3. It has the layout the CoGiRo
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Fig. 3 Layout of the CoGiRo cable-suspended parallel robot [7] with the size of the IRT JV
CAROCA prototype.

robot [7] and the size of the IRT JV CAROCA prototype. The robot consists of a
moving platform connected to the fixed base frame by m = 8 cables. It is 7 m long,
4 m width and 3.5 m high. The maximum cable tension is equal to 6990 N. The mov-
ing platform consists of a parallelepiped. Its width, wp, its length, lp, and its height,
hp, are equal to 20 cm, 20 cm and 25 cm, respectively. The mass of the moving plat-
form, M, is equal to 100 kg. In the proposed case study, the CoM of the platform, G,
does not coincide with the origin Op of frame Fp, being S = [1cm,1cm,1cm]T.

The volume inside the base frame has been discretized homogeneously into np =
882 points. Each point has been analysed in order to verify if the corresponding
poses of the CDPR belong to the improved DFW. The analysis has been performed
assuming that the moving platform is aligned with respect to the axes of frame Fb.
The linear velocity of the moving platform is equal to ṫ = [1 m/s,1 m/s,1 m/s]T
and its angular velocity is equal to w = [0.05 rad/s,0.05 rad/s,0.05 rad/s]T. The
external wrenches acting on the moving platform are bounded as follows:

�100N  fx, fy, fz  100N (19)
�1Nm mx,my,mz 1Nm (20)

Similarly, the range of accelerations of the moving platform is limited according
to the following inequalities:

�2 m/s2
 ẗx, ẗy, ẗz  2 m/s2 (21)

�0.1 rad/s2
ax,ay,az 0.1 rad/s2 (22)

For the foregoing conditions, the improved DFW of the CDPR covers the 47.96%
of its volume. Figure 4(a) illustrates the improved DFW of the CDPR under study.

The results have been compared with respect to the dynamic feasibility condi-
tions described by Def. 1. By considering only the weight and the inertia of the
moving platform, the DFW covers the 63.27% of the volume occupied by the DFW,
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(a) (b)

Fig. 4 (a) Improved DFW and (b) DFW of the CDPR under study covering 47.96% and 63.27%
of its volume, respectively.

Table 1 Comparison of SFW , WFW , DFW and IDFW of the CDPR under study.

Workspace type SFW WFW DFW IDFW
Covered Volume of the CDPR 99.32% 79.25% 63.27% 47.95%

as shown in Fig. 4(b). Neglecting the effects of the external wrenches and the Corio-
lis forces, the volume of the DFW is 32% larger than the the volume of the improved
DFW.

Similarly, by neglecting the inertia of the CDPR and taking into account only
the external wrenches we, the WFW occupies the 79.25% of the CDPR volume. By
taking into account only the weight of the moving platform, the SFW covers 99.32%
of the CDPR volume. These results are summarized in Tab. 1.

5 Conclusion

This paper introduced an improved dynamic feasible workspace for cable-driven
parallel robots. This novel workspace takes into account: (i) The inertia of the
moving platform; (ii) The external wrenches applied on the moving platform and
(iii) The centrifugal and the Coriolis forces induced by a constant moving platform
twist. As an illustrative example, the static, wrench-feasible, dynamic and improved
dynamic workspaces of a spatial suspended cable-driven parallel robot, with the
dimensions of a prototype developed in the framework of the IRT JV CAROCA
project, are traced. It turns out that the IDFW of the CDPR under study is respec-
tively 1.32 times, 1.65 times and 2.07 times smaller than its DFW, WFW and SFW.
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Adaptive Human Robot Cooperation Scheme for
Bimanual Robots

Bojan Nemec, Nejc Likar, Andrej Gams, and Aleš Ude

Abstract The paper deals with human robot cooperation, where a bimanual robot
and a human are handling highly deformable objects, such as a table cloth. The ini-
tial policy is demonstrated exploiting admittance based force control of a bimanual
robot. For safety reasons, the robot operates in high compliance mode, which de-
grades the performance of trajectory tracking algorithm necessary to perform the
demonstrated task. This problem was solved applying iterative adaptation scheme,
which successfully diminishes tracking errors in just few adaptation cycles. The pro-
posed approach was verified with a table-cloth placing task involving a human and
a bimanual robot composed of two Kuka LWR-4 robot arms.

Key words: bimanual manipulation, iterative learning control, task adaptation, real
time control.

1 Introduction

Our research applies to dual arm robot manipulators. Nowadays, most of the bi-
manual control architectures are based on the concept of symmetric control [17],
which enables portioning of the task to so-called absolute coordinates and relative
coordinates [5]. This formalism allows to easily extend the control and adaptation
algorithms developed for single arm systems, to bimanual robotic systems.

Adaptation is one of the key features of new generation of service and humanoid
robots, aimed to cooperate with humans. An often applied paradigm for motion
adaptation is reinforcement learning (RL) applying probabilistic algorithms [9],
which can deal with high dimensionality spaces induced by parameterised poli-
cies [16]. Despite of these advances, humans can still learn much faster and more
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efficiently. One of promising paradigms to effectively speed up robot learning is also
Iterative Learning Control (ILC). The main objective of ILC is to improve the be-
havior of the control system that operates repeatedly by iterative refinement of the
feed-forward control input [3]. Due to its simplicity, effectiveness and robustness
when dealing with repetitive operations, ILC is often applied in robotics [12].

The proposed approach aims to contribute to the adaptation aspect during human-
robot cooperation (HRC). It is designed to handle the cooperative manipulation of
highly deformable object, where the main issue beside the safety for human op-
erators is also to assure that delicate objects made of fabric, such as table cloth,
are not damaged during the operation. Therefore, robot arms apply an appropri-
ate control scheme which assures high compliance. On the other hand, the tracking
performance of highly compliant robots is often degraded due to the non-modeled
robot dynamics (such as friction), as well as environment changes. This problem was
solved applying iterative adaptation scheme, which successfully diminishes track-
ing errors in just few adaptation cycles. Our approach relies on previously proposed
adaptation scheme for bimanual peg in hole task [10].

The paper is organized as follow. In Section II we outline kinematics and dy-
namics of a bimanual system and propose a solution, which completely decouples
absolute and relative tasks at the velocity level. In Section III we briefly sketch the
overall learning and adaptation scheme for a bimanual robot with ability to itera-
tively adapt to the environment changes and non-modeled robot dynamics. In Sec-
tion IV the experimental results of the proposed algorithm are presented. Discussion
regarding bimanual adaptation is given in conclusion.

2 Bimanual Task Control

In our research we apply a control scheme for a bimanual system, which is based
on previously proposed task-space control framework [4]. It fully characterizes a
cooperative operational space and allows the user to specify the task in terms of
geometrically meaningful motion variables defined at the position/orientation level
[1,4]. Within this framework, both subspaces are formulated in such a way that they
are orthogonal and thus decoupled; motion in relative coordinates does not affect
absolute coordinates and vice-versa. First, we define the common base coordinate
systems tb for both subspaces, as illustrated in Fig. 1. From now on we will use the
notation where superscript j, j 2 {1,2,b} denotes that the given quantity is specified
relative to the coordinate system t j, while the subscript i, i 2 {1,2} denotes the arm
of a bimanual system and i, i 2 {a,r} denotes relative and absolute coordinates.
Absolute and relative task coordinates are specified as
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Fig. 1 Dual arm manipulator and the corresponding notation used in the paper.

pa =
1
2
(pb

1 +pb
2), (1)

Ra = Rb
1Rb

kb
21

(J21/2) (2)

pr = Ra
T (pb

2 �pb
1), (3)

Rr = Rb
1

T Rb
2, (4)

where p 2 R3 applies to positions vector and R 2 R3⇥3 to rotational matrices. k21
and J21 are the axis and angle that realize the rotation Rb

1 to Rb
2. Note that in rel-

ative coordinates definition we multiplied (pb
2 � pb

1) multiplied with Ra
T . As this

rotation compensates for the absolute coordinates rotation, the relative coordinates
are decoupled from absolute coordinates. In quaternion notation, (2) and (4) are in
the form

qa = qb
1 ⇤qb

kb
21

, (5)

qr = q1
2 = q̄b

a ⇤qb
2, (6)

where the quaternion qb
1 2 R4 and qb

2 2 R4 expresses the rotation of the TCP of the
first and the second robot in the common base coordinate frame tb, respectively.
q̄ denotes conjugate quaternion and operator ⇤ denotes quaternion product. qb

kb
21

denotes the unit quaternion corresponding to Rb
kb

21
(J21/2), which can be calculated

from
qb

kb
21

=

✓
cos

✓
J21

4

◆
,kb

21 sin
✓

J21

4

◆◆
. (7)

Our human robot cooperation scheme uses interactive forces for the demonstration
and adaptation of the task. Therefore, it is necessary to calculate the corresponding
forces and torques in both absolute and relative coordinates from wrist mounted
sensors. The corresponding relative and absolute forces and toques are
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fa = Rb
1 f 1

1 +Rb
2 f 2

2, ma = Rb
1 m 1

1 +Rb
2 m 2

2, (8)

fr =
1
2
(f 1

1 �Rr f 2
2), mr =

1
2
(m 1

1 �Rr m 2
2), (9)

where f i
i 2 R3 and m i

i 2 R3 denote the forces and torques measured at the i-th
manipulator tool center point (TCP).

In order to control the robot, we have to map the desired relative and absolute
task coordinates to the corresponding joint coordinates of both robots, denoted with
q

q

q = [qqq 1 q

q

q 2]T 2 R(N1+N2), where N1 and N2 is the number of joints of the first and
the second robot, respectively. This transformation is obtained through relative and
absolute geometrical Jacobian, which maps the corresponding translational and an-
gular velocities to the joint velocities


ṗr
wr

�
= Jrq̇qq ,


ṗa
wa

�
= Jaq̇

q

q . (10)

Absolute Jacobian is obtained from time derivative of (1–2),

Ja =
⇥ 1

2 J1
1
2 J2

⇤
. (11)

The derivation of the relative coordinates (3) becomes more complex as they are
premultiplied with the inversed absolute rotation, yielding

ṗr = Jr,pq

q

q = Ṙa
T
(p2�p1)+Ra

T (ṗ2 � ṗ1)

= �Ra
T ST (p2 �p1)wa +Ra

T (ṗ2 � ṗ1)

= Ra
T (�J1,pq

q

q 1 +J2,pq

q

q 2 �ST (p2 �p1)Ja,wq

q

q),

where we have taken into account the relation ṘT p = �RT ST (p)w [14]. Subscript
(.)p and (.)

w

denotes positional and rotational part of the Jacobian. S is well known
skew-symmetric matrix. For the derivation of the rotational part of the relative Ja-
cobian we take into account that the angular velocities can be summed as long as
they are expressed in the same coordinate frame. Hence, from the definition of rel-
ative coordinates (4) it follows wr = Ra

T (w2 � w1) and Jr,w = Ra
T (J1,w � J2,w).

Combining positional and rotational part of the relative Jacobian we obtain

Jr =


Ra

T 0
0 Ra

T

�
�(J1,p +L

J1,w

2 ) J2,p +L

J2,w

2 )
�J1,w J2,w

�
, (12)

where L = ST (p2 �p1).
To control both absolute and relative coordinates, we define extended task coor-

dinates xe = [pa qa pr qr]T and extended Jacobian Je = [Ja Jr]T . The corresponding
joint velocities are obtained from

q̇

q

q = J+
e (ve,d +Kkee)+(I�J+

e Je)q̇qq 0, (13)
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where J+
e is the Moore-Penrose pseudo-inverse of the extended Jacobian Je, ve,d 2

R12 are the desired extended translational and rotational velocities, I is identity ma-
trix, Kk 2 R12⇥12 is a diagonal matrix with the kinematic gains and ee 2 R12 is the
error between the desired and actual extended task coordinates, calculated as

ee =

2

664

pa,d �pa
log(qa,d ⇤ q̄a)

pr,d �pr
log(qr,d ⇤ q̄r)

3

775 . (14)

The rotational part of the error is calculated using logarithmic map log, which maps
the quaternion describing the rotation between the desired and current pose to the
rotation error vector. This mapping is defined as

log(q) = log(v,u) =

8
<

:
arccos(v)

u
kuk

, u 6= 0

[0,0,0]T, otherwise
. (15)

Vector q̇

q

q 0 2 R(N1+N2) is an arbitrary vector of joint velocities that is projected in the
null-space of the primary task, selected in such a way that it optimizes an additional
secondary task, i.e. obstacle avoidance, joint limit avoidance, singularity avoidance,
etc. Note that the dimension of the extended task defined with xe can be  12, which
allows to exploit the additional degrees of redundancy for secondary task(s).

The desired joint positions q

q

q d = [qqq 1,d q

q

q 2,d ]T are obtained with the numerical
integration of (13) and passed to the joint controller of the robot. The joint controller
has the form

ri = Hi(qqq i)q̈qq i,d +Ci(q̇qq i,qqq i)q̇qq i,d +Gi(qqq i)�Kpei,qqq �Kd ėi,qqq , (16)

where ri 2 RNi are joint torques supplied to the robot torque controller of the i-th
robot arm, i 2 {1,2}, Hi 2RNi⇥Ni is the inertia expressed in joint space, Ci 2RNi⇥Ni

is the matrix of Coriolis and radial forces, Gi 2 RNi is the gravitational vector, Kp
and Kd 2 RNi⇥Ni are diagonal positional and damping matrices and ei,qqq 2 RNi de-
notes the tracking error in the joint coordinates. Gains of Kp define the desired
compliance in joint space and gains of Kd are chosen in such a way that the close
loop system is critically damped. Note that the control law (16) is designed using
passivity framework [2].

3 Bimanual Task Learning and Adaptation

Learning by demonstration of a bimanual task can be simplified with the decompo-
sition into relative and absolute coordinates. Both subtasks can be learned indepen-
dently. The relative task can be demonstrated by moving only one arm, while the
other remains fixed. Once the relative task is defined, the absolute part of the task
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is demonstrated by again moving only one arm, while the other follows accordingly
in order to fulfill the previously demonstrated relative task.

In our research we used kinesthetic guidance for initial demonstration of a biman-
ual task. For this, the robot has to operate in the gravity compensation mode and the
task is demonstrated by manual guidance of a single arm, as explained previously.
Absolute and relative coordinates are recorded as a time series

Gr = {pr(k),qr(k)}, Ga = {pa(k),qa(k)} |

T
k=0, (17)

where T denotes the number of recorded samples.
The learned absolute and relative coordinates are then passed to the bimanual

kinematic control (13) as the desired values. Initially demonstrated absolute trajec-
tory might not be perfect or might need additional modification when the human
cooperates with the robot. Here we consider the case when the task is repeated more
than once. In each repetition cycle the human operator can modify the trajectory
from the previous cycle using interactive forces. The modification of absolute task
is accomplished with adaptation of the absolute forces and torques (8) using admit-
tance force/torque control law

pa,l(k) = pa,l�1(k)+K f fa,l(k), (18)
qa,l(k) = qa,l�1(k)⇤Kmma,l(k). (19)

Index l denotes the task repetition cycle and K f ,Km 2 R3⇥3 are diagonal force and
torque adaptation matrices. Note that when multiplying 3-D vectors with quater-
nions like in (19), vectors are interpreted as quaternions with scalar part equal to
zero. Using the above adaptation law, the human operator can modify the previously
learned trajectory whenever it exerts forces and torques to the common manipulated
object. In order to suppress sensor noise, a threshold is usually applied to the mea-
sured force and torque signals.

During the task execution, the tracking of relative coordinates is degraded due to
the low gains Kp in the joint controller (16), which are needed to achieve compliant
behavior of the robot. To overcome this problem, we propose iterative controller in
the form

pr,l(k) = Q(pr,l�1(k)+Lep,l�1(k +1)) (20)
qr,l(k) = exp(Leq,l�1(k +1)⇤ c(qr,l�1(k),Q) (21)

where ep(k) = pr(k) � pr,m(k), eq(k) = q̄r(k) ⇤ qr,m(k), Q,L 2 R3⇥3 are diagonal
matrices with ILC gains and c(q,Q) denotes scaling of unit quaternion q by value
Q. Scalars Q and L in (21) are ILC gains with the same role as diagonal matrices Q
and L in (20). Subscript (.)m denotes measured signals. Operator exp(.) is defined
as

exp(r) =

8
<

:
cos(krk)+ sin(krk)

r
krk

, r 6= 0

1+[0,0,0]T, otherwise.
(22)
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4 Experimental evaluation

The performance of the proposed human robot cooperation scheme was evaluated
on the table cloth placing task. Bimanual robot composed of two Kuka LWR-4 robot
arms holds one side and the human operator holds the other side of the table cloth.
The setup is shown in Fig. 2. The width of the tablecloth was initially demonstrated
with kinesthetic guidance of one robot arm and it defines the relative part of the task.
Similarly, the absolute part of the task was demonstrated with kinesthetic guidance
of one robot arm, while the other maintained the previously demonstrated relative
part of the task, i.e., the desired distance between the arms.

Fig. 2 Experimental platform for bimanual table cloth placing.

Initially demonstrated absolute task was adapted by proprioceptive sensing. In
our scheme, absolute forces determine absolute positional velocities and absolute
torques determine absolute rotational velocities. During the task execution, the robot
adapts its absolute coordinates using (18),(19) in order to minimize the interaction
forces. In our implementation, we added an offset force of 10N in the –X direction
and a small offset force in –Z direction in order to allow displacement of the absolute
coordinates in –X and –Z direction, respectively (see Fig 2). This was necessary
since with highly deformable object such as the table cloth we can exert forces only
by pulling and not by pushing.

During the execution of the demonstrated absolute task, the robot was not able to
precisely maintain the desired relative coordinates due to the arm compliance and
the interaction forces. In order to overcome this problem, we applied ILC control
scheme (20),(21) which iteratively modified the controlled relative coordinates, re-
sulting in perfect tracking of the desired relative coordinates. In this experiment, we
used the following settings: Q = I, Q = 1,L = 0.8 I. Fig. 3 shows how L2 norm of
the tracking error of the relative coordinates diminished in five iterations. Note that
in this experiment we did not explicitly control the internal (relative) forces. Rather,
we controlled the relative positions, as the internal forces were very low during
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Fig. 3 Evolution of the position tracking error norm of relative coordinates through five repetitions
(denoted with 1–5) of the same task.

this experiment. Moreover, the measurement of the relative forces was not precise
enough, since Kuka LWR-4 robot estimates TCP forces from the joint torques mea-
surements. However, the extension of the control law (20), (21) in order to control
also the internal forces is straightforward.

5 Conclusions

In the paper we proposed a new adaptive human-robot cooperation scheme for bi-
manual robot systems. The main advantage of the proposed algorithms is that adap-
tation is separated in relative and absolute coordinates. Previously presented biman-
ual HRC schemes [6, 11] also applied adaptation, but differ from the proposed ap-
proach because the robot arms were previously considered as independent agents.
As such, aforementioned previous approaches can coordinate both arms by force
interaction, similar as in master-slave bimanual approaches [15,18]. Therefore, they
are not appropriate for handling of highly deformable objects.

In this work, we introduced a modified definition of the relative task (3), which
results in an additional compensation tern in the relative Jacobian (12) with respect
to the one introduced in [5]. We believe that this definition properly decouples ab-
solute and relative coordinates. Consequently, the proposed control law additionally
diminishes tracking error in relative coordinates and assures proper mapping to the
Jacobian null-space, when additional secondary tasks which exploit kinematic re-
dundancy of the overall system are applied.

The adaptation of relative coordinates relies on the ILC framework. In human-
robot cooperation, the controller has to compensate also for the stochastic distur-
bances, induced by a human. Previous results [13], as well as our experiments,
demonstrate the robustness of the ILC based controller against such disturbances.
Another beneficial property of an ILC is incremental policy adaptation, determined
with the gain L (20). Although similar behavior might be obtained also with clas-
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sical feedback control applying high gains [7], ILC is favorable since high gain
controllers are not suitable for robots interacting with humans due to the safety rea-
sons [8].
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Influence of the wind load in the trolley-payload
system with a flexible hoist rope

Jianjie ZHANG and Gabriel ABBA

Abstract The anti-sway controllers are widely discussed due to the increasing re-
quirements of crane automation in seaports. In this paper, the dynamic model of
the trolley-payload pendulum system is put forward considering the flexibility and
damping of the hoist rope as well as the wind load as the external excitation. As in-
dicated from the simulation, the wind load increases both the static and fluctuating
part of the response of sway angle; the flexibility of the hoist rope cannot be ignored
especially near the destination of the final position of the payload. As inferred from
the results, the sway angle is the main source of the position error of the payload in
both horizontal and vertical direction.

Key words: pendulum with flexible rope, wind load, dynamic modeling, anti-sway,
quayside container crane

1 Introduction

As the most important equipment in seaports, the Ship-To-Shore quayside container
crane (STS) affects the total efficiency for harbor operation. Traditionally, the most
skilled staffs are specially chosen to operate the STS in order to obtain the best
performance of the equipment.

As shown in Fig.1, the photo shows STSs co-operating together to load and un-
load a Post-Panamax container vessel. The cranes move to a particular position to be
ready for the loading or unloading operation with the gantry motion only. After the
crane is positioned, the gantry stands still and only the hoist and trolley devices are
moving. With the increasing requirements of the seaport automation, the research
and development of the crane automatic operating is widely discussed especially
in engineering application. As an important aspect, the anti-sway control strategy
is the most popular branch in this field. By analyzing latest papers and articles in

ZHANG Jianjie, LCFC, ENSAM, Arts et Métiers ParisTech, e-mail: samonzhang1@gmail.com
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Fig. 1 the photo of Ship-To-Shore quay-
side container cranes (STS)

Fig. 2 Trolley-payload coordinate system

three years, Singhose W. and his group uses model reference control method to con-
trol several types of cranes in anti-sway applications [1–3]. He, B. et. al. developed
an anti-sway controller for overhead cranes based on the analysis of the Lyapunov
method [5]. Liu, X. et. al. designed the novel controller in anti-sway application [6].
Viet, L.D. discussed the sway reduction by radial spring and damper [19]. Smoczek,
J. et. al. introduced fuzzy controller into the anti-sway application [16,17]. Schaper,
U. et. al. introduced an load position estimation method in gantry crane applica-
tion [13]. Suzuki, K. et. al. designed an anti-sway controller with the equivalent
load as feedback [18]. Sato, K. et. al. discussed the influence of the wind load in
anti-sway control [12]. Park, J., Kwon et. al. developed a method to generate anti-
sway trajectory for incompletely restrained system [10].

Although within different application background, the trolley-payload system
can be regarded as special under-actuated cable-driven parallel robot and researches
on this topic are referenced. Gouttefarde M. et. al. modeled and analyzed several
types of redundant and reconfigurable cable-driven robots [4, 9], and discussed the
influence of cable mass [11]. Pott A. et. al. investigated a cable-driven robot and
modeled the elastic cable and hysteresis effect in the system [8]. Merlet J. P. ana-
lyzed kinematics of cable-driven robots taking sagging cable into account [7].

As mentioned in the above references, regardless what particular control methods
the researchers are applied, two assumptions in dynamic models can be inferred: (a)
the sway angle is induced mainly from the trolley motion (paying little attention to
the environmental load); (b) in anti-sway application, the hoist rope is rigid.

Nevertheless, other papers in civil engineering fields report the elastic elongation
and damping is essential in the stability of structures [14]. In mechanical engineer-
ing applications, the elastic elongation always needs to be paid attention to as men-
tioned by many maintenance engineers during their daily work [20]. However, there
are rare papers or technical reports discussing the influence of the flexibility of the
hoist rope as well as the influence of the wind load in anti-sway control methods.

In this paper, the wind load is applied as an external excitation into the dynamic
model of a trolley-payload pendulum system with a flexible hoist rope. Dynamic
response of the system is discussed in both the time and frequency domain.
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2 Modeling of the outdoor anti-sway system

2.1 Problem specifications and assumptions

For a crane with bridge structure at large seaports, the operation of loading and
unloading a container vessel is always a motion in the vertical plane. Only the hoist
motion and the trolley moving are considered in this issue. The rope weights about
zero point nine percent of the payload and about four percent of the empty spreader,
so in this system,the self-weight of rope is ignored.

The assumption of the model for anti-sway system is that:
1. The concerned motion of the system is in the vertical plane;
2. The hoisting rope is flexible and mass-less;
3. The wind load is source of the external excitation.

As shown in Fig.2, the system is composed by Trolley and Payload these two mo-
tion parts. The payload is connected with a steel hoisting rope to the trolley traveling
along the rail. The external excitation is mostly from the wind load on the payload.

As shown in Fig.2, a global Cartesian coordinate system is defined as O � xy,
whose origin is at the seaside limit (as shown the left direction in the figure) of the
trolley. so, the position of the trolley and the payload are defined in global Cartesian
coordinate system as (xtr,ytr)and (xp,yp); the length of the hoisting rope is l and the
sway angle which is the angle between hoisting rope and vertical is a .

The length of connect rope l is the sum of rigid rope length lr and flexible elonga-
tion lf; lr may change according to the input of desired position. lf is the rope elastic
elongation which is a function of tension force T . Drope is the damping force caused
by ropes elongation; and Dangle is the damping force caused by sway motion.

In this model, we have the assumption that: (1) the rope is flexible so that the
length of rope is a function of both the input signal lr and tension force T ; (2) the
rope damping force is taken into account.

2.2 Wind load simulation

In wind engineering, the wind load on cranes and the payloads is concluded as the
wind near ground which is affected by the friction on ground. So the wind velocity
can be regarded as a sum of average and fluctuating wind as listed in Eq.(1).

vwind = evwind + v̄wind (1)

In which, the average wind velocity is a function of height defined in Eq.(2)

v̄wind = f (h) = v̄wind(hst) · (h/hst)
awind (2)

Where, v̄wind(hst) is the average wind velocity at a standard height, hst = 10m is used
in this case as widely applied in wind engineering researches; h is height of payload;
awind is ground roughness coefficient whose value is saved in design standards.
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The fluctuating wind velocity varies during time to time whose average is zero.
The time history of the wind load is calculated according to the harmonic superpo-
sition method shown in Eq.(3).

evwind =
nup

Â
ni=nlow

p
S(h,ni) · sin(ni·t + fi) (3)

Where, nlow and nup are the upper and lower limit of the concerned frequency; fi is
the random phase angle; S(h,n) is PSD spectrum of the fluctuating wind velocity; n
is the frequency of the wind velocity.

Once the payload height is determined, the wind velocity spectrum is only a
function of frequency. The Kaimal spectrum is used in this research [15]. As shown
in Fig.3, is the plot of Kaimal spectrum and the time history of wind velocity at the
position of 10 m high. With the known wind velocity, (both the average part and
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Fig. 3 Kaimal spectrum and time history of wind velocity at height of 10m

fluctuating part) the wind pressure p(h) = CP·0.625·v2
wind(h). Where, CP is wind

coefficient of the object which is related to the aerodynamic shape of the object
which is defined in a crane design code.

The wind load is integration of wind pressure on object’s windward surface.

2.3 Dynamic equation of trolley-payload system with flexible hoist

rope

With the issues discussed above, the dynamic equations are put forward. Following
the analysis in Fig.2, the equations are based on the force balance function, the
constitutive relation function and the geometric function as listed in Eq.(4) to Eq.(5):

(
�Thoist·sina � Drope·sina � m·ẍp � Dangle·cosa + Pwind = 0

Thoist·cosa + Drope·cosa � m·ÿp � m·g � Dangle·sina = 0
(4)
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(

xp = l·sina + xtr

yp = �l·cosa
(5)

Where, Dangle is the damping force acting on the payload; Drope is the damping force
in the hoist rope. The damping force of the sway angle is Dangle = Cangle·ȧ/l, the
damping force in the hoisting rope is Drope = Crope·l̇f, and the tension force in the
hoisting rope is Thoist = krope(lr)·lf. In which, krope(lr) is a nonlinear function of the
rope length and krope(lr) = Arope·E rope/lr; Arope is the area of the rope section whose
unit is m2; E rope is the equivalent Young modulus of the rope whose unit is Pa.

ȧ is the angular velocity of the sway angle; T is the tension force in the hoisting
rope; Cangle is the damping coefficient of the sway angle; l = lr + lf, l̇ = l̇r + l̇f and
l̈ = l̈r + l̈f are the length, the velocity and acceleration of the hoisting rope; Pwind is
the wind load actuating the payload; m is the mass of the payload. As a result, the
position of the payload (xp,yp) is calculated according to Eq.(5).

The dynamic equation of the pendulum system is shown in Eq.(6):
8
>><

>>:

ä = �

Cangle

m
·ȧ ·

1
l2 +

Pwind

m
·cosa·

1
l

� g·sina·

1
l

� 2·ȧ·

1
l

� ẍtr·cosa·

1
l

l̈ = �

Arope·Erope

m
·

1
lr

·lf +
Pwind

m
·sina + g·cosa + l·ȧ2

� ẍtr·sina �

Crope

m
·l̇ +

Crope

m
·l̇r

(6)
Finally, it can be concluded that the input of the system is the acceleration of the
trolley ẍtr and the velocity of the rigid term of the hoist rope l̇r, while the out put
of the system is the cargo position xp and yp. As defined in Eq.(5) and Eq.(6), the
terms in the dynamic equation influence each other and the relationship between the
inputs and outputs is nonlinear.

3 Numerical simulation

3.1 Load case specification

As an example, the parameters of a STS quayside container crane are applied to set
the model for simulation. The mainly concerned parameters are shown in Table 1.

Table 1 Parameters of a STS quayside container crane for simulation
Content Value Content Value

The length of hoist rope: 5 m-70 m Modulus of the rope: 1.1 1011 Pa
The payload mass (including spreader): 11500-61500 kg Damping coef. in the rope: 138.23 kg/s

Rated operational wind velocity: 17.1 m/s Damping coef. of the angle: 106 kg·m/s

To discuss the influence of the wind load and the flexibility in the hoist rope to
the response of the system, two load cases are used for simulation:

(1) In load Case 1, with wind load only, the trolley and hoist devices are standing
still and the only excitation of the system is the wind load which lists below in
detail: a) The length of the hoist rope l = 40 m, the payload weight m = 11500 kg
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Fig. 4 Time history of sway angle and its FFT actuated by wind load only

(which is the weight of a spreader and an empty container), the height of the trolley
is 50 m which indicates the height of the payload is 10 m; b) The simulated wind
velocity is 17.1 m/s which is the rated operational wind velocity; c) The windward
area Awind = 50 m2, which is close to a standard 60 ft container area and its spreader.

(2) In load Case 2, a typical operation is simulated. The trolley, hoist device
moving caused inertial load and the wind load are all taken into account as excita-
tions of the system. The detail of this load case lists below: a) The payload weight
m = 36500 kg, which is the mid-value of the payload which occurs mostly in daily
operation; b) The maximum hoisting velocity is 5 m/s, the maximum hoisting accel-
eration is 2 m/s2; c) The maximum trolley velocity is 1.2 m/s, the maximum trolley
acceleration is 0.2 m/s2, the jerk of trolley is 1 m/s3;

3.2 Analysis of the influence of the stiffness of the hoist rope

As mentioned, in most researches for the anti-sway applications, the hoist rope is
regarded as a rigid though in some of the study, the length of the rope changes during
operation. However, the stiffness of the hoist rope play a role in actual system.

As listed in most rope producer’s user manual, the stiffness of the rope is related
to the length of the rope. The stiffness varies from 1.6 ⇥ 106N/m to 2.8 ⇥ 106N/m
according to different length of the rope. It is the reason why in Eq.6, the flexible
length of the rope is also related to the rigid length of the rope.

3.3 Analysis of the influence of the wind load

As described above, the wind load is a lateral load without particular restriction
and it extends the sway angle of the system. To discuss the influence of the wind
load only, the Load Case 1 is introduced for simulation. The time history of the
sway angle response and its Fast Fourier Transform is shown in Fig.4. As shown
in Fig.4, the time history of the sway angle indicates that the mean value of it is
approximately 0.17 rad, when the vibration is about the 7 mrad around the mean
value. So, one of the essential influence of wind load is from the average part of it.
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After transfer the vibration value of the sway angle into the frequency domain
with FFT, it is clear that there are two essential frequencies 0.04 Hz and 0.08 Hz.
They are close to the natural frequency of the simulated payload pendulum (about
0.07 Hz) and within the wind loads spectrum range.

3.4 Analysis of a typical operation

In above sections, the response of the system with separate excitations is discussed.
In this section, the system response during a typical operation which is defined in
Load Case 2 is put forward.

(1) The results about the sway angle and the elastic elongation
As a simulation result, the time history of sway angle and its FFT during a typical

operation is shown in Fig.5.As shown in Fig. 5, the sway angle with frequency
0.04 Hz increases in this load case compared with the load case with wind load
only. In order to compare the characteristics of the results, the maximum value and
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Fig. 5 Time history of sway angle and its FFT during a typical operation with wind load

the average of the sway angle in both the typical operation with and without wind
load as well as with wind load only are listed in Table 2.

Table 2 Characteristics of sway angle in different load cases

Content amax(rad) ā(rad) lfmax(m) l̄f(m)
Typical operation with wind load 0.216 0.171 0.155 0.070

Typical operation without wind load 0.045 -8.3e-4 0.151 0.069
With wind load only 0.181 0.172 0.083 0.041

As a summary, the wind load amplifies both the maximum and static sway angle
of the payload, however, at the same time, it has little influence on the elastic elon-
gation of the hoist rope. And the average of the sway angle which mainly caused by
wind load is much larger than the fluctuating part caused by trolley movement. Al-
though, there is fluctuating part in the wind load, the contribution of the fluctuating
wind load is really small.

(2) The results about the position of the payload
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The most concerned characteristics of the system for actual trolley and hoist
system, is the accuracy of the positioning of the cargo. As a result, the time history
of the cargo position with and without wind load and the compare with the desired
position is shown in Fig.6. The coordinate definition is shown in Fig.2. The initial

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

60

70

time(s)

ca
rg

o 
po

sit
io

n(
m

)

 

 

desired xp
xp with wind load
xp without wind load

0 10 20 30 40 50 60 70 80 90 100
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

time(s)

ca
rg

o 
po

sit
io

n(
m

)

 

 

desired yp
yp with wind load
yp without wind load

Fig. 6 Time history of payload position compared with the desired position

position of the payload with wind load is the balance position under the average
wind load which simulates the effect of a continuous wind load, and the initial of
the desired position and without the wind load is from zero. To compare the error
between the actual position with the desired one in both typical operation with and
without wind load as well as with wind load only, the results are listed in Table 3.

Table 3 Error between the actual and desired payload position in different load cases
Content errx

max(m) erry
max(m) errx

static(m) erry
static(m)

Typical operation with wind load 18.437 1.962 14.388 1.190
Typical operation without wind load 10.162 0.729 0.040 0.110

With wind load only 8.837 0.784 8.550 0.695

It can be inferred from Table 3 that the trolley motion may cause large vibration
in x direction as the maximum position error is about 9 meters, although, it has little
influence of the static position error. At the same time, wind load induced position
error is mainly in the static error in x direction. The typical operation with wind load
has both the static error mainly caused by the wind load and the fluctuating error
mainly caused by the trolley motion. The hoist motion increases the rope elongation
in y direction but it is really small compared with the position error in x direction.

4 Conclusion

As all the dimensions discussed above, the conclusions list below: (1) The stiffness
of the hoist rope changes a lot along with its length and shows nonlinear charac-
teristics; (2) The dynamic wind load is simulated based on wind spectrum, and its
influences to the positioning accuracy is discussed; (3) The main source of posi-
tioning error is from the combination of the wind load induced and trolley motion
induced sway angle. And the wind load induced sway angle is mainly a static value
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while the motion induced one is mainly an oscillation around the balance position
of the payload. So, it maybe helpful to decrease the amplitude of sway angle by con-
sidering the effects listed above while designing the controller for cargo positioning.
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Towards a Unified Notion of Kinematic
Singularities for Robot Arms and
Non-Holonomic Platforms

Andreas Müller and Peter Donelan

Abstract Kinematic singularities are classically defined in terms of the rank of Ja-
cobians of associated maps, such as forward and inverse kinematic mappings. A
more inclusive definition should take into account the Lie algebra structure of re-
lated tangent spaces. Such a definition is proposed in this paper, initially for serial
manipulators and non-holonomic platforms. The definition can be interpreted as a
change in the number of successive infinitesimal motions required for the system
to reach an arbitrary configuration in the vicinity of the given configuration. More
precisely, it is based on the filtration of a controllability distribution.

Key words: Kinematic singularity, screws, Lie algebra, filtration, non-holonomic,
controllability

1 Introduction

The singularities of holonomic mechanisms are fairly well-understood, and there
is a well-established definition in terms of the rank of Jacobian matrices and an
associated theory [5,11]. There is yet no well established notion for non-holonomic
systems. It is thus instructive to point out some common features between output
singularities of holonomic serial manipulators (SM) and special configurations of
non-holonomic platforms that may be regarded as input singularities.

It is known that, at a forward kinematic singularity, the complexity of infinites-
imal motions that a SM has to perform in order to reach nearby configurations in-
creases. This is the result of a drop of rank of the forward kinematics Jacobian. As-
sociated with this, the nesting level of Lie brackets of the instantaneous joint screws
necessary to generate the Lie algebra of the motion subgroup of the kinematic chain
increases [7, 14]. This is a non-generic phenomenon among all configurations and
singularities form closed subspaces in the configuration space, typically sparse (of
measure zero in the whole space). Regarding the joint screws as vector fields span-
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ning the vector space of end-effector (EE) velocities, a SM can be regarded as a
driftless kinematic control system and the Lie bracketing determines the accessibil-
ity algebra of this control system [1]. An unconstrained holonomic SM is always
kinematically controllable.

Equally, a non-holonomic platform can be modelled as a driftless kinematic con-
trol problem. It is configuration controllable if it is completely non-holonomic, i.e.
there is no integral manifold defined by the constraints. Controllability is ensured by
the Lie algebra rank condition: when the nested Lie brackets of the control vector
fields span the accessibility algebra. Even if this local property holds, the complexity
of the infinitesimal motions necessary to reach nearby configurations may change,
and such configurations will be referred to as singular.

The apparent similarity of the holonomic and non-holonomic systems is dis-
cussed in this paper, and a unified definition encompassing both types of systems is
proposed. The definition rests on the concept of a filtration of a distribution associ-
ated with the kinematic control system [12,13], which characterizes the complexity
of motion at a singularity. It provides a general framework for SMs and completely
non-holonomic systems such as mobile platforms. This preliminary result can po-
tentially be extended to parallel manipulators.

In Section 2 we present the standard approach for singularities in the non-
holonomic case and then show that it has an interpretation in terms of brackets in
the Lie algebra. This is supported by an example of a 7-DOF SM. Section 3 then
develops the analysis for control of a mobile platform which we show has analogous
properties. This leads to the proposed unifying concept of singularity. In Section 4
we briefly draw some conclusions.

2 Singularities of Lower-Pair Serial Manipulators

For a SM comprising n joints with 1 DOF, the vector of joint variables is denoted
by q = (q1, . . . ,qn)T

2 Vn, where Vn is its configuration space. The task of the SM
is to position its EE, whose workspace W is a subset of SE(3), assumed to be a
submanifold for simplicity. The forward kinematic mapping f : Vn

!W ✓ SE(3)
relates the configuration q 2 Vn of the SM to the EE configuration C = f (q) 2W .
This mapping can be expressed as a product of exponentials (POE):

f (q) = exp(Y1q1) · . . . · exp(Ynqn)A (1)

where for i = 1, . . . ,n, Yi 2 se(3) (the Lie algebra of the special Euclidean group) is
a twist generating the motion of of joint iwith respect to to the chosen global frame
and A 2 SE(3) is the EE pose in the reference configuration q = 0.

The EE twist V = (www,v) 2 se(3) corresponding to the EE motion C(t) is deter-
mined in spatial representation by bV = ĊC�1

2 se(3), where bV is the matrix rep-
resentation of V 2 se(3). It is determined in terms of joint velocities by the spatial
Jacobian J(q) : Rn

! se(3) as
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V(q, q̇) = J1 (q) q̇1 + . . .+Jn (q) q̇n = J(q) q̇. (2)

The columns J j, j = 1, . . . ,n of J are the instantaneous joint screws in configuration
C, given by

J j (q) = Adg j Y j. (3)

with g j(q) = exp(Y1q1) · . . . · exp(Y j�1q j�1).

Definition 1 (Singularity—rank criterion). A (forward) kinematic singularity of a
SM is a critical point q 2Vn of the kinematic mapping f , i.e. a configuration where
rank(J(q)) < rmax = min{n,dim(W )}.

Since the rank is lower semi-continuous and the assignment is analytic, this is
equivalent to saying there is no neighbourhood of q on which rank J is constant,
whereas at a regular point, the rank will be locally constant and equal to rmax.

The vector space of achievable EE twists at a given configuration q is denoted:

Dq := im J(q) = spanR(J1 (q) , . . . ,Jn (q)). (4)

Here J j represent analytic right-invariant vector fields on SE(3), so the assignment
q 7! (J1 (q) , . . . ,Jn (q)) is smooth and hence, at a regular point, q 7! Dq ✓ se(3) is
a smooth map to the Grassmannian of subspaces of se(3) of dimension rmax.

An important characteristic of an SM is the vector space of all EE twists the SM
can generate at a given vector of joint inputs q. This is a subspace of the involu-
tive closure Dq ✓ se(3) of Dq, i.e. the Lie algebra generated by all Lie brackets of
the joint screws consisting of linear combinations of nested Lie brackets of J j(q).
It can therefore be constructed by means of the filtration of Dq—the sequence of
vector spaces defined by D1

q := Dq, Di+1
q := Di

q +
⇥
Dq,Di

q
⇤

for i � 1. Thus Di
q is

generated by nested brackets up to depth i� 1. This non-decreasing sequence ter-
minates at Dq = Dk

q for some k , which is called the length of the filtration at q.
It can be shown that, for the workspace SE(3), k  4 [7]. So, at q = 0, for exam-
ple, D0 = spanR(Yi, [Yi,Y j], [Yi, [Y j,Yk]], [Yi, [Y j, [Yk,Yl ]]]]). Denote the growth
vector of the filtration with r (q) :=

�
dimD1

q, . . . ,dimDk

q
�
.

An important observation is that the involutive closure is the same at any q 2 Vn

and we denote this common closure by D. This follows from the expression (3) for
the instantaneous joint screws and invoking the Baker-Campbell-Hausdorff (BCH)
formula for exponential products in a Lie group. Hence rmax  min

�
dimD,n

�
.

Moreover, the subgroup G generated by the subalgebra D is the smallest SE(3) sub-
group comprising all possible EE configurations. Hence f (q) 2G and im J(q)✓D
for any q 2 Vn, and f can be regarded as a mapping f : Vn

! G. Note, however,
that this restricted forward kinematic mapping may still not be surjective if the EE
motions do not form a subalgebra, since then Dq $ D.

The filtration at q locally characterizes the process of manipulating the EE when
starting at q. The length k of the filtration is the maximal number of successive
infinitesimal joint motions necessary to produce any given (feasible) EE twist. It
seems intuitively clear that this number should change at a singularity. The following
can be proved using the BCH formula.
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Lemma 1. The lengths of the filtrations of Dq have a fixed value k0 4 at all regular
configurations q 2 Vn of the SM, i.e. when J(q) has full rank. The configuration q
is a kinematic singularity of f if and only if the length of the filtration of Dp is not
constant for p on any neighbourhood of q.

This leads an alternative (equivalent) definition of kinematic singularities for
SMs. Denote by k0 the length of the filtration at a regular point.

Definition 2 (Singularity—filtration criterion). A configuration q 2 Vn of an SM
is a forward kinematic singularity if the length k(q) > k0.

The condition k > k0 is equivalent to saying that the length of the filtration of D
is not constant on any neighbourhood of q. Since the filtration reveals the effect of
higher-order infinitesimal motions, it allows for identification of the joint motions
that lead the SM out of a singularity [8, 14].

Example 1: Consider the redundant 7 DOF (anthropomorphic) SM in the reference
configuration q = 0 in Figure 1. The SM has 7 revolute joints, and its configuration
space is Vn = T 7. the joint screw coordinate vectors in the reference configuration
represented in the global frame are

Y1,3,5,7 =

0

BBBBBB@

0
0
1
0
0
0

1

CCCCCCA
,Y2 =

0

BBBBBB@

0
�1
0

�L3�L5�LE
0
0

1

CCCCCCA
,Y4 =

0

BBBBBB@

0
1
0

L5 +LE
0
0

1

CCCCCCA
,Y6 =

0

BBBBBB@

0
�1
0
�LE

0
0

1

CCCCCCA
.

Fig. 1 Kinematic model of a
7 DOF KUKA LWR.

The Jacobian J(0) = (Y1,Y2,Y3,Y4,Y5,Y6,Y7)
has rank J(0) = dimD0 = 3. In regular configura-
tions q, it has rank J(q) = 6. The configuration q = 0
is thus a corank 3 singularity, according to defini-
tion 1. The Lie brackets

[Y1,Y2] = (1,0,0,0,�L3�L5�LE ,0)T

[Y1,Y4] = (�1,0,0,0,L5 +LE ,0)T

[Y2,Y4] = (0,0,0,0,0,�L3)
T

for instance, yield linearly independent vectors not
in D0. Hence the vector space D2

0 = se(3) and so
dimD0 = 6. The filtration length at q = 0 is thus
k (0) = 2, and the growth vector is r (0) = (3,6).
Consequently, the SM may escape from this singu-
larity by first-order motions of joints 1, 2 and 4. The
filtration length in regular configurations q is k0 = 1
since Dq = se(3). Since k > k0 the reference config-
uration is a singularity according to Definition 2.
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Using the definition bV = ĊC�1 of spatial velocity, the relation (2) can be written
as a right-invariant driftless control system on SE (3)

Ċ = (bJ1u1 + . . .+bJnun)C. (5)

The vector space D serves as the right-trivialized controllability distribution of this
control system. Necessary and sufficient for (5) to be locally controllable at q is that
Dq = D [2,6]. Hence the system (5), and thus the SM, is always locally controllable,
even in forward kinematic singularities.

Remark 1. Thus far only holonomic SMs were considered. In general, holonomic
manipulators are mechanisms comprising closed kinematic loops. Non-serial mech-
anisms are beyond the scope of this paper, but a note is in order. The mathemat-
ical model for the kinematics of a general holonomic mechanism consists of its
c-space V := h�1 (0) ⇢ Vn, where h(q) = 0 2 Rk is the system of k holonomic
constraints due to kinematic loops; the input space I ⇢ Rm; and the output space
W ⇢ SE(3) [9,16]. These objects are related via the input mapping fI and the output
mapping fO

W
fO
 � V

fI
�! I . (6)

The c-space V is an analytic variety when the constraint mapping h is formulated
in terms of POEs. Configurations q at which V is not locally a smooth manifold
are c-space singularities. Configurations q 2 V where the constraint Jacobian Jh
is not constant in any neighbourhood of q in V are kinematic singularities. It is
important to note that c-space singularities are automatically kinematic singularities,
but the opposite is not necessarily true [10]. At c-space singularities the mobility of
the mechanism changes. How this affects the possible input and output motions is
determined by fI and fO, respectively. Input (output) singularities are such that the
input (output) Jacobian is not constant in any neighbourhood of q in V . These three
types of singularities can occur simultaneously. All possible combinations and their
instantaneous phenomenology were reported in [16]. The consequences for the local
finite mobility is yet to be fully explored.

The associated kinematic control system for a closed-loop mechanism can be
written in implicit form as:

Jh (q) q̇ = 0, JI (q) q̇ = u, JO (q) q̇ = V (7)

where u denotes an input vector. Suppose that, locally, rank Jh = n� dloc (i.e. no
c-space singularities, no underconstrained mechanisms). Away from input singular-
ities, the Implicit Function Theorem enables one to locally invert fI. Then the first
two constraint equations in (7) can be rewritten in the form F(q)u = q̇. The problem
of input singularities can be circumvented by working directly with the codistribu-
tion defined by the constraints. This will not be pursued further here. Rather the
purpose is to signal the connection to non-holonomic systems, which will be inves-
tigated next.
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3 Singularities of Non-Holonomic Mobile Platforms

Wheeled mobile platforms are increasingly used in robotics. The rolling wheels
give rise to non-holonomic constraints and these platforms can be treated as non-
holonomic kinematic control systems. The generalized coordinates are thus sub-
jected to a system of k non-holonomic Pfaffian constraints

A(q) q̇ = 0. (8)

Throughout this section the constraints (8) are assumed to be completely non-
holonomic, so there is no integral manifold in any configuration q. Then a con-
figuration q is a kinematic singularity if A(q) is not full rank.

Remark 2. If the constraints were not completely non-holonomic, it would be nec-
essary to determine the integral manifold M passing through q. Adopting the idea
from holonomic mechanisms [11], the configuration q is defined to be a constraint
singularity if and only if rank A is not constant on any neighbourhood of q in M.
For completely non-holonomic constraints this simply means that A is not full rank.

Suppose, for now, that A has full rank k. Then there are m = n� k vector fields
g1, . . . ,gm that span kerA. They span the orthogonal complement of the space
spanned by the rows of A. Writing them as columns of a matrix G gives rise to
the driftless control system

q̇ = g1 (q)u1 + . . .+gm (q)um = G(q)u. (9)

Usually the inputs u form a subspace of the tangent space at q consisting of
steering and rolling velocities. The associated controllability distribution is D :=
spanR(g1, . . . ,gm), which is also referred to as the constraint distribution [13]. The
distribution D is regular if it has a locally constant dimension, i.e. if the constraints
(8) have locally constant rank.

The similarity to the forward kinematics (2) of holonomic manipulators is clear,
but now (9) describes how input rates affect the system velocity; the matrix G takes
the place of the input Jacobian. In the case of holonomic mechanisms, a drop of
rank would be necessary and sufficient for an input singularity and the definitions
1 and 2 are equivalent. With the assumption that G is full rank, the control system
(9) would not have a singularity according to the classical definition 1 in terms of
the rank of G. However, if one accepts that a singularity is a configuration in which
the kinematic accessibility changes then there are further situations that qualify as
singular in the case of non-holonomic systems.

Definition 3. The configuration q is a kinematic singularity if the filtration of D at
q is not constant in any neighbourhood of q. If additionally D is regular, i.e. G(q)
has full rank, the configuration q is a non-holonomic kinematic singularity.

The difference to definition 2 is that G may have full rank at a non-holonomic
singularity. Only for non-holonomic systems can G(q) be regular while the filtration
D is not regular at q.
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Corollary 1. The set of non-holonomic singularities, denoted Snh, is closed in Vn.

Example 2: Consider the car with two trailers in Figure 2. The n = 7 generalized
coordinates are q = (x,y,q1,q2,j,a)T

2 V7 = R2
⇥T 5. The associated kinematic

control system is
0

BBBBBBBB@

ẋ
ẏ
q̇

q̇1
q̇2
j̇

ȧ

1

CCCCCCCCA

=

0

BBBBBBBB@

Rcosj cosq

Rcosj sinq

R
L sinj

R
L sinj�

R
L1

cosj sinq1
R
L1

cosj sinq1�
R
L2

cosj cosq1 sinq2

0
1

1

CCCCCCCCA

u1 +

0

BBBBBB@

0
0
0
0
1
0

1

CCCCCCA
u2. (10)

The accessibility distribution D = span (g1,g2) is regular, i.e. has constant dimen-
sion for all q 2 V7. Its filtration terminates with the accessibility algebra D = R7,
and the system is thus accessible and controllable. As long as j 6= ±

n
2 p the filtra-

tion terminates with growth vector r = (2,3,5,6,7). But if the steering angle at-
tains j = ±

n
2 p , the length of the filtration increases by two and the growth vector is

r = (2,3,5,5,6,6,7). These are non-holonomic singularities: Snh = {q|j = ±

n
2 p}.

In these singularities the control of the car with two trailers becomes more complex
than it is in regular configurations. This is intuitively clear since a steering motion
must be performed first so to reorientate the front axle. It can be shown that for each
additional trailer, the length of the filtration at a non-holonomic singularity increases
by one.

!

"

#

#$

$
!%

&

#
&

Fig. 2 Kinematic model of a car with two trailers.
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4 Discussion and Conclusion

Kinematic singularities are configurations where the kinematic properties change.
For serial mechanisms this is simply measured by rank-deficiency of the forward
kinematics Jacobian. As a result, the complexity of the infinitesimal motion required
to reach a point in the vicinity of a singularity increases. Non-holonomic systems
possess further critical configurations that qualify as singularities even though the
input Jacobian, or its equivalent, has full rank. They are also characterized by an
increase of the complexity of the motion. It has been proposed here that the com-
plexity in both holonomic and non-holonomic cases is characterized by the degree
of nesting of Lie brackets necessary to generate the screw algebra defined by the
joint screws of an SM, respectively the controllability distribution of a mobile plat-
form. The iteration depth of nested Lie brackets (filtration of distribution) is used as
defining property of singularities.

Acknowledgements The first author acknowledges partial support of this work by the Austrian
COMET-K2 program of the Linz Center of Mechatronics (LCM).
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Kinematic Singularities of Mobile Manipulators:
An Analytic Approach

Krzysztof Tchoń and Hanna Sienkiewicz

Abstract We present a uniform description of kinematic singularities that applies
to both holonomic and non-holonomic robotic systems. The presentation is focused
on mobile manipulators. Our approach is based on the concept of kinematics as
an input-output map of a control system representation of the mobile manipulator.
Kinematics singularities are then defined as the configurations at which this input-
output map (in fact, its Jacobian) loses rank, and related to the property of con-
trollability. A dexterity matrix is introduced giving rise to kinematic performance
measures of the mobile manipulator. The kinematic singularities are characterized
as the singular control-parameter pairs of a parametric optimal control problem. A
simple example illustrates the theoretical concepts.

Key words: mobile manipulator, control system, kinematics, Jacobian, singularity,
optimal control, dexterity

1 Introduction

Examination of kinematic singularities of holonomic manipulation robots is a well
established area of robotics. Among analytic methods of studying singularities an
important role is played by the singularity theory approach reviewed exhaustively
in [2]. Advanced studies on the non-holonomic robotic systems are also accompa-
nied by attempts to define and analyse the kinematic singularities. Restricting to the
motion constraints in the Pfaffian form, the kinematics of a non-holonomic system
are determined by a vector field distribution or, equivalently, by a driftless control
system whose control vector fields span this distribution. Taking this into account,
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Hanna Sienkiewicz
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two kinds of kinematic singularities of non-holonomic systems have been distin-
guished in [9]: the posture singularities, and the configuration singularities.

The posture singularities are defined as the points around which the growth vector
of the control distribution is not constant, see [4]. From the control point of view this
means that additional Lie brackets of control vector fields are needed to generate
motion at the singularity. Recently, this approach, that may be called geometric, has
been developed in a systematic way in [7], and specifically in [8].

The configuration singularities refer to an infinite-dimensional configuration
space of the non-holonomic system, containing the control functions [9, 10, 12]. In
such an approach, called analytic, a singular configuration is defined by reference to
the control function at which the input-output map loses rank. This property can be
established by introducing a concept of the Jacobian that is determined by the linear
approximation to the control system kinematics representation. Given the Jacobian,
all the Jacobian concepts and tools (including kinematic singularities, performance
measures, motion planning algorithms, etc.) existing for holonomic manipulators
can be adapted to non-holonomic robotic systems.

This paper provides a justification of the analytic approach applied to mobile
manipulators. A rank condition for detecting singularities has been provided, and
a link between singularities and singular optimal control established. Basically, our
approach can be treated as a sort of counterpoint to [8]. On the other hand, we
conjecture that recent results from sub-Riemannian geometry on singular curves
determining a distribution [3, 6], open a perspective of unifying the geometric and
the analytic approaches. Obviously, pursuing this thread is beyond the scope of this
paper.

The composition of this paper is the following. Kinematics and Jacobian of the
mobile manipulator are introduced in section 2. Section 3 defines singularities and
performance measures. An example is presented in section 4. Section 5 concludes
the paper.

2 Mobile manipulator

By a mobile manipulator we shall regard a nonholonomic mobile platform equipped
with a serial, holonomic on board manipulator.

2.1 Modelling

Suppose that the mobile platform is described by generalized coordinates q 2 Rn,
and its motion is subject to l  n independent Pfaffian constraints,

A(q)q̇ = 0,
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where A(q) is an l ⇥ n, full rank matrix. Let the platform carry on board a p DOF
manipulator, with joint position x 2 Rp, and the end effector posture y 2 Rr. Then,
the kinematics of the mobile manipulator may be represented as a driftless control
system with m = n� l inputs and r outputs, of the form

(
q̇ = G(q)u = Âm

i=1 gi(q)ui,

y = k(q,x) = (k1(q,x), . . . ,kr(q,x)),
(1)

where the columns of the matrix G(q) are the vector fields annihilated by A(q),
i.e. A(q)G(q) = 0. The motion of the mobile manipulator will be considered over a
time interval [0,T ]. As a configuration space for studying the mobile manipulators
we choose the infinite dimensional linear space X = L2

m[0,T ] ⇥ Rp of Lebesgue
square integrable functions on [0,T ] with values in Rm, referred to as the endoge-
nous configuration space [10]. Consequently, an endogenous configuration (u(·),x)
consists of the platform control functions and the joint positions of the on board
manipulator. Equipped with the inner product

h(u1(·),x1),(u2(·),x2)i =
Z T

0
uT

1 (t)u2(t)dt + xT
1 x2, (2)

the space X becomes a Hilbert space. The output map of (1) takes values in the
task space of the mobile manipulator, identified with the Euclidean space Rr.

2.2 Kinematics

Given an initial platform’s state q0 2 Rn, and an endogenous configuration (u(·),x) 2

X , we let q(t) = jq0,t(u(·)) and y(t) = k(q(t),x) be the state and output trajectories,
and define the input-output map

Kq0,T (u(·),x) = y(T ) = k(jq0,T (u(·)),x) (3)

of the control system (1), that will be identified with the kinematics of the mobile
manipulator. By differentiation of the kinematics we obtain the mobile manipula-
tor’s Jacobian

Jq0,T (u(·),x)(v(·),w) =
d

da

����
a=0

Kq0,T (u(·)+av(·),x+aw) =

C(T,x)
Z T

0
F(T,s)B(s)v(s)ds+D(T,x)w. (4)

The matrices appearing in (4) come from the linear approximation of (1) along the
input–state trajectory (u(t),x,q(t) = jq0,t(u(·))), so

A(t) = ∂ (G(q(t))u(t))
∂q , B(t) = G(q(t)), C(t,x) = ∂k(q(t),x)

∂q , D(t,x) = ∂k(q(t),x)
∂x , (5)
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while the transition matrix F(t,s) satisfies the evolution equation

∂

∂ t
F(t,s) = A(t)F(t,s), F(s,s) = In.

It is easily seen that for a given (v(·),w) 2 X , the Jacobian at t equals

Jq0,t(u(·),x)(v(·),w) = x (t),

where x (t) denotes the state trajectory of the linear control system
(

ẋ = A(t)x +B(t)v,
h = C(t,x)x +D(t,x)w

(6)

starting from x (0) = 0. In case when the on board manipulator is absent, the Ja-
cobian (4) characterizes solely the nonholonomic mobile platform, whereas if the
platform is immobilized, (4) reduces to the usual Jacobian of the manipulator.

After setting t = x0, augmenting the state variable to x̂ = (x0,x ) 2 Rn+1 and
observing that ẋ0 = 1, the system (6) gets characterized by a family of associated
vector fields

V0(x̂ ) =

✓
1

A(x0)x

◆
, Vi(x̂ ) =

✓
0

Bi(x0)vi(x0)

◆
, i = 1, . . . ,m. (7)

Hereinabove Bi(x0) = Bi(t) denotes the ith column of the matrix B(t), vi(x0)
is the ith component of the control. A computation of the Lie brackets reveals
that the Lie algebra of the augmented system (6) is spanned by the vector fields
{V0, Vi, adV0Vi, . . . ,adk

V0
Vi, . . . , i = 1, . . . ,m, k � 0}, where ad0

VW =W and adk+1
V W =

[V,adk
VW ].

3 Singularities

Kinematic singularities of the mobile manipulator will be defined with reference to
the Jacobian (4) treated as a map

Jq0,T (u(·),x) : X ! Rr.

Definition 1. The endogenous configuration (u(·),x) 2 X is called regular, if the
Jacobian is a surjection, otherwise (u(·),x) is singular.

The following statement provides a necessary and sufficient condition for regularity.

Proposition 1. A control (u(·),x) is regular if and only if the Gram matrix
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Dq0,T (u(·),x) = C(T,x)
Z T

0
F(T,s)B(s)BT (s)FT (T,s)ds

�
CT (T,x)+

D(T,x)DT (T,x) = Mq0,T (u(·),x)+Dq0,T (u(·),x) (8)

has rank full rank r. Furthermore, the regularity is equivalent to the input-output
controllability of the linear system (6).

Proof. Sufficiency: Suppose that rankDq0,T (u(·),x) = r. Then, it is easy to check
that for any h 2 Rr the Jacobian equation

Jq0,T (u(·),x)(v(·),w) = C(T,x)
Z T

0
F(T,s)B(s)v(s)ds+D(T,x)w = h (9)

has a solution

(v(t),w) =
⇥
BT (t)FT (T, t)CT (T,x),DT (T,x)

⇤
D�1

q0,T (u(·),x)h ,

so the Jacobian is surjective.
Necessity: Now let rankDq0,T (u(·),x) < r. This implies the existence of a non-

zero vector h 2 Rr, such that Dq0,T (u(·),x)h = 0. Suppose that there exists a certain
(v(·),w) such that (9) holds. Since we have h

T Dq0,T (u(·),x)h = 0, then

h

TC(T,x)
Z T

0
F(T,s)B(s)BT (s)FT (T,s)dsCT (T,x)h =

Z T

0
||BT (t)FT (T, t)CT (T,x)h ||

2dt = 0,

and
h

T D(T,x)DT (T,x)h = ||DT (T,x)h ||

2 = 0,

|| · || denoting the Euclidean norm. It follows that, for every t 2 [0,T ],

h

TC(T,x)F(T, t)B(t) = 0, and h

T D(T,x) = 0.

Finally, after a multiplication of the identity (9) from the left by h

T , we get

h

T Jq0,T (u(·),x)(v(·),w) =

h

TC(T,x)
Z T

0
F(T,s)B(s)v(s)ds+h

T D(T,x)w = h

T
h = ||h ||

2 = 0,

so h must be zero, which is a contradiction. ⇤

The Gram matrix (8) can be considered as a dexterity matrix of the mobile ma-
nipulator. It contains a mobility matrix Mq0,T (u(·),x) of the mobile platform and a
dexterity matrix Dq0,T (u(·),x) of the on board manipulator. These matrices may be
used in order to design the classic kinematic performance measures [12]. Specifi-
cally, by analogy to the serial holonomic manipulators, the dexterity ellipsoid at the
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endogenous configuration (u(·),x) can be defined as the image by the Jacobian of
the unit sphere

Sq0,T (u(·),x)) = {(v(·),w) 2 X |||(v(·),w)|| = 1}.

The norm || · || in X is induced by the inner product (2). Then, the dexterity ellipsoid

Eq0,T (u(·),x) = Jq0,T (u(·),x)Sq0,T = {h 2 Rr
| h

T D�1
q0,T (u(·),x)h = 1} (10)

is inscribed into the sphere in Rr of radius l

1/2
Dq0 ,T (u(·),x) and circumscribed on the

sphere of radius l

1/2
Dq0 ,T (u(·),x), determined by the largest and the smallest eigenvalue

of the dexterity matrix. Furthermore, the square root of determinant

dq0,T (u(·),x) =
q

detDq0,T (u(·),x),

of the dexterity matrix can be called the dexterity of the endogenous configuration
(u(·),x), that is proportional to the volume of the dexterity ellipsoid (10). By def-
inition, the dexterity of a singular configuration is zero. The presented concept of
the dexterity ellipsoid corresponds to the classic one for holonomic manipulators,
based on the Euclidean norm. The relevance in this context of the infinity norm, as
proposed recently in [5], needs a further examination.

A more in detail analysis of the kinematic singularities of mobile manipulators
reveals a close link between them and the concept of the singular optimal control. To
clarify this point, we shall address a parametric optimal control problem, see [11],
in the system (1). The problem consists in determining an endogenous configuration
(u(t),x) (a control-parameter pair) of the extended control system

(
q̇ = G(q)u = Âm

i=1 gi(q)ui, ẋ = 0,

y = k(q,x) = (k1(q,x), . . . ,kr(q,x)).
(11)

that steers the output y(t) at the time instant T to a terminal point yd 2 Rr, and
minimizes an objective function

Z T

0
L(q(t),x,u(t))dt.

Having added adjoint variables p0 2 R, p1 2 Rn, p2 2 Rp, we get the Hamiltonian

H(q,x,u, p0, p1, p2) = pT
1 q̇+ pT

2 ẋ� p0L(q,x,u) = pT
1 G(q)u� p0L(q,x,u). (12)

The terminal manifold MT = {(q,x) 2 Rn+p
|yd � k(q,x) = 0}. We recall that an

extremal (u(t),q(t),x, p(t)) of the optimal control problem is singular, if the Hamil-
tonian (12) along this extremal becomes independent of u and x. This being so, the
following theorem characterizes kinematic singularities of the mobile manipulator.
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Theorem 1. Kinematic singularities of a mobile manipulator coincide with singular
optimal control-parameter pairs of the system (11) with Hamiltonian (12). More-
over, if the system (1) is analytic, with analytic inputs, then (u(t),x) is singular if
and only if the matrix

Tq0,T (u(·),x) =
⇥
D(T,x),C(T,x)[B0(T ), . . . ,Bk(T ), . . .]

⇤
,

has rank < r, where for k = 0,1, . . . and matrices A(t), B(t) from (6)

B0(t) = B(t), Bk+1(t) = Ḃk(t)�A(t)Bk(t).

It can be shown that, restricted to Rn, the vector fields (7) have the following property

Vi(T ) = B0i(T )vi(T ) and⇣
adk

V0
Vi

⌘
(T ) = B0i(T )v(k)

i (T )+ . . .+Bk�1i(T )v̇i(T )+Bki(T )vi(T ),

that provides a link between the assertion of Theorem 1 and controls in the varia-
tional system.

4 Example

Consider a mobile manipulator composed of the kinematic car and an RPR on board
manipulator, shown in Figure 1. The vector of generalized coordinates of the plat-

Fig. 1 Mobile manipulator

form q = (x,y,j,y) 2 R4 describes its position, orientation, and the heading angle.
The joint positions of the on board manipulator x = (x1,x2,x3) 2 R3. Cartesian po-
sitions of the end effector are denoted as y = (y1,y2,y3) 2 R3. The meaning of the
geometric parameters is clear from the figure. The lengths of the manipulator’s links
l2 < l3. The no side-slip condition of the rear and front wheels results in the follow-
ing control system representation (1) of the kinematics
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(
ẋ = lu1 cosj cosy, ẏ = lu1 sinj cosy, j̇ = u1 siny, ẏ = u2,

y = (x+(l2 + l3 cosx3)cos(j + x1),y+(l2 + l3 cosx3)sin(j + x1),x2 + l3 sinx3) .
(13)

It is easily checked that the manipulator alone has singular configurations

SM = {(x1,x2,x3) 2 R3
|sinx3 = 0 _ L = l2 + l3 cosx3 = 0},

whereas the platform singularities belong to the set SP = {(u1(·),u2(·))|u1(·) = 0},
hence the singular curve assumes the form y(0)+R, see [1].

Now suppose that u1(·) = 0, u2(·) = u2 = const, and L = 0, so both the platform
and the manipulator are in a singular configuration: the platform does not move
except for turning the front wheels, and the end effector is placed exactly above the
manipulator’s base, on the vertical axis of the prismatic joint. It follows that in this
case

rankTq0,T = rank
⇥
D, CB01, CB11 = CḂ01

⇤
=

rank

2

4
0 �l3 sinx3 cos(j + x1) l cosj cosy �lu2 cosj siny

0 �l3 sinx3 sin(j + x1) l sinj cosy �lu2 sinj siny

1 l3 cosx3 0 0

3

5.
(14)

where all the time dependent terms should be taken at T . A calculation shows that
rankTq0,T (u(·),x) = 3 if either ll3 sinx1 sinx3 cosy or ll3u2 sinx1 sinx3 siny is non-
zero. Notice that since l2 < l3, the equality L = 0 prevents sinx3 from zeroing. Now,
if u2 6= 0, we get the mobile manipulator singularities

SMM1 = {0}⇥{u2}⇥{0,±p}⇥R⇥{±arccos(�
l2
l3

)}.

Setting u2 = 0, we discover that the singularities become dependent on the initial
platform state q0. Indeed, for y0 6= ±p/2 the singular set equals

SMM2 = {0}⇥{0}⇥{0,±p}⇥R⇥{±arccos(�
l2
l3

)},

otherwise, for y0 = ±p/2, the singular set is

SMM3 = {0}⇥{0}⇥R⇥R⇥{±arccos(�
l2
l3

)}.

To get a better insight into these developments, consider a singularity belonging to
SMM2. Since u2 = 0, the consecutive columns of the matrix (14) describe admissible
directions of motion of the end effector driven by the manipulator’s joint velocities
ẋ2 and ẋ3, and the (platform) forward velocity lv1 apparent in the linear approxima-
tion (6) of the system (13). It follows that by means of ẋ3 or v1 one cannot drive
the end effector in two independent horizontal directions. Further, in a singularity
from SMM3 the front wheels are perpendicular to the platform’s axis, so no matter
what the joint positions x1 and x2 would be, the control of the end effector by v1 will
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be lost completely. Finally, let us observe that by a small change of x1 the mobile
manipulator may leave SMM1 singularities.

5 Conclusion

We have presented an analytic study of kinematic singularities of mobile manip-
ulators, paralleling the geometric approach. A simple example suggests that our
analytic characterization of singularities is useful and intuitive. A unified treat-
ment of the analytic and geometric approaches, established on the grounds of sub-
Riemannian geometry, would be a challenging area of future research.
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A Taylor-based continuation method for the
determination and classification of robot
singularities

Gauthier Hentz, Isabelle Charpentier, Lennart Rubbert and Pierre Renaud

Abstract Robot design in contexts such as computer-assisted medical interventions
remains challenging. Compact, dexterous mechanisms with particular mobilities are
needed, the synthesis of which requires a systematic evaluation of workspace and
singular positions. The evaluation of singular positions and their classification are
still difficult to perform in a systematic manner. In this paper, an automated method
is presented and evaluated on a complex planar mechanism. A higher-order con-
tinuation method is used to provide continuous and accurate representation of sin-
gular locii. Classification is then performed by testing all the existing singularity
types through a direct evaluation. Only the mechanism loop-closure equations are
required thanks to automatic differentiation and the Diamanlab software developed
for use of continuation. The evaluation of the method shows promising results.

Key words: Singularity analysis, Higher-order continuation, Automatic Differen-
tiation.

1 Introduction

Robot design in contexts such as computer-assisted medical interventions remains
challenging. Compact, dexterous mechanisms with particular mobilities are needed,
which synthesis is today still an issue. In order to help the designer, efficient and
automated methods are mandatory for mechanism assessment.

Workspace is a first property to be evaluated. We have described in [6] the use of
automatic differentiation (AD) and the so-called Diamant higher-order continuation
approach to compute the boundaries of reachable workspace in a simple manner.
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2 G. Hentz et al.

Built as an extension of [5], our approach is of interest for its high accuracy, low
computation time and the description of workspace boundaries as Taylor series that
yields a continuous representation.

The determination of mechanism singularities is another major requirement in
mechanism evaluation. The problem is complex because of the variety of singular
situations for a mechanism. Six singularity types exist and up to 21 different sin-
gularity classes can be detected during a mechanism analysis [10]. Several methods
on singularity determination have been reported [3, 8, 7]. The determination is how-
ever usually not possible for all the singularity classes, and a general manipulator.
In [10] algebraic and geometric techniques are given for finding singularity sets.
Their application remains however tedious and time consuming. More recently, [1]
proposed a general method based on interval analysis to perform an exhaustive nu-
merical determination and classification of the singularities. The latter process relies
on a sequential test process that can be affected by numerical accuracy issues, ac-
cording to the authors.

In this paper, we investigate the extension of our continuation method [6] to
propose a complete singularity analysis for general manipulators. Taking advantage
of the continuity and accuracy properties of continuation, the method is based on
a two-step process: firstly the determination of singularity locations, and secondly
their classification. This latter phase is based on a direct evaluation of the 21 possible
situations formulated in [10].

The paper is organized as follows. The singularity definition and classification
is introduced in Section 2. The proposed determination and classification method is
then detailed in Section 3. The method is tested in Section 4 by considering a planar
mechanism with complex kinematic behavior. Conclusions on the potential of the
method and future developments are detailed in Section 5.

2 Formulation of the singularity analysis problem

We consider here a mechanism with N joints either active or passive, each one hav-
ing 1 degree of freedom (DOF). Following [5], we choose to describe the mech-
anism configuration with a column-array q = [u|,v|,w|]| 2 IRnq , with u, v, w
being respectively the output, input and passive coordinates. The mobility of the
mechanism is denoted by n. We consider a non-redundant manipulator so that
dim(u) = dim(v) = n and nq = N + n. The configuration space is the set of ad-
missible values of q for the manipulator:

C = {q|RC (q) = 0} , (1)

where RC (q) = 0 is a system of neq non-linear equations, typically the loop-closure
equations for a parallel mechanism.

Feasible instantaneous motions are characterized by the velocity equations [10]:
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RC
q (q) q̇ = 0 , (2)

with q̇ = [u̇|, v̇|, ẇ|]| a column-array of velocities and RC
q a neq ⇥nq Jacobian ma-

trix. The following two kinematic problems are usually formulated:

• Inverse instantaneous kinematics problem (IIKP) : Find q̇ for a prescribed u̇.
• Forward instantaneous kinematics problem (FIKP) : Find q̇ for a prescribed v̇.

Singularities can be defined as indeterminations in these two problems. To express
that, let z = [v|,w|]| and y = [u|,w|]| be two sets of variables issued from q. We
also note RC

z , RC
y and RC

w the submatrices obtained from RC
q by removal of the

columns related to u, v and (u,v), respectively [1].
Indetermination situations of the IIKP occur when RC

z is rank deficient. The con-
figurations q 2 Sz ⇢ C where these situations occur are called inverse singularities
and are solutions [5] of: 2

4
RC (u,z)�

RC
z (u,z)

�|
x

x

|
x �1

3

5 = 0 , (3)

where x 2 IRneq . The two lower terms express the rank deficiency of the Jaco-
bian RC

z .
Indetermination situations of the FIKP constitute a set Sy of solutions to

2

4
RC (v,y)�

RC
y (v,y)

�|
x

x

|
x �1

3

5 = 0 . (4)

Solutions to systems (3) and (4) define all singularities of a mechanism [1].
In order to express the nature of singularities for a mechanism, a classification has

to be performed. A classification of the singularities in 6 singularity types was intro-
duced in [10] with redundant input (RI), redundant output (RO), redundant passive
motion (RPM), impossible input (II), impossible output (IO), and increased instan-
taneous motion (IIM) singularities. A set of 6 criteria allows such classification [10]:
• q 2 {RI} , rank(RC

z ) < rank(RC
w )+n • q 2 {II} , rank(RC

y ) < rank(RC
q )

• q 2 {RO} , rank(RC
y ) < rank(RC

w )+n • q 2 {IO} , rank(RC
z ) < rank(RC

q )
• q 2 {RPM} , rank(RC

w ) < N �n • q 2 {IIM} , rank(RC
q ) < N

A singular position can be of several types at the same time. A total of 21 classes
exists [10], each one corresponding to a particular degenerate kinematic behavior of
the mechanism. Indetermination of either the IIKP or the FIKP are the most com-
mon and studied cases and correspond respectively to the well known output (also
designated as serial or (RI/IO)) singularities or input (also designated as parallel
or (RO/II)) singularities. Configurations satisfying both systems (3) and (4) can be-
long to any of the other singularity classes. The corresponding singularity sets are
typically of lower dimension than the whole singularity set, implying different kine-
matic behavior [1].
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3 A fully automated computation method

The method we propose is based on computation of singularities followed by their
classification.

Determination of the singularity set

The solutions to the systems (3) and (4) are composed of several continuous sets,
that can be designated as solution branches. We propose to follow solution branches
from an initial point by a numerical continuation technique. Intersections between
solution branches can occur. This corresponds to so-called bifurcation points. At
such points, the continuity of the solution set is broken and rank deficiency of the
Jacobian of the system occurs [9]. The detection of such points allows us to lo-
cate branch intersections. A branch switching may then be carried out, allowing a
complete determination of all the connected branches from one initial point. If the
singularity set is one-dimensional, continuation can be directly applied. If not, linear
relationship between the coordinates can be added to discretize the determination of
solution sets, as described in [5] and used in [6].

With a classical first-order continuation technique, branches are computed step-
by-step as a collection of solution points. With higher-order continuation, the
branches of solutions are computed as Taylor series which constitute continuous
and accurate representations. The system to be solved needs however a formulation
that usually requires complex and time-consuming additional work. On the contrary,
Diamant1 [2], the numerical method we use, is an implementation of higher-order
continuation with integration of automatic differentiation (AD). Using this frame-
work, non-linear equations describing a mechanism behavior are directly imple-
mented in their standard format and are being solved in a fully automated manner.
Bifurcation detection and branch switching are carried out automatically as well. In
addition, the Tapenade software [4] is used to build the Jacobian RC

q from system (1)
at no cost, benefiting again from AD. Finally our method builds on AD and Diamant
to propose a fully automated framework for singularity analysis, allowing to gener-
ate and solve systems (3) or (4) in a fully automated manner. The reader is referred
to [6] and the references therein for further explanations on AD and Diamant.

In addition to this exploration technique of the singularity sets, we propose to
monitor the rank deficiency of RC

y (respectively RC
z ) during the determination of

solutions of (3) (respectively (4)). In this way, if a rank deficiency of the monitored
Jacobian occurs, the corresponding configuration is located at the intersection of
Sz and Sy. We can therefore identify the input and output singularities and also the
other types of singularities. This means we can identify precisely and immediately
configurations that can belong to any of the 21 singularity classes. When the de-
scribed rank deficiency is detected, we can in addition use the corresponding points
to switch from branches of Sz to branches of Sy and conversely. There is then no
need for another initial point to compute all the connected branches of Sz [Sy.

1 stands for Différentiation Automatique de la Méthode Asymptotique Numérique Typée
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Thanks to AD, Diamant, monitoring of rank deficiency and automated branch
switching, we obtain the whole connected singularity set Sz [Sy as a grid of so-
lution branches connected by singular points. The determination step can be finally
described as:

1. Determination:

a. Automatic differentiation of system (1) with respect to (u,v,w) using Tape-
nade software [4] to build the Jacobian RC

q and the submatrices RC
z , RC

y and
RC

w ,
b. Computation of the singularities by solving systems (3) and (4) with the

non-linear solver Diamant [2]. Taylor series allow for the local construction
of solution branches. Monitoring of the rank deficiency of Ry during con-
tinuation on system (3), and conversely, allows to detect points of Sz \Sy.

Singularity classification

The solution branches of either (3) or (4) can be directly classified respectively in
(RI,IO) or (RO,II) singularity classes. Other detected singular points can belong to
any of the other existing singularity classes, which requires additional classification
steps. Thanks to the high accuracy in the estimation of singular points, a direct clas-
sification of the solutions of Sz \Sy can be performed. Each point is tested from
the propositions given in Section 2. The classification step can be finally described
as:

2. Classification of the points detected in Sz \Sy using the test functions. For
each point:

a. Computation of the ranks of matrices RC
q , RC

w , RC
y and RC

z ,
b. Determination of the singularity types from the criteria given in Section 2,
c. Determination of the singularity class (see Table 1 in [10]) by testing in a

successive manner membership to (a) combinations of RI, RO, RPM types
(rows of the Table), (b) IIM type, (c) IO type and (d) II type.

4 Application to a 2-DOF double-loop manipulator

Manipulator description

In order to assess the efficiency of the method, the 2-DOF planar manipulator de-
picted in Figure 1(a) is considered. This mechanism is a double-loop parallel mech-
anism, and it possesses two mobilities (n=2). In terms of singularity analysis, it
is very challenging, especially with the geometric parameters issued from [1], for
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which all existing singularity types occur. Its planar nature allows at the same time
a comprehensive interpretation of the kinematic behavior implied by each class of
singularity, see [1], which makes it a very interesting case study for the method
benchmark.

The constraint equations describing the mechanism kinematics, adapted from [1],
are obtained by writing the closure equations for both loops and two equations that
constrain the position of point G:

RC (q) =

2

666664

CDcos(qD)+CGcos(qC)� x
CDsin(qD)+CGsin(qC)� y
ABcos(qA)+BC cos(qB)�CDcos(qD)�AD
ABsin(qA)+BC sin(qB)�CDsin(qD)
CDcos(qD)+CGcos(qC)+FGcos(qG)�EF cos(qE)�DE
CDsin(qD)+CGsin(qC)+FGsin(qG)�EF sin(qE)

3

777775
= 0 , (5)

with qA and qE the actuated joint coordinates, x and y the coordinates of point G. The
other joint coordinates qB, qC, qD and qG are passive ones. Geometric parameters
are defined as AB = BC = DE = 1, AD = CD = FG = 2, CG = 1.5, EF = 3.

Results and interpretation

The implementation is performed using Taylor series at a truncated order of 20
and a precision of 1e � 6 on the residual [2]. Eigenvalues of square matrices and
singular values of rectangular matrices are considered null if inferior to a threshold
of 1e � 5. The solution branches corresponding to the output and input singularity
locii are defined in the configuration space C . For sake of representation they are
projected onto the space of the x and y variables only and plotted in Figure 1(c),
using respectively green and red lines.

Bifurcation points detected automatically during the continuation process are in-
dicated with a circle-shape marker (�). They allow us to detect branch intersections
in Sz or Sy. Intersection points between the output and input singularity sets, de-
tected by monitoring the simultaneous rank deficiency of both Rz and Ry, are indi-
cated by the other markers. As expected, detection of the intersection points and of
the bifurcation points allow for the computation of all connected solution branches
of Sz [ Sy. All the singularities other than input or output singularities are then
classified by using the second step of the method.

The accuracy in the determination of the branches and the location method allows
us to assign a detected point to the class it belongs to in a straightforward manner.
All connected singularities can thus be entirely determined and classified. Markers
using multiplication symbol (⇥) designate (RI,RO,IIM) configurations. The points
depicted as diamonds (⇧) correspond to simultaneous output and input singularities
(RI,RO,II,IO). Two points belonging to (RI,RPM,IO,IIM) class are indicated with
plus-shape markers (+). Some points on the projected diagram are referenced with
several classes. This means they correspond to several configurations in C , because
a configuration must belong to a unique class [10]. The blue circle of center A is
in particular the superimposition of (RI,IO) and (RO,II) branches. All the known
singularities are obtained, at the exception of IIM singularities that also correspond
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(c) Set Sz [Sy obtained with our method.

Fig. 1 Singularity set (c) of the double-loop mechanism depicted in (a) after projection onto the
workspace. Each singularity in the configuration space C is classified according to the singularity
classes indicated in (b).

to the blue circle. Further analysis shows that the gain of mobility in that situation
would require an exploration with continuation along an additional direction. This
would require as described earlier the introduction of a discretization and an addi-
tional relationship in the system, a development to be investigated.

5 Discussion and conclusion

In this paper, we have introduced the use of higher-order continuation for accurate
and automatic determination of singularity sets. The accuracy of Taylor series com-
putation together with automatic differentiation allows us to easily implement the
singularity determination problem from loop-closure equations and perform an un-
ambiguous classification of the obtained singularities. This is of particular interest
for the designer since only very little information on the mechanism is needed to
conduct the analysis.

The evaluation is promising, with the estimation of all input and output singu-
larities, and more complex situations as described in figure 1. Only one set of IIM
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singular positions is today not determined. Their estimation requires an improve-
ment of the exploration strategy by continuation that will be investigated.

Future work will be focused on the evaluation of the method by considering other
3D mechanisms. It will be also interesting to combine our method with the interval-
based method from [1] to get accurate and efficient determination of singularities
as well as an exhaustive determination, even in difficult cases of disconnected sets,
without any initial knowledge on the singular configurations. Sensitivity analysis
also provided by the Diamant framework will then also be exploited to provide the
designer with a tool for optimization of the mechanism geometry.

Acknowledgements This work was supported by the French government research program In-
vestissements d’avenir through the Robotex Equipment of Excellence (ANR-10-EQPX-44).
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Identifying singularity-free spheres in the
position workspace of semi-regular Stewart
platform manipulators

Anirban Nag, Vikranth Reddy, Saurav Agarwal, and Sandipan Bandyopadhyay

Abstract This paper presents a method to compute the largest sphere inside the
position-workspace of a semi-regular Stewart platform manipulator, that is free of
gain-type singularities. The sphere is specific to a given orientation of the moving
platform, and is centred at a designated point of interest. The computation is per-
formed in two parts; in the first part, a Computer Algebra System (CAS) is used to
derive a set of exact symbolic expressions, which are then used further in a purely
numerical manner for faster computation. The method thus affords high computa-
tion speed, while retaining the exactness and general nature of the results. The nu-
merical results are validated against those obtained from an established numerical
algebraic geometry tool, namely, Bertini, and are illustrated via an example.

Key words: Stewart platform manipulator, gain-type singularity, singularity-free
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1 Introduction

This paper presents a method for finding a sphere inside the position workspace of
a semi-regular Stewart platform manipulator (SRSPM), which is free of gain-type1

singularities. The singularity-free sphere (SFS) is derived for a given orientation of
the moving platform, and is centred at a given point of interest. The choice of this
point is typically motivated by the intended applications of the manipulator.

The identification of such an SFS facilitates several aspects of path-planning and
design of such manipulators. As the sphere describes a convex region in space, it is
obvious that any path consisting of line segments is free of (gain-type) singularities,
so long as the end-points of the segments are inside the SFS. For any given manip-
ulator, such a calculation needs to be done only once, for any given orientation. If
such an SFS is to be identified for a range of orientations of the moving platform,
then one can scan the said range (up to some desired resolution), and identify the
smallest SFS, which would be free of singularities for the entire range of orien-
tations. Identifying such an SFS forms an important part of computing the “Safe
Working Zone (SWZ)” of such a manipulator, where the manipulator can operate
without encountering singularities and other issues, as explained in [11]. It is, there-
fore, possible to think of a design algorithm, to invert the problem, and identify the
geometric parameters which would allow the manipulator to be free of singularities
over a desired range of orientations, and a spherical region in R3.

Motivated by such utilities, several attempts have been made in the recent times
to obtain such an SFS, or a variant of the same. Determination of the maximal
SFS in the orientation workspace, parametrised by Euler angles for the Minimal
Simplified Symmetric Manipulator (MSSM) has been presented by Jiang et. al. [7].
Li et. al. [8] have tried to solve this problem in the six-dimensional space of rigid
body motions, SE(3), by finding a sphere that is tangential to the gain-singularity
manifold in this space. The formulation, however, seems to lack mathematical rigour
for several reasons, as explained below. It is well-known that SE(3) does not admit a
bi-invariant Riemannian metric (see, e.g., [9], Corollary A.5.1, pp. 427), and hence
the notion of “distance” or length in SE(3) is non-unique. Thus, the application of
the Euclidean metric to define a sphere in SE(3) is mathematically inaccurate, given
that the Euclidean metric is a bi-invariant one. Furthermore, because of the non-
existence of a unique “natural/characteristic length” in SE(3), the results obtained
by the application of this method are always subject to the choice of the assumed
characteristic length, and have therefore limited value in any generic problem. Also,
it is not clear as to how the eliminations were implemented to solve the system of
equations, and the corresponding computational efforts involved are not mentioned.
Finally, in the process of solution, the number of solutions is stated to be 81, which
is much higher than the total-degree Bézout’s number of 27.

In this paper, the formulation adheres to the standard definition of a sphere in R3,
and accordingly, the SFS is computed only in the position space. Thus, there is

1 Gain-type singularities (also known as type-II singularities occur when the forward kinematic
solutions of a manipulator merge. See [1] and the references therein for more details.
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an SFS for each point in SO(3) which is accessible to the moving platform. The
formulation is therefore free of any mathematical inaccuracies, and it renders the
problem to be solvable analytically. The analytical description of the singularity
manifold of an SRSPM is available in [2], which is used in this work. The formu-
lation leads to three cubic equations in the coordinates of the point of tangency be-
tween the SFS and the singularity surface. By elimination of two of the coordinates a
univariate polynomial of degree 48 is obtained in the remaining one. It may be noted
that the degree of the final polynomial is still higher than the theoretical limit of 27,
but is closer to the same. The coefficients of this polynomial are computed exactly,
via a series of intermediate expressions which are evaluated numerically in the end.
Thus, the entire formulation is implemented symbolically and the final univariate
polynomial expression obtained in a manner, which can be ported to any numeri-
cal programming environment like C or C++, thereby making the steps performed
inside CAS a one time procedure. The roots obtained are validated numerically, as
well against the numerical algebraic geometry (NAG) tool Bertini [3], and the
solution is illustrated geometrically.

It may be noted that a complementary formulation of the problem is feasible, i.e.,
a singularity-free sphere could be identified in SO(3), for a given position of the
end-effector. It is mathematically consistent, when the Euclidean distance is used in
conjunction with the quaternion-based representation of SO(3) [6,10]. However, the
computations required are very demanding in this case, as the problem is defined in
terms of four polynomials, one of total degree 2, and the rest of total degree 6 each,
resulting in a Bézout number of 432, which puts this problem out of the scope of
the present work.

The rest of the paper is organised as follows: in Section 2 the mathematical for-
mulation of the problem is described, followed by the solution of the resulting equa-
tions in Section 3. The results are described in Section 4. Finally, the paper is con-
cluded in Section 5.

2 Mathematical formulation

This section describes the geometry of the manipulator and the derivation of the
equations describing the SFS in the position workspace of the SRSPM.

2.1 Geometry of the manipulator

The SRSPM has semi-regular hexagonal top and bottom platforms, with alternate
sides in each platform having equal lengths. The angular spacings between the ad-
jacent pairs of legs are denoted by 2gt and 2gb for the top (see Figs. 1a, 1b) and
the bottom platforms, respectively. Without any loss of generality, the radius of
the circum-circle of the bottom platform is scaled to unity, thus rendering all the
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(a) Schematic diagram of SRSPM. (b) Geometry of the top platform.

linear dimensions unit-less in this work. The circum-radius of the top platform is
denoted by ra. The orientation of the top platform is represented by the Rodrigue’s
parametrisation (see, e.g., [5], pp. 31) of SO(3), namely, {c1,c2,c3}.

2.2 Derivation of the SFS equations

The objective of this work is to find the largest sphere in R3, centred at a given
point of practical interest, say, p0 = {x0,y0,z0}

>. The formulation is motivated by
the observation that such a sphere would be the smallest among those tangential
to the singularity surface in R3. Thus, the first and the main task is to find all the
spheres centred at p0, which are tangential to the singularity surface. In this case,
the singularity surface is given by f (x,y,z) = 0, where:

f (x,y,z) = a1x2z+a2x2 +a3xyz+a4xy+a5xz2 +a6xz+a7x+a8y2z

+a9y2 +a10yz2 +a11yz+a12y+a13z3 +a14z2 +a15z+a16.
(1)

The coefficients ai 2 R depend only on the orientation parameters c1,c2,c3, and the
architecture parameters gb, gt , and ra [2]. The equation of the sphere is given by :

g(x,y,z) = (x� x0)
2 +(y� y0)

2 +(z� z0)
2
� r2 = 0, (2)

where r is the radius of the sphere, and p = {x,y,z}> is the point of tangency be-
tween the sphere and the singularity surface. Therefore, at p, the normals to these
two surfaces should align (see Fig. 1), giving rise to the tangency conditions:

—f⇥—g = 0 ) hi(x,y,z) = 0, i = 1,2,3. (3)

As only two of the system of equations hi = 0 are linearly independent, any two
of the three can be taken in combination with the equation defining the singular-
ity surface, namely Eq. (1) to complete the set of three equations in the three un-
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Fig. 1: Tangency of sphere with the singularity surface at the point p(x,y,z).

knowns, x,y,z. Each real set of solution represents a sphere that is tangent to the
singularity surface. The one with the smallest value of r among these is the SFS.

2.3 Solution procedure

The degrees of h1,h2,h3 in x,y,z individually are found to be {2,3,3}, {3,2,3} and
{2,2,2}, respectively, while the total degree in x, y, and z equals 3 in each case. In
view of these, h1 = 0,h3 = 0 are chosen for the solution process, alongside f = 0.
From these equations, x,y are eliminated sequentially2 , as shown schematically
in (4):

f (x,y,z) = 0
h1(x,y,z) = 0
h3(x,y,z) = 0

1

A ⇥x
�!

g1(y,z) = 0
g2(y,z) = 0

1

A ⇥y
�! g3(z) = 0. (4)

In the above, “ ⇥x
�!” denotes the elimination of the variable x from two or more

equations in x, via computation of resultants with respect to x. The functions g1
and g2 have degrees {4,8} and {6,7} in y and z, respectively. However, g2 is of the

2 It may be noted that many different elimination sequences are possible. The one presented here
resulted in relatively smaller degrees of the intermediate and final polynomials.
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form yg0

2, where g0

2 is of degree 5 in y. The variable y is eliminated between g1 = 0
and g0

2 = 0 (under the assumption y 6= 0; the case y = 0 is treated separately) using
Bézout’s method, leading to a Bézout matrix of size 5 ⇥ 5. Direct expansion of the
determinant of this matrix leads to a polynomial in the only remaining unknown, z.
However, the size3 of the resulting expression is huge (about 29 GB). The time taken
for expanding the determinant symbolically is about 17 minutes. The time taken for
evaluating the determinant and the complexity of the resulting expression, makes
this method computationally inefficient and practically eliminates the chance of it
being used to find the SFS for a range of orientations, as a part of a larger but more
relevant analysis/design problem.

In order to overcome the above-mentioned drawbacks, a cascaded approach was
adopted to evaluate the 5⇥5 determinant, wherein it is expanded first in terms of
five 4⇥4 sub-determinants, which, in turn are expanded in terms of 20 (of which
only 10 are distinct) sub-determinants of size 3⇥3. Thus the coefficients of the final
univariate polynomial, g3(z), are obtained in terms of two stages of intermediate
expressions. Firstly, each of the 3 ⇥ 3 determinants are obtained in closed-form, in
terms of the coefficients a j (defined in Eq. (1)):

D3i =
29

Â
k=1

bik(a j)zk�1, i = 1, . . . ,20; j = 1, . . . ,16. (5)

The new sets of coefficients, bik, are obtained as closed-form expressions in terms of
the original coefficients, a j. In the next step, the five 4⇥4 determinants are obtained
in a similar manner, leading to the new set of coefficients cik:

D4i =
40

Â
k=1

cik(blm)zk�1, i = 1, . . . ,5; l = 1, . . . ,20; m = 1, . . . ,29. (6)

Finally, the required 5 ⇥ 5 determinant is computed in terms of the 4 ⇥ 4 determi-
nants, and is cast as a polynomial in z:

D5 =
49

Â
i=1

di(c jk) zi�1, j = 1, . . .5; k = 1, . . . ,40. (7)

Therefore, the final univariate equation in z is obtained as:

g3(z) = D5 = 0. (8)

Equation. (8) is solved to find all the 48 solutions of z. The real solutions of z are
used to find the values of x and y, and the radius of the desired sphere is obtained.
These steps are explained with the help of a numerical example in the next section.

3 The “size” of an expression in this context indicates the amount of memory required
to store the expression in the internal format of the computer algebra system (CAS) used,
namely, Mathematica.
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Table 1: Comparison between the direct symbolic evaluation of the 5 ⇥ 5 determi-
nant and the proposed approach. CPU specifications of the computer used: Intel(R)
Core(TM) i7-4790 CPU running at a clock speed of 3.6 GHz, with 16 GB RAM.

Symbolic evaluation Numerical evaluation

Software used Mathematica, Symbolic mode Mathematica Numeric mode,
with default working precision

Size of expressions Final univariate polyno-
mial, g3(z), (obtained by
direct expansion of the 5 ⇥ 5
determinant): 29 GB

Final univariate polynomial g3(z)
(computed following Eqs. (5, 6,
7)): 1.842 MB, 100.280 MB in-
clusive of all intermediate expres-
sions

Time taken 17 minutes 11.08 seconds

Symbolic expansion of the determinant of each of the 3⇥3 matrices takes an av-
erage of 0.5 seconds each, and their original size is about 30 MB each. However, af-
ter symbolic simplification using the built-in Mathematica routine Simplify,
the sizes of determinants vary from 6.897 MB to 12.791 MB, with a total size
of 93.158 MB (for the ten unique determinants). The actual coefficients of the 3⇥3
determinants are then replaced by the intermediate dummy variables (see Eq. (5)).
Proceeding further, the sizes of the five 4⇥4 determinants (defined as D4i in Eq. (6))
are found to be (in MB): 1.083, 0.971, 0.892, 1.067, and 1.267, respectively. The fi-
nal determinant, D5, is obtained in a similar manner.

These steps of computing the final set of coefficients di starting from the inputs al
allow much faster computation (i.e., 11.08 seconds), and also leads to simpler final
expressions. The univariate equation, g3(z) = 0, consists of a total of 49 terms, with
a cumulative size of 1.842 MB, while the largest term among these is only 160 KB in
size. The comparison between the symbolic and the numeric computations of g3(z),
in terms of the computational efforts and sizes of the expressions involved, are pre-
sented in Table 1.

It is important to note, that the expressions lead to exact values of the final co-
efficients, subject only to the working precision of the numerical computation en-
vironment used. More importantly, it allows for a purely numerical implementation
of the solution process (e.g., in C or C++) without either impacting the exact nature
of the computation of the coefficients or restricting the computation to the symbolic
computation environment of a CAS. Another point worth noting is that once the
coefficients are obtained till the last level, the process need not be repeated, when
the point of interest (centre of the sphere) or the architectural parameters of the SR-
SPM is changed. It also paves the way for computationally efficient scanning of the
orientation workspace of the manipulator for finding the smallest SFS.
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3 Results

A sample problem was solved in CAS Mathematica [12] version 10.4 using
the default working precision of the system. The values of the architecture parame-
ters are adopted from [4]: gt = 0.0863 rad, gb = 0.0835 rad, and ra = 0.8479 (after
scaling the base circum-radius rb to 1). The fixed centre of the SFS is taken to be
at p0 = {0,0,1.9500}

>. The orientation parameters were taken to be c1 = 0.1013,
c2 = 0.0368, and c3 = 0.2962. The monic form of Eq. (8) for these inputs is given
below:

z48 +4.4567⇥1015z47 +3.9157⇥1019z46 +8.4802⇥1021z45 +8.8816⇥1023z44
� . . .

+4.0056⇥1064z3 +3.2054⇥1064z2
�7.7684⇥1064z+1.2071⇥1064 = 0. (9)

Bézout’s limit for the number of solutions in this case was 3 ⇥ 3 ⇥ 3 = 27. The
higher degree indicates inclusion of spurious solutions in the process of elimination
of variables. Therefore, after completing the solutions with the corresponding values
of x,y, the original set of equations (i.e., Eq. (4)) are used to filter out any such solu-
tions. Only three sets of real solutions survive this test, producing residues of the or-
der of 10�23: {x, y, z} = {�0.4384, �0.3125, 0.1696},{�0.3996,� 6.4295, 2.2232},
{0.3653,� 0.7859, 4.7318}. The corresponding values of r are: 1.8599, 6.4477,
and 2.9137. Therefore, the SFS has a radius of 1.8599 for the given inputs. The
actual tangency is depicted in Fig. 1.

The above solutions were obtained for the case y 6= 0. For y = 0, the obtained
solutions were p = {�66.3514,0,5.6010}

>, and the corresponding r = 66.4518,
which is more than the minimum radius already obtained. Hence, the above reported
radius of the SFS holds. The residues obtained on substituting this solution set in
the original set of equations was found to be of the order of 10�17.
The results obtained above are prone to numerical errors, due to the high degree
of the final equation in z and the huge variations in the order of magnitude of the
values of the coefficients in Eq. (9). Thus, it is desirable to solve the system in
Eq. (4) using another method, in order to assess the correctness of the solutions
obtained. For that purpose, the NAG tool, Bertini [3] is used, which is well-
known for its capability to compute all the solutions of a given polynomial system
to a desired level of accuracy. As expected, Bertini finds only 27 solutions, of
which 22 are finite, and the others escape to infinity. The real solutions match the
solutions obtained above up to 10 digits after the decimal point, establishing the
correctness of the solutions obtained.

4 Conclusion

A method for computing the largest gain-type singularity free sphere inside the
workspace of the SRSPM has been presented in this paper. The said sphere is a
subset of the position workspace of the manipulator, and is derived for a given ori-
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entation of the moving platform. The formulation leads to three cubic equations in
the coordinates of the point of tangency between the sphere and the singularity sur-
face. A method is presented to derive a univariate equation of degree 48 from these
three equations, such that all the coefficients of the intermediate as well as the final
polynomials are computed exactly, albeit in a numerical manner. This is the main
contribution of the paper, which allows, perhaps for the first time, fast computation
of these spheres inside a purely numerical computation environment, without los-
ing the accuracy of the solutions obtained, as demonstrated in the paper – although
Mathematica was used to perform the numerical computations, none of the sym-
bolic capabilities of Mathematica was made use of in the numerical evaluation
of the coefficients.

Work is in progress to implement the method presented in C++, so as to speed up
the computations even more. Furthermore, it is intended to use this method in the
computation of the SWZ of SRSPM and more general Stewart platform manipula-
tors, as a part of their design process.
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Geometric Algebra Based Kinematics Model
and Singularity of a Hybrid Surgical Robot

Tanio K. Tanev

Abstract The paper presents a kinematics modelling and singularity analysis of a
novel hybrid robot using geometric algebra. The introduced hybrid robot is designed
for minimally invasive surgery (MIS). The geometric condition for singularity and
the instantaneous uncontrollable motion in a singular configuration are derived in
the geometric algebra terms. The singularities within the workspace are graphically
presented. Avoiding the singularities of the medical parallel robots is important for
the surgical manipulation success and the patient’s safety.

Key words: kinematics, singularity, geometric algebra, robot-assisted surgery.

1 Introduction

Medical robots enhance the surgeons’ capability and encourage introducing novel
and more complex surgical techniques. In the robotic assisted Minimally Invasive
Surgery (MIS) the small abdominal incision restricts the motion of the end-effector
and acts as a pivoting point. Different mechanisms could be applied in order to pro-
vide the ”Remote Centre-of-Motion” (RCM) [4]. RCM is a point where one or more
rotations are centred and located outside the mechanism itself. The analysis of sin-
gularities in parallel robots is important not only from the control point of view but
also for safety’s sake [7]. In singular configurations the parallel manipulator may
have undesired behaviour and compromised performance. Since the patient’s safety
is of paramount importance, the analysis of singular configurations in surgical robots
(especially parallel ones) is not only justified but also crucial. The singularities in
parallel medical manipulators need to be well analysed and should be avoided during

Tanio K. Tanev
Institute of Systems Engineering and Robotics - Bulgarian Academy of Sciences, Bulgaria, e-mail:
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surgical manipulations. Various methods have been used for the analysis of singular-
ities of parallel manipulators, namely, Study’s kinematic mapping [8], Grassmann
geometry [6], Grassmann-Cayley algebra [3], screw theory [14], geometric alge-
bra [11]. A few papers have been dedicated to the singularity analysis of hybrid
medical robots [12], [13].

In this paper, the geometric algebra (GA) is applied in the modelling of the kine-
matics and analysing the singularities of a novel type of hybrid robot designed for
MIS operations. This robot is the second one of the family of surgical robots, the
first one having been previously presented by the author (e.g. [12]).

2 Modelling of the robot kinematics

The parallel manipulator has three limbs. Two of them have SPU arrangement and
the third one is a double parallelogram (Figure 1). The double parallelogram has
been used in some MIS robots in order to provide remote centre of motion (RCM)
[5], [4]. The constraints, enforced by the double parallelogram limb, provide a RCM
for the robot. The RCM is at the incision point of the patient’s body. Each limb
has one driven joint: the prismatic joints for the SPU legs are driven and the first
revolute joint of the third leg (double parallelogram), which connects the planar
parallelogram mechanism with the base platform, is driven. In addition to these
three active joints, an active prismatic joint allowing translation of the end-effector
along the line OB3 is added. The overall degrees of freedom (dof) for the robot are
four. The axes of the revolute joints at A3 and at B3 are perpendicular to the planes
of the base (A1A2A3) and the moving platforms (B1B2B3), respectively. The origins
of the reference (base) coordinate system OXYZ and the coordinate systems {1},
{2} and {3} coincide with the incision point of the patient’s body. The kinematic
modelling could be performed via different geometric algebras. The fundamentals of
the geometric algebra can be found in [2] and [1]. The kinematics of the considered

Fig. 1 The cad model and kinematic scheme of the surgical robot.
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robot is modelled via geometric algebra G3,0,1 and conformal geometric algebra
G4,1, but here only the model from G3,0,1 is presented, since the transformations
needed for the singularity analysis are mostly rotations and translations of vectors
and screws. The G3,0,1 is more convenient for this purpose. The geometric algebra
G3,0,1 has basis vectors e1,e2,e3,e0; the first three of them square to +1 and the last
one squares to 0, i.e., ei · ei = 1, i = 1,2,3; e0 · e0 = 0.

The coordinate transformation for the considered robot can be written as

Q04 = Rot(Y,b )Rot(X ,a)Rot(Z,g)Trans(Z,d) ⌘ Q1Q2Q3Q4, (1)

where b , a and g are angles of rotation about the Y , X and Z axes, respectively;
d is a translation along Z axis; Q1 = cos(b/2)� e3e1 sin(b/2), Q2 = cos(a/2)�

e2e3 sin(a/2), Q3 = cos(g/2)� e1e2 sin(g/2), Q4 = 1� (d/2)e3e0.
A vector x written in G3 can be represented in G3,0,1 as point x = (1 + e0x)I3;

I3 = e1e2e3 is the unit pseudoscalar of G3.
A general screw could be written as a multivector in G3, i.e.,

s = u+ r^u+hI3u = v1e1 + v2e2 + v3e3 +b1e2 ^ e3 +b2e3 ^ e1 +b3e1 ^ e2, (2)

where u is the direction of the screw axis; r is the position vector of a point of the
screw axis; h is the pitch of the screw; vi and bi, i = 1,2,3 are scalar coefficients.

The same screw could be written as 2-vector in G3,0,1, i.e.,

S = uI3 +(r^u+hI3u)e0I3 = v1e2e3 +v2e3e1 +v3e1e2 +b1e1e0 +b2e2e0 +b3e3e0.
(3)

The 2-vector from Eq.(3) is similar to the equation of a line given in [9]. Eq.(3)
can represent screws with finite and zero (pure rotation) pitches. A screw with infi-
nite pitch (pure translation) can be written as:

SP = ne0 = n1e1e0 +n2e2e0 +n3e3e0, (4)

where n = n1e1 +n2e2 +n3e3 is the vector of translation for the prismatic joint.
Then, a point and a screw (M) could be transformed as M

0

= QMQ†, where Q
is a transformation operator and Q† is reverse of Q. All the screws needed for the
singularity analysis are obtained via this model.

3 Singularity analysis of the parallel manipulator and the double
parallelogram limb

The geometric algebra approach for singularity analysis of parallel manipulators
with limited mobility has been developed and presented by the author in two pre-
vious papers ( [10] and [11]. For this reason details of the approach are not given
here. In order to perform the singularity analysis, the parallel manipulator could be
represented by an equivalent kinematic scheme. In other words, the double parallel-
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ogram limb could be represented by a RRR limb, where the second revolute joint
should be located at the incision point (Figure 2a).

Fig. 2 a) The equivalent scheme of the parallel manipulator; b) The double parallelogram limb.

The concept of duality is utilized in the singularity analysis where the mathe-
matical operation involves the outer product of up to six screws. Each screw has
six components (Eq.(3)). For this reason, it is convenient to use 6D geometric al-
gebra for the singularity analysis. Therefore, in contrast to Section 2, in this sec-
tion the 6D geometric algebra G6 with basis vectors {e1,e2,e3,e4,e5,e6}, e2

i = +1
(i = 1,2, ...,6) is used. Then, the obtained screws in Section 2 with finite (or zero)
(S) and infinite pitches (SP), respectively, could be rewritten in G6 as

S = v1e1 + v2e2 + v3e3 +b1e4 +b2e5 +b3e6; SP = n1e4 +n2e5 +n3e6, (5)

where the coefficients vi, bi and ni, i = 1,2,3 are the same as in Eqs.(3) and (4).
If we consider the j-th limb of a parallel manipulator containing active, passive

and dummy (in case of a limited mobility limb) joints, then this limb will have full
mobility. Then, the subspace of twists (freedom) for five screws with exception of
the active (dummy) joint is represented by the following 5-blade for the j-th leg

jAk = j S1 ^

jS2 ^ ...^ jSk�1 ^

jSk+1 ^ ...^ jS6, (6)

where the subscript k denotes the active (or dummy) joint of the j-th leg.
The dual of the 5-blade from Eq.(6) is the orthogonal complements to the 5-blade

jDk = j AkI–1
6 , (7)

where I6 = e1e2e3e4e5e6 is the unit pseudoscalar of the G6 and I–1
6 = e6e5e4e3e2e1

is its inverse; the subscript k denotes the active or dummy joint of the j-th leg.
The condition for singularity of a general parallel manipulator with fewer than six

dof (but with dummy joints) can be expressed in GA terms as ( [10], [11] and [12])
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Da1 ^ ...^ Dap ^Dd1 ^ ...^Ddr = 0, (8)

where p+ r = 6; p is the number of the active joints and r is the number of the
dummy joints; Dai is a dual vector (grade-1 blade) associated to the i-th active joint
and Ddi is a dual vector (grade-1 blade) associated to the i-th dummy joint.

Note that the computation of the dual vectors from Eq.(7) is straightforward and
involves only addition and multiplication operations. That is why this geometric
algebra approach is computationally more efficient than the screw theory method
where the computing of the reciprocal screws could be a complicated operation.
This is one of the advantages of the proposed geometric algebra approach.

The RRR leg has one active and three dummy joints. Therefore, four dual vectors
associated with these joints can be written as (only 3Da and 3Dd1 are listed here,
since the remaining two could be obtained similarly to 3Dd1 )

3Da = (3S2 ^

3 S3 ^

3 Sd1 ^

3 Sd2 ^

3 Sd3)I
–1
6 ,

3Dd1 = (3S1 ^

3 S2 ^

3 S3 ^

3 Sd2 ^

3 Sd3)I
–1
6 ,

(9)

where 3Si, (i = 1,2,3) are joint screws of the R-joints; and 3Sdi , (i = 1,2,3) are
screws of the dummy joints.

The two SPU legs (leg 1 and leg 2) of the parallel manipulator have full mobility
and, therefore, have only dual vectors 1Da and 2Da, respectively, associated with the
active joints, i.e.,

jDa = ( jS1 ^

jS2 ^

jS3 ^

jS5 ^

jS6)I–1
6 , ( j = 1,2), (10)

where the fourth P (prismatic) joint is active and is not included in the formula.
The dual vectors 1Da and 2Da are lines (zero pitch screws) and their elliptic polars

1Ra (1Ra =1 D̃a) and 2Ra (2Ra =2 D̃a) are lines along the SPU legs, respectively. In
this case, there is no need to calculate all joint screws of the SPU legs, because the
dual vectors could be obtained by the elliptic polars of the lines along the SPU legs.

The condition for singularity from Eq.(8) can be written as

1Da ^

2Da ^

3Da ^

3Dd1 ^

3Dd2 ^

3Dd3 = 0. (11)

Eq.(11) involves dummy vectors which could be eliminated as shown in [11]
and [12]. The duality between inner and outer products is used in the elimination
process. Inner and outer products are dual to each other and the following identities
could be written

(A ·M)In = A^ (MIn); (A^M)In = A · (MIn), (12)

where A is a vector; M is multivector and In is the unit pseudoscalar of n-dimensional
space.

The process of elimination of the dummy vectors is explained by Eq.(13), where
the identities from Eq.(12) are used. The elimination example is for the outer product
of two dual vectors from Eq.(11) (the third leg which contains dummy joints), i.e.
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3Da ^

3 Dd1 = �

3Dd1 ^

3 Da = �

3Dd1 ^ [(3S2 ^

3 S3 ^

3 Sd1 ^

3 Sd2 ^

3 Sd3)I
–1
6 ]

= �[3Dd1 · (3S2 ^

3 S3 ^

3 Sd1 ^

3 Sd2 ^

3 Sd3)]I
–1
6

= �(3Dd1 ·Sd1)(
3S2 ^

3 S3 ^

3 Sd2 ^

3 Sd3)I
–1
6 = c(3S2 ^

3 S3 ^

3 Sd2 ^

3 Sd3)I
–1
6

(13)

where c = �

3Dd1 · Sd1 6= 0 is a scalar, while referring to Eq. (9) it can be seen that
the following inner products are zero: 3Dd1 ·

3 Si = 0,(i = 1,2,3) and 3Dd1 ·

3 Sdi =
0,(i = 2,3); these values are used in the expansion of the inner product between a
vector and a blade in Eq.(13).

Then, after elimination, the 4-blade formed by the outer product of the four dual
vectors associated with the RRR leg (the third leg) can be written as

3Da ^

3Dd1 ^

3Dd2 ^

3Dd3 = l (3S2 ^

3 S3)I–1
6 , (14)

where l is a scalar coefficient and is irrelevant to the geometric condition.
The 4-blade from Eq.(14) represents a blade of non-freedom for the RRR leg.

This is another advantage of the method, i.e., the twists of non-freedom (the
wrenches of constraint, respectively) could be represented by a blade and therefore,
there is no need to obtain each single twist of non-freedom. Then, the condition for
singularity (Eq.(11)) becomes

1Da ^

2Da ^ [(3S2 ^

3 S3)I–1
6 ] = 0. (15)

Now, another advantage of the geometric algebra approach could be applied here.
Eq.(15) could be further manipulated by applying the identities from Eq.(12) , i.e.

1Da ^ [2Da · (3S2 ^

3 S3)]I–1
6 =1 Da ^ (VI–1

6 ) = (1Da ·V)I–1
6 = 0. (16)

The results from Eq.16 could be geometrically interpreted and the drawn con-
clusions are explained below. The inner product between the vector 2Da and the
bivector 3S2 ^

3 S3 (Eq. (16) ) is the vector V =2 Da · (3S2 ^

3 S3). This implies that
V is perpendicular to 2Da in the 6-D space and V belongs to the bivector space
3S2 ^

3 S3. Since the screws 3S2 and 3S3 are lines passing through the origin of the
coordinate system, therefore the vector V represents a line passing through the ori-
gin, too (Figure 3). Thus, the line V lies in the plane defined by the lines 3S2 and
3S3. The elliptic polar of 2Da is the line 2Ra along the second SPU leg (A2B2). Since
the vectors V and 2Da are mutually perpendicular in the 6-D space, then the elliptic
polar 2Ra (line) of the screw D2 (2Ra =2 D̃a) and the line V should intersect at a
common point, i.e., the screws V and 2Ra are reciprocal. It can be concluded from
the last part of Eq.(16) that the manipulator is in singular configuration when the in-
ner product of vectors 1Da and V is zero (1Da ·V = 0). This means that the elliptic
polar 1Ra (line) of the screw 1Da (1Ra =1 D̃a) and the line V should intersect, i.e.,
the screws V and 1Ra are reciprocal. Thus, the geometric condition for singularity
could be stated as: the considered parallel manipulator is in singular configuration
if the vector (line) V intersects both lines 1Ra and 2Ra which are along the SPU
legs, respectively. Similar results are obtained for the other robot (with different
kinematic scheme) of the family of MIS robots, presented in [12].

442 Tanio K. Tanev



Geometric Algebra Based Kinematics Model and Singularity . . . 7

Fig. 3 A singular configuration of the surgical robot.

For completeness, the singularity of the parallelogram limb is considered. Since
the double parallelogram limb (Figure 2b) consists of two connected parallelograms,
the singularity of each of them determines the singularity of this limb. The revolute
joints attached to the base and moving platforms do not affect the limb singularity.
Thus, considering the 1-dof planar mechanism P1P2P3P4P5P6P7 is enough for the
analysis. Let us assume that the active joint is at P2. The first parallelogram P1P2P3P4
can be considered as a parallel manipulator with two legs P2P3 and P1P4. The dual
vectors associated with the active and dummy joints of the two legs are

Da = (P3 ^Pd ^ e234)I–1
6 ;D1 = (P2 ^P3 ^ e234)I–1

6 ;D2 = (P1 ^P4 ^ e234)I–1
6 , (17)

where Pi,(i = 1,2,3,4) are joint screws; e234 = e2 ^ e3 ^ e4 is a 3-blade associated
with dummy joints, which restrict the mechanism to move only in planes parallel to
Y �Z plane. Then, referring to [11], the condition for singularity leads to

Da ^D1 ^D2 = c3(P1 ^P4 ^P3 ^ e234)e234 = 0, (18)

where c3 is a scalar coefficient which is irrelevant to the geometric condition.
Therefore, the condition for singularity is P1 ^ P4 ^ P3 = 0, and the mechanism

is in singular configuration if these parallel lines are linearly dependent, i.e., lie in
a single plane. In case of the parallelogram mechanism this occurs when lines P2P3
and P1P4 coincide. The similar condition can be obtained for the second parallelo-
gram P3P6P7P5. It could be concluded that the limb is in singular configuration when
all lines (P2P3, P1P4,P6P7,P4P5) coincide.

3.1 The instantaneous uncontrollable motion in a singular

configuration

In a singular configuration the dual vectors from Eq.(11) are linearly dependent. The
instantaneous uncontrollable twist could be obtained by the dual of a 5-blade. This
5-blade includes all the constituent members of Eq.(15) with the exception of one
vector. If we exclude 1Da from Eq.(15), we will obtain the following expression for
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the uncontrollable twist U

U = [2Da ^ (3S2 ^

3 S3)I–1
6 ]I–1

6 =

{[2Da · (3S2 ^

3 S3)]I–1
6 }I–1

6 =2 Da · (3S2 ^

3 S3) ⌘ V.
(19)

Eq.(19) proves that the uncontrollable twist U coincides with the vector V from
Eq.(16). Since V is a line, therefore the uncontrollable motion in this singular con-
figuration is a pure rotation about the line V (Figure 3), which implies that this
instantaneous rotation does not affect (change) the RCM. In this case, the instanta-
neous uncontrollable motion is obtained geometrically in a coordinate-free manner.

4 Singularities within the workspace

The algebraic formulation of the singular condition could be derived by the scalar
part from Eq.(15), which is a function of the design and input parameters. This
function is parametrized by the three angles a , b and g . Then, the obtained singular
surface is shown in Figure 4 together with the workspace (in terms of the angles
a , b and g) of the robot. Also, several slices of the workspace and the singular-
ities are presented in the same figure. Examining the workspace and the singular
surface it can be observed that the singularities are outside the workspace for the
range g = �15�

÷ 15� (approximately). The singularity surface and workspace are
obtained for the following design parameters: OA1 = (�0.2,0.52,0.56); OA2 =
(0.2,0.52,0.56); OA3 = (0,0.52,0); O4B1 = (�0.1075,0.05,0); O4B2 = (0.1075,
0.05,0); OP1 = 0.422; P1P2 = P3P4 = 0.06; P1P4 = P2P3 = 0.33; P3P6 = P5P7 = 0.06;
P3P5 = P6P7 = 0.482; OO4 = 0.52 (all values are in meters). The workspace is ob-
tained by imposing a range [0.30,0.58] of the motion of the two SPU legs and a
restriction of the motion of the planar double parallelogram (a = [�80�

÷80�]).

Fig. 4 Workspace, singular surface, and workspace slices and singularities.
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5 Conclusions

The geometrical condition for singular configuration of the proposed MIS robot is
obtained in a basis-free form in terms of the geometric algebra. The approach pro-
vides a good geometrical insight of the singularity of this robot. The singularities are
presented within the robot workspace. The analysis revealed that a singularity-free
workspace exists for a given range of orientations, i.e. in this case the singularities
are outside the workspace. The results from the presented analysis could be applied
in the robot path planning, where the singular configurations should be avoided.
The outcome of this study also suggests that the singularities could be completely
avoided if the robot is endowed with an additional redundant rotation around the
axis of the surgical instrument.
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Kinematic Singularities of a 3-DoF Planar
Geared Robot Manipulator

S.Vahid Amirinezhad and Peter Donelan

Abstract By incorporating gearing into a planar 3R mechanism, one obtains a fam-
ily of mechanisms in which the gear ratios play a central kinematic role. Special
choices of these parameters result in interesting simplifications of the kinematic
mapping. An explicit expression for the mapping can be derived using the ‘matroid
method’ of Talpasanu et al [?]. We use this relatively simple mechanism to illustrate
singularity analysis for geared mechanisms.

Key words: planar manipulator, kinematic singularity, geared mechanism, matroid
method

1 Introduction

The use of gear pairs in a mechanism may confer a number of advantages. For
example, they can enable more efficient placement of the actuators thereby reducing
their mass and inertia. Epicyclic gear trains (EGTs), in which the centre of one gear
wheel revolves around that of another, are the simplest form and therefore play
an important role in geared mechanisms (GMs). By utilising EGTs, we can easily
place actuators close to the base of a GM and rotation of inputs can be efficiently
transmitted to the end-effector. Careful choice of gear ratios can also enable end-
effector motion to be tailored to specific inputs.

The fundamental kinematic equation for an epicyclic gear is due to Willis [?].
Subsequent authors have introduced methods of global analysis for GMs that en-
sure the equations are correctly formulated for a given mechanism topology and
design. Notably, Buchsbaum and Freudenstein [?] introduced combinatoric meth-
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ods to represent the topology of the mechanism. This approach was later developed
by Tsai [?], Hsu and Lam [?]. In order to enhance the computational effective-
ness of the method, Talpasanu et al. [?, ?] refined and to some extent recast the ap-
proach, introducing the ‘incidence and transfer method’ that uses the cycle matroid
of the mechanism’s directed graph. A comparison of Talpasanu’s method with that
of Tsai–Tokad was made in [?]. In this paper, we illustrate Talpasanu’s method for a
simple geared version of a planar 3R mechanism in order to determine its kinematic
mapping and thereby its singularities. The goal is to develop a systematic approach
to the kinematic analysis of GMs and the determination of their singularities. While
the example presented is straightforward, it is intended to provide a model for ex-
tending singularity analysis of GMs to more complex cases, including those which
are genuinely spatial in their kinematics and to parallel mechanisms incorporating
gearing.

2 The Mechanism

A simple planar GM consists of n + 1 links, L0, . . . ,Ln, and m joints that include t
revolute (turning) pairs, T1, . . . ,Tt , and g gear pairs, G1, . . . ,Gg, so that m = t + g.
Note that the number of links, excluding the base L0, is assumed equal to the number
of simple pairs, i.e. t = n. In effect, the mechanism without gears contains no closed
chains.

By placing three actuator joints at the base and using simple spur-gear pairs to
transmit motion to the end-effector, one obtains a geared mechanism based on a
simple serial planar 3R mechanism (see Figure ??). One EGT, consisting of three
gear wheels and using link L1 as carrier, transmits motion to the link L7, while a
second EGT of five gear wheels with links L1 and L7 as carriers transmits motion to
the end-effector.

Fig. 1 3-DoF Geared Planar Manipulator

A functional schematic for the mechanism is illustrated in Figure ??. The in-
puts, which are attached to the base L0, are via Ti, i = 1,2,3 while link L9 is the
output planet gear or end-effector. Note that the carrier arms L1 and L7 that form
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the first two links in the underlying planar 3R are also gear wheels. Other links are
intermediate (idler) gear wheels.

G2

L1

L2

L3

L4

L5

L6

L7

L8 L9
T2
T1

T3

T4

T5 T7

T6 T8 T9G1 G3

G4

G5 G6
y0

z0

O

r3
r5 r7

r4 r6 r8 r9
r1
r2 l1 l7

Fig. 2 Functional schematic of manipulator in Figure ??

In its directed graph (digraph) representation, Figure ??, the links (including gear
wheels) are vertices (L0, . . . ,L9) while joints are edges. Specifically, the revolute
pairs (T1, . . . ,T9) are solid edges and gear pairs (G1, . . . ,G6) are dashed. Note that
the solid edges form a spanning tree for the graph; put another way, each simple
cycle contains at least one gear pair as an edge. The direction of an edge connecting
vertices (links) Li and L j is Li ! L j if the transmission from input to output flows
from Li to L j.

Application of the CGK formula shows that the GM has three degrees of freedom
(3 dof), noting that a gear pair has 2 dof. Alternatively, Talpasanu [?] and Tsai [?]
observe that there is a relation between the degrees of freedom f of the GM, the
number of links and the number of gear pairs:

f = n�g (1)

again yielding f = 3.

3 Constraint Analysis via the Matroid Method

To perform the kinematic analysis, we apply the matroid method of Talpasanu [?]
to obtain the Willis kinematic equations for all gear pairs and solve these equations
to express all joint variables in terms of the input (sun) variables. This enables us to
express the kinematic mapping as a product of exponentials (PoE) in terms of input
variables alone and consequently to undertake the singularity analysis. It is worth
noting that the Willis equations usually express the relation between angular veloc-
ities in a gear-pair/carrier cycle but since the relations between the joint variables
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L0

L3L2

L4
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L5

L8 L9

T1

T2 T3

T5T4

T6 T7

T8 T9

G1 G2

G3
G4

G5

G6

Fig. 3 Associated digraph

themselves is linear, the same equations hold between the underlying variables as
between their velocities.

There are essentially three stages to the matroid or incidence–transfer method:
the first stage codifies the topology of the digraph representation of the GM in ma-
trix form. The second stage builds the specific design on to this by introducing
dimensions that can then be interpreted as gear ratios. The method insures that we
obtain a minimal set of linear (Willis) equations and the third stage is to solve these
for the joint variables in terms of the input variables.

Associated to the digraph are two matrices. The incidence matrix PPP0 has rows
labelled by the vertices and columns by edges and its entries p

0
i j are �1 or 1 ac-

cording as edge j leaves or enters vertex i, or else is 0. In this setting, the base L0 is
fixed and its row (containing only �1 and 0) is linearly dependent on the other rows.
So, for the purpose of analysis we omit this row and arrive at the reduced incidence
matrix PPP as follows:
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PPP =

2

666666666664

T1 T2 T3 T4 T5 T6 T7 T8 T9 | G1 G2 G3 G4 G5 G6

L1 1 0 0 �1 �1 �1 �1 0 0 | 0 0 0 0 0 0
L2 0 1 0 0 0 0 0 0 0 | �1 0 0 0 0 0
L3 0 0 1 0 0 0 0 0 0 | 0 �1 0 0 0 0
L4 0 0 0 1 0 0 0 0 0 | 1 0 �1 0 0 0
L5 0 0 0 0 1 0 0 0 0 | 0 1 0 �1 0 0
L6 0 0 0 0 0 1 0 0 0 | 0 0 1 0 �1 0
L7 0 0 0 0 0 0 1 �1 �1 | 0 0 0 1 0 0
L8 0 0 0 0 0 0 0 1 0 | 0 0 0 0 1 �1
L9 0 0 0 0 0 0 0 0 1 | 0 0 0 0 0 1

3

777777777775

(2)

Further, this is partitioned as indicated into submatrices: PPPn⇥m = [Pn⇥t |P̂n⇥g].
A cycle basis matrix GGG for a digraph consists of a maximally independent set of

rows Gi, i = 1, . . . ,g, each corresponding to a cycle, whose entries gi j, j = 1, . . . ,m
are �1 or 1 according as edge j appears in that cycle directed with, or opposed to,
a given vertex order for the cycle, or otherwise 0. The cycle space is in fact the
nullspace of the incidence matrix so, according to Euler’s formula, its dimension is
m�n. Given the special structure of the digraph for a GM, we have m�n = g and a
basis for the cycle space can be indexed by the gear pairs, G1, . . . ,Gg . For the given
GM, with the vertex order as indicated in Figure ?? by arrows in each basis cycle,
we have:

GGG =

2

666664

T1 T2 T3 T4 T5 T6 T7 T8 T9 | G1 G2 G3 G4 G5 G6

G1 �1 1 0 �1 0 0 0 0 0 | 1 0 0 0 0 0
G2 �1 0 1 0 �1 0 0 0 0 | 0 1 0 0 0 0
G3 0 0 0 1 0 �1 0 0 0 | 0 0 1 0 0 0
G4 0 0 0 0 1 0 �1 0 0 | 0 0 0 1 0 0
G5 0 0 0 0 0 1 �1 �1 0 | 0 0 0 0 1 0
G6 0 0 0 0 0 0 0 1 �1 | 0 0 0 0 0 1

3

777775
(3)

Again, this can be partitioned into submatrices: GGGg⇥m = [Cg⇥t |Ig⇥g] where the sec-
ond block is the identity matrix. Note that GGG is the cycle basis matrix corresponding
to the specific spanning tree for the digraph, which one can obtain by deleting the
dashed lines in Figure ??. In any graph with edge set E, the collection I of subsets
of E that do not include a cycle form a matroid, mathematical objects that capture
the abstract idea of independence. Spanning trees are maximally independent while
simple cycles are minimally dependent objects.

The second step is to introduce design parameters into the matrices. The con-
straint imposed by the cycles on the motion of the GM is captured by the joint
position matrix DDD whose entries are di j = ci jdi j, where ci j are components of
the (reduced) cycle basis matrix C and di j = yTj � yGi where yTj , j = 1, . . . , t and
yGi , i = 1, . . . ,g are distances of the axes of turning joint Tj and meshing joint Gi
from the base in home configuration. These distances are the radii of the various
gear wheels rk,k = 2, . . . , t so that:
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DDD =

2

666664

T1 T2 T3 T4 T5 T6 T7 T8 T9

G1 r2 �r2 0 �r4 0 0 0 0 0
G2 r3 0 �r3 0 �r5 0 0 0 0
G3 0 0 0 �r4 0 �r6 0 0 0
G4 0 0 0 0 �r5 0 �r7 0 0
G5 0 0 0 0 0 �r6 r6 �r8 0
G6 0 0 0 0 0 0 0 �r8 �r9

3

777775
(4)

For an oriented gear pair Gi, i = 1, . . . ,g connecting link (gear wheel) Lp to Lq,
denote the corresponding gear ratio ri = �rp/rq. The rows of the matrix represent
equations that hold between the joint variables at each revolute pair (or equivalently
their angular velocities) so that each row can be independently scaled by one of the
radii to realise the gear ratio matrix:

LLL =

2

666664

T1 T2 T3 T4 T5 T6 T7 T8 T9

G1 r1 �r1 0 �1 0 0 0 0 0
G2 r2 0 �r2 0 �1 0 0 0 0
G3 0 0 0 �r3 0 �1 0 0 0
G4 0 0 0 0 �r4 0 �1 0 0
G5 0 0 0 0 0 �r5 r5 �1 0
G6 0 0 0 0 0 0 0 �r6 �1

3

777775
(5)

To arrive finally at a complete set of Willis equations for the GM, it is necessary
to incorporate the component P of the reduced incidence matrix that provides the
connection between the angles of rotation qi for each link Li and the joint variables
f j at each revolute pair Tj, i, j = 1, . . . ,n (= t as noted in Section ??). Specifically,
set:

SSSg⇥t = LLLg⇥t .PT
t⇥t , (6)

then the Willis equations have the matrix form:

SSS.qqq = 000 (7)

where q

q

q is the vector of link rotations.
We can partition q

q

q between input variables and passive variables. Following
Eq. (??), there are three input variables and six passive variables. Explicitly:

q

q

q =
⇥
q

q

q f | q

q

q g
⇤T

=
⇥
q1 q2 q3 | q4 q5 q6 q7 q8 q9

⇤T (8)

Partitioning SSS in a similar way, and expanding the product gives:

SSS =
⇥
ZZZ f | ZZZg

⇤
=

2

666664

L1 L2 L3 L4 L5 L6 L7 L8 L9

G1 r1 +1 �r1 0 | �1 0 0 0 0 0
G2 r2 +1 0 �r2 | 0 �1 0 0 0 0
G3 r3 +1 0 0 | �r3 0 �1 0 0 0
G4 r4 +1 0 0 | 0 �r4 0 �1 0 0
G5 0 0 0 | 0 0 �r5 r5 +1 �1 0
G6 0 0 0 | 0 0 0 r6 +1 �r6 �1

3

777775
(9)

Now, we can rewrite Eq. (??) in the form of [ZZZ f | ZZZg].[qqq f | q

q

q g]T = 000. from
which it follows that, provided ZZZg is non-singular which is easily verified in this
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case:
[qqq g] = �[ZZZg]�1.[ZZZ f ].[qqq f ] (10)

Solving Eq. (??), gives passive variables in terms of input variables as follows:

2

666664

q4
q5
q6
q7
q8
q9

3

777775
=

2

666664

r1 +1 �r1 0
r2 +1 0 �r2

1�r1r3 r1r3 0
1�r2r4 0 r2r4

r1r3r5 �r2r4(1+r5)+1 �r1r3r5 r2r4(1+r5)
�r1r3r5r6 +r2r4(r5r6 �1)+1 r1r3r5r6 �r2r4(r5r6 �1)

3

777775
.

2

4
q1
q2
q3

3

5 (11)

4 Kinematic and Singularity Analysis

The forward kinematic map of the mechanism can be written in terms of the revolute
pair rotations as a PoE in the relevant Euclidean group (see Murray et al [?]). In this
case as the mechanism is planar, the group is SE(2). The form of PoE derives from
the corresponding open-loop chain (see Tsai [?]) as follows:

TTT (fff) = eXXX1f1eXXX7f7eXXX9f9TTT (000) (12)

where TTT (000) is the transformation between base and end-effector frames at the
rest position f

f

f = 000 and XXXi denote the infinitesimal rotations of revolute joints Ti,
i = 1,7,9 about their centres of rotation. Explicitly, we can use homogeneous rep-
resentations as follows:

XXXi =

2

4
0 �1 0
1 0 �xi
0 0 0

3

5 (13)

where (with respect to appropriate choices of body coordinates) x1 = 0, x7 = l1,
x9 = l1 + l7 with l1 = r2 +2r4 + r6 = r3 +2r5 + r7 and l7 = r6 +2r8 + r9 the lengths
of the carrier arms L1 and L7 (see Figure ??); and:

TTT (000) =

2

4
1 0 l1 + l7
0 1 0
0 0 1

3

5 (14)

Then the homogeneous form of the forward kinematic map is

TTT (fff) =

2

4
cos(f1 +f7 +f9) �sin(f1 +f7 +f9) l1 cosf1 + l7 cos(f1 +f7)
sin(f1 +f7 +f9) cos(f1 +f7 +f9) l1 sinf1 + l7 sin(f1 +f7)

0 0 1

3

5 (15)
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This can be more simply expressed in terms of link rotation variables using
q1 = f1, q7 = f1 +f7, and q9 = f1 +f7 +f9. Moreover, for purposes of singularity
analysis it is preferable to work with a local representation of the kinematic map-
ping T. Simply using the angle q9 to parametrise the rotation matrix that constitutes
the top left 2⇥2 block of the homogeneous transformation, the local representation
is:

(q1,q7,q9) 7!

2

4
q9

l1 cosq1 + l7 cosq7
l1 sinq1 + l7 sinq7

3

5 (16)

In this form, we have simply made use of the passive variables that describe the
kinematics of the underlying 3R mechanism. These can now be expressed using
Eq. (??) in terms of the input variables. Hence, the kinematic mapping for the GM
can be expressed as a function F : R3

! R3, where:

F (q1,q2,q3) =

2

4
b1q1 +b2q2 +b3q3

l1 cosq1 + l7 cos(a1q1 +a3q3)
l1 sinq1 + l7 sin(a1q1 +a3q3)

3

5 (17)

and a1 = 1 � r2r4, a3 = r2r4, b1 = �r1r3r5r6 + r2r4(r5r6 � 1) + 1, b2 =
r1r3r5r6, and b3 = �r2r4(r5r6 �1). It is worth noting that by judicious choice of
gear ratios the rotation of the end-effector can be made independent of one or more
input variables. For example, setting r1r3 = r5r6 = 1 (equivalently r2 = r6 = r9)
ensures the rotation is independent of q1,q3 and is directly equal to q2. This is nicely
illustrated by Thang [?].

Finally, to find singularities we need to investigate the Jacobian of the kinematic
mapping F . From Equation (??) we obtain:

J =

2

4
b1 b2 b3

�l1 sinq1 �a1l7 sin(a1q1 +a3q3) 0 �a3l7 sin(a1q1 +a3q3)
l1 cosq1 �a1l7 cos(a1q1 +a3q3) 0 a3l7 cos(a1q1 +a3q3)

3

5 (18)

For a singularity, we require:

det(J ) = a3b2l1l7 sin(q1 �a1q1 �a3q3) = 0. (19)

The design parameters a3,b2, l1, l7 are assumed non-zero so the GM is singular if
and only if sin(q1 �a1q1 �a3q3) = 0 and hence:

q1 �q3 =
np

r2r4
, for any integer n.

Thus, the singular configurations of mechanism in Figure ?? are strictly contingent
on the difference between input variables q1 and q3. It can be concluded that increas-
ing the product of gear ratios r2r4 connecting gear wheels L3 and L7 can cause more
singular points in the joint space, while keeping it close to zero will reduce singular-
ities. It must be noticed that having r2r4 ⌧ 1 may have dynamic consequences. The
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images of the singularity set in the workspace of course correspond to the expected
singular configurations in which carrier arms L1 and L7 are collinear.

5 Conclusion

We have illustrated the constraint analysis of a geared mechanism involving two
epicyclic gear trains, using the matroid method of Talpasanu. This, in turn, leads
to an explicit determination of its passive variables in terms of input variables and
thereby to a representation of the kinematic mapping in those variables. Determina-
tion of the the singularity set, not only in terms of specific geometric configurations
in the workspace—collinearity of the carrier arms—but also in the input space, is
a straightforward consequence. This demonstrates the dependency on gear ratios as
design parameters for the GM.
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McCarthy, J. Michael, 252
Merlet, Jean-Pierre, 110, 210
Miermeister, Philipp, 346

Nag, Anirban, 428
Nassour, John, 172
Nawratil, Georg, 150
Nemec, Bojan, 378

Ottaviano, Erika, 356

457



Palmieri, G., 192
Palpacelli, M.C., 192
Papegay, Yves, 318
Parenti-Castelli, Vincenzo, 14, 262
Perez-Gracia, Alba, 62, 240
Pfurner, Martin, 290
Pickard, Joshua K., 110
Pisla, D., 82
Platis, Angelos, 328
Plitea, N., 82
Porta, Josep M., 308
Potenza, Francesco, 356
Pott, Andreas, 346
Pucheta, Martin, 62

Rabenorosoa, Kanty, 24, 52
Rad, Farid Parvari, 14
Rasheed, Tahir, 328
Reddy, Vikranth, 428
Renaud, Pierre, 24, 420
Robson, Nina, 240
Rocchi, Alessio, 280
Rubbert, Lennart, 420

Sancisi, Nicola, 262
Schadlbauer, Josef, 82
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