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 37 

ABSTRACT  38 

Many vascular disorders, including aortic aneurysms and dissections, are characterized by localized 39 

changes in wall composition and structure. Notwithstanding the importance of histopathologic changes 40 

that occur at the microstructural level, macroscopic manifestations ultimately dictate the mechanical 41 

functionality and structural integrity of the aortic wall. Understanding structure–function relationships 42 

locally is thus critical for gaining increased insight into conditions that render a vessel susceptible to 43 

disease or failure. Given the scarcity of human data, mouse models are increasingly useful in this 44 

regard. In this paper, we present a novel inverse characterization of regional, nonlinear, anisotropic 45 

properties of the murine aorta. Full-field biaxial data are collected using a panoramic-digital image 46 

correlation system and an inverse method, based on the principle of virtual power, is used to estimate 47 

values of material parameters regionally for a microstructurally motivated constitutive relation. We 48 

validate our experimental-computational approach by comparing results to those from standard biaxial 49 

testing. Results for the non-diseased suprarenal abdominal aorta from apolipoprotein-E null mice 50 

reveal material heterogeneities, with significant differences between dorsal and ventral as well as 51 

between proximal and distal locations, which may arise in part due to differential perivascular support 52 

and localized branches. Overall results were validated for both a membrane and a thick-wall model 53 

that delineated medial and adventitial properties. Whereas full-field characterization can be useful in 54 

the study of normal arteries, we submit that it will be particularly useful for studying complex lesions 55 

such as aneurysms, which can now be pursued with confidence given the present validation. 56 

 57 

INTRODUCTION 58 

Aortic aneurysms and dissections are biologically and mechanically complex vascular 59 

pathologies that are responsible for significant death and disability in industrialized nations. They are 60 

characterized geometrically by complex fusiform dilatations and histopathologically by a non-uniform 61 

fragmentation of elastic fibers, loss of smooth muscle cell functionality, and remodeling of fibrillar 62 

collagen [1,2]. The ultimate fate of the aortic wall is dictated by the resulting structural integrity, for 63 

dissection and rupture occur when local wall stress exceeds local wall strength. This vulnerable 64 

situation can arise when the degradation of extracellular matrix outpaces deposition. Improvements 65 

in medical imaging and computational methods have enabled the development of patient-specific 66 

fluid-solid interaction models of aortic aneurysm and dissection biomechanics [3–5], but these 67 

models are often based on assumptions of homogeneous material properties and uniform wall 68 

thicknesses, both of which can render predictions of intramural stresses inaccurate. 69 

            Histopathological changes that occur at the microstructural level manifest at the macroscopic 70 

level as altered mechanical functionality and structural integrity. Correlations between local wall 71 

composition and mechanical properties can thus provide increased insight into conditions that 72 
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render a vessel susceptible to failure or disease. Whereas regional variations in microstructure are 73 

quantified easily using standard histological and immunohistochemical methods, there is yet a 74 

pressing need for methods suitable for quantifying spatial heterogeneities in material and structural 75 

properties of aneurysmal and dissected lesions and to correlate these heterogeneities with the 76 

underlying microstructure in order to gain increased insight into the mechanics of complex vascular 77 

pathologies.  78 

Toward this end, we develop and apply a novel inverse method, based on the principle of 79 

virtual power, which can determine locally varying values of the constitutive parameters from full-80 

field data acquired using a biaxial panoramic-digital image correlation (p-DIC) method. By focusing 81 

first on normal vessels, the associated results can be compared with those obtained via standard 82 

biaxial extension-inflation testing and constitutive modeling [6]. Whereas both the p-DIC and the 83 

biaxial extension-inflation techniques have been separately presented and validated in previous 84 

papers [7–11], the scope of the current study is the development of a novel combination of the 85 

inverse and p-DIC methods and its validation as a combined mechanical testing procedure designed 86 

for local material characterization. Toward this end,  we first detail the proposed combined method 87 

and then present illustrative results for the suprarenal abdominal aorta from two young, non-88 

diseased, apolipoprotein-E null (ApoE-/-) mice. Mean behaviors correspond well with those from 89 

standard testing and analysis but, in addition, regional heterogeneities in material properties are 90 

successfully reconstructed. We submit that this novel experimental-computational approach 91 

represents another important step towards improving our ability to study complex vascular lesions as 92 

it will enable one to correlate, for the first time, regional distributions of material properties with the 93 

underlying microstructure. 94 

 95 

MATERIALS AND METHODS  96 

Animal Model. All animal protocols were approved by the Yale University Institutional Animal 97 

Care and Use Committee and followed methods detailed previously [6,7]. Non-diseased control 98 

samples, as opposed to dissecting aneurysm samples, were used given the goal of validating the new 99 

inverse methodology. Briefly, two male ApoE-/- mice were euthanized at ~20 weeks of age (cf. 100 

Supplemental Table 1) using an intraperitoneal injection of Beuthanasia-D and the abdominal aorta 101 

was excised en bloc. The suprarenal segment (from the final pair of intercostal branches to the right 102 

renal artery) was prepared for mechanical testing by removing excess perivascular tissue and ligating 103 

all side branches using a single strand from braided 7-0 nylon suture.  104 

Standard Biaxial Mechanical Testing. The excised samples (Sample A for mouse 1 and Sample 105 

B for mouse 2) were cannulated with custom drawn glass pipets, secured using 6-0 silk sutures, and 106 
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placed within a validated computer-controlled testing system that allowed for now standard biaxial 107 

inflation-extension testing [8]. Preconditioning consisted of 4 cycles of pressurization from 10 to 140 108 

mmHg at the estimated in vivo length, following previous reports [6,7]. Next, samples were subjected 109 

to three cyclic pressure-diameter (P-d) tests consisting of pressurization from 10 to 140 mmHg at 110 

fixed axial stretches of 0.950, 0, and 1.050, where 0 is the estimated in vivo axial stretch, and four 111 

cyclic axial force-length (f-l) tests consisting of loading from 0 to 35 mN at fixed pressures of 10, 60, 112 

100, and 140 mmHg. Note that, similar to previous reports [6,12], the estimated in vivo axial stretch, 113 

0, was defined as the value that minimized variations in transducer measured axial load upon 114 

pressurization. Tests were performed at room temperature in a Hanks buffered physiologic solution 115 

(HBSS), which yields a fully passive mechanical behavior [9]. As previously demonstrated [13], there 116 

are no discernible differences in the measured passive properties between room temperature (19-117 

21°C) and physiologic temperature (37°C). 118 

Panoramic - Digital Image Correlation System. Following biaxial inflation-extension tests, the 119 

samples were placed in a custom p-DIC system [10] to monitor full-field surface deformations at 120 

multiple states of pressurization and axial stretch using a 45° concave conical mirror and known 121 

calibration target (Fig. 1A,B). The samples were re-cannulated proximally and distally on a single 122 

through-the-lumen blunt-ended needle composite with one fixed and one sliding end to allow both 123 

pressurization and axial stretch (Fig. 1C). The specimens were air-brushed to generate a random 124 

speckle pattern of black and white India ink, submerged in HBSS at room temperature, and placed 125 

co-axially within the conical mirror to visualize the entire lateral surface when viewed from a single 126 

vertically mounted digital camera (DALSA Falcon 4M30, cf. Fig. 1B). Eight rotationally symmetric 127 

images about the central axis of the conical mirror were acquired at each quasi-statically loaded 128 

configuration according to the loading protocol shown in Fig. 1D, then analyzed using custom Matlab 129 

scripts to perform the cross-correlations between unwrapped images needed to compute full-field 130 

surface deformations [11].  131 

Wall kinematics. A global coordinate system was defined by an origin, located on the central 132 

axis at the base of the conical mirror, and a Cartesian basis, defined by three vectors (𝒆𝑥, 𝒆𝑦, 𝒆𝑧). 133 

Vector 𝒆𝑧 was aligned along the long axis of the needle. A cylindrical coordinate system was also 134 

defined by three locally orthogonal base vectors (𝒆𝑟, 𝒆𝜃, 𝒆𝑧). The reference configuration (𝑃(𝑡 = 0) 135 

and 𝑧(𝑡 = 0)) was set at pressure 𝑃= 80 mmHg and axial stretch 𝑧=0. For any material point 136 

represented by its position vector 𝑿, the Cartesian coordinates in the reference configuration were 137 

denoted both by the triplet (𝑋, 𝑌, 𝑍) and the cylindrical coordinates (𝑅,, 𝑍). Hence, in a deformed 138 

configuration, the coordinates for the current position 𝒙(𝑡) of the same material point were 139 

(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) and (𝑟(𝑡), 𝜃(𝑡), 𝑧(𝑡)); here 𝑡 denotes subsequent configurations achieved quasi-140 
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statically, not a dynamic process. 141 

The outer wall surface of each artery 𝑆𝑜 was meshed in the reference configuration with 142 

>5,000 nodes for full-field deformation measurements, but parametrically re-meshed with 400 nodes 143 

for parameter estimation within small local patches. The 𝑍 ∈ [0, 𝐿] coordinate was divided into 20 144 

segments (where 𝐿 was the reference length of the sample) and the  ∈ [0,2𝜋] coordinate was 145 

divided in 20 angular sectors. For each node n defined in 𝑆𝑜, the Cartesian (𝑋n
𝑜, 𝑌n

𝑜, 𝑍n
𝑜) and/or 146 

cylindrical (𝑅n
𝑜,n

𝑜 , 𝑍n
𝑜) coordinates were reconstructed using the calibration parameters of the p-DIC 147 

system. Each material point in 𝑆𝑜 was then tracked in all deformed configurations by applying a 148 

custom serial correlation algorithm between neighboring configurations (i.e., all pressures 𝑃(𝑡) and 149 

axial stretches 𝑧(𝑡)). For instance, while at 0, the result of the correlation between images at 60 150 

and 70 mmHg was used to initiate the correlation between images at 70 and 80 mmHg, respectively. 151 

In other words, the resulting correlated mesh was stored and taken as a reference to be correlated to 152 

a neighboring deformed configuration (i.e., 80 to 90 mmHg, 60 to 50 mmHg, and so forth) until all 153 

deformed configurations had been processed. In this way, data were collected at each node n of the 154 

reconstructed p-DIC point cloud: (𝑥n
𝑜(𝑡), 𝑦n

𝑜(𝑡), 𝑧n
𝑜(𝑡)) and/or (𝑟n

𝑜(𝑡), 𝜃n
𝑜(𝑡), 𝑧n

𝑜(𝑡)) for every biaxially 155 

loaded configuration (pressure 𝑃(𝑡) ranging from 10 to 140 mmHg in increments of 10 mmHg at axial 156 

stretches of 𝑧(𝑡) = 0.950, 0 and 1.050). Note, too, that the biaxial load at each configuration was 157 

held for ~2 minutes to allow image acquisition, which is in contrast to the continuous cyclic loading of 158 

standard biaxial tests. 159 

Unit vectors normal to the outer surface, denoted respectively by 𝒏n(𝑡) and 𝑵n for each 160 

node n in the current and reference configurations, were deduced from the geometrical 161 

reconstruction of 𝑆𝑜 based on p-DIC data. A local orthonormal basis (𝑮n
1 , 𝑮n

2 , 𝑵n) was defined in the 162 

reference configuration, where 𝑮n
1  and  𝑮n

2 were aligned with directions of maximum and minimum 163 

principal curvatures of 𝑆𝑜 at node n, respectively. We let (𝒈n
1(𝑡), 𝒈n

2(𝑡), 𝒏n(𝑡)) denote the local 164 

orthonormal basis, n
1(𝑡) denote the maximum curvature, and n

2(𝑡) denote the minimum curvature, 165 

for every node n defined in each deformed configuration at time t. 166 

Nodal positions across the wall (𝑥n
𝑤(𝑡, ), 𝑦n

𝑤(𝑡, ), 𝑧n
𝑤(𝑡, )) were defined as 167 

(𝑥n
𝑜(𝑡) − 𝑥n

𝑤(𝑡, ))𝒆𝑥 + (𝑦n
𝑜(𝑡) − 𝑦n

𝑤(𝑡, ))𝒆𝑦 + (𝑧n
𝑜(𝑡) − 𝑧n

𝑤(𝑡, ))𝒆𝑧 = (1 − )ℎ(𝑡)𝒏n(𝑡) (1) 

for every node n in each configuration at each time t, where  ∈ [0,1] indicated the through-the-168 

thickness position between the inner ( = 0) and outer ( = 1) radii. Assuming a constant wall 169 

volume at each loaded configuration (tissue incompressibility), a uniform thickness ℎ(𝑡) was 170 

deduced from the average thickness measured in the unloaded configuration, denoted 𝐻. The 171 

average thickness in the unloaded configuration was measured using an optical coherence 172 
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tomography (OCT) system. 173 

The deformation gradient tensor 𝑭n
𝑤(𝑡, ) at the surface was written as follows (in 2D 174 

summation notation) 175 

𝑭n
𝑤(𝑡, ) = 𝐹𝑖𝑗,n

𝑤 (𝑡, )𝒈n
𝑖 (𝑡)𝑮n

𝑗
+

1

det(𝑭n
𝑤(𝑡, ))

𝒏n(𝑡)𝑵n, (2) 

where, at every node n and through-the-thickness position  in a deformed configuration at time 𝑡, 176 

the components of the deformation gradient tensor 𝐹11,n
𝑤 (𝑡, ), 𝐹22,n

𝑤 (𝑡, ), 𝐹12,n
𝑤 (𝑡, ), and 𝐹21,n

𝑤 (𝑡, ) 177 

were deduced from the set of current coordinates (𝑥n
𝑤(𝑡, ),  𝑦n

𝑤(𝑡, ),  𝑧n
𝑤(𝑡, )) and reference 178 

coordinates (𝑋n
𝑤(𝑡, ), 𝑌n

𝑤(𝑡, ), 𝑍n
𝑤(𝑡, )) using a finite difference algorithm.  179 

 Constitutive Relations. Similar to prior work [14], the aortic wall was modeled as a 180 

hyperelastic material with a strain energy function, defined per unit mass, of the form 181 

𝑊n(𝑡, ) = 𝜙
𝑒()𝑊n

𝑒(𝑡, ) + 𝜙𝑚()𝑊n
𝑚(𝑡, ) + 𝜙𝑐()𝑊n

𝑐(𝑡, ) + 𝜙𝑎()𝑊n
𝑎(𝑡, ), (3) 

where 𝜙𝑒() is the mass fraction of elastin, 𝜙𝑚() is the mass fraction of circumferential collagen 182 

fibers and smooth muscle cells, 𝜙𝑐() is the mass fraction of diagonal collagen fibers, and 𝜙𝑎() is 183 

the mass fraction of axial collagen fibers. In particular, following previous histological reports of wall 184 

composition in the murine suprarenal abdominal aorta [15], we assigned the layer-specific mass 185 

fractions for each constituent to be 186 

 𝜙𝑒() = 0.49,   𝜙𝑚() = 0.49,   𝜙𝑐() = 0.01,  𝜙𝑎() = 0.01, for 0 ≤  ≤
ℎ𝑚𝑒𝑑𝑖𝑎(𝑡) 

ℎ(𝑡)
 (media) 187 

𝜙𝑒() = 0.04,  𝜙𝑚() = 0.04,  𝜙𝑐() = 0.80,  𝜙𝑎() = 0.12 , for 
ℎ𝑚𝑒𝑑𝑖𝑎(t) 

ℎ(𝑡)
≤  ≤ 1 (adventitia) 188 

where ℎ𝑚𝑒𝑑𝑖𝑎(t)/ℎ(𝑡) = 0.69 in the unloaded reference configuration. The constitutive relations 189 

used to describe the stored energy contribution of each constituent were (cf. [14]) 190 

𝑊n
𝑒(𝑡, ) =

c𝑛
𝑒

2
[tr(𝑪𝑛

𝑒 (𝑡, )) − 3] (4) 

  

𝑊n
𝑚(𝑡, ) =

cn
𝑚

4kn
𝑚 [[𝑒

kn
𝑚|[n

𝑚(𝑡,)]
2
−1|

+

2

− 1] + αn
𝑚 [𝑒

kn
𝑚|[n

𝑚(𝑡,)]
2
−1|

−

2

− 1]] (5) 

  

𝑊n
𝑐(𝑡, ) =

cn
𝑐

2kn
𝑐 [∑[𝑒

kn
𝑐 |[n

𝑐𝑖(𝑡,)]
2
−1|

+

2

− 1] + αn
𝑐 [𝑒

kn
𝑐 |[n

𝑐𝑖(𝑡,)]
2
−1|

−

2

− 1]

2

𝑖=1

] (6) 

  

𝑊n
𝑎(𝑡, ) =

cn
𝑎

4kn
𝑎 [[𝑒

kn
𝑎|[n

𝑎(𝑡,)]
2
−1|

+

2

− 1] + αn
𝑎 [𝑒

kn
𝑎|[n

𝑎(𝑡,)]
2
−1|

−

2

− 1]] (7) 

  
where cn

𝑒 , cn
𝑚, cn

𝑐 , cn
𝑎, kn

𝑚, kn
𝑐 , kn

𝑎   are material parameters and αn
𝑚, αn

𝑐 , αn
𝑎 are ratios that account for 191 

the differential contribution of fibers in compression and tension. Thus, several additional material 192 
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parameters were defined as cn
𝑗,𝑐
= αn

𝑗
 cn
𝑗
 for 𝑗 = 𝑚, 𝑐, 𝑎, with superscript 𝑐 denoting compression. 193 

Here, the notation |•|+ indicates the contribution of fibers in tension, whereas |•|− indicates the 194 

contribution of (laterally supported) fibers in compression.  195 

Consistent with the concept that the arterial wall can be modeled as a constrained mixture 196 

consisting of multiple constituents that have different natural configurations and yet the same 197 

motions [14,16], the right Cauchy-Green tensors and associated fiber stretches for each constituent 198 

at node n assumed the following forms. The right Cauchy-Green tensor for elastin is 199 

𝑪n
𝑒(𝑡, ) = (𝑭n

𝑤(𝑡, )𝑮n
𝑒)T𝑭n

𝑤(𝑡, )𝑮n
𝑒 , (8) 

  
where 𝑮n

𝑒  is the unique deposition stretch tensor for elastin, namely 200 

𝑮n
𝑒 = 𝐺n

𝑒1𝑮n
1𝑮n

1 + 𝐺n
𝑒2𝑮n

2𝑮n
2 +

1

𝐺𝑛
𝑒1𝐺𝑛

𝑒2𝑵n𝑵n. (9) 

  
𝐺n
𝑒1 is the deposition stretch of elastin in the circumferential direction and 𝐺n

𝑒2 is the deposition 201 

stretch of elastin in the axial direction. Similarly, the stretch of the smooth muscle cells and 202 

associated circumferentially oriented collagen fibers n
𝑚(𝑡, ) is defined as 203 

n
𝑚(𝑡, ) = 𝐺n

𝑚√𝑪n
𝑤(𝑡, ): (𝑮n

1𝑮n
1), (10) 

  
where 𝐺n

𝑚 is the deposition stretch of the smooth muscle cells / collagen fibers and 204 

𝑪n
𝑤(𝑡, ) = (𝑭n

𝑤(𝑡, ))
T
𝑭n
𝑤(𝑡, ). (11) 

n
𝑐𝑖(𝑡, ) is the stretch for the two symmetric diagonal collagen fiber families (𝑖 = 1, 2) defined as 205 

n
𝑐𝑖(𝑡, ) = 𝐺n

𝑐√𝑪n
𝑤(𝑡, ): (𝑨n

𝑖 𝑨n
𝑖 ), (12) 

where 𝐺𝑛
𝑐 is the deposition stretch of each diagonal collagen fiber family and 𝑨n

𝑖  is the fiber direction 206 

in the reference configuration which was defined as 207 

𝑨n
𝑖 = cos(βn

𝑐 )𝑮n
1 − (−1)𝑖 sin(βn

𝑐 )𝑮n
2  , (13) 

where ∓βn
𝑐  represents an average angle towards the axial direction, with circumferential fibers at 208 

βn
𝑐=0° and axial fibers at βn

𝑐=90°). Finally, n
𝑎(𝑡, ) is the average stretch of axial collagen fibers, 209 

namely 210 

n
𝑎(𝑡) = 𝐺n

𝑎√𝑪n
𝑤(𝑡): (𝑮n

2𝑮n
2), (14) 

where 𝐺n
𝑎 is the deposition stretch of the axially-oriented collagen fibers.  211 

Computation of Intramural Stress. The Cauchy stress tensor at every node n and through-the-212 

thickness position  in a deformed configuration at time 𝑡 (pressure 𝑃(𝑡) ranging from 10 to 140 213 

mmHg at fixed axial stretches of 𝑧(𝑡)=0.950, 0, and 1.050) was generalized as follows 214 
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𝝈n
𝑤(𝑡, ) = −𝑝n

𝑤(𝑡, )𝑰 +
2

det(𝑭n
𝑤(𝑡, ))

𝑭n
𝑤(𝑡, )

𝜕𝑊n(𝑡, )

𝜕𝑪n
𝑤(𝑡)

𝑭n
𝑤(𝑡, )T. (15) 

Using Eqs. 2, 3, and 11, the expression for the Cauchy stress could be re-written such that  215 

𝝈n
𝑤(𝑡, ) = −𝑝n

𝑤(𝑡, )𝑰 + 𝜙𝑒()𝑐n
𝑒𝑩n

𝑒(𝑡, ) + 𝜙𝑚()𝑐n
𝑚 n

𝑚(𝑡, )(𝐺n
𝑚)2𝒈n

1(𝑡)𝒈n
1(𝑡) + 

 + 𝜙𝑎()𝑐n
𝑎 n

𝑎(𝑡,)(𝐺n
𝑎
)
2
𝒈n
2(𝑡)𝒈n

2(𝑡)+∑𝜙𝑐()𝑐n
𝑐  n

𝑐𝑖(𝑡, )(𝐺𝑛
𝑐
)
2
𝒂n
𝑖 (𝑡,)𝒂n

𝑖 (𝑡,)

2

𝑖=1

, 
(16) 

where the left Cauchy-Green tensor for elastin is written as 216 

𝑩n
𝑒(𝑡, ) = 𝑭n

𝑤(𝑡, )𝑮n
𝑒(𝑭n

𝑤(𝑡, )𝑮n
𝑒)T, (17) 

and the n terms for each constituent in the constrained mixture are 217 

n
𝑚(𝑡, )  = |[n

𝑚(𝑡, )]2 − 1|+ 𝑒
kn
𝑚|[n

𝑚(𝑡,)]
2
−1|

+

2

+ αn
𝑚|[n

𝑚(𝑡, )]2 − 1|− 𝑒
kn
𝑚|[n

𝑚(𝑡,)]
2
−1|

−

2

, (18) 

n
𝑎(𝑡, ) = |[n

𝑎(𝑡, )]2 − 1|+  𝑒
kn
𝑎|[n

𝑎(𝑡,)]
2
−1|

+

2

+ αn
𝑎|[n

𝑎(𝑡, )]2 − 1|−  𝑒
kn
𝑎|[n

𝑎(𝑡,)]
2
−1|

−

2

, (19) 

n
𝑐𝑖(𝑡, ) = |[n

𝑐𝑖(𝑡, )]
2
− 1|

+
 𝑒
kn
𝑐 |[n

𝑐𝑖(𝑡,)]
2
−1|

+

2

+ αn
𝑐 |[n

𝑐𝑖(𝑡, )]
2
− 1|

−
 𝑒
kn
𝑐 |[n

𝑐𝑖(𝑡,)]
2
−1|

−

2

 , (20) 

whereas the collagen fiber directions in the current configuration 𝒂n
𝑖  (for 𝑖 = 1,2) are 218 

𝒂n
𝑖 (𝑡, ) = 𝑭n

𝑤(𝑡, )𝑨n
𝑖 . (21) 

Note that 𝑝n
𝑤(𝑡, ) is a scalar function that enforces the kinematic constraint of no local changes of 219 

volume.   220 

In summary, the list of the 16 unknown material parameters to be identified was 221 

- 7 elastic coefficients in tension/compression: cn
𝑒 , cn

𝑚, cn
𝑐 , cn

𝑎, cn
𝑚,𝑐 , cn

𝑐,𝑐 , cn
𝑎,𝑐 222 

- 3 exponential coefficients: kn
𝑚, kn

𝑐 , kn
𝑎 223 

- 5 deposition stretch parameters: 𝐺n
𝑒1, 𝐺n

𝑒2, 𝐺n
𝑚, 𝐺n

𝑐, 𝐺n
𝑎 224 

- the average angle of diagonal fibers: βn
𝑐  225 

Fortunately, the values of many of these parameters are well bounded (e.g., tension/compression 226 

ratios, deposition stretches, and fiber angles), which favors the estimation process. Finally, note that 227 

for all tensor components, fiber stretches, and material parameters, the subscript n indicates that 228 

they could take a different value at each node n due to the possible regional variations of material 229 

properties. 230 

 The inverse method. Our objective was to identify values of model parameters separately for 231 

each node n (i.e., localized region). For this we employed an inverse method where we first defined a 232 

cost function 𝐽 involving the computed stress (Eq. 16) as well as the experimentally measured and 233 
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theoretically predicted pressures (𝑃𝑒𝑥𝑝(𝑡) and 𝑃𝑡ℎ(𝑡)) and axial loads (𝑓𝑒𝑥𝑝(𝑡) and 𝑓𝑡ℎ(𝑡)). The 234 

parameters to be identified were continuously updated until we found the minimum of the cost 235 

function 𝐽.  236 

As the suprarenal abdominal aorta does not have a perfectly cylindrical shape, equations of 237 

thick-walled cylinders relating the theoretically predicted pressure 𝑃𝑡ℎ(𝑡) and the computed stresses 238 

could not be used directly. A more general equation was obtained using the virtual fields method 239 

[17–19], namely  240 

𝑃𝑡ℎ(𝑡) = ℎ(𝑡)∫
𝜎11,n
𝑤 (𝑡, ) − 𝜎33,n

𝑤 (𝑡, )

1/n
1(𝑡)  − (1 − )ℎ(𝑡)

+
𝜎22,n
𝑤 (𝑡, ) − 𝜎33,n

𝑤 (𝑡, )

1/n
2(𝑡) − (1 − )ℎ(𝑡)

𝑑,
1

0

 (22) 

where,  241 

𝜎11,n
𝑤 (𝑡, ) = 𝝈n

𝑤(𝑡, ): (𝒈n
1(𝑡)𝒈n

1(𝑡)), (23) 

𝜎22,n
𝑤 (𝑡, ) = 𝝈n

𝑤(𝑡, ): (𝒈n
2(𝑡)𝒈n

2(𝑡)), (24) 

𝜎33,n
𝑤 (𝑡, ) = 𝝈n

𝑤(𝑡, ): (𝒏n(𝑡)𝒏n(𝑡)). (25) 

Details of the derivation of Eq. 22 are given in the Appendix, Proof 1. It is an extension of the 242 

traditional equations for thick-walled cylinders, where both the local circumferential and axial 243 

curvatures of the artery are accounted for to ensure equilibrium. This difference is particularly 244 

important for mouse aortas as they may be curved in their traction-free configuration and may show 245 

axial bending effects during inflation-extension testing.  246 

A second equation involving the axial load was necessary to close the system. Again using the 247 

virtual fields method (Appendix, Proof 2), the theoretically predicted axial load 𝑓𝑡ℎ(𝑡) could be 248 

related to the computed stresses using the following equation. 249 

𝑓𝑡ℎ(𝑡) = 𝜋ℎ(𝑡)∫ [2𝜎𝑧𝑧,n
𝑤 (𝑡, ) − 𝜎𝑥𝑥,n

𝑤 (𝑡, ) − 𝜎𝑦𝑦,n
𝑤 (𝑡, )][𝑟𝑜 (𝑡) − (1 − )ℎ(𝑡)]𝑑

1

0

 (26) 

where 𝑟𝑜 (𝑡) was the outer radius and, 250 

𝜎𝑥𝑥,n
𝑤 (𝑡, ) = 𝝈n

𝑤(𝑡, ): (𝒆𝑥𝒆𝑥), (27) 

𝜎𝑦𝑦,n
𝑤 (𝑡, ) = 𝝈n

𝑤(𝑡, ): (𝒆𝑦𝒆𝑦), (28) 

𝜎𝑧𝑧,n
𝑤 (𝑡, ) = 𝝈n

𝑤(𝑡, ): (𝒆𝑧𝒆𝑧), (29) 

Finally, using Eqs. 22 and 26, we defined the following cost function at each node n: 251 

𝐽n =∑(
𝑃𝑒𝑥𝑝(𝑡𝑘) − 𝑃

𝑡ℎ(𝑡𝑘)

𝑃̅𝑒𝑥𝑝(𝑡𝑘)
)

2

+ (
𝑓𝑒𝑥𝑝(𝑡𝑘) − 𝑓

𝑡ℎ(𝑡𝑘)

𝑓̅𝑒𝑥𝑝(𝑡𝑘)
)

2𝐾

𝑘=1

 (30) 
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where 𝐾 is the total number of experimentally measured configurations 𝑘, and the overbar notation 252 

denotes an average over all data points (e.g., 𝑃̅𝑒𝑥𝑝(𝑡𝑘) = ∑ 𝑃𝑒𝑥𝑝(𝑡𝑘)
𝐾
𝑘=1 𝐾⁄ ). It is important to note 253 

that, for the p-DIC data sets, pressure was measured directly in the device as it was varied 254 

incrementally in steps of 10 mmHg at each of 3 different axial stretches. In contrast, the associated 255 

axial force, for each prescribed pressure and axial stretch, was assumed to be the same as that 256 

measured in the standard biaxial test, which is why the same axial stretches were used. Hence, the 257 

standard biaxial tests not only provided an important comparative approach for parameter 258 

estimation, they also provided axial force data for the p-DIC data sets. 259 

Thin wall assumption. Following many prior reports on the mechanical properties of murine 260 

aortas (cf. [7]), as a first approximation the wall may be modeled mechanically as a membrane (i.e., 261 

transmurally homogenized) under physiologic loads. Such an approach is particularly useful for fluid-262 

solid interaction implementations (cf. [20]) where it is the structural, not material, stiffness that is of 263 

most importance. Toward this end, one can replace 𝑭n
𝑤(t, ) by its average over the thickness and 264 

deduce 𝑭n (𝑡) using a simpler kinematic description. Values of stress 𝝈n
𝑤(𝑡, ) in Eqs. 22 and 26 then 265 

become 𝝈n (𝑡) (with no thickness dependence). In this case, the expressions for the theoretically 266 

predicted pressure and axial load can be reduced to  267 

𝑃𝑡ℎ,∗(𝑡) = ℎ(𝑡) (
(𝜎11,n(𝑡) − 𝜎33,n(𝑡))

1/n
1(𝑡) − ℎ(𝑡) 2⁄

+
(𝜎22,n(𝑡) − 𝜎33,n(𝑡))

1/n
2(𝑡) − ℎ(𝑡) 2⁄

),  (31) 

𝑓𝑡ℎ,∗(𝑡) = 𝜋ℎ(𝑡)[𝑟𝑜 (𝑡) − ℎ(𝑡) 2⁄ ] (2𝜎𝑧𝑧,n(𝑡) − 𝜎𝑥𝑥,n(𝑡) − 𝜎𝑦𝑦,n(𝑡)). (32) 

Thus, minimization of a modified cost function required, 268 

𝐽n
∗ =∑(

𝑃𝑒𝑥𝑝(𝑡𝑘) − 𝑃
𝑡ℎ,∗(𝑡𝑘)

𝑃̅𝑒𝑥𝑝(𝑡𝑘)
)

2

+ (
𝑓𝑒𝑥𝑝(𝑡𝑘) − 𝑓

𝑡ℎ,∗(𝑡𝑘)

𝑓̅𝑒𝑥𝑝(𝑡𝑘)
)

2𝐾

𝑘=1

. (33) 

 269 

Resolution of the inverse problem. The requisite minimization and material parameter 270 

identification is achieved in two steps, namely: 271 

Step 1. minimize 𝐽n (or 𝐽n
∗) with respect to the material parameters 272 

(cn
𝑒 , cn

𝑚, cn
𝑐 , cn

𝑎, cn
𝑚,𝑐 , cn

𝑐,𝑐 , cn
𝑎,𝑐) using a non-negative linear least squares algorithm. 273 

Step 2. minimize 𝐽n (or 𝐽n
∗) with respect to the remaining parameters using a bounded genetic 274 

algorithm. The bounds that were used for the minimization procedure are consistent with 275 

[14] and are reported in Table 1. 276 
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The stopping criteria included both a time limit (30 s for each node n) and a tolerance (10-6) for the 277 

improvement of the cost function from one iteration to the next. After the resolution, a coefficient of 278 

determination 𝑅n
2 is computed using Eq. 22. In the case of the thin-wall assumption, 𝑅n

2∗ is computed 279 

using Eq. 31 and defined as  280 

𝑅n
2∗ = 1 −

∑ (𝑃𝑡ℎ,∗(𝑡𝑘) − 𝑃
𝑒𝑥𝑝(𝑡𝑘))

2
𝐾
𝑘=1

∑ (𝑃̅𝑒𝑥𝑝(𝑡𝑘) − 𝑃
𝑒𝑥𝑝(𝑡𝑘))

2𝐾
𝑘=1

 (35) 

Table 1. Bounds used for the material parameter identification procedure.  281 

Parameter  Lower bound Upper bound 

𝐺n
𝑐 , 𝐺n

𝑎, 𝐺n
𝑚 1.01 1.15 

kn
𝑚, kn

𝑐 , kn
𝑎 0.001 10 

𝐺n
𝑒1 2 2.4 

𝐺n
𝑒2 1.6 2 

βn
𝑐  25° 70° 

 282 

Suprarenal Branch Locations. Because all suprarenal branches were ligated to enable 283 

pressurization during testing, several major branch locations could be identified on the reconstructed 284 

vessel surface as large deviations in local radius. Potential regions of influence around these branch 285 

locations were extracted using a modified branch splitting procedure in the open-source Vascular 286 

Modeling Toolkit (VMTK, www.vmtk.org). Briefly, seed points for centerline computations 287 

(vmtkcenterlines) were manually placed near the maximum local radius of each branch location. 288 

Branching centerline paths to each manually placed target were computed using a maximum 289 

inscribed sphere radius algorithm [21].  Additional VMTK subroutines were then used 290 

(vmtkbranchextractor, vmtkbranchclipper) to extract a region about each branch based on the 291 

locations of centerline bifurcations. Finally, the boundary of each clipped surface was extracted, 292 

converted into a cylindrical coordinate system, and overlaid on 2D representations of the full-field 293 

data, which facilitated regional comparisons. For example, Fig. 2 shows three to four potential 294 

regions of branch influence (dashed lines) located near (1) smaller suprarenal branches, (2) the celiac 295 

artery, (3) the superior mesenteric artery, and (4) the right renal artery. Following identification of 296 

several major branch locations, each reconstructed surface was rotated such that the average 297 

position of largest regions of branch influence (1 and 2) were aligned with an angle of 0° in cylindrical 298 

coordinates (positive x-axis).   299 

Statistical Analysis. Notwithstanding the utility of computing quantities of interest in many 300 

http://www.vmtk.org/
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different regions, 400 in our case, for purposes of illustration and statistical ease, distributions of 301 

identified material parameters, stored energy, and linearized stiffness were also divided into four 302 

larger regions for comparison: ventral-top, dorsal-top, ventral-bottom, and dorsal-bottom, with n = 303 

100 observations per region.  Regional differences were assessed both within and between Samples 304 

A and B. Namely, values on the dorsal and ventral halves at the same top or bottom position and for 305 

the top and bottom halves on the same dorsal or ventral side within the same sample were 306 

compared using a one-way ANOVA followed by a post-hoc Bonferroni correction. Values from the 307 

same region for different samples were compared using a standard Student’s t-test. For all 308 

comparisons, a value of P < 0.05 was considered significant. Supplemental Table 2 summarizes all 309 

identified values by region, with values expressed as mean ± SEM and statistical significance 310 

indicated when appropriate. 311 

 312 

RESULTS  313 

Morphometric information for the two mice and their respective aortic samples is given in 314 

Supplemental Table 1. Figure 2 shows regional distributions (at 400 possible locations) of the 315 

coefficients of determination for the inverse estimation for both samples based on the thin-walled 316 

assumption. Associated distributions of representative best-fit parameters (cn
𝑒, cn

𝑚, cn
𝑐  and βn

𝑐 ) are 317 

shown in Supplemental Figures 1 and 2, with mean values for the four larger regions (ventral-top, 318 

etc.) listed in Supplemental Table 2. In particular, note that Figure 2 and Supplemental Figures 1 and 319 

2 show values of either 𝑅n
2∗ or the identified model parameters on both a reconstructed 3D surface 320 

of the aorta in its reference configuration of 80 mmHg at 0 (left) and a 2D representation in a 321 

parameterized (𝜃, 𝑧) space (right). All distributions suggest regional heterogeneities, albeit to varying 322 

degrees. As revealed further by Figure 2, however, not all locations yielded reliable inverse 323 

estimations; regions with 𝑅n
2∗ < 0.90 are indicated with (transparent) white patches. Specifically, for 324 

Sample A, only 89% of all patches had a coefficient of determination above the threshold, 325 

with more than 72% of accepted patches having a value larger than 0.95. In contrast, results for 326 

Sample B revealed a larger proportion of patches above threshold with 95% of all patches accepted 327 

and 83% of accepted patches having 𝑅n
2∗ < 0.95; in this case, discarded patches were often close to 328 

the cannulation ligatures at the top and bottom of the sample, which may be a result of “end 329 

effects”.  330 

There are two primary regions on the surface of Sample A (centered at 𝑧 = 4 mm and 𝜃 = 331 

±90°) that can be identified with low coefficients of determination (Fig. 2A). These areas of low 𝑅2∗ 332 

tended to localize on the lateral sides of the regions of branch influence, in particular branch 333 
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locations 1 and 2.  Indeed, it appeared that areas of low mean curvature (Fig. 2, solid lines) tended to 334 

co-localize with regions of low 𝑅2∗, suggesting that the local curvature of the reconstructed sample 335 

has a significant impact on the ability of the thin-walled model to fit data, as evidenced by the explicit 336 

dependence of 𝑃𝑡ℎ,∗(𝑡) on the principal curvatures 𝜅n
1 and 𝜅n

2 (cf. Eq. 31).  Although regions of low 337 

mean curvature may arise as a local effect of branch ligation, the ability of the p-DIC analysis to 338 

capture modes of bending upon pressurization at a fixed axial stretch may also contribute to regions 339 

of low 𝑅2∗. 340 

Gross regional variations in material properties were analyzed by comparing distributions 341 

(which excluded non-identified patches) for the four non-overlapping regions: ventral-top, dorsal-342 

top, ventral-bottom, and dorsal-bottom. Following alignment of major branch locations with the 0° 343 

circumferential coordinate, a straightforward definition of the ventral and dorsal halves of the 344 

sample was given by the ranges 𝜃𝑣 ∈ [−
𝜋

2
,
𝜋

2
] and 𝜃𝑑 ∈ [

𝜋

2
,
3𝜋

2
] , respectively; top (proximal) and 345 

bottom (distal) halves were defined as all nodes above and below 𝑍 = 𝐿/2. Illustrative results for 346 

several identified parameters from both samples are shown in Fig. 3 using a histogram 347 

representation: black bars for Sample A and white bars for Sample B, with overlapping values 348 

indicated by grey shading.  Note that patches containing a branch ostium are included in the 349 

histogram representation but we have verified that this does not adversely affect the results and 350 

statistical comparison between regions.  351 

Significant differences in identified parameter values were found between regions on each 352 

sample. Specifically, for Sample A the elastin parameter cn
𝑒 was significantly lower on the dorsal side 353 

independent of axial position (proximal to distal), whereas for Sample B the lowest values were 354 

found in the ventral-bottom quadrant. The circumferential collagen parameter cn
𝑚 and the diagonal 355 

collagen parameter cn
𝑐  were significantly higher on the bottom half of each sample, independent of 356 

the dorsal-ventral sides; the dorsal-top quadrant showed opposite trends in cn
𝑐  between samples. 357 

The identified  spatial distribution of the axial collagen parameter cn
𝑎 was opposite across samples. 358 

Namely, cn
𝑎 was highest on the bottom half of Sample A and on the top half of Sample B. Finally, for 359 

both samples, the fiber angle βn
𝑐  was highest in the ventral-bottom quadrant. Despite several similar 360 

trends in significance, all identified elastic coefficients were found to be significantly larger in 361 

magnitude on Sample B as compared to Sample A, highlighting the utility of the inverse method in 362 

identifying distributions of sample specific properties. Although there are statistically significant 363 

differences in material parameters by region, the dispersions are wider than the average difference 364 

between the means; this is especially the case for cn
𝑚, cn

𝑐 , and cn
𝑎, which may have been induced by a 365 

smaller sensitivity of the cost function to these parameters or the existence of inter-correlations 366 

between parameters. Indeed, the number of parameters for the material model is relatively large (16 367 
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total) and we note that full-field information was collected only on the outer (adventitial) surface. 368 

Although individual material parameters are important, it is their collective contribution to 369 

modeling the material properties that is most important. Among the properties of most importance 370 

are the stored energy density 𝑊n and the circumferential and axial material stiffness [6,22]. Regional 371 

distributions (at up to 400 locations) of stored energy density were computed for two different 372 

loaded configurations for both samples (Fig. 4A-D): pressures of 𝑃(𝑡)=80 mmHg (left) and 140 mmHg 373 

(right), at individual values of the in-vivo axial stretch 𝑧(𝑡)=
0. It is seen that, in contrast to 374 

distributions of individual material parameters, the regional distributions in strain energy density are 375 

relatively smooth. In addition, the dorsal halves of the samples store significantly less energy than 376 

the ventral half upon pressurization to 140 mmHg (Sample A: 107.7 ± 2.2 kPa vs. 116.05 ± 2.2 kPa, 377 

Sample B: 99.3 ± 1.3 kPa vs. 122.3 ± 2.3 kPa; P < 0.05). The removal of perivascular support needed to 378 

enable in-vitro mechanical testing, in particular the dorsal support of the spine, likely contributed to 379 

the measured differences in dorsal versus ventral energy storage capability under the action of a 380 

uniform distending pressure. Similar to cn
𝑒, the stored energy also tended to be higher in the central 381 

region (i.e,. 𝑧 = 1.5 - 5.5 mm), independent of pressure. That the distribution of 𝑊n corresponds to 382 

the distribution of cn
𝑒 is consistent with the elastic fibers being the main contributor to energy 383 

storage, the primary function of large arteries such as the aorta.  384 

Figure 5 shows regional distributions (at up to 400 locations) of the circumferential (C1111, 385 

left) and axial (C2222, right) components of the linearized material stiffness for Samples A and B 386 

computed at a loaded configuration of 𝑃(𝑡)=100 mmHg and individual value of 𝑧(𝑡)=
0. Shown, 387 

too, are histograms for the four larger regions. Circumferential stiffness was significantly lower in the 388 

dorsal-top quadrants of both samples as compared to the other quadrants in their respective dorsal 389 

or top halves. Axial stiffness, on the other hand, was significantly different on both the ventral and 390 

bottom halves of each sample. Specifically, the ventral half had higher stiffness than the dorsal half 391 

independent of top or bottom location (Sample A: 1.32 ± 0.03 MPa vs. 1.15 ± 0.02 MPa, Sample B: 392 

1.67 ± 0.04 MPa vs. 1.49 ± 0.02 MPa; P < 0.05), and the bottom half had higher stiffness than the top 393 

independent of the dorsal-ventral side (Sample A: 1.35 ± 0.03 MPa vs. 1.10 ± 0.02 MPa, Sample B: 394 

1.61 ± 0.04 MPa vs. 1.55 ± 0.03 MPa; P < 0.05). One main structural difference between the four 395 

quadrants, of course, is the location of the major suprarenal branches. Comparison of stiffness 396 

distributions with branch sites for Samples A and B (dashed lines, Fig. 5A-D) suggests that higher 397 

values of biaxial stiffness tend to co-localize with regions of branch influence. Specifically, 398 

circumferential stiffness tends to be higher at the boundaries whereas axial stiffness is higher over 399 

the entire branch area. 400 

In standard biaxial inflation-extension tests, one typically measures on-line both the outer 401 

diameter and the axial force in response to changes in pressure and axial stretch. Such data were 402 
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collected for both samples prior to the biaxial p-DIC testing, and values of the constitutive 403 

parameters were estimated using traditional nonlinear regression [6]. Representative values of the 404 

estimated material parameters (c𝑒, c𝑚, c𝑐 and β𝑐) and associated scalar metrics of goodness of fit or 405 

material behavior (𝑅², 𝑊, C1111 and C2222) are reported in Table 2. The best-fit parameter values 406 

are generally in good agreement with the local distributions that were obtained using the p-DIC data.  407 

 408 

Table 2. Best-fit model parameters and associated scalar metrics estimated using nonlinear 409 

regression of standard biaxial experimental data for Samples A and B. 410 

Sample 
c𝑒  

(kPa) 

c𝑚 

(kPa) 

c𝑐  

(kPa) 
β𝑐  

𝑊 (kPa) 

@80mmHg 

𝑊 (kPa) 

140mmHg 

 C1111 

(MPa) 

C2222 

(MPa) 
𝑅²∗ 

A 71 385 959 51° 70  93 1.78 1.18 0.98 

B 65 128 1470 46° 61 79 1.74 0.96 0.99 

 411 

Finally, as a qualitative comparison of approaches, we computed local pressure-radius curves 412 

and local circumferential stress-stretch curves for every node at which material parameters were 413 

identified (Fig. 6). Data from the standard (global) biaxial inflation-extension approach (black circles) 414 

were compared to the reconstructed pressure-radius (left) and stress-stretch (right) curves for 415 

Samples A and B. Although similar curves can be generated for all tested axial stretch values, data are 416 

shown only at 𝑧(𝑡)=
0, for clarity. The sets of gray curves represent the reconstructed behavior of 417 

the inverse method based on the locally identified material parameters from all patches above a 418 

given 𝑅n
2∗ value. Namely, the light-gray and dark-gray sets of curves show the behavior for all patches 419 

with 𝑅2∗ > 0.95  and 𝑅2∗ > 0.99, respectively.  For Sample A, the light-gray curves represent 72% of 420 

all identified patches (257/356 patches) and the dark-gray curves represent 6.5% of all identified 421 

patches (23/356 patches).  Similarly, for the better fitting Sample B, the light-grey curves represent 422 

83% of all identified patches (316/380 patches) and the dark-grey curves represent 2.9% of all 423 

identified patches (11/380 patches). Overall,  there is a very good agreement between the standard 424 

and new p-DIC based approaches. In particular, the mean global responses fall well within the 425 

expected dispersion of the identified local responses. This overall agreement highlights the both the 426 

general utility and added advantage of local measurements even in healthy aortic tissue. 427 

 428 

DISCUSSION 429 

 Relevance of inverse methods. Advances in medical imaging and computational biomechanics 430 

have enabled investigators to study patient-specific models of hemodynamics, wall stress, and even 431 
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fluid-solid interactions. The utility of such models depends, however, on the goodness of the 432 

specified material properties and boundary conditions. With regard to the former, increasing 433 

attention is appropriately being directed toward in vivo estimations of arterial [23,24] and 434 

aneurysmal [25,26] properties. Such attempts are nevertheless complicated by the limited 435 

information that is available via in vivo measurements as well as by the existence of regional 436 

variations in properties both along the normal arterial tree and within diseased segments [15,27–30]. 437 

Indeed, because of the complexity of the constitutive behavior of the aorta in health and disease, it is 438 

inconceivable that in vivo data alone could enable both the identification of appropriate functional 439 

forms of the constitutive relations and the calculation of best-fit values of the associated material 440 

parameters. Complementary in vitro tests are essential. For example, in vitro biaxial tests on planar 441 

or cylindrical specimens allow one to perform the multiple protocols that are necessary to generate 442 

the over-determined systems of equations that ensure robust parameter estimation. Such tests 443 

enable much more, however. They also allow a more careful evaluation of the appropriateness of 444 

specific functional forms of the constitutive relations and identification of ranges for the values of the 445 

material parameters, which provides important constraints on the estimations [31,32]; they similarly 446 

allow equal quantification of circumferential and axial behaviors and their coupling (e.g., [33,34]), 447 

even if directional deformations are not equal in vivo. Given such information from in vitro tests, one 448 

can then focus in vivo on parameter estimation alone.  449 

Notwithstanding the advantages of standard biaxial testing, there is yet a need for more 450 

advanced in vitro methods, including ones that can both delineate possible regional variations in 451 

cases of disease and better correlate such variations with the underlying microscopic composition 452 

and structure. For this reason, we developed a novel approach that combines in vitro biaxial 453 

panoramic-digital image correlation (p-DIC) based mechanical testing with a nonlinear inverse 454 

material characterization method. The former has been described in detail previously [10,35,36]. The 455 

latter can be accomplished in multiple ways, but we employed a virtual fields method that has 456 

proven useful in different applications [17,19]. This approach allows one to derive relatively simple 457 

extensions of traditional relations for thick-walled cylindrical geometries [37,38] that yet allow one to 458 

account for added complexities, including axial bending during testing and associated changes in 459 

local curvatures. 460 

Choice of material model. We used a four-fiber family model that has proven reliable in 461 

describing murine arterial behavior in multiple studies [6,7,9,14,15,20]. Although motivated by 462 

microstructural information, this model was developed primarily to capture phenomenologically the 463 

anisotropic response of blood vessels subjected to extension-inflation tests, which ultimately 464 

depends on constituent fractions, fiber orientations, cross-linking, physical entanglements, and so 465 

forth. The four-fiber model is thought to allow complexities beyond just fiber orientations and has 466 
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been shown (in comparison to two- and six-) to represent a good compromise between model 467 

complexity and goodness of fit when applied to 7 independent pressure-diameter (P-d) and axial 468 

load-axial stretch (f-l) protocols obtained during standard biaxial extension-inflation testing [6]. In 469 

particular, all of the parameters of the four-fiber family model contribute to the fitting of the data; 470 

uncertainty in the best-fit values was estimated using a nonparametric bootstrap approach, and no 471 

fundamental problem of identifiability was found [6]. When using a reduced number of protocols in 472 

the material parameter identification (e.g., only the 3 P-d protocols, with force measurement as in 473 

the current study, as opposed to the 3 P-d and 4 f-l protocols), the primary effect was a modest 474 

change in the identified fiber angle that tended to increase the biaxial linearized stiffness.  475 

One recent addition to the four-fiber family model is the incorporation of deposition 476 

stretches, which permits convenient predictions of residual stresses while using an in vivo reference 477 

configuration [14]. We showed that deposition stretch values should remain within a narrow range 478 

to ensure reasonable model predictions. Hence, although their inclusion adds to the number of 479 

parameters, they are well bounded and do not compromise the identification of the standard 480 

parameters. This overall previous experience with extension-inflation tests of excised arteries 481 

supports the use of the present model to simultaneously fit P-d-f data at different extensions. 482 

Whereas all previous analyses based on this model (i.e., traditional analyses) were based on the 483 

assumption of a perfectly cylindrical geometry, herein we extended this approach to local analyses, 484 

for each position on the reconstructed surface of the blood vessel, based on full-field measurements 485 

for every applied pressure and every applied axial stretch that yield the local surface deformation 486 

gradient.  487 

The principle of virtual power allows the model to locally adjust to data at every position 488 

instead of global adjustment based only on the measured (P-d) and (f-l) curves. For every position, 489 

the identification is based on 14x3x2 = 84 independent data points (14 pressures x 3 axial stretches x 490 

2 independent equations). Therefore, similar to the traditional approach, at every position defined 491 

on the surface of the sample, the number of reconstructed data points is sufficient to ensure the 492 

overdetermined number of equations needed to identify the parameters in the model. As in 493 

traditional analyses, however, we note that one disadvantage of Fung-type exponential models is 494 

that there are intrinsic correlations amongst the parameters 𝑐n
𝑖  and 𝑘n

𝑖   (cf. Eqs. 5-7). Hence, the cost 495 

function can often be minimized equally well using different combinations of the 𝑐n
𝑖  and 𝑘n

𝑖  496 

parameters. This is one reason why we should focus more on the predicted material properties, such 497 

as energy storage or material stiffness, rather than individual material parameters. 498 

Uncertainty of the inverse method. The question of uncertainty for each material parameter 499 

holds in all nonlinear models and associated testing. To evaluate this point, we repeated the 500 

identification after adding noise to the experimental data. White noise with a standard deviation of 501 
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0.05 was added to each component of the deformation gradient. This standard deviation was chosen 502 

to be larger than the measurement uncertainty (which was less than 0.01 for the deformation 503 

gradient) to amplify its effects on the identification. After the new identification, similar distributions 504 

of material parameters were reconstructed. Changes on the 𝑅n
2∗ criterion were negligible, thus 505 

suggesting that the goodness of fit depends more on the ability of the model to fit the data than on 506 

random noise in the data. Similarly, we tested the sensitivity of the identification procedure to the 507 

initial set of parameter values used in the nonlinear optimization. The identification was performed 508 

several times with different sets of initial values that were drawn randomly from within the defined 509 

bounds (cf. Table 1). Independent of initialization, the results again showed similar values of the 510 

material parameters and 𝑅n
2∗ distributions, and especially the derived material properties, thus 511 

suggesting that the observed heterogeneities are deterministic in nature. 512 

Results are also sensitive to other inevitable experimental uncertainties, which further 513 

complicate parameter estimation. Among the many causes of uncertainly, consistent experimental 514 

definition of a reference configuration, often taken to be the traction-free state, is challenging. 515 

Potential effects of these errors can be assessed by repeating the estimations for different values 516 

that define the reference configuration [38]. Our approach, using a near in vivo reference 517 

configuration, naturally reduces the uncertainly in comparison with measurements of traction-free 518 

configurations because of the extreme compliance of arteries at low loads.  519 

Regional variations in material properties. Notwithstanding possible uncertainties in our 520 

characterizations, heterogeneities appeared to manifest both locally (based on nodal values) and 521 

regionally (based on the four regions so defined). In particular, steep variations appeared for some 522 

parameters, such as those meant to model the collagen fibers, whereas mild variations arose for 523 

other parameters, including those meant to model the elastic fibers. Considering the 524 

phenomenological nature of the model, however, one should not try to over-interpret the underlying 525 

reasons for these variations in parameter values, with or without knowledge of the underlying 526 

histological structure. Rather, it is best to focus on metrics such as energy storage and material 527 

stiffness (Figs. 4 and 5) when comparing material behaviors either regionally or from specimen-to-528 

specimen. Additionally, to distinguish between uncertainty and true regional variations in material 529 

properties, regions should be defined with a significant number of data points (for local estimates) or 530 

patches (for regional estimates) to have appropriate statistical power and anatomical relevance (for 531 

instance, dorsal, ventral, top and bottom halves).  532 

The suprarenal aorta has significant perivascular support in vivo, namely, the spine and 533 

dorsal musculature. Interestingly, the energy stored upon pressurization in vitro was significantly 534 

lower on the dorsal than the ventral side for both tested samples. It thus seems that the capability of 535 

the dorsal side of the aorta to store energy, ultimately to be used to work on the blood during 536 
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diastole, is potentially reduced throughout development due to this increased perivascular support. 537 

Values of circumferential and axial material stiffness tended to be higher near the axial boundaries 538 

and on the ventral side of the sample.  Higher stiffness near the top (proximal) and bottom (distal) 539 

edge is likely an “end-effect” due to cannulation and pressurization of the sample at a fixed axial 540 

stretch; in contrast, the increased ventral stiffness tends to co-localize with regions of branch 541 

influence.  The increased stiffness near branch locations could similarly result from the ligatures that 542 

are needed to enable mechanical testing. In particular, circumferential stiffness is often increased on 543 

the lateral sides of the branch region, consistent with the ligation at the branch ostium potentially 544 

playing a role upon pressurization. Increased axial stiffness at branch locations is likely compounded 545 

by the fact that axial stretch is influenced by the distance between the cannulation sutures.  This 546 

effect can necessarily vary over the surface of the sample and lead to a reduced relative stretch at 547 

the branch locations and ultimately contribute to increasing the stiffness. 548 

Coefficients of determination. Another fundamental question relates to the origin of regional 549 

variations for the 𝑅n
2∗ < 0.90 criterion, especially in Sample A. This goodness-of-fit is related to the 550 

ability / inability of the model to capture the experimental response locally. Mismatches between 551 

model and data could be a source of bias for the identified parameters, hence we discarded patches 552 

where 𝑅n
2∗ is lower than 0.90. Discrepancies often localized close to cannulation ligatures or near 553 

branches (Fig. 2). Additionally, large central regions of discrepancy for Sample A likely resulted, in 554 

part, from bending instabilities and associated changes in local mean curvature that occur in an 555 

inflated vessel maintained at a constant axial stretch [39]. Bending was even triggered at low 556 

pressures, for the suprarenal aorta is curved slightly upon excision. For this reason, the suprarenal 557 

abdominal aorta is probably one of the most challenging case studies for our novel identification 558 

method. Nevertheless, despite difficulties related to bending and the presence of branches, there 559 

was very good agreement between the myriad identified local behaviors and the global response of 560 

the same sample (Fig. 6). Moreover, strain energy and stiffness estimated from the standard biaxial 561 

tests (Table 2) were consistent with the center value of the regional distributions.  562 

Recall that the biaxial loading was maintained for several minutes at each state to allow p-563 

DIC image acquisition. Hence, in contrast to the continuous cyclic loading of the standard biaxial 564 

tests, the loading was incremental in the p-DIC tests. Direct comparisons between continuous and 565 

incremental loading protocols in separate standard biaxial tests on the same sample (not shown) 566 

revealed no difference in the measured pressure-diameter behavior, hence the difference in loading 567 

protocol did not appear to be a concern. We also checked whether a thick-wall model that delineates 568 

medial and adventitial properties would improve the coefficients of determination when compared 569 

to a membrane model. Again, however, this did not have a significant effect on the results (not 570 

shown). This finding is somewhat consistent with the wall thickness being at least one order of 571 
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magnitude lower than radius upon pressurization (e.g., radius of 0.65 mm and thickness of 0.04 mm, 572 

on average), but also because both methods rely on measuring deformations or diameters at the 573 

outer surface and invoking incompressibility of the wall. 574 

 575 

CONCLUSIONS 576 

We submit that the present experimental-computational method for local arterial 577 

characterization represents another important step toward the ultimate goal of understanding better 578 

the structure-property relationships that underlie regional variations in material properties along the 579 

arterial tree and especially within many arterial lesions, including aortic aneurysms. Combining such 580 

findings with advances in growth and remodeling simulations (e.g., [40,41]) promises to improve our 581 

ability to predict subsequent mechano-adaptations or disease progression. Many challenges yet 582 

remain, however. Highly localized defects in wall structure, as, for example, localized deposits of 583 

calcium or pools of mucoid material, may play significant roles in initiating local failure processes 584 

including those that initiate intramural delamination [42,43]. Such defects could be difficult to 585 

identify even with sophisticated methods such as p-DIC and will likely require additional transmural 586 

imaging and layer specific inverse methods. The present validation study provides a firm foundation 587 

upon which to build, however. 588 
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APPENDIX 720 

The principle of virtual power (PVP) is an integral expression of the equilibrium equations across a 721 

solid, which may be written quasi-statically as  722 

−∫ 𝝈: (𝛁∗)
𝜔(𝑡)

𝑑𝜔
⏟            

𝑃𝑖𝑛𝑡
∗

+∮ 𝑻. ∗

𝜕𝜔(𝑡)

𝑑𝑠
⏟        

𝑃𝑒𝑥𝑡
∗

= 0 
(A1) 

where ∗ is a virtual velocity field defined across the volume of the solid (denoted 𝜔(𝑡)) and 𝛁∗ is 723 

the gradient of ∗. 𝑻 are the tractions across the boundary (surface denoted 𝜕𝜔(𝑡)) , 𝑃𝑖𝑛𝑡
∗  is the 724 

virtual power of internal forces and 𝑃𝑒𝑥𝑡
∗  is the virtual power of external forces. 725 

The PVP has been used for the identification of material properties since 1990 through the virtual 726 

fields method (VFM), which is an inverse method based on the use of full-field deformation data 727 

[17,18]. The VFM was recently applied to the identification of uniform material properties in arterial 728 

walls [19] and will be extended herein to consider regional variations of material properties. Hence, 729 

let us consider two virtual fields 𝒖∗ and 𝒗∗ defined across a given patch n 730 

𝒖∗() = [
(1/n

1 − ℎ)(1/n
2 − ℎ)

1/n
1  − (1 − )ℎ

(1/n
1 + 1/n

2 − 2ℎ)

1/n
2  − (1 − )ℎ

] 𝒏n  (A2) 

𝒗∗ = −
𝑥

2
𝒆𝑥 −

𝑦

2
𝒆𝑦 + 𝑧 𝒆𝑧 (A3) 

where n
1  and n

2  are the average maximum and minimum principal curvatures, respectively. 731 

Therefore, 1/n
1  is the radius of curvature on the outer surface along the direction of the maximum 732 

principal curvature and 1/n
2  is the radius of curvature on the outer surface along the direction of the 733 

minimum principal curvature. The radii of curvature at any position  between the inner ( = 0) and 734 

outer ( = 1) surfaces for the inner surface are then 1/n
1  − (1 − )ℎ and 1/n

2  − (1 − )ℎ. 735 

In this appendix, we prove that Eq. A1 written with 𝒖∗ yields Eq. 22 (Proof 1) and similarly Eq. A1 736 

written with 𝒗∗ yields Eq. 26 (Proof 2). 737 

Proof 1: 738 

The gradient of 𝒖∗ may be written as follows 739 

𝛁𝒖∗ =
(1/n

1 − ℎ)(1/n
2 − ℎ)(1/n

1 + 1/
n
2 − 2ℎ)

(1/n
2  − (1 − )ℎ)(1/n

1  − (1 − )ℎ)
2  𝒈n

1𝒈n
1 +

(1/n
1 − ℎ)(1/n

2 − ℎ)(1/n
1 + 1/

n
2 − 2ℎ)

(1/n
1  − (1 − )ℎ)(1/n

2  − (1 − )ℎ)
2  𝒈n

2𝒈n
2

− [
(1/n

1 − ℎ)(1/n
2 − ℎ)(1/n

1 + 1/
n
2 − 2ℎ)

(1/n
2  − (1 − )ℎ)(1/n

1  − (1 − )ℎ)
2  +

(1/n
1 − ℎ)(1/n

2 − ℎ)(1/n
1 + 1/

n
2 − 2ℎ)

(1/n
1  − (1 − )ℎ)(1/n

2  − (1 − )ℎ)
2 ] 𝒏n 𝒏n  

(A4) 

Plugging in and evaluating the integral expression for 𝑃𝑖𝑛𝑡
∗  (cf. Eq. A1) 740 
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𝑃𝑖𝑛𝑡
∗ (𝑡) =  −ℎ(𝑡)(1/

n
1(𝑡) − ℎ(𝑡))(1/

n
2(𝑡) − ℎ(𝑡))(1/

n
1(𝑡) + 1/

n
2(𝑡)

− 2ℎ(𝑡))∫ (
𝜎11,n
𝑤 (𝑡, ) − 𝜎33,n

𝑤 (𝑡, )

(1/
n
2(𝑡)  − (1 − )ℎ(𝑡))(1/

n
1(𝑡)  − (1 − )ℎ(𝑡))

2

1

0

+
𝜎22,n
𝑤 (𝑡, ) − 𝜎33,n

𝑤 (𝑡, )

(1/
n
1  (𝑡) − (1 − )ℎ(𝑡))(1/

n
2  (𝑡) − (1 − )ℎ(𝑡))

2)𝐴𝑛(𝑡, )𝑑 

(A5) 

 741 

where 𝐴𝑛(𝑡, ) is the area of patch n at radial position  and may be written 742 

𝐴𝑛(𝑡, ) = (1/n
1(𝑡)  − (1 − )ℎ(𝑡))(1/n

2(𝑡)  − (1 − )ℎ(𝑡))n
1(𝑡)n

2(𝑡)  

where n
1  and n

2  are two angles defining the angular sector of patch n along the directions of the 743 

maximum and minimum principal curvatures, respectively. Introducing the expression of 𝐴𝑛(𝑡, ) 744 

into Eq. A5, we obtain 745 

𝑃𝑖𝑛𝑡
∗ (𝑡) =  −ℎ(𝑡)(1/

n
1(𝑡) − ℎ(𝑡))(1/

n
2(𝑡) − ℎ(𝑡))(1/

n
1(𝑡) + 1/

n
2(𝑡)

− 2ℎ(𝑡))n
1(𝑡)

n
2(𝑡)∫ (

𝜎11,n
𝑤 (𝑡, ) − 𝜎33,n

𝑤 (𝑡, )

(1/
n
1(𝑡)  − (1 − )ℎ(𝑡))

+
𝜎22,n
𝑤 (𝑡, ) − 𝜎33,n

𝑤 (𝑡, )

(1/
n
2  (𝑡) − (1 − )ℎ(𝑡))

)𝑑
1

0

 
(A6) 

Regarding the virtual work on the boundaries, shear stresses are null so only the virtual work of the 746 

internal pressure needs to be considered 747 

𝑃𝑒𝑥𝑡
∗ (𝑡) = 𝑃(𝑡) (1/n

1(𝑡) − ℎ(𝑡)) (1/n
2(𝑡) − ℎ(𝑡))n

1(𝑡)n
2(𝑡)(1/n

1(𝑡) + 1/
n
2  (𝑡)

− 2ℎ(𝑡)) 
(A7) 

So, using Eq. A1, we have: 748 

𝑃(𝑡) =  ℎ(𝑡)∫ (
𝜎11,n
𝑤 (𝑡, ) − 𝜎33,n

𝑤 (𝑡, )

(1/n
1(𝑡)  − (1 − )ℎ(𝑡))

+
𝜎22,n
𝑤 (𝑡, ) − 𝜎33,n

𝑤 (𝑡, )

(1/n
2  (𝑡) − (1 − )ℎ(𝑡))

) 𝑑
1

0

  

Proof 2: 749 

A second virtual field is required here. Indeed, even if the artery shape is not a perfect cylinder, n
2  is 750 

globally the curvature along the axis of the artery and may take very small values at most of the 751 

patches. The result is that 𝜎𝑧𝑧,n
𝑤  has little influence in Eq. 22, leading to almost no sensitivity to a 752 

material parameter such as cn
𝑎. To address this issue, a second virtual field involving 𝜎𝑧𝑧,n

𝑤  even in the 753 

patches where n
2 ≅ 0 is proposed, and will involve the measured axial load 𝑓(𝑡). The simplest 754 

virtual field both satisfying these requirements and zeroing the virtual work of the hydrostatic 755 

pressure is given by 𝒗∗ (cf. Eq. A3). The gradient may be written as 756 

𝛁𝒗∗ = −
1

2
 𝒆𝑥𝒆𝑥 −

1

2
 𝒆𝑦𝒆𝑦 +  𝒆𝑧𝒆𝑧 (A8) 

We assume here that the same internal virtual work is shared along the circumferential direction. 757 

𝑃𝑖𝑛𝑡
∗ (𝑡) = −∫ 𝝈: (𝛁𝒗∗)

𝜔(𝑡)

𝑑𝜔 = −
1

𝐾
∫ 𝝈: (𝛁𝒗∗)
𝑤ℎ𝑜𝑙𝑒 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑑𝜔  

Where 𝐾 is the number of patches along the circumferential direction. 758 
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Then we have 759 

𝑃𝑖𝑛𝑡
∗ (𝑡) =  −

1

𝐾
∫ ∫ ∫ [𝜎𝑧𝑧,n

𝑤 (𝑡, ) − 𝜎𝑥𝑥,n
𝑤 (𝑡, )/2 − 𝜎𝑦𝑦,n

𝑤 (𝑡, )/2]
𝑟𝑜

𝑟𝑜−ℎ

𝑑𝑟
2𝜋

0

𝑟𝑑𝜃𝑑𝑧
𝑧𝑛+𝑏/2

𝑧𝑛−𝑏/2

  

𝑃𝑖𝑛𝑡
∗ (𝑡) = − 

𝜋

𝐾
𝑏(𝑡)ℎ(𝑡)∫ [2𝜎𝑧𝑧,n

𝑤 (𝑡, ) − 𝜎𝑥𝑥,n
𝑤 (𝑡, ) − 𝜎𝑦𝑦,n

𝑤 (𝑡, )][𝑟𝑜 (𝑡) − (1 − )ℎ(𝑡)]𝑑
1

0

 (A9) 

Where 𝑟𝑜  is the average radius of the cross section of the considered patch and 𝑏 is the length of the 760 

patch in the 𝑧 direction. 761 

Regarding the virtual work across the boundaries, shear stresses are again neglected and we have 762 

only to consider the virtual work of the internal pressure on the inner surface and the virtual work of 763 

the axial stress. We assume that the external virtual work is also shared along the circumferential 764 

direction, yielding 765 

𝑃𝑒𝑥𝑡
∗ (𝑡) = ∮ 𝑻. 𝒗∗

𝜕𝜔(𝑡)

𝑑𝑠 =
1

𝐾
∮ 𝑻. 𝒗∗

𝑤ℎ𝑜𝑙𝑒 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑑𝑠  

Then we have 766 

𝑃𝑒𝑥𝑡
∗ (𝑡) =

1

𝐾
[−
𝑃(𝑡)

2
𝑏(𝑡)2𝜋[𝑟𝑜 (𝑡) − ℎ(𝑡)]2 + 𝑏(𝑡)ℎ(𝑡)∫ 𝜎𝑧𝑧,n

𝑤 (𝑡, )
1

0

2𝜋[𝑟𝑜(𝑡) − (1 − )ℎ(𝑡)]𝑑]  

𝑃𝑒𝑥𝑡
∗ (𝑡) =

𝑏(𝑡)

𝐾
[−𝑃𝜋[𝑟n

𝑜(𝑡) − ℎ(𝑡)]2 + (2𝜋ℎ(𝑡)∫ 𝜎𝑧𝑧,n
𝑤 (𝑡, )

1

0

[𝑟𝑜 (𝑡) − (1 − )ℎ(𝑡)]𝑑)] (A10) 

We recognize in the bracket of Eq. A10 the formula of the axial load [37,38] and we eventually obtain 767 

𝑃𝑒𝑥𝑡
∗ (𝑡) =

𝑏(𝑡)

𝐾
𝑓(𝑡) (A11) 

Thus, using Eq. A1, we have: 768 

𝑓(𝑡) = 𝜋ℎ(𝑡)∫ [2𝜎𝑧𝑧,n
𝑤 (𝑡, ) − 𝜎𝑥𝑥,n

𝑤 (𝑡, ) − 𝜎𝑦𝑦,n
𝑤 (𝑡, )][𝑟𝑜 (𝑡) − (1 − )ℎ(𝑡)]𝑑

1

0

  

 769 

 770 

 771 

Supplemental Table 1. Morphometric data and vessel geometry for Samples A and B 772 

 773 

  Sample A Sample B 

Age (wks) 18.3 21.0 

Body Mass (g) 31.0 31.8 

Unloaded Outer Diameter (μm) 784 966 

Unloaded Wall Thickness (μm) 99 119 

Unloaded Axial Length (mm) 5.37 6.11 

In-vivo Axial Stretch 1.67 1.55 
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Supplemental Table 2.  Comparison of identified material parameters and scalar metrics in four 774 

defined regions on Samples A and B.* P < 0.05 between dorsal and ventral sides on same top or 775 

bottom half, †P < 0.05 between top and bottom halves on same dorsal or ventral side, # P < 0.05 776 

between regions on Sample A and Sample B, §P < 0.05 between total patches on Sample A and 777 

Sample B. 778 

  Sample A 

Region Ventral, Top Dorsal, Top Ventral, Bottom Dorsal, Bottom Total 
n 81 91 92 92 356 
R

2
* 0.961 ± 0.002 0.955 ± 0.003 0.964 ± 0.002 0.971 ± 0.002 † 0.963 ± 0.001 

c
e 

 (MPa) 0.086 ± 0.002 0.074 ± 0.002 * 0.089 ± 0.002 0.077 ± 0.002 * 0.082 ± 0.001 
c

m  
(MPa) 0.112 ± 0.015 0.076 ± 0.010 0.195 ± 0.017 † 0.181 ± 0.014 † 0.142 ± 0.008 

c
c 
(MPa) 3.089 ± 0.196 1.942 ± 0.122 * 2.884 ± 0.162 3.282 ± 0.238 † 2.793 ± 0.096 

c
a  

(MPa) 0.334 ± 0.090 0.648 ± 0.098 1.240 ± 0.232 1.107 ± 0.154 0.848 ± 0.081 
c

m,c  
(MPa) 0.672 ± 0.021 0.566 ± 0.019 * 0.566 ± 0.013 † 0.488 ± 0.017 †,* 0.570 ± 0.009 

c
c,c 

 (MPa) 0.720 ± 0.066 0.421 ± 0.115 0.966 ± 0.060 0.755 ± 0.073 † 0.716 ± 0.042 
c

a,c  
(MPa) 4.583 ± 3.041 1.235 ± 0.334 10.399 ± 9.072 374.43 ± 372.41 100.81 ± 96.27 

β
c  

(deg) 48.43 ± 0.34 49.81 ± 0.38 51.49 ± 0.55 † 49.21 ± 0.48 49.77 ± 0.23 
G

e1
 2.192 ± 0.014 2.161 ± 0.013 2.185 ± 0.013 2.196 ± 0.014 2.183 ± 0.007 

G
e2

 1.812 ± 0.011 1.786 ± 0.011 1.805 ± 0.011 1.815 ± 0.012 1.804 ± 0.006 
G

m
 1.030 ± 0.002 1.029 ± 0.002 1.036 ± 0.003 1.030 ± 0.002 1.031 ± 0.001 

G
c
 1.064 ± 0.005 1.091 ± 0.005 * 1.061 ± 0.005 1.069 ± 0.005 † 1.071 ± 0.003 

G
a
 1.092 ± 0.005 1.088 ± 0.005 1.081 ± 0.005 1.093 ± 0.005 1.088 ± 0.002 

k
m

 0.866 ± 0.080 0.662 ± 0.059 0.671 ± 0.067 0.466 ± 0.058 0.660 ± 0.034 
k

c/a
 1.903 ± 0.102 1.137 ± 0.087 * 1.801 ± 0.085 1.263 ± 0.112 1.515 ± 0.051 

W80 (kPa) 79.1 ± 1.9 66.2 ± 1.7 * 80.2 ± 1.7 71.4 ± 1.5 * 74.1 ± 0.9 
W140 (kPa) 106.4 ± 2.6 105.8 ± 3.0 124.6 ± 3.1 † 109.5 ± 3.3 * 111.7 ± 1.6 
C1111 (MPa) 1.248 ± 0.038 0.937 ± 0.024 * 1.218 ± 0.026 1.242 ± 0.045 † 1.159 ± 0.018 
C2222 (MPa) 1.192 ± 0.028 1.026 ± 0.020 1.433 ± 0.052 † 1.275 ± 0.035 † 1.233 ± 0.020 

                                

  Sample B 

Region Ventral, Top Dorsal, Top Ventral, Bottom Dorsal, Bottom Total 
n 98 97 91 94 380 
R

2
* 0.982 ± 0.001 # 0.961 ± 0.002 * 0.964 ± 0.002 † 0.968 ± 0.002 0.969 ± 0.001 § 

c
e 

 (MPa) 0.093 ± 0.002 0.086 ± 0.002 # 0.080 ± 0.002 #,† 0.087 ± 0.002 # 0.086 ± 0.001 § 
c

m  
(MPa) 0.123 ± 0.014 0.158 ± 0.015 # 0.274 ± 0.026 #,† 0.174 ± 0.019 * 0.181 ± 0.01 § 

c
c 
(MPa) 2.362 ± 0.128 3.202 ± 0.146 #,* 3.703 ± 0.198 #,† 3.759 ± 0.122 3.243 ± 0.08 § 

c
a  

(MPa) 6.989 ± 0.392 # 3.761 ± 0.365 #,* 3.007 ± 0.407 #,† 3.131 ± 0.272 # 4.257 ± 0.199 § 
c

m,c  
(MPa) 0.265 ± 0.009 # 0.264 ± 0.013 # 0.237 ± 0.010 # 0.230 ± 0.011 # 0.249 ± 0.006 § 

c
c,c 

 (MPa) 1.050 ± 0.026 # 1.152 ± 0.046 # 0.978 ± 0.076 1.230 ± 0.082 # 1.103 ± 0.031 § 
c

a,c  
(MPa) 0.171 ± 0.040 0.024 ± 0.024 0.659 ± 0.628 0.072 ± 0.061 0.226 ± 0.151 

β
c  

(deg) 44.59 ± 0.65 # 46.91 ± 0.71 # 51.61 ± 0.84 † 47.17 ± 0.72 * 47.50 ± 0.39 § 
G

e1
 2.200 ± 0.013 2.201 ± 0.012 2.199 ± 0.014 2.219 ± 0.013 2.205 ± 0.006 § 

G
e2

 1.818 ± 0.010 1.819 ± 0.010 1.818 ± 0.011 1.833 ± 0.011 1.822 ± 0.005 § 
G

m
 1.110 ± 0.004 # 1.104 ± 0.004 # 1.110 ± 0.004 # 1.110 ± 0.004 # 1.109 ± 0.002 § 

G
c
 1.039 ± 0.004 # 1.039 ± 0.004 # 1.035 ± 0.002 # 1.038 ± 0.003 # 1.038 ± 0.002 § 

G
a
 1.021 ± 0.003 # 1.027 ± 0.003 # 1.046 ± 0.004 #,† 1.030 ± 0.003 # 1.031 ± 0.002 § 

k
m

 1.348 ± 0.146 # 0.431 ± 0.060 #,* 0.804 ± 0.089 † 0.540 ± 0.071 0.784 ± 0.052 § 
k

c/a
 2.076 ± 0.230 3.067 ± 0.218 * 1.446 ± 0.197 1.683 ± 0.196 † 2.081 ± 0.110 § 

W80 (kPa) 84.0 ± 1.2 78.8 ± 1.1 # 73.2 ± 1.4 #,† 81.8 ± 1.9 #,* 79.5 ± 0.7 § 
W140 (kPa) 141.7 ± 2.5 # 94.5 ± 1.5 * 101.5 ± 2.7 #,† 104.2 ± 2.2 110.8 ± 1.5 
C1111 (MPa) 1.650 ± 0.063 # 1.451 ± 0.027 #,* 1.568 ± 0.058 # 1.745 ± 0.038 #,† 1.603 ± 0.025 § 
C2222 (MPa) 1.620 ± 0.039 # 1.472 ± 0.036 # 1.718 ± 0.067 # 1.518 ± 0.034 #,* 1.580 ± 0.023 § 

 779 

 780 
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List of figures: 781 

 782 

 783 

 784 

Figure 1.  Overview of the p-DIC system.  A. Components include a syringe pump (1), pressure 785 

monitor (2), pressure transducer (3), and tubing (4) for pressure control. A 45° conical mirror (5) is 786 

located within a specimen bath (6) and mounted atop a small kinematic mount (7) that is attached to 787 

a 3-axis translational stage (8). An annular light source (9) is used for illumination. The digital camera 788 

(10) is mounted vertically above the sample on a rotational stage (11) via a large kinematic mount 789 

(12) and custom translational stage (13). Images are acquired and sent to the computer for analysis 790 

through a camera link cable (14), and the entire system is placed on a precision optical bench (15). B. 791 
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Top-view of 45° conical mirror inside of specimen bath showing the speckle pattern on the 792 

measurement surface (1) and the calibration target (2) used for 3D reconstruction. C. Schematic of 793 

the cannulation of a slightly aneurysmal specimen showing different gauge needles, locations of fixed 794 

and sliding ends, and methods to pressurize and axially stretch the specimen. D. Loading protocol 795 

used for mechanical testing: for each axial stretch (bold solid line), the sample underwent two cycles 796 

of preconditioning followed by a step-wise increase in pressure from 10 to 140 mmHg in 10 mmHg 797 

increments (thin solid line). 798 

 799 

 800 

 801 

 802 

Figure 2. Spatial distribution of the coefficients of determination. Goodness of fit for A. Specimen A 803 

and B. Specimen B. Both panels show outputs from a modified branch splitting algorithm to highlight 804 

regions of influence due to specimen branches (1-4). Results are shown in both a 3D (left) and 2D 805 

(right) representation over the entire surface of each sample. Boundaries of both low mean 806 

curvature (solid enclosed regions) and regions of branch influence (dashed ellipses) are overlaid in 807 

the 2D representation to show localization with regions of low 𝑅n
2∗. 808 
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 809 

 810 

 811 

 812 

Figure 3. Histogram distributions of identified material parameters. Results from the identification 813 

procedure are shown for cn
𝑒 (first row), cn

𝑚 (second row), cn
𝑐  (third row), cn

𝑎 (fourth row), and βn
𝑐  (fifth 814 

row) for both Sample A (S-A, black bars) and Sample B (S-B, white bars). All identified parameters are 815 

heterogeneous and spatially varying. Results are also shown by region: ventral-top (first column), 816 

dorsal-top (second column), ventral-bottom (third column), and dorsal-bottom (fourth column). The 817 

grey bars indicate overlapping results for the two samples.  818 

 819 

 820 

 821 
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 822 

 823 

Figure 4. Spatial distribution of strain energy. The strain energy density was computed (Eq. 3) using 824 

the identified material properties over the surface of A-B. Sample A and C-D. Sample B. Results are 825 

shown for two loaded configurations: A,C. 𝑃(𝑡)=80 mmHg at 𝑧(𝑡) =
0 and B,D. 𝑃(𝑡)=140 mmHg at 826 

𝑧(𝑡)=
0. E. Histograms show spatial distributions in each quadrant for both samples (cf. Fig. 3).  827 

 828 
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 829 

Figure 5. Spatial distribution of biaxial material stiffness. The biaxial material stiffness was computed 830 

using the identified material parameters over the surface of A-B. Sample A and C-D. Sample B. 831 

Results are shown for A,C. circumferential (C1111) and B,D. axial (C2222) stiffness evaluated at a 832 

loaded configuration of 𝑃(𝑡)=100 mmHg and 𝑧(𝑡) =0. Regions of influence due to branches 833 

(dashed lines) are overlaid to show localization near regions of high stiffness. E. Histograms show 834 

spatial distributions in each quadrant for both samples (cf. Fig. 3).  835 
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 841 

Figure 6. Comparison of p-DIC and Standard Biaxial Results.  The reconstructed pressure-radius (left) 842 

and circumferential stress-stretch (right) behaviors for A. Sample A and B. Sample B were compared 843 

to standard biaxial testing results (black circles). Local responses are compared for locations with an 844 

𝑅n
2∗ value above 0.95 (light-gray) and 0.99 (dark-gray). Comparison is shown only for data collected at 845 

𝑧(𝑡) =
0, for clarity.  846 
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 856 

Supplemental Figure 1. Regional distributions of identified material parameters for Sample A. Results 857 

are shown for c𝑒, c𝑚, c𝑐, and β𝑐. Transparent (white) regions show nodes where the coefficient of 858 

determination failed to reach 0.90. 859 
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 876 

Supplemental Figure 2. Regional distributions of identified material parameters for Sample B. Results 877 

are shown for c𝑒, c𝑚, c𝑐, and β𝑐. Transparent (white) regions show nodes where the coefficient of 878 

determination failed to reach 0.90. 879 
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