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Abstract. Promoting declarative approaches in data mining is a long
standing theme. This paper goes into this direction by proposing a well-
founded logical query language, SafeRL, allowing the expression of a
wide variety of “rules” to be discovered against the data. SafeRL ex-
tends and generalizes functional dependencies in databases to new and
unexpected rules easily expressed with a SQL-like language. In this set-
ting, every rule mining problem turns out to be seen as a query process-
ing problem. We provide a query rewriting technique and a construc-
tive proof of the main query equivalence theorem, leading to an efficient
query processing technique. Based on a concrete SQL-like grammar for
SafeRL, we show how a tight integration can be performed on top of
any DBMS. The approach has been implemented and experimented on
sensor network data. This contribution is an attempt to bridge the gap
between pattern mining and databases and facilitates the use of data
mining techniques by SQL-aware analysts.

Keywords: Pattern mining, databases, query languages, query processing

1 Introduction

The relational database management systems (DBMS) market is already huge
and continues to grow since it is expected to nearly double by 2016 [1]. As a
trivial consequence for the data mining community, it makes sense – more than
ever – to query the data where they are by using state of the art database
technologies.
While a lot of techniques have been proposed over the last 20 years for pattern
mining, only a few of them are tightly coupled with a DBMS. Most of the
time, some pre-processing has to be performed before the use of pattern mining
techniques and the data have to be formatted and exchanged between different
systems, turning round-trip engineering into a nightmare.

In this paper, we provide a logical view for a certain class of pattern mining
problems. More precisely, we propose a well-founded logical query language,



EMP Empno Lastname Work
dept

Job Educ
level

Sex Sal Bonus Comm Mgrno

10 SPEN C01 FINANCE 18 F 52750 500 4220 20
20 THOMP B01 MANAGER 18 M 41250 800 3300
30 KWAN C01 FINANCE 20 F 38250 500 3060 10
50 GEYER B01 MANAGER 16 M 40175 800 3214 20
60 STERN D21 SALE 14 M 32250 500 2580 30
70 PULASKI D21 SALE 16 F 36170 700 2893 100
90 HENDER D21 SALE 17 F 29750 500 2380 10

DEPT Deptno Deptname Mgrno Admrdept Loc

A00 SPIFFY CS DIV. - A00 -
B01 PLANNING 20 A00 501
C01 INF. CENTER 30 A00 403
D01 DEV. CENTER 60 A00 -
D11 MANUFACTURING SYSTEMS - D01 -
D21 ADMIN. SYSTEMS 70 D01 501

Fig. 1. Running example

SafeRL, based on tuple relational calculus (TRC), allowing the expression of a
wide variety of “rules” to be discovered against the data. SafeRL extends and
generalizes functional dependencies (FDs) in databases to new and unexpected
rules easily expressed with a practical SQL-like language derived from SafeRL,
called RQL. To start with, let us consider the running example given in Figure
1 with two relations Emp and Dept. Educlevel represents the number of years of
formal education, Sal the yearly salary, Bonus the yearly bonus and Comm the
yearly commission. This example will be used throughout the paper.

Intuitively, a RQL query is defined by the FINDRULES clause and gener-
ates rules of the form X → Y with X and Y disjoint attribute sets taken from
the OVER clause. The SCOPE clause defines tuple-variables over some rela-
tions obtained by classical SQL queries and the CONDITION clause defines the
predicate to be evaluated on each attribute occurring in X ∪ Y .

Example 1. To make things concrete, we give some examples of RQL queries.
Q1: FINDRULES

OVER Empno ,Lastname ,Workdept ,Job ,Sex ,Bonus

SCOPE t1 ,t2 Emp

CONDITION ON A IS t1.A = t2.A;

Q′
1: FINDRULES

OVER Empno ,Lastname ,Workdept ,Job ,Sex ,Bonus

SCOPE t1 ,t2 (SELECT * FROM Emp WHERE Educlevel >16)

CONDITION ON A IS t1.A = t2.A;

Q′′
1 : FINDRULES

OVER Educlevel ,Sal ,Bonus ,Comm

SCOPE t1 ,t2 Emp

CONDITION ON A IS 2*ABS(t1.A-t2.A)/(t1.A+t2.A) <0.1;



Q1 discovers FDs from Emp over a subset of attributes. Recall that a FD X → Y
holds in a relation r if for all tuples t1, t2 ∈ r, and for all A ∈ X such that t1[A] =
t2[A] then for all A ∈ Y , t1[A] = t2[A]. As shown in Q1, RQL can express the
discovery of FDs with a natural syntax. For example, Empno → Lastname,
Workdept→ Job hold in Emp.

We can easily restrict FDs to some subset of tuples as shown with Q′
1 which

discovers rules comparable to conditional functional dependencies [2] by con-
sidering only employees with a level of qualification above 16. For instance,
Sex → Bonus holds, meaning that above a certain level of qualification (16),
the gender determines the bonus. This rule was not elicited by Q1 because of
employees 60 and 70.

Q′′
1 is an approximation of FD for numeric values, where strict equality is

discarded to take into account variations under 10%. For instance, salaries 41250
and 38250 are considered close (7.5% difference), but not salaries 41250 and
36170 (13.1% difference). Sal → Comm then holds, meaning that employees
earning similar salaries receive similar commissions.

Nevertheless, RQL can do much more and is not restricted to FD at all.

Example 2. null values in Dept.

Q2: FINDRULES

OVER Deptname ,Mgrno ,Admrdept ,Loc

SCOPE t1 Dept

CONDITION ON A IS t1.A IS NULL;

This query discovers rules between null values of the relation Dept. In dirty
databases, null values can be a nightmare and knowing relationships between
attributes with respect to null values could definitely be useful. For instance,
Mgrno→ Loc holds in Dept.

In this setting, every rule mining problem can be easily specified and turns out
to be seen as a query processing problem. We provide a query rewriting technique
and a constructive proof of the main query equivalence theorem, leading to an
efficient query processing technique. Based on a concrete SQL-like grammar for
SafeRL, we have shown how a tight integration can be performed on top of
any DBMS. The approach has been implemented and experimented on sensor
network data, showing that our approach allows the discovery of meaningful
rules and scales well. This contribution is an attempt to bridge the gap between
pattern mining and databases to facilitate the use of data mining techniques
by SQL-aware analysts. The ultimate goal of this work is to integrate pattern
mining techniques into core DBMS technologies.

Related works Defining specific languages for pattern mining is a long standing
goal and poses several challenges to first specify the data of interest and second,
to pose pattern mining queries against these data. A survey of data mining query
languages has been done in [3]. Recently, constraint programming appears to
be convenient and useful since it allows addressing both issues with a unique
declarative language [4, 5].



Nevertheless, we argue that pattern mining languages should benefit from
direct extensions of SQL languages as done in [6], since data are most of the
time stored in DBMSs. Practical approaches, as close as possible of DBMSs,
have been proposed for example in [7–9] to interact more directly with DBMSs
query engines. The SafeRL language proposed in this paper goes into this di-
rection by providing a formal semantic based on the TRC language, its practical
counterpart RQL turning out to be easily implemented on top of every DBMS.
FDs, association rules with 100% confidence, ad-hoc language proposed in [10]
are special cases of our SafeRL language but none of them has a logical query
language foundation.

With respect to [11], we consider a database instead of a single relation in
SafeRL, we provide a SQL-like syntax RQL and we focus on query processing
techniques that can be reused to efficiently execute RQL queries. Theoretical
results on decidability problems on variant of SafeRL languages are given in
[11]. From a technical point of view, this paper is a generalization of the approach
taking into account FD only [12] to compute agree sets from database relations
using SQL. FDs, CFDs in databases and implications in formal concept analysis
have been studied in e.g. [12–15].

Paper organization Section 2 introduces some notations and recalls important
notions on relational calculus and closure systems. Section 3 presents the syntax
and semantics of the SafeRL language, while section 4 presents some results
used for computing the answer to SafeRL queries. Section 5 presents exper-
imental results and section 6 concludes. Due to space constraints, proofs are
omitted.

2 Preliminaries

This section introduces main definitions and notations used throughout the pa-
per for the relational model, safe TRC, rules and closure systems.

2.1 Relational model

We use the named perspective of the relational model in which tuples are func-
tions.

Fix a finite universe U of attributes (denoted by A, B, . . . ), a countably infinite
domain D of constants (denoted by c, c′, . . .) and a finite set R of relation symbols
(denoted by R, S, . . .). U,D,R are pairwise disjoints. Each relation symbol R has a
schema, a subset of U, denoted by the symbol itself, i.e. R ⊆ U. Conveniently, we
will sometimes omit to refer to the relation symbol when dealing with a subset of
attributes, i.e. a schema. A tuple t over R is a total function t : R→ D. A relation
r over R is a finite set of tuples over R. A database schema R is a set of relation
symbols, e.g. R = {R1, . . . , Rn}. A database instance (or simply a database) is
a function d from R to the set of possible relations such that d(Ri) = ri, ri a
relation over Ri, for i = 1..n.



2.2 Variables and assignments

SafeRL has different formal variables for attributes, tuples and schemata: a set
A of attribute-variables (A,B, . . .), a set T of tuple-variables (s, t, . . .) and a set
S of schema-variables (X,Y, . . .). A,T,S,U,D,R are pairwise disjoints.

An attribute-assignment ρ (resp. a schema-assignment Σ) is a function that
maps an attribute-variable A (resp. a schema-variable X) to an attribute ρ(A) ∈
U (resp. a subset of attributes Σ(X) ⊆ U). A tuple-assignment σ is also a func-
tion from a tuple-variable t to a tuple t defined over some schema. Conveniently,
a tuple-variable t can be explicitly defined over some schema X, noted by t : X
and we will use the notation sch(t) = X.

For an attribute-assignment ρ (as well as for tuple-assignments and schema-
assignments) we denote by ρA 7→A the assignment defined by:

ρA 7→A(B) =

{
A if B = A

ρ(B) if B 6= A

2.3 Safe TRC

For the sake of clarity, we recall here the syntax and semantics of the TRC in
its simplest form. TRC formulas noted ψ,ψ1, ψ2, . . . are defined inductively as
usual, where A, B ∈ U, X ⊆ U, c ∈ D, R ∈ R, t, t1, t2 ∈ T:

R(t) | t1.A = t2.B | t.A = c | ¬ψ | ψ1 ∧ ψ2 | ∃t : X (ψ)

Given a database d over R and a tuple assignment σ, the satisfaction of a
TRC formula ψ is inductively defined as follows:

– 〈d, σ〉 |= R(t) if σ(t) ∈ d(R), R ∈ R
– 〈d, σ〉 |= t1.A = t2.B if σ(t1)(A) = σ(t2)(B)
– 〈d, σ〉 |= t.A = c if σ(t)(A) = c

– 〈d, σ〉 |= ¬ψ if 〈d, σ〉 6|= ψ
– 〈d, σ〉 |= ψ1 ∧ ψ2 if 〈d, σ〉 |= ψ1 and 〈d, σ〉 |= ψ2

– 〈d, σ〉 |= ∃t : X (ψ) if there exists a tuple t over X such that 〈d, σt7→t〉 |= ψ

A TRC query is an expression of the form

q = {t : X | ψ}

where ψ is a TRC formula with exactly one free variable t. The set of answers
ans(q, d) of q w.r.t. a database d is

ans(q, d) = {σ(t) | 〈d, σ〉 |= ψ}

In the sequel, we will consider a restriction of the TRC, equivalent to the
relational algebra in order to be compatible with SQL, known as safe TRC [16].



2.4 Rules and closure systems

Rules or implications, closure systems and closure operators have been widely
studied in many branches of applied mathematics and computer sciences, with
many applications in databases with functional dependencies [17] and in formal
concept analysis with implications [18]. The interested reader should refer to [19]
for a comprehensive survey. We summarize the main results that are useful for
the rest of the paper.

Let U ⊆ U. A closure system C on U is such that U ∈ C and for all X,Y ∈ C,
X ∩ Y ∈ C [18]. Let F be a set of rules on U . A closure system can be defined
for F , noted CL(F ) = {X ⊆ U |X = X+

F } where X+
F is the closure of X with

respect to F . Let IRR(F ) be the set of meet-irreducible elements of CL(F ). The
notion of base of a closure system is defined as follows:

Definition 1. Let CL(F ) be a closure system. A base B of CL(F ) is such that
IRR(F ) ⊆ B ⊆ CL(F )

A base is called a context in FCA terminology [18]. From a functional dependency
inference point of view, we quote the following approach [20, 12] to discover the
so-called canonical basis from a relation r:
1. Compute a base of the closure system associated to FDs from r (known as

agree sets),
2. From the base, compute the unique canonical cover for exact FDs and Got-

tlob and Libkin cover for approximate FDs [21, 20, 22].
The rest of this paper proposes a generalization of this approach. Indeed,

each SafeRL query defines a closure system and therefore, in order to reuse
previous results, the problem turns out to be on the computation of a base with
respect to a query from the database [12]. Due to space constraints, we will focus
on this first stage, the second stage will be omitted.

3 A Query Language for Rule Mining

In the introduction, we have illustrated RQL – a SQL-like friendly language
– through examples. This section formally defines the syntax and semantics of
SafeRL from which RQL is derived. We have introduced safe TRC for express-
ing SQL like queries. Before defining SafeRL, it remains to precisely define (cf.
previous examples of RQL queries) the CONDITION clause, through the notion
of mining formulas:

CONDITION ON A IS delta_cond(A, t1, ..., tn);

3.1 Mining Formulas

Mining formulas, denoted by δ, δ1, δ2, . . . , are defined over tuple-variables T,
attribute-variables A and constants D only. Their syntax and their semantics
are defined as follows.



Definition 2. Let t, t1, t2 ∈ T, A,B ∈ A and c ∈ D. A mining formula is of the
form: t1.A = t2.B | t.A = c | ¬δ | δ1 ∧ δ2

The satisfaction of a mining formula δ w.r.t. a tuple-assignment σ and an
attribute-assignment ρ, denoted by 〈σ, ρ〉 |= δ, is inductively defined as follows:

– 〈σ, ρ〉 |= t1.A = t2.B iff σ(t1)(ρ(A)) = σ(t2)(ρ(B))
– 〈σ, ρ〉 |= t.A = c iff σ(t)(ρ(A)) = c
– 〈σ, ρ〉 |= ¬δ iff 〈σ, ρ〉 6|= δ
– 〈σ, ρ〉 |= δ1 ∧ δ2 iff 〈σ, ρ〉 |= δ1 and 〈σ, ρ〉 |= δ2

Such formulas are very simple and restrictive: given one attribute and several
tuples, it allows to tell whether or not a mining formula holds.

3.2 SafeRL queries

The SafeRL query language can now be defined. A SafeRL query over a
database schema R is an expression of the form:

Q = {X → Y | ∀t1 . . . ∀tn(ψ(t1, . . . , tn) ∧ (∀A ∈ X(δ(A, t1, . . . , tn))→ ∀A ∈
Y (δ(A, t1, . . . , tn))))}, where:

– X,Y are schema-variables
– ψ is a TRC-formula over R with n free tuple-variables t1, . . . , tn
– δ is a mining formula with t1, . . . , tn free tuple-variables andA a free attribute-

variable

When clear from context, a SafeRL query Q may also be simply denoted
by Q = 〈ψ(t1, . . . , tn), δ(A, t1, . . . , tn)〉 or even Q = 〈ψ, δ〉.

Example 3. The mining of FDs over EMP is expressed as the query Q = 〈EMP(t1)∧
EMP(t2), (t1.A = t2.A)〉.

The attributes of ψ are equal to
⋃n
i=1 sch(ti) whereas the schema of Q, de-

noted by sch(Q), is defined by: sch(Q) =
⋂n
i=1 sch(ti): only common attributes

of tuple-variables are meaningful to discover rules.
To specify the result of the evaluation of a SafeRL query against a database,

we define the notion of satisfaction.
A SafeRL query 〈ψ, δ〉 is satisfied in a database d and w.r.t. a schema-

assignment Σ, denoted by 〈d,Σ〉 |= 〈ψ, δ〉 if the following holds:

For all tuple-assignment σ such that 〈d, σ〉 |= ψ: (1)
if for all A ∈ Σ(X), 〈σ, ρA7→A〉 |= δ (2)
then for all A ∈ Σ(Y ), 〈σ, ρA 7→A〉 |= δ (3)

Intuitively, this definition generalizes the definition of FD satisfaction in a
relation: instead of only 2 tuples, we may have n tuples from many relations
and verifying a certain condition (1); and instead of the condition “for all A ∈
R, t1[A] = t2[A]”, we may have any mining formula (2), (3).

The answer of a SafeRL query Q = 〈ψ, δ〉 in a database d over R, denoted by
ans(Q, d), is defined as: ans(Q, d) = {Σ(X) → Σ(Y ) | 〈d,Σ〉 |= 〈ψ, δ〉, Σ(X) ∪
Σ(Y ) ⊆ sch(Q)}.



3.3 RQL: A practical language for SafeRL

RQL is a practical SQL-like declarative language to express SafeRL queries.
Let us consider a SafeRL query Q = 〈ψ(t1, . . . , tn), δ(A, t1, . . . , tn)〉 and its
associated RQL query:

FINDRULES

OVER A1, ..., An

SCOPE t1 (SQL1), ..., tn (SQLn)

WHERE condition(t1 , , ..., tn)

CONDITION ON A IS delta_cond(A, t1, ..., tn);

The clause FINDRULES identifiesRQL queries. The clause SCOPE specifies
every tuple to be used to discover the rules and corresponds to the tuple-variables
of ψ, a safe TRC formula. The clause CONDITION gives the condition to be
observed against the data, the so-called mining formula δ. The clause OVER al-
lows restrictions of rules to a particular set of attributes, typically the attributes
of sch(Q). The WHERE clause is defined as usual. We have already given many
examples of RQL, other details are omitted. Note that RQL allows much more
flexibility than SafeRL since syntactic sugars available in SQL can be used for
free, as in query Q′′

1 of Example 1.

4 Theoretical results

In [11], a slightly different language for rule mining has been proposed. One of
the main results was to point out that every query is “Armstrong-compliant”,
meaning basically that Armstrong axioms are sound and that each query defines
a closure system. The same result holds for SafeRL queries.

Given a database d and a SafeRL query Q, the basic idea is to compute a
base of the closure system associated with Q from d. Let us start by introducing
the closure system associated with Q.

An appendix provides the proofs of all propositions, lemmas and theorems.

4.1 Closure system and bases for SafeRL queries

Given a query Q against a database d, the definitions of a base and a closure
system given in Section 2.4 are extended to ans(Q, d).

We say that Z ⊆ U satisfies ans(Q, d) if for all X → Y ∈ ans(Q, d), X 6⊆ Z

or Y ⊆ Z. The closure system of Q in d, denoted by CLQ(d), is defined by:
CLQ(d) = {Z ⊆ sch(Q) | Z satisfies ans(Q, d)}.

In our setting, the definition of the base is:

Definition 3. Let Q = 〈ψ, δ〉 be a SafeRL query over R and d a database
over R. The base of Q in d, denoted by BQ(d), is defined by:

BQ(d) =
⋃
σ s.t.

〈d,σ〉|=ψ

{
{A ∈ sch(Q) | 〈σ, ρA 7→A〉 |= δ}

}



That is, BQ(d) is the set of all Z ⊆ sch(Q) for which there exists σ such that
〈d, σ〉 |= ψ and 〈σ, ρA7→A〉 |= δ for all A ∈ Z. Note that since A is the only free
attribute variable in δ, using ρA 7→A fully determines the attribute assignment in
the evaluation of δ.

Proposition 1. BQ(d) is a base of the closure system CLQ(d).

4.2 Computing the base of a SafeRL query using query rewriting

The naive approach consists in executing n SQL queries against the database,
to cache all intermediary results, to keep only the right combination of tuples
with respect to the WHERE clause and then to compute the base of the closure
system. We can do much better: the basic idea is to decompose the query in
order to push as much as possible the processing into the SQL query engine.

For every RQL query Q = 〈ψ, δ〉 involving n tuple-variables, there exists
another query Q′ = 〈ψ′, δ′〉 with a unique tuple-variable . The practical con-
sequence of this remark is that the computation of the base can be done in a
unique SQL query, i.e. the base of 〈ψ′, δ′〉 can be delegated to the SQL query
engine which was not the case in the former formulation. By means of a rewriting
function rw, we transform Q = 〈ψ, δ〉 into Q′ = 〈ψ′, δ′〉. The idea of rw is that
the unique tuple-variable t appearing in Q′ takes its values in the schema built
from the disjoint union of sch(ti), i = 1..n and is essentially the concatenation
of the initial ti’s.

Let R be the new schema built from the disjoint union of the ti’s,
i.e. R =

⋃
i∈1..n{〈A, i〉 | A ∈ sch(ti)}.

The function rw is defined on mining formulae inductively, with t a fresh
tuple-variable. Each fresh attribute-variable Ai replaces A in δ′, noted rw(δ) in
the sequel, for the corresponding ti part of t:

rw(δ) =


¬rw(δ′) if δ is ¬δ′

rw(δ1) ∧ rw(δ2) if δ is δ1 ∧ δ2
t.Ai = t.Aj if δ is (ti.A = tj .A)

t.Ai = c if δ is (ti.A = c)

We also overload rw to transform tuple-assignment σ and attribute-assignment
ρ into respective assignments. rw(σ) = σ′ is defined by σ′(t) = t and t(〈A, i〉) =
σ(ti)(A). rw(ρ) = ρ′ is defined by ρ′(Ai) = 〈ρ(A), i〉.

Given a mining formula and the previous rewriting rw(), we have the following
lemma.

Lemma 1. 〈σ, ρ〉 |= δ iff 〈rw(σ), rw(ρ)〉 |= rw(δ)

Finally, it remains to rewrite TRC formula ψ with rw(ψ) by forcing t to have
each ti as one of its components:

rw(ψ) = ∃t1 : sch(t1), . . . , tn : sch(tn)(ψ ∧
∧

A∈sch(Q)

n∧
i=1

t.Ai = ti.A)
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Fig. 2. Query processing overview

Given a safe TRC formula and the previous rewriting rw(), we have the
following result.

Lemma 2. 〈d, σ〉 |= ψ iff 〈d, rw(σ)〉 |= rw(ψ)

Therefore BQ(d) is computable by running only one SQL query, correspond-
ing to the safe TRC query {t | rw(ψ)}, except for the SELECT part that consists
in evaluating, for each A ∈ sch(Q), the satisfaction of rw(δ).

Theorem 1.

BQ(d) =
⋃

rw(σ) s.t.
〈d,rw(σ)〉|=rw(ψ)

{
{A ∈ sch(Q) | ∃ρ : ρ(A) = A ∧ 〈rw(σ), rw(ρ)〉 |= rw(δ)}

}

The previous theorem allows pushing query processing as much as possible
into the DBMS to compute the base of the closure system associated to every
SafeRL query.

5 Implementation and experiments

Given a RQL query Q, the query processing engine consists of a Java/JavaCC
application to:

1. Compute the base of the closure system of Q using the generated SQL query
provided by Theorem 1.

2. Compute the canonical cover for exact rules and a Gottlob and Libkin cover
for approximate rules [21]. Details are out of the scope of this paper, note
just that we have reused the code of T. Uno [23] for the most expensive part
of the rule generation process.

Figure 2 gives an overview of RQL query processing.



samples

id DECIMAL(20,0)
timestamp TIMESTAMP
type DECIMAL(3,0)
value DECIMAL(10,0)

descriptions

id DECIMAL(20,0)
type VARCHAR(12)
location VARCHAR(18)
description VARCHAR(78)

Fig. 3. PlaceLab database schema

time bathroom
light

kitchen
humidity 0

... bedroom
temperature 5

2006-08-22 00:00:00 0.4971428 4344 ... 21.43
2006-08-22 00:01:00 0.6685879 4344 ... 21.43
2006-08-22 00:02:00 0.4985673 4344 ... 21.465

...
2006-09-18 23:58:00 1567.7822 5324 ... 22.53
2006-09-18 23:59:00 1563.5891 5276 ... 22.50

Fig. 4. Sensors data

5.1 Sensor Data

We experimented our RQL processing engine using the PlaceLab dataset pro-
vided by the MIT House n Consortium and Microsoft Research [24].

The PlaceLab is a 93 m2 apartment instrumented with several hundred sen-
sors. During the experiment, interior conditions (temperature, humidity, light,
pressure, current, gas and water flow) were captured by 106 sensors, along with
92 reed switches installed on doors, drawers and windows to detect open-closed
events. 277 wireless motion sensors were placed on nearly all objects that might
be manipulated. Two participants used the PlaceLab as a temporary home for
10 weeks.

The available data is a subset of about a month from the original 2.5 months
experiment, from August 22, 2006 to September 18. Raw data is extracted from
binary files, where each reading contains a sensor id, a timestamp and a value
(the measurement). Sensors meta-data include, for each sensor id, type, location
and a short textual description, along with other meta-data of little interest for
our experiments, such as installation date, etc. This data is stored in an Oracle
database whose schema is depicted in figure 3.

For data mining queries, we focused on variations of the physical properties
of the environment, such as temperature, light, etc., which amount to more
than 100 million tuples. A view, easily expressed with SQL, has been created to
synchronize and resample every sensor with a common sampling interval (one
minute). This view, illustrated in figure 4, has 165 attributes and 32543 tuples.
Except for the time, each attribute is associated either with one of the 106
physical properties sensors or one of the 58 selected switches.
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Fig. 5. Execution time for null rules

5.2 Experimental Results

The server used for these experiments is a virtual machine running on VMware
4.1 with 2× Intel Xeon X5650 and 7.2K disks in RAID 5. This virtual machine,
running Debian 6.0, disposes of 16 GB of RAM and 4 CPU cores. The DBMS
is Oracle Database 11g Release 2.

In these experiments, we consider three families of RQL queries.

Q1: rules for null values The first set of queries mine rules between sensors for
null values. Such queries can be used to identify groups of sensors which are
unavailable simultaneously, due, for example, to a shared acquisition system.

FINDRULES

OVER <list of attributes >

SCOPE t1 sensors

CONDITION ON A IS t1.A IS NULL;

For example, if we consider all temperature sensors as the list of attributes,
we can group sensors dining room temperature 1 (A), dining room tempera-
ture 2 (B), dining room temperature 3 (C), dining room temperature 4 (D),
hall temperature 0 (E) and hall temperature 3 (F ) according to rules (F → C,
A → CF , AD → E, BE → D, EF → A, AB → DE, CE → AF , DF → AE,
BF → ADE, CD → AEF , BC → ADEF ). Similarly, we can group four sen-
sors from the living room, two sensors from the office, two sensors from the hall
with three sensors from the kitchen, etc.

Figure 5 gives the cumulative execution time for various number of attributes
in the OVER clause of Q1. As expected, rule generation is by far the most
expensive part when the query runs over a large set of attributes. The SQL
query however lasts less than a second and increases linearly: computation of
the base by the DBMS is efficient.

Q2: Functional dependencies The second set of queries finds functional depen-
dencies within a time window. This time window is specified using SQL condi-
tions on the timestamp.



0

1000

2000

3000

4000

5000

6000

10 20 30 40 50 60C
u
m

u
la

ti
v
e

ex
ec

u
ti

o
n

ti
m

e
(i

n
s)

Number of attributes

Rules generation
SQL query

(a) Rule generation

0

2

4

6

8

10

12

14

10 20 30 40 50 60C
u
m

u
la

ti
v
e

ex
ec

u
ti

o
n

ti
m

e
(i

n
s)

Number of attributes

(b) Zoom on SQL queries durations

Fig. 6. Execution time for functional dependencies

FINDRULES

OVER <list of attributes >

SCOPE t1,t2 (

SELECT * FROM sensors

WHERE time BETWEEN ’2006 -08 -31 00:00:00 ’

AND ’2006 -08 -31 23:59:59 ’)

WHERE t1.rowid < t2.rowid

CONDITION ON A IS t1.A = t2.A;

To generate the base, the corresponding SQL query performs a Cartesian
product (more precisely, a theta self-join on t1.rowid < t2.rowid, which gives
half as many tuples). Consequently, the SQL part is significantly more costly
compared with the previous family ofRQL queries. Figure 6 gives the cumulative
execution time for various number of attributes in the OVER clause of Q2.

Q3: rules for local maximums RQL queries can express a wide range of condi-
tions for rules. For example, the following query finds rules for local maximums
of measurements (i.e. X → A is interpreted as: if all sensors in X have a local
maximum at time T, then sensor A has a local maximum at time T).

FINDRULES

OVER <list of attributes >

SCOPE t1,t2,t3 sensors

WHERE t2.time = t1.time+interval ’1’ minute

AND t3.time = t2.time+interval ’1’ minute

CONDITION ON A IS t1.A < t2.A AND t2.A > t3.A;

Even though this query has three tuple-variables, all three are bound by a
1:1 relationship. Consequently, this query is computed efficiently. Figure 7 shows
performances similar to Q1.
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Fig. 7. Execution time for local maximums rules

6 Conclusion

In this paper, we have introduced SafeRL, a logical query language based on
TRC and devoted to rule discovery in databases. The rule mining problem is
seen as a query processing problem, for which we have proposed a query rewrit-
ing technique allowing the delegation of as much processing as possible to the
underlying DBMS engine.RQL, the concrete language of SafeRL, is a SQL-like
pattern mining language which allows SQL developers to extract precise infor-
mation without specific knowledge in data mining. A system has been developed
and tested against a real-life database provided by the MIT House n Consortium
and Microsoft Research [24]. These experiments show both the feasibility and
the efficiency of the proposed language. A web prototype for RQL has been
released and is available for teaching and research: http://rql.insa-lyon.fr
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