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Abstract— A novel way to model an agent interacting with an 
environment is introduced, called an Enactive Markov Decision 
Process (EMDP). An EMDP keeps perception and action 
embedded within sensorimotor schemes rather than dissociated. 
Instead of seeking a goal associated with a reward, as in 
reinforcement learning, an EMDP agent is driven by two forms 
of self-motivation: successfully enacting sequences of interactions 
(autotelic motivation), and preferably enacting interactions that 
have predefined positive values (interactional motivation). An 
EMDP learning algorithm is presented. Results show that the 
agent develops a rudimentary form of self-programming, along 
with active perception as it learns to master the sensorimotor 
contingencies afforded by its coupling with the environment.  

Keywords—Enaction; self-motivation; constructivist learning. 

I.  INTRODUCTION 
 In cognitive science, there has been a customary and 

traditional tripartite division of the mind between perception, 
the control system, and motor action. This view has been 
nicely dubbed the “classic sandwich model” by Susan Hurley 
[1]. There have, nonetheless, been many attempts to challenge 
this traditional picture, particularly in the field of robotics 
[2][3], but also from a more psychological and theoretical 
perspective [4][5]. In particular, the idea emerged that it might 
be a mistake to consider sensation independently from action 
and that we should design cognitive systems on the basis of 
low-level sensorimotor loops that represent sensorimotor 
patterns of interaction. Here, we introduce a modeling 
approach that goes a step beyond the notion of low-level 
sensorimotor loops by simply considering sensorimotor 
patterns—also called sensorimotor schemes by Piaget [6]—as 
the atomic elements manipulated by our algorithms. 

Furthermore, the theory of enaction [7] stresses the 
importance of constitutive autonomy—the capacity of the 
system to “self-constitute its identity” [8]. Our modeling 
approach offers a way to address the problem of constitutive 
autonomy by supporting a form of autonomous sensorimotor 
self-programming through interaction with the environment.  

II. ENACTIVE MARKOV DECISION PROCESS (EMDP) 
We introduce a new way to model an agent interacting 

with an environment called an Enactive Markov Decision 
Process (EMDP). An EMDP conflates action and observation 
within a single entity called an interaction. Based on the 
EMDP model, we define EMDP problems consisting of 
designing agents that learn to master their sensorimotor 
contingencies [9] so as to exhibit self-motivation. The EMDP 
model allows defining two forms of self-motivation: the 
motivation to be in control of one’s own activity by seeking to 
successfully enact interactions, and the motivation to enact 
interactions that have predefined positive values and to avoid 
enacting interactions that have predefined negative values. We 
call the former autotelic motivation in reference to Steel’s 
autotelic principle [10], and the latter interactional motivation 
[11].  

A. EMDP Formalism compared to POMDP 
Formally, we define an EMDP as a tuple (S, I, q, v) in 

which S is the set of environment states; I is the set of 
primitive interactions offered by the coupling between the 
agent and the environment; q is a probability distribution such 
that q(st+1|st,it) gives the probability that the environment 
transitions to state st+1 ∈ S when the agent chooses interaction 
it ∈ I in state st; and v is a probability distribution such that 
v(et|st,it) gives the probability that the agent receives the input 
et ∈ I after choosing it in state st. We call it the intended 
interaction because it represents the sensorimotor scheme that 
the agent intends to enact at the beginning of step t; and et the 
enacted interaction because it represents the sensorimotor 
scheme that the agent records as actually enacted at the end of 
step t. If the enacted interaction equals the intended interaction 
(et=it) then the attempted enaction of it is considered a success, 
otherwise, it is considered a failure. The EMDP cycle evolves 
as follows and is illustrated in Fig. 1. 

1. Let t = 0 and let s0 ∈ S denote the initial environment state. 
2. Choose intended interaction it ∈ I. 
3. Transit to new state st+1 ∈ S with probability q(st+1|st,it). 
4. Generate actually enacted et ∈ I with probability v(et|st,it).  
5. t = t + 1. 
6. Goto 2. 
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There are three major differences between an EMDP and a 
Partially Observable Markov Decision Process (POMDP) 
[12]: (a) the cycle does not start from the environment but 
from the agent, implying a conceptual inversion of the 
perception/action cycle (as some other authors have also 
proposed, e.g. [13]); (b) The agent’s input and output belong 
to the same set I rather than two different sets (observations O 
and actions A); (c) There is no reward defined as a function of 
the MDP’s state. 

To pursue the comparison, it would be possible to 
decompose the interaction set as the product space of a 
POMDP’s action set and observation set (I = A × O). Yet, the 
philosophy of an EMDP differs in that the observation set 
would contain too little information about the state s to allow 
traditional reinforcement learning techniques to generate 
interesting behaviors. To illustrate this difference, we present 
an experiment in which the equivalent observation set is 
reduced to a single bit, while the interaction set if fairly 
sophisticated. The lack of observational information is 
counterbalanced by the fact that the observation’s meaning 
depends on the previous action. Moreover, the EMDP goal is 
not of maximizing a reward function but rather of exhibiting a 
more complex form of self-motivation that we present next.  

B. Self motivation 
Now that we have formally defined a successful enaction, 

we can define autotelic motivation as the tendency to learn to 
successfully enact interactions. This tendency involves neither 
a reward nor a goal; it is intrinsically encoded in the algorithm 
through discovering, recording, and re-enacting sequences of 
interactions that capture regularities in the coupling with the 
environment, as we will explain in Section III. 

Additionally, we define interactional motivation as a way 
to associate an “innate” intrinsic value with some interactions, 
for example: a positive value with interactions representing 
ingesting food, and a negative value with interactions 
representing getting hurt. Interactional motivation is meant to 
underdetermine the agent’s behavior so that the agent can use 
neutral interactions to place itself in situations in which it can 
successfully enact positive interactions and to stay away from 

situations in which negative interactions cannot be avoided. 
We specify interactional motivation through a function r: I → 
ℝ that associates a scalar value r(e) with each primitive 
interaction e ∈ I. Interactional motivation relates to intrinsic 
motivation (e.g., [14]) in that it is defined independently of the 
environment’s state.  

To fulfill both its autotelic and interactional motivation, we 
expect an EMDP agent to discover, memorize, and exploit 
regularities that exist in its coupling with its environment. 
Section II.C formally defines a regularity of interaction as a 
series of primitive interactions that can be learned and enacted 
as a whole sequence. 

C. Self-programming EMDP agents 
We define a composite interaction as a sequence of two 

interactions ic = 〈ipre, ipost〉, where ipre and ipost may be primitive 
interactions or other composite interactions. We refer to ipre as 
ic’s pre-interaction, also denoted pre(ic), and to ipost as ic’s 
post-interaction, also denoted post(ic). We define Kt as the set 
of composite interactions known by the agent at time t, and Jt 
= I ∪ Kt as the set of all interactions, primitive or composite, 
at time t. Interactions in Jt are thus hierarchically organized in 
a pairwise manner, all the way down to primitive interactions. 
We extend r to be a function from Jt → ℝ that gives the 
motivational value of a composite interaction as the sum of the 
values of its primitive interactions, meaning that enacting a 
composite interaction has the same motivational value as 
enacting all of its primitive interactions. 

A self-programming agent can choose to enact any 
interaction in Jt, primitive or composite. We call the mecha-
nism that chooses an interaction the decisional mechanism, the 
point in time td when this choice is made a decision time, and 
the time lapse during which an interaction is enacted a 
decision cycle. Decision steps thus do not occur on each time 
step but rather between each decision cycle. Trying to enact a 
composite interaction ic consists of sequentially trying to enact 
the series of the k primitive interactions 〈ip1… ipk〉 that 
compose ic over the next k time steps td+1, … td+k. If all the 
primitive interactions are successfully enacted, then ic is 
successfully enacted, and the decision cycle ends at time td+k. 
If the enaction of the jth element of ic fails, then the decision 
cycle is interrupted at time td+j and the actually enacted 
composite interaction is constructed from the series of the j 
actually enacted primitive interactions 〈ep1… epj〉.  

We describe such agents as self-programming because 
composite interactions work as programs that the agent learns 
and subsequently executes. Rather than being written in a 
conventional programming language, such programs are 
written in the “agent’s programming language” in the sense 
that they are made of sequences of instructions that the agent 
knows how to execute.  

III. INTERACTIONAL MOTIVATION SYSTEM (IMOS) 
We implemented a new algorithm to control EMDP 

agents, called Interactional MOtivation System (IMOS), based 
on a previous algorithm [16]. Section III.A provides a new 
explanation of the main mechanisms of the previous algorithm 

Agent 
 r(et) !    

 

 

v(et|st,it) 

st  it 

it ! I et ! I 

q(st+1|st, it) 
MDP 

state st+1 state st 

Context Ct  

Fig.1.  Diagram of an Enactive Markov Decision Process (EMDP). At time 
t, the agent chooses an intended primitive interaction it (the agent’s output). 
The attempt to enact it generates a transition of the environment (represented 
by the Markov Decision Process, MDP) from state st to st+1. The agent then 
receives the enacted primitive interaction et ∈ I (the agent’s input). If et = it, 
then the attempt to enact it is considered a success, otherwise, a failure. The 
agent’s “perception of its environment” is an internal construct Ct rather 
than the input et. 



in the light of the EMDP formalism introduced in this paper: 
the learning mechanism and the context construction 
mechanism. We refer the reader to the previous paper [16] for 
a more thorough explanation. Section III.B presents the new 
decisional mechanism implemented in IMOS. 

A. Learning and context construction mechanism 
The agent’s current situation is represented by a set of 

interactions Cd ⊂ Jd referred to as the context (from now on, 
all “Xt” at decision time td is denoted “Xd”). C0 = ∅ and J0 = I. 
At the end of decision cycle td, the agent records or reinforces 
the composite interactions whose pre-interaction belongs to Cd 
and whose post-interaction is the actually enacted interaction 
ed. The set of learned or reinforced composite interactions is 
thus Ld = {〈ipre, ed〉 | ipre ∈ Cd}. Each learned or reinforced 
composite interaction thus records the experience that, in a 
context in which ipre was enacted, ed was subsequently 
enacted. The set of composite interactions known by the agent 
at decision cycle td+1 thus becomes Kd+1 = Kd ∪ Ld. Let weit(i) 
∈ ℕ be the weight of composite interaction i at time t. The 
weight of a new learned composite interaction is initialized to 
1. Reinforcing an already-known composite interaction means 
incrementing its weight.  

If id’s enaction failed (ed ≠ id), then the agent adds ed to the 
set of id’s alternative interactions altd(id) ⊂ Jd  known  at  time  
td.  Later,   the  decisional  mechanism  uses  altd(id) to evaluate 
the odds that other interactions may be actually enacted when 
trying to enact id again, as we further explain in Section III.B.  

Before making the next decision at time td+1, the agent 
computes the context Cd+1 as the set of interactions that were 
enacted at the end of decision cycle td and that are sufficiently 
reinforced. We define a threshold η, and let Lηd = {l ∈ Ld | 
weid(l) > η} be the set of composite interactions in Ld whose 
weight is greater than the threshold η at time td. 

   Cd+1 = Lηd ∪ {ec} ∪ {post(ec)} (1) 

Equation (1) implies that Cd+1 contains interactions of 
various lengths that have just been enacted at the end of 
decision cycle td. Since, over time, the agent tends to enact 
interactions that capture sequential regularities afforded by the 
environment, Cd tends to represent the agent’s situation in 
terms of the sequences of interactions that are the most 
representative of the situation at time td.  

In the experiments reported in Sections IV and V, we set η 
= 5, meaning that a sequence had to be encountered 5 times 
before being eligible for inclusion in the context. Lower 
values of η tend to favor faster learning of possibly less 
positive behaviors; greater values of η tend to favor slower 
learning of possibly more positive behaviors. Automatically 
adjusting η is still an open question. Limiting the size of the 
context to interactions sufficiently reinforced prevents 
combinatorial growth of the number of interactions learned 
over time. With this mechanism, experiments show that the 
number of interactions learned after each decision cycle 
remains limited (less than 10 in the experiment reported in 
Section 5). 

B. New decisional mechanism 
At decision cycle td, let Ad = {a ∈ Kd | pre(a) ∈ Cd} be the 

set of composite interactions whose pre-interaction belongs to 
the current context, called activated interactions. Let Pd = {p 
∈ Jd | ∃ a ∈ Ad, p = post(a)} be the set of interactions that 
constitute a post-interaction of an activated interaction. We 
call this set the proposed interactions. The agent thus 
anticipates that proposed interactions might be successfully 
enacted in the current context based on the regularities the 
agent has learned thus far. On decision cycle td, the agent 
chooses the next intended interaction id from amongst the 
proposed interactions in Pd, as we explain next. 

For each proposed interaction p in Pd, let  Apd ⊂ Ad be the 
set of activated interactions that proposed p. The decisional 
mechanism computes a proclivity value procd(p) as the sum of 
the weight of all activated interactions a in Apd multiplied by 
the value r(p). The agent thus has a proclivity to try to enact 
the interactions that are proposed by the most reinforced 
activated interactions and that have the highest motivational 
values. Interactions that have a negative value create a 
negative proclivity, which restrains the agent from trying to 
enact them. 

 procd(p) = ∑a∈Apd weid(a) × r(p) (2)  

Additionally, the decisional mechanism computes an 
alternative proclivity value procd(e) for each alternative 
interaction e ∈ altd(p) that may result from the attempt to 
enact p. For each alternative interaction e, we let Aed denote 
the set of activated interactions that proposed e.  

 procd(e) = ∑a ∈Aed weid(a) × r(e) (3) 

The final proclivity proc_finald(p) is then set equal to the 
sum of the proclivity of p and of the proclivities of all of its 
alternative interactions. Alternative interactions of p that have 
a negative motivational value thus restrain the agent from 
trying to enact p. 

 proc_finald(p) = procd(p) + ∑e∈altd(p) procd(e) (4) 

The decisional mechanism then chooses the intended 
interaction id as the interaction in Pd that has the highest final 
proclivity. As a result, the agent intends to enact the 
interaction id that has the highest positive motivational value 
r(id), weighted by the agent’s confidence that id will be 
successfully enacted in the current context Cd, and balanced 
by the weighted “fear” that it may result into a negative value 
r(ed) < 0 if id’s enaction fails. Because composite interactions 
may contain interactions with negative values, this mechanism 
does not drive the agent to the highest immediate value but 
rather allows the agent to enact sequences of negative 
interactions to reach even greater positive interactions, and to 
avoid immediate positive interactions that likely would lead 
subsequently to even more negative interactions.  



The main novelty of IMOS resides in the fact that it takes 
into account the various alternative interactions that may result 
from intended interactions, whereas the previous algorithm 
only considered their success or failure. The algorithm is also 
clearer in terms of the new EMDP formalism. 

IV. EXPERIMENT IN A SIMULATED ENVIRONMENT 
Cognitive theories have often advocated that hierarchical 

sequence learning is a key feature of cognition (e.g., [15]). 
Accordingly, we designed an EMDP problem that offers 
hierarchical sequential regularities of interaction, called the 
Small Loop Problem (SLP) [17] (Fig. 2). The possibilities of 
interaction are summarized in Fig. 3a. Examples hierarchical 
regularities of interactions are provided in Fig. 3b (induced by 
the loop-shaped pathway that constrains the agent’s behavior).  

The feel interactions especially illustrate the enactivist 
approach: the agent only receives information about the 
environment through the enaction of interactions. For 
example, trying to enact i7 informs the agent about the absence 
(if it succeeds) or the presence (if it fails and results in i8) of a 
wall in front, but the agent initially ignores this meaning, as 
well as the position of interactions and the existence of walls. 
In contrast, the turn interactions (i3 and i4) always succeed 
when the agent tries to enact them, and, therefore, provide no 
information (hence the need for representing the situation not 
only upon the last enacted interaction but upon longer 
sequences). 

The SLP is deterministic, making it a particular EMDP in 
which q and v implement no stochasticity. The agent is 
nonetheless confronted with uncertainty because it cannot 
initially predict the consequences of its intended interactions 
until it starts learning the regularities afforded by the 
environment. For example, when circling the loop 
counterclockwise, if it feels a wall in front, it can often feel an 
empty cell to the left, but not always. The agent’s algorithm is 
also deterministic, meaning that two runs lead to the same 
behavior. Different behaviors can nonetheless be observed by 
starting the agent from different initial positions.  

The experiment can be run interactively online1. A video 
showing an example run is also available2, corresponding to 
the trace reported in Fig. 4. Results show that the agent 
generally learns to avoid bumping into walls by adopting the 
behavior of feeling in front before trying to move forward 
within the first 300 steps (Bump Count graph in Fig. 3). Then, 
when the agent feels a wall in front, it progressively learns to 
feel to the side before deciding on which direction to turn. 
This behavior generally leads the agent to start to indefinitely 
circle the loop after approximately 400 steps, as reported in 
the example in Fig. 4. In some instances, it learns suboptimal 

                                                             
1  http://e-ernest.blogspot.fr/2012/03/small-loop-challenge.html 
2  http://www.youtube.com/watch?v=yliUE39l2R4 

 
Fig. 2.  The Small Loop Problem (SLP) in NetLogo. The environment (left) is the loop of white squares surrounded by green walls. The agent (brown 
arrowhead) can try to move one cell forward, turn to the left or to the right, feel in front, to the left or to the right, but it ignores the meaning of interactions. The 
experimenter can preset the values of the primitive interactions using the slider controls (center). The Interaction-Value window shows ASCII codes 
representing the primitive interactions enacted by the agent over time next to their values. The Bump Count graph (right) displays the number of times the agent 
bumps into a wall (cumulative total in blue), showing that the agent gradually learns to avoid bumping into walls. When the agent touches/feels a cell, the cell 
flashes yellow, and when the agent bumps into a wall, the wall flashes red, making the agent’s behavior intelligible to the experimenter. 

a) Primitive interactions (value)       Meaning (ignored by the agent) !

i1(5)           i2 (-10) ! ! !       step forward, bump !!

b) Example sequential regularities: !

(reg1) After i7     , attempting i1 or i2 more likely results in i1       than i2        .!

(reg3) After !i9, i3, i1, i8"                     , sequence !i4, i7, i1"                 can"
           often be enacted.!

(reg2) After i8        , sequence !i9, i3, i1"                   can often be enacted.!

i3 (-3)             i4 (-3)                             turn left, turn right!

i7 (-1)            i8 (-1)                      feel front empty, feel front wall!
i5 (-1) !            i6 (-1)                      feel right empty, feel right wall!

i9 (-1)           i10 (-1)                       feel left empty, feel left wall!

 
Fig. 3.   Interactions offered by the SLP. a) The agent has 10 primitive 
interactions at its disposal, which have scalar values set by the 
experimenter (in parentheses). Interactions that are afforded by empty 
cells are represented in white and those afforded by walls in green and 
red, but the agent ignores this distinction. To the agent, interactions only 
differ by their values. b) The coupling offers hierarchical sequential 
regularities of interactions. For example, we expect the agent, in 
discovering and exploiting (reg1), to choose interaction i7, and if this 
effectively results in i7, to subsequently choose i1 so as to safely enact i1 
which has a positive value, thus avoiding i2 which has a very negative 
value. Regularities have a hierarchical structure: for example, 〈i9, i3, i1〉 in 
(reg2) is a subsequence of the (reg3) sequence 〈i9, i3, i1, i8〉. The agent can 
begin by discovering and exploiting lower-level regularities, then learn 
higher-level regularities from sequences of lower-level regularities.  



behaviors such as moving back and forth along a single edge 
of the loop, repeatedly making U-turns at each end of the 
edge. We observed that IMOS was generally faster at learning 
to avoid bumping into walls than the previous algorithm (e.g., 
10 bumps in the example in Fig. 4 vs 18 bumps in the example 
reported in [17]). 

V. EXPERIMENT WITH AN E-PUCK ROBOT 
We ran a similar experiment with an e-puck robot [18] in 

the Box world shown in Fig. 5. The set of primitive 
interactions I was the same as those in the experiment in 
Section IV, with the same value function r. The interaction i1 
(step forward) consisted of moving approximately 5 cm. If the 
robot bumped into a wall during this displacement, the 
movement was interrupted and the interaction i2 was actually 
enacted. The three infrared sensors available in the front, 
front-left, and front-right directions were used to detect 

bumping (using a range of approximately 0.5 cm). The 
interactions i3 (turn left) and i4 (turn right) consisted of 
spinning approximately 90° to the left or to the right. The feel 
interactions (to the front, left, or right) were implemented 
using the three infrared sensors available on the front, left, and 
right sides of the robot, using a range of approximately 5 cm. 
Trying to enact a feeling interaction i5, i7, or i9 consisted of 
switching on the corresponding infrared LED and reading the 
infrared detection signal. Interactions i5, i7, i9 ended up 
actually enacted if no wall was detected, and i6, i8, i10 were 
actually enacted if a wall was detected within the approximate 
5 cm range respectively to the right, front, and left. 

Similar to the experiment in Section IV, this experiment 
showed that the robot learned to avoid bumping by using its 
front sensor to check for the absence of a wall before moving 
forward. A video of an example run is available online3. The 
first hundred steps are reported in the trace in Fig 6. 

This experiment illustrates how an EMDP algorithm can 
be transferred to a robot interacting with the real world. The 
algorithm worked well with imprecise displacements and 
noisy sensors. In some cases, spurious composite interactions 
may be learned (e.g., feel front empty then bump) but they do 
not degrade the robot’s behavior as long as correct composite 
interactions have dominant weights. The algorithm can be 

                                                             
3  http://e-ernest.blogspot.fr/2012/04/ernest-7-in-e-puck.html 

 
Fig. 5.  The e-puck robot in the Box world. 

 
Fig. 4.  First 500 steps of an example run of an IMOS agent in the SLP. Tape 1 represents the primitive interactions actually enacted over time: step forward 
(white triangles), bump (red triangles), turn (half-circles), feel empty (white squares), feel wall (green squares). Tape 2 represents the values of the enacted 
primitive interactions as a bar graph (green when positive, red when negative). Tape 3 represents the level of the enacted composite interaction in the 
hierarchy (gray when the enaction of the primitive interaction was successful, black when it failed, thus interrupting the decision cycle). The second-order 
composite interaction feel front empty – move forward (exploiting reg1) was successfully enacted for the first time on steps 57-58, then again on steps 59-60. 
The agent unsuccessfully tried to enact it on step 52 but the unexpected feeling of a wall caused its interruption, preventing the agent from bumping into the 
wall (black, second-order segment in Tape 3). Because the agent makes no assumptions on the meaning of primitive interactions, it also tries composite 
interactions that seem absurd to the observer (such as feeling twice to the front on steps 97-98) but subsequently abandons them because they prove useless to 
satisfy its interactional motivation. A third-order composite interaction was successfully enacted for the first time on steps 208-210:  turn right – feel front 
empty – step forward, and its counterpart to the left on steps 404-406. The fourth-order composite interaction feel left wall – turn right – feel front empty – 
step forward was enacted on steps 441-444. From that point, the agent had learned enough regularities to circle the loop counterclockwise indefinitely by 
appropriately feeling in front and to the right to prevent bumping and turning to the wrong direction, thus also minimizing mildly negative turn interactions.  



used as such to control the robot because the robot’s 
motivation is defined in terms of interactions that are known 
to the robot itself, rather than requiring states of the world to 
be explicitly specified, as in POMDPs. 

Note that this experiment rested on the fact that the ranges 
of the sensors were tuned to approximately correspond to the 
distance covered by a step forward move (5 cm). If these 
distances are too different, the robot learns that the sensors are 
useless. In this case, the robot moves forward without using 
the sensors and does not avoid bumping. Nonetheless, if we 
reduce the cost of turning to a small cost (r(i3) = r(i4) = -1), the 
robot learns to avoid bumping by alternating moving forward 
and turning, which causes it to circle around continuously in 
the box without hitting the walls. 

VI. CONCLUSION 
The EMDP model offers a framework for conceptualizing 

an agent’s coupling with its environment without separating 
perception from action. EMDP problems consist of designing 
agents that tend to successfully enact sequences of 
interactions, and, simultaneously, seek to enact interactions 
that have predefined positive values while avoiding interaction 
that have strong negative values. While this objective involves 
a scalar value function, it differs from the reinforcement-
learning objective by the fact that maximizing this value is not 
the only goal.  

We introduce a new algorithm to address EMDP problems 
called IMOS. By learning sequences of behaviors, IMOS 
relates to adaptive history methods (e.g. [19]), used in 
reinforcement learning, but differs by the fact that the learning 
is not driven by a reward function of the MDP’s state. By 
involving bottom-up chaining of behaviors, it relates to 
means-end analysis approaches (e.g., [20]), but differs by the 
fact that it is not based upon triples 〈pre-observation, action, 
post-observation〉, but rather couples 〈pre-interaction, post-
interaction〉, allowing the recursive learning of hierarchies of 
sequences, and rudimentary self-programming.  

We propose a method to assess EMDP agents through 
behavioral analysis. In our experiments, IMOS agents exhibit 
autotelic motivation and interactional motivation, in particular 
by learning to use some sensorimotor interactions (feeling) as 
a form of active perception to subsequently choose adapted 
behaviors (although the specific meaning of the interactions is 
initially unknown to the agent).  
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Fig. 6.  First 100 steps of an example run of an e-puck robot controlled by IMOS in the Box world, using the same symbols as in Fig. 4. Tape 1 shows that the 
robot learned to avoid bumping (red triangles) after step 36. Tape 2 shows that the robot received more positive values more regularly from step 42 on. Tape 1 
with Tape 3 show that the composite interaction feel front empty – step forward was enacted for the first time on steps 27-28. On step 64, 74, and 92, this 
composite interaction was interrupted (black second-order segment in Tape 3) due to the fact that the feel front empty intended primitive interaction resulted 
in the feel front wall interaction being actually enacted, preventing the robot from bumping and inciting it to turn left instead. 


