
HAL Id: hal-01339220
https://hal.science/hal-01339220v1

Submitted on 20 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Enactive Approach to Autonomous Agent and Robot
Learning

Olivier L. Georgeon, Christian Wolf, Simon Gay

To cite this version:
Olivier L. Georgeon, Christian Wolf, Simon Gay. An Enactive Approach to Autonomous Agent and
Robot Learning. Joint International Conference on Development and Learning and on Epigenetic
Robotics, Aug 2013, Osaka, Japan. pp.1-6, �10.1109/DevLrn.2013.6652527�. �hal-01339220�

https://hal.science/hal-01339220v1
https://hal.archives-ouvertes.fr

An Enactive Approach to Autonomous
Agent and Robot Learning

Olivier L. Georgeon
Université de Lyon, CNRS

Université Lyon 1, LIRIS, UMR5205
Villeurbanne, F-69622 France
olivier.georgeon@liris.cnrs.fr

Christian Wolf
Université de Lyon, CNRS

INSA-LYON, LIRIS, UMR5205
Villeurbanne, F-69621 France

christian.wolf@liris.cnrs.fr

Simon Gay
Université de Lyon, CNRS

Université Lyon 1, LIRIS, UMR5205
Villeurbanne, F-69622 France

simon.gay@liris.cnrs.fr

Abstract— A novel way to model an agent interacting with an
environment is introduced, called an Enactive Markov Decision
Process (EMDP). An EMDP keeps perception and action
embedded within sensorimotor schemes rather than dissociated.
Instead of seeking a goal associated with a reward, as in
reinforcement learning, an EMDP agent is driven by two forms
of self-motivation: successfully enacting sequences of interactions
(autotelic motivation), and preferably enacting interactions that
have predefined positive values (interactional motivation). An
EMDP learning algorithm is presented. Results show that the
agent develops a rudimentary form of self-programming, along
with active perception as it learns to master the sensorimotor
contingencies afforded by its coupling with the environment.

Keywords—Enaction; self-motivation; constructivist learning.

I. INTRODUCTION
 In cognitive science, there has been a customary and

traditional tripartite division of the mind between perception,
the control system, and motor action. This view has been
nicely dubbed the “classic sandwich model” by Susan Hurley
[1]. There have, nonetheless, been many attempts to challenge
this traditional picture, particularly in the field of robotics
[2][3], but also from a more psychological and theoretical
perspective [4][5]. In particular, the idea emerged that it might
be a mistake to consider sensation independently from action
and that we should design cognitive systems on the basis of
low-level sensorimotor loops that represent sensorimotor
patterns of interaction. Here, we introduce a modeling
approach that goes a step beyond the notion of low-level
sensorimotor loops by simply considering sensorimotor
patterns—also called sensorimotor schemes by Piaget [6]—as
the atomic elements manipulated by our algorithms.

Furthermore, the theory of enaction [7] stresses the
importance of constitutive autonomy—the capacity of the
system to “self-constitute its identity” [8]. Our modeling
approach offers a way to address the problem of constitutive
autonomy by supporting a form of autonomous sensorimotor
self-programming through interaction with the environment.

II. ENACTIVE MARKOV DECISION PROCESS (EMDP)
We introduce a new way to model an agent interacting

with an environment called an Enactive Markov Decision
Process (EMDP). An EMDP conflates action and observation
within a single entity called an interaction. Based on the
EMDP model, we define EMDP problems consisting of
designing agents that learn to master their sensorimotor
contingencies [9] so as to exhibit self-motivation. The EMDP
model allows defining two forms of self-motivation: the
motivation to be in control of one’s own activity by seeking to
successfully enact interactions, and the motivation to enact
interactions that have predefined positive values and to avoid
enacting interactions that have predefined negative values. We
call the former autotelic motivation in reference to Steel’s
autotelic principle [10], and the latter interactional motivation
[11].

A. EMDP Formalism compared to POMDP
Formally, we define an EMDP as a tuple (S, I, q, v) in

which S is the set of environment states; I is the set of
primitive interactions offered by the coupling between the
agent and the environment; q is a probability distribution such
that q(st+1|st,it) gives the probability that the environment
transitions to state st+1 ∈ S when the agent chooses interaction
it ∈ I in state st; and v is a probability distribution such that
v(et|st,it) gives the probability that the agent receives the input
et ∈ I after choosing it in state st. We call it the intended
interaction because it represents the sensorimotor scheme that
the agent intends to enact at the beginning of step t; and et the
enacted interaction because it represents the sensorimotor
scheme that the agent records as actually enacted at the end of
step t. If the enacted interaction equals the intended interaction
(et=it) then the attempted enaction of it is considered a success,
otherwise, it is considered a failure. The EMDP cycle evolves
as follows and is illustrated in Fig. 1.

1. Let t = 0 and let s0 ∈ S denote the initial environment state.
2. Choose intended interaction it ∈ I.
3. Transit to new state st+1 ∈ S with probability q(st+1|st,it).
4. Generate actually enacted et ∈ I with probability v(et|st,it).
5. t = t + 1.
6. Goto 2.

This work was supported by the French Agence Nationale de la
Recherche (ANR) contract ANR-10-PDOC-007-01. We gratefully thank
James Marshall and Riccardo Manzotti for their contribution to this report.

There are three major differences between an EMDP and a
Partially Observable Markov Decision Process (POMDP)
[12]: (a) the cycle does not start from the environment but
from the agent, implying a conceptual inversion of the
perception/action cycle (as some other authors have also
proposed, e.g. [13]); (b) The agent’s input and output belong
to the same set I rather than two different sets (observations O
and actions A); (c) There is no reward defined as a function of
the MDP’s state.

To pursue the comparison, it would be possible to
decompose the interaction set as the product space of a
POMDP’s action set and observation set (I = A × O). Yet, the
philosophy of an EMDP differs in that the observation set
would contain too little information about the state s to allow
traditional reinforcement learning techniques to generate
interesting behaviors. To illustrate this difference, we present
an experiment in which the equivalent observation set is
reduced to a single bit, while the interaction set if fairly
sophisticated. The lack of observational information is
counterbalanced by the fact that the observation’s meaning
depends on the previous action. Moreover, the EMDP goal is
not of maximizing a reward function but rather of exhibiting a
more complex form of self-motivation that we present next.

B. Self motivation
Now that we have formally defined a successful enaction,

we can define autotelic motivation as the tendency to learn to
successfully enact interactions. This tendency involves neither
a reward nor a goal; it is intrinsically encoded in the algorithm
through discovering, recording, and re-enacting sequences of
interactions that capture regularities in the coupling with the
environment, as we will explain in Section III.

Additionally, we define interactional motivation as a way
to associate an “innate” intrinsic value with some interactions,
for example: a positive value with interactions representing
ingesting food, and a negative value with interactions
representing getting hurt. Interactional motivation is meant to
underdetermine the agent’s behavior so that the agent can use
neutral interactions to place itself in situations in which it can
successfully enact positive interactions and to stay away from

situations in which negative interactions cannot be avoided.
We specify interactional motivation through a function r: I →
ℝ that associates a scalar value r(e) with each primitive
interaction e ∈ I. Interactional motivation relates to intrinsic
motivation (e.g., [14]) in that it is defined independently of the
environment’s state.

To fulfill both its autotelic and interactional motivation, we
expect an EMDP agent to discover, memorize, and exploit
regularities that exist in its coupling with its environment.
Section II.C formally defines a regularity of interaction as a
series of primitive interactions that can be learned and enacted
as a whole sequence.

C. Self-programming EMDP agents
We define a composite interaction as a sequence of two

interactions ic = 〈ipre, ipost〉, where ipre and ipost may be primitive
interactions or other composite interactions. We refer to ipre as
ic’s pre-interaction, also denoted pre(ic), and to ipost as ic’s
post-interaction, also denoted post(ic). We define Kt as the set
of composite interactions known by the agent at time t, and Jt
= I ∪ Kt as the set of all interactions, primitive or composite,
at time t. Interactions in Jt are thus hierarchically organized in
a pairwise manner, all the way down to primitive interactions.
We extend r to be a function from Jt → ℝ that gives the
motivational value of a composite interaction as the sum of the
values of its primitive interactions, meaning that enacting a
composite interaction has the same motivational value as
enacting all of its primitive interactions.

A self-programming agent can choose to enact any
interaction in Jt, primitive or composite. We call the mecha-
nism that chooses an interaction the decisional mechanism, the
point in time td when this choice is made a decision time, and
the time lapse during which an interaction is enacted a
decision cycle. Decision steps thus do not occur on each time
step but rather between each decision cycle. Trying to enact a
composite interaction ic consists of sequentially trying to enact
the series of the k primitive interactions 〈ip1… ipk〉 that
compose ic over the next k time steps td+1, … td+k. If all the
primitive interactions are successfully enacted, then ic is
successfully enacted, and the decision cycle ends at time td+k.
If the enaction of the jth element of ic fails, then the decision
cycle is interrupted at time td+j and the actually enacted
composite interaction is constructed from the series of the j
actually enacted primitive interactions 〈ep1… epj〉.

We describe such agents as self-programming because
composite interactions work as programs that the agent learns
and subsequently executes. Rather than being written in a
conventional programming language, such programs are
written in the “agent’s programming language” in the sense
that they are made of sequences of instructions that the agent
knows how to execute.

III. INTERACTIONAL MOTIVATION SYSTEM (IMOS)
We implemented a new algorithm to control EMDP

agents, called Interactional MOtivation System (IMOS), based
on a previous algorithm [16]. Section III.A provides a new
explanation of the main mechanisms of the previous algorithm

Agent
 r(et) !

v(et|st,it)

st it

it ! I et ! I

q(st+1|st, it)
MDP

state st+1 state st

Context Ct

Fig.1. Diagram of an Enactive Markov Decision Process (EMDP). At time
t, the agent chooses an intended primitive interaction it (the agent’s output).
The attempt to enact it generates a transition of the environment (represented
by the Markov Decision Process, MDP) from state st to st+1. The agent then
receives the enacted primitive interaction et ∈ I (the agent’s input). If et = it,
then the attempt to enact it is considered a success, otherwise, a failure. The
agent’s “perception of its environment” is an internal construct Ct rather
than the input et.

in the light of the EMDP formalism introduced in this paper:
the learning mechanism and the context construction
mechanism. We refer the reader to the previous paper [16] for
a more thorough explanation. Section III.B presents the new
decisional mechanism implemented in IMOS.

A. Learning and context construction mechanism
The agent’s current situation is represented by a set of

interactions Cd ⊂ Jd referred to as the context (from now on,
all “Xt” at decision time td is denoted “Xd”). C0 = ∅ and J0 = I.
At the end of decision cycle td, the agent records or reinforces
the composite interactions whose pre-interaction belongs to Cd
and whose post-interaction is the actually enacted interaction
ed. The set of learned or reinforced composite interactions is
thus Ld = {〈ipre, ed〉 | ipre ∈ Cd}. Each learned or reinforced
composite interaction thus records the experience that, in a
context in which ipre was enacted, ed was subsequently
enacted. The set of composite interactions known by the agent
at decision cycle td+1 thus becomes Kd+1 = Kd ∪ Ld. Let weit(i)
∈ ℕ be the weight of composite interaction i at time t. The
weight of a new learned composite interaction is initialized to
1. Reinforcing an already-known composite interaction means
incrementing its weight.

If id’s enaction failed (ed ≠ id), then the agent adds ed to the
set of id’s alternative interactions altd(id) ⊂ Jd known at time
td. Later, the decisional mechanism uses altd(id) to evaluate
the odds that other interactions may be actually enacted when
trying to enact id again, as we further explain in Section III.B.

Before making the next decision at time td+1, the agent
computes the context Cd+1 as the set of interactions that were
enacted at the end of decision cycle td and that are sufficiently
reinforced. We define a threshold η, and let Lηd = {l ∈ Ld |
weid(l) > η} be the set of composite interactions in Ld whose
weight is greater than the threshold η at time td.

 Cd+1 = Lηd ∪ {ec} ∪ {post(ec)} (1)

Equation (1) implies that Cd+1 contains interactions of
various lengths that have just been enacted at the end of
decision cycle td. Since, over time, the agent tends to enact
interactions that capture sequential regularities afforded by the
environment, Cd tends to represent the agent’s situation in
terms of the sequences of interactions that are the most
representative of the situation at time td.

In the experiments reported in Sections IV and V, we set η
= 5, meaning that a sequence had to be encountered 5 times
before being eligible for inclusion in the context. Lower
values of η tend to favor faster learning of possibly less
positive behaviors; greater values of η tend to favor slower
learning of possibly more positive behaviors. Automatically
adjusting η is still an open question. Limiting the size of the
context to interactions sufficiently reinforced prevents
combinatorial growth of the number of interactions learned
over time. With this mechanism, experiments show that the
number of interactions learned after each decision cycle
remains limited (less than 10 in the experiment reported in
Section 5).

B. New decisional mechanism
At decision cycle td, let Ad = {a ∈ Kd | pre(a) ∈ Cd} be the

set of composite interactions whose pre-interaction belongs to
the current context, called activated interactions. Let Pd = {p
∈ Jd | ∃ a ∈ Ad, p = post(a)} be the set of interactions that
constitute a post-interaction of an activated interaction. We
call this set the proposed interactions. The agent thus
anticipates that proposed interactions might be successfully
enacted in the current context based on the regularities the
agent has learned thus far. On decision cycle td, the agent
chooses the next intended interaction id from amongst the
proposed interactions in Pd, as we explain next.

For each proposed interaction p in Pd, let Apd ⊂ Ad be the
set of activated interactions that proposed p. The decisional
mechanism computes a proclivity value procd(p) as the sum of
the weight of all activated interactions a in Apd multiplied by
the value r(p). The agent thus has a proclivity to try to enact
the interactions that are proposed by the most reinforced
activated interactions and that have the highest motivational
values. Interactions that have a negative value create a
negative proclivity, which restrains the agent from trying to
enact them.

 procd(p) = ∑a∈Apd weid(a) × r(p) (2)

Additionally, the decisional mechanism computes an
alternative proclivity value procd(e) for each alternative
interaction e ∈ altd(p) that may result from the attempt to
enact p. For each alternative interaction e, we let Aed denote
the set of activated interactions that proposed e.

 procd(e) = ∑a ∈Aed weid(a) × r(e) (3)

The final proclivity proc_finald(p) is then set equal to the
sum of the proclivity of p and of the proclivities of all of its
alternative interactions. Alternative interactions of p that have
a negative motivational value thus restrain the agent from
trying to enact p.

 proc_finald(p) = procd(p) + ∑e∈altd(p) procd(e) (4)

The decisional mechanism then chooses the intended
interaction id as the interaction in Pd that has the highest final
proclivity. As a result, the agent intends to enact the
interaction id that has the highest positive motivational value
r(id), weighted by the agent’s confidence that id will be
successfully enacted in the current context Cd, and balanced
by the weighted “fear” that it may result into a negative value
r(ed) < 0 if id’s enaction fails. Because composite interactions
may contain interactions with negative values, this mechanism
does not drive the agent to the highest immediate value but
rather allows the agent to enact sequences of negative
interactions to reach even greater positive interactions, and to
avoid immediate positive interactions that likely would lead
subsequently to even more negative interactions.

The main novelty of IMOS resides in the fact that it takes
into account the various alternative interactions that may result
from intended interactions, whereas the previous algorithm
only considered their success or failure. The algorithm is also
clearer in terms of the new EMDP formalism.

IV. EXPERIMENT IN A SIMULATED ENVIRONMENT
Cognitive theories have often advocated that hierarchical

sequence learning is a key feature of cognition (e.g., [15]).
Accordingly, we designed an EMDP problem that offers
hierarchical sequential regularities of interaction, called the
Small Loop Problem (SLP) [17] (Fig. 2). The possibilities of
interaction are summarized in Fig. 3a. Examples hierarchical
regularities of interactions are provided in Fig. 3b (induced by
the loop-shaped pathway that constrains the agent’s behavior).

The feel interactions especially illustrate the enactivist
approach: the agent only receives information about the
environment through the enaction of interactions. For
example, trying to enact i7 informs the agent about the absence
(if it succeeds) or the presence (if it fails and results in i8) of a
wall in front, but the agent initially ignores this meaning, as
well as the position of interactions and the existence of walls.
In contrast, the turn interactions (i3 and i4) always succeed
when the agent tries to enact them, and, therefore, provide no
information (hence the need for representing the situation not
only upon the last enacted interaction but upon longer
sequences).

The SLP is deterministic, making it a particular EMDP in
which q and v implement no stochasticity. The agent is
nonetheless confronted with uncertainty because it cannot
initially predict the consequences of its intended interactions
until it starts learning the regularities afforded by the
environment. For example, when circling the loop
counterclockwise, if it feels a wall in front, it can often feel an
empty cell to the left, but not always. The agent’s algorithm is
also deterministic, meaning that two runs lead to the same
behavior. Different behaviors can nonetheless be observed by
starting the agent from different initial positions.

The experiment can be run interactively online1. A video
showing an example run is also available2, corresponding to
the trace reported in Fig. 4. Results show that the agent
generally learns to avoid bumping into walls by adopting the
behavior of feeling in front before trying to move forward
within the first 300 steps (Bump Count graph in Fig. 3). Then,
when the agent feels a wall in front, it progressively learns to
feel to the side before deciding on which direction to turn.
This behavior generally leads the agent to start to indefinitely
circle the loop after approximately 400 steps, as reported in
the example in Fig. 4. In some instances, it learns suboptimal

1 http://e-ernest.blogspot.fr/2012/03/small-loop-challenge.html
2 http://www.youtube.com/watch?v=yliUE39l2R4

Fig. 2. The Small Loop Problem (SLP) in NetLogo. The environment (left) is the loop of white squares surrounded by green walls. The agent (brown
arrowhead) can try to move one cell forward, turn to the left or to the right, feel in front, to the left or to the right, but it ignores the meaning of interactions. The
experimenter can preset the values of the primitive interactions using the slider controls (center). The Interaction-Value window shows ASCII codes
representing the primitive interactions enacted by the agent over time next to their values. The Bump Count graph (right) displays the number of times the agent
bumps into a wall (cumulative total in blue), showing that the agent gradually learns to avoid bumping into walls. When the agent touches/feels a cell, the cell
flashes yellow, and when the agent bumps into a wall, the wall flashes red, making the agent’s behavior intelligible to the experimenter.

a) Primitive interactions (value) Meaning (ignored by the agent) !

i1(5) i2 (-10) ! ! ! step forward, bump !!

b) Example sequential regularities: !

(reg1) After i7 , attempting i1 or i2 more likely results in i1 than i2 .!

(reg3) After !i9, i3, i1, i8" , sequence !i4, i7, i1" can"
 often be enacted.!

(reg2) After i8 , sequence !i9, i3, i1" can often be enacted.!

i3 (-3) i4 (-3) turn left, turn right!

i7 (-1) i8 (-1) feel front empty, feel front wall!
i5 (-1) ! i6 (-1) feel right empty, feel right wall!

i9 (-1) i10 (-1) feel left empty, feel left wall!

Fig. 3. Interactions offered by the SLP. a) The agent has 10 primitive
interactions at its disposal, which have scalar values set by the
experimenter (in parentheses). Interactions that are afforded by empty
cells are represented in white and those afforded by walls in green and
red, but the agent ignores this distinction. To the agent, interactions only
differ by their values. b) The coupling offers hierarchical sequential
regularities of interactions. For example, we expect the agent, in
discovering and exploiting (reg1), to choose interaction i7, and if this
effectively results in i7, to subsequently choose i1 so as to safely enact i1
which has a positive value, thus avoiding i2 which has a very negative
value. Regularities have a hierarchical structure: for example, 〈i9, i3, i1〉 in
(reg2) is a subsequence of the (reg3) sequence 〈i9, i3, i1, i8〉. The agent can
begin by discovering and exploiting lower-level regularities, then learn
higher-level regularities from sequences of lower-level regularities.

behaviors such as moving back and forth along a single edge
of the loop, repeatedly making U-turns at each end of the
edge. We observed that IMOS was generally faster at learning
to avoid bumping into walls than the previous algorithm (e.g.,
10 bumps in the example in Fig. 4 vs 18 bumps in the example
reported in [17]).

V. EXPERIMENT WITH AN E-PUCK ROBOT
We ran a similar experiment with an e-puck robot [18] in

the Box world shown in Fig. 5. The set of primitive
interactions I was the same as those in the experiment in
Section IV, with the same value function r. The interaction i1
(step forward) consisted of moving approximately 5 cm. If the
robot bumped into a wall during this displacement, the
movement was interrupted and the interaction i2 was actually
enacted. The three infrared sensors available in the front,
front-left, and front-right directions were used to detect

bumping (using a range of approximately 0.5 cm). The
interactions i3 (turn left) and i4 (turn right) consisted of
spinning approximately 90° to the left or to the right. The feel
interactions (to the front, left, or right) were implemented
using the three infrared sensors available on the front, left, and
right sides of the robot, using a range of approximately 5 cm.
Trying to enact a feeling interaction i5, i7, or i9 consisted of
switching on the corresponding infrared LED and reading the
infrared detection signal. Interactions i5, i7, i9 ended up
actually enacted if no wall was detected, and i6, i8, i10 were
actually enacted if a wall was detected within the approximate
5 cm range respectively to the right, front, and left.

Similar to the experiment in Section IV, this experiment
showed that the robot learned to avoid bumping by using its
front sensor to check for the absence of a wall before moving
forward. A video of an example run is available online3. The
first hundred steps are reported in the trace in Fig 6.

This experiment illustrates how an EMDP algorithm can
be transferred to a robot interacting with the real world. The
algorithm worked well with imprecise displacements and
noisy sensors. In some cases, spurious composite interactions
may be learned (e.g., feel front empty then bump) but they do
not degrade the robot’s behavior as long as correct composite
interactions have dominant weights. The algorithm can be

3 http://e-ernest.blogspot.fr/2012/04/ernest-7-in-e-puck.html

Fig. 5. The e-puck robot in the Box world.

Fig. 4. First 500 steps of an example run of an IMOS agent in the SLP. Tape 1 represents the primitive interactions actually enacted over time: step forward
(white triangles), bump (red triangles), turn (half-circles), feel empty (white squares), feel wall (green squares). Tape 2 represents the values of the enacted
primitive interactions as a bar graph (green when positive, red when negative). Tape 3 represents the level of the enacted composite interaction in the
hierarchy (gray when the enaction of the primitive interaction was successful, black when it failed, thus interrupting the decision cycle). The second-order
composite interaction feel front empty – move forward (exploiting reg1) was successfully enacted for the first time on steps 57-58, then again on steps 59-60.
The agent unsuccessfully tried to enact it on step 52 but the unexpected feeling of a wall caused its interruption, preventing the agent from bumping into the
wall (black, second-order segment in Tape 3). Because the agent makes no assumptions on the meaning of primitive interactions, it also tries composite
interactions that seem absurd to the observer (such as feeling twice to the front on steps 97-98) but subsequently abandons them because they prove useless to
satisfy its interactional motivation. A third-order composite interaction was successfully enacted for the first time on steps 208-210: turn right – feel front
empty – step forward, and its counterpart to the left on steps 404-406. The fourth-order composite interaction feel left wall – turn right – feel front empty –
step forward was enacted on steps 441-444. From that point, the agent had learned enough regularities to circle the loop counterclockwise indefinitely by
appropriately feeling in front and to the right to prevent bumping and turning to the wrong direction, thus also minimizing mildly negative turn interactions.

used as such to control the robot because the robot’s
motivation is defined in terms of interactions that are known
to the robot itself, rather than requiring states of the world to
be explicitly specified, as in POMDPs.

Note that this experiment rested on the fact that the ranges
of the sensors were tuned to approximately correspond to the
distance covered by a step forward move (5 cm). If these
distances are too different, the robot learns that the sensors are
useless. In this case, the robot moves forward without using
the sensors and does not avoid bumping. Nonetheless, if we
reduce the cost of turning to a small cost (r(i3) = r(i4) = -1), the
robot learns to avoid bumping by alternating moving forward
and turning, which causes it to circle around continuously in
the box without hitting the walls.

VI. CONCLUSION
The EMDP model offers a framework for conceptualizing

an agent’s coupling with its environment without separating
perception from action. EMDP problems consist of designing
agents that tend to successfully enact sequences of
interactions, and, simultaneously, seek to enact interactions
that have predefined positive values while avoiding interaction
that have strong negative values. While this objective involves
a scalar value function, it differs from the reinforcement-
learning objective by the fact that maximizing this value is not
the only goal.

We introduce a new algorithm to address EMDP problems
called IMOS. By learning sequences of behaviors, IMOS
relates to adaptive history methods (e.g. [19]), used in
reinforcement learning, but differs by the fact that the learning
is not driven by a reward function of the MDP’s state. By
involving bottom-up chaining of behaviors, it relates to
means-end analysis approaches (e.g., [20]), but differs by the
fact that it is not based upon triples 〈pre-observation, action,
post-observation〉, but rather couples 〈pre-interaction, post-
interaction〉, allowing the recursive learning of hierarchies of
sequences, and rudimentary self-programming.

We propose a method to assess EMDP agents through
behavioral analysis. In our experiments, IMOS agents exhibit
autotelic motivation and interactional motivation, in particular
by learning to use some sensorimotor interactions (feeling) as
a form of active perception to subsequently choose adapted
behaviors (although the specific meaning of the interactions is
initially unknown to the agent).

REFERENCES

[1] Hurley, S., Consciousness in action, Cambridge, MA: Harvard
University Press, 1998.

[2] Brooks, R., “New approaches to robotics”. Science, 253, pp. 1227–1232,
1991.

[3] Krüger, V., Herzog, D., “Tracking in object action space,” Computer
Vision and Image Understanding, in press.

[4] Shanahan, M. P., “Embodiment and the Inner Life,” Cognition and
Consciousness in the Space of Possible Minds. Oxford: Oxford
University Press, 2010.

[5] Ziemke, T., “The construction of reality in the robot: Constructivist
perspective on situated artificial intelligence and adaptive robotics,”
Foundations of Science, 6, pp. 163–233, 2001.

[6] Piaget, J., The psychology of intelligence, London: Routledge and
Kegan Paul, 1951.

[7] Varela, F., Thompson, E. and Rosch, E., The embodied mind: Cognitive
science and human experience. Cambridge: MIT Press, 1991.

[8] Froese, T. and Ziemke, T. (2009). Enactive artificial intelligence:
Investigating the systemic organization of life and mind. Artificial
Intelligence, 173(3-4), 466–500.

[9] O’Regan, K., Noë, A., “A sensorimotor account of vision and visual
consciousness,” Behavioral and Brain Sciences, 24(5), pp 939–73, 2001.

[10] Steels, L. (2004). The Autotelic Principle. In I. Fumiya, R. Pfeifer, L.
Steels, & K. Kunyoshi (Eds), Embodied Artificial Intelligence (pp. 231-
242), Springer Verlag.

[11] Georgeon, O., Marshall, J., and Gay, S., “Interactional motivation in
artificial systems: between extrinsic and intrinsic motivation,” 2nd
International Conference on Development and Learning and on
Epigenetic Robotics (EPIROB2012), San Diego, pp. 1-2, 2012.

[12] Kaelbling, L., Littman, M., and Cassandra, A., “Planning and acting in
partially observable stochastic domains”. Artificial Intelligence Journal,
101, pp.99-134, 1998.

[13] Pfeifer, R. and Scheier, C., “From perception to action: The right
direction?” In P. Gaussier and J.-D. Nicoud (Eds.), From Perception to
Action (pp. 1-11). IEEE Computer Society Press, 1994.

[14] Oudeyer, P.-Y., Kaplan, F. and Hafner, V., "Intrinsic motivation systems
for autonomous mental development," IEEE Transactions on
Evolutionary Computation, 11 (2), pp. 265-286, 2007.

[15] Sun, R. and Giles, C. L., Sequence Learning - Paradigms, Algorithms,
and Applications, Berlin Heidelberg: Springer, 2000.

[16] Georgeon, O., and Ritter, F., “An intrinsically-motivated schema
mechanism to model and simulate emergent cognition,” Cognitive
Systems Research, 15-16, pp. 73-92, 2012.

[17] Georgeon, O. and Marshall, J., “Demonstrating sensemaking emergence
in artificial agents: A method and an example,” International Journal of
Machine Consciousness, in press.

[18] Mondada, F. et al., “The e-puck, a robot designed for education in
engineering,” 9th Conference on Autonomous Robot Systems and
Competitions, pp. 59-65, 2009.

[19] McCallum, A., “Learning to use selective attention and short-term
memory in sequential tasks”. Fourth International Conference on
Simulating Adaptive Behavior; 1996.

[20] Drescher, G. L., Made-up minds, a constructivist approach to artificial
intelligence. Cambridge, MA: MIT Press, 1991.

Fig. 6. First 100 steps of an example run of an e-puck robot controlled by IMOS in the Box world, using the same symbols as in Fig. 4. Tape 1 shows that the
robot learned to avoid bumping (red triangles) after step 36. Tape 2 shows that the robot received more positive values more regularly from step 42 on. Tape 1
with Tape 3 show that the composite interaction feel front empty – step forward was enacted for the first time on steps 27-28. On step 64, 74, and 92, this
composite interaction was interrupted (black second-order segment in Tape 3) due to the fact that the feel front empty intended primitive interaction resulted
in the feel front wall interaction being actually enacted, preventing the robot from bumping and inciting it to turn left instead.

