
HAL Id: hal-01339190
https://hal.science/hal-01339190

Submitted on 13 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ECA: An enactivist cognitive architecture based on
sensorimotor modeling

Olivier Georgeon, James Marshall, Riccardo Manzotti

To cite this version:
Olivier Georgeon, James Marshall, Riccardo Manzotti. ECA: An enactivist cognitive architecture
based on sensorimotor modeling. Biologically Inspired Cognitive Architectures, 2013, 6, pp.46-57.
�10.1016/j.bica.2013.05.006�. �hal-01339190�

https://hal.science/hal-01339190
https://hal.archives-ouvertes.fr

ECA: An enactivist cognitive architecture
based on sensorimotor modeling

Olivier L. GEORGEONa,b, James B. MARSHALLc , and Riccardo MANZOTTId
a

 Université de Lyon, CNRS
bUniversité Lyon 1, LIRIS, UMR5205, F-69622, France
c

 Sarah Lawrence College, Bronxville, NY 10708, USA
dIULM University, Milan, Italy

Abstract. A novel way to model an agent interacting with an environment is
introduced, called an Enactive Markov Decision Process (EMDP). An EMDP
keeps perception and action embedded within sensorimotor schemes rather than
dissociated, in compliance with theories of embodied cognition. Rather than
seeking a goal associated with a reward, as in reinforcement learning, an EMDP
agent learns to master the sensorimotor contingencies offered by its coupling with
the environment. In doing so, the agent exhibits a form of intrinsic motivation
related to the autotelic principle (Steels, 2004), and a value system attached to
interactions called interactional motivation. This modeling approach allows the
design of agents capable of autonomous self-programming, which provides
rudimentary constitutive autonomy—a property that theoreticians of enaction
consider necessary for autonomous sense-making (e.g., Froese & Ziemke, 2009).
A cognitive architecture is presented that allows the agent to autonomously
discover, memorize, and exploit spatio-sequential regularities of interaction, called
Enactive Cognitive Architecture (ECA). In our experiments, behavioral analysis
shows that ECA agents develop active perception and begin to construct their own
ontological perspective on the environment.

Keywords. Enaction; self-motivation; cognitive architecture; developmental
learning.

Introduction

In cognitive science, there has been a customary and traditional tripartite division of the
mind between perception, the control system, and motor action. This view has been
nicely dubbed the “classic sandwich model” by Susan Hurley (1998). Many control
architectures are built in this way. Since the 1980s there have been many attempts to
challenge this traditional picture particularly in the field of robotics (e.g., Brooks,
1991) but also from a more psychological and theoretical perspective (e.g., Hirose,
2002; Shanahan, 2010; Ziemke, 2001). In particular, the idea emerged that it might be a
mistake to consider sensation independently from action and that we should design
cognitive systems on the basis of low-level sensorimotor loops that represent
sensorimotor patterns of interaction. This intuition gained momentum from other
related views such as embodied cognition (e.g., Anderson, 2003; Holland, 2004),
ecological psychology (Chemero & Turvey, 2007; Gibson, 1979), sensorimotor
theories (O’Regan & Noë, 2001; O’Regan, 2012), morphological robotics (Paul, 2006;

Pfeifer & Bongard 2006; Pfeifer, 1999), developmental robotics (Lungarella, Metta,
Pfeifer, & Sandini, 2003), and epigenetic robotics (Berthouze & Ziemke, 2003; Zlatev,
2001). Here, we introduce a modeling approach that goes a step beyond the notion of
low-level sensorimotor loops by simply considering sensorimotor patterns—also called
sensorimotor schemes by Piaget (1951)—as the atomic elements manipulated by our
algorithms.

Varela and his coauthors (1991) coined the term enactive perception to suggest
that organism and environment are coupled together. The features of the environment
to which an organism responds are singled out by the ongoing activity in the organism.
The domain that defines this coupling has been called the relational domain (e.g.,
Froese & Ziemke, 2009). The theory of enaction, initiated by Varela, stresses that the
relational domain evolves over the organism’s life in a manner that is codetermined by
the organism and the environment. The fact that the relational domain is not predefined
makes possible the organism’s constitutive autonomy—the capacity of the organism to
“self-constitute its identity” (Froese & Ziemke, 2009). These authors argue that
constitutive autonomy is an important aspect of organisms because it is a precondition
of sense-making and intrinsic teleology, and is thus a property that we should seek to
obtain in artificial agents.

Furthermore, the term enaction also incorporates the idea that perception involves
physical activity, or action. A model of reference was offered by O’Regan & Noë’s
(2001) sensorimotor contingencies theory. To perceive the world is to master the
sensorimotor contingencies between the body and the world. Every sensor modality is
characterized by “the structure of the rules governing the sensory changes produced by
various motor actions, that is, what we call the sensorimotor contingencies” (O’Regan,
2001, p. 941).

The enactivist approach suggests modeling a cognitive agent on the basis of
sensorimotor interactions with the environment. This paper is an attempt in that
direction. In the next section, we introduce a new type of algorithm that does not
separate perception from action, called an Enactive Markov Decision Process (EMDP).
An EMDP provides a useful conceptual framework for designing agents capable of
intrinsically-motivated self-programming as they interact with their environment. We
qualify such self-programming as sensorimotor because it consists of learning a series
of sensorimotor schemes that are subsequently executed as programs. We argue that
sensorimotor self-programming opens the way to constitutive autonomy.

While acknowledging that EMDP problems are intractable in the general case, we
present two instances in which the coupling with the environment allows the agent to
learn to master sensorimotor contingencies within a reasonable frame. The first is
called a hierarchical sequential EMDP problem. The second is called a Spatial Enactive
Markov Decision Process (SEMDP). A SEMDP is intended to model an agent
interacting with an environment that has a Euclidian spatial structure, such as the real
world. This work leads us to propose a cognitive architecture dedicated to agents
confronted with SEMDP problems, called the Enactive Cognitive Architecture (ECA).

Formalism for enactive learning problems

The philosophy of an EMDP is that the agent tries to enact an intended sensorimotor
scheme, and is informed by the environment whether this intended scheme was indeed
enacted, or whether another scheme was enacted instead. In the former case, the

intended scheme is considered successfully enacted; in the latter case, the intended
enaction failed and another scheme was actually enacted instead. While EMDP
problems differ from reinforcement learning problems, we present them using a similar
formalism to allow for comparison.

Enactive Markov Decision Process (EMDP)
Formally, we define an EMDP as a tuple (S, I, q, v) in which S is the set of environment
states; I is the set of primitive interactions offered by the coupling between the agent
and the environment; q is a probability distribution such that q(st+1|st,it) gives the
probability that the environment transitions to state st+1 ∈ S when the agent chooses
interaction it ∈ I in state st ∈ S; and v is a probability distribution such that v(et|st,it)
gives the probability that the agent receives the input et ∈ I after choosing it in state st.
We call it the intended interaction because it represents the sensorimotor scheme that
the agent intends to enact at the beginning of step t; it constitutes the agent’s output sent
to the environment. We call et the enacted interaction because it represents the
sensorimotor scheme that the agent records as actually enacted at the end of step t; et
constitutes the agent’s input received from the environment. If the enacted interaction
equals the intended interaction (et = it) then the attempted enaction of it is considered a
success, otherwise, it is considered a failure.

As an example, primitive interactions may represent tactile sensorimotor schemes,
which consist of the combination of a movement and the sensory stimulation generated
by the movement. When the agent tries to enact a tactile interaction, this may result in a
success if the agent indeed touched something, or in a failure if the agent touched
nothing, in which case the actually enacted interaction represents the sensorimotor
scheme of touching nothing. Figure 1 shows the EMDP cycle and algorithm. A
complete EMDP example will be presented later in Figures 7a and 7b.

Agent

v(et|st,it)

st it

it ! I et ! I

q(st+1|st, it)

MDP

state st+1 state st

1. Let t = 0 and let s0 ! S denote the
 initial environment state.

2. Choose the intended interaction it ! I.
3. Transit to the new state st+1 ! S with

 probability q(st+1|st,it).
4. Generate the enacted interaction et ! I

 with probability v(et|st,it).
5. t = t + 1.
6. Goto 2.

Context Ct
Figure 1: Left: diagram of an Enactive Markov Decision Process (EMDP). Right: the EMDP algorithm. At
time t, the agent chooses an intended primitive interaction it. The attempt to enact it generates a transition of
the environment (represented by the Markov Decision Process MDP) from state st to state st+1. The agent then
receives the enacted primitive interaction et. If et = it then the attempt to enact it is considered a success,
otherwise, a failure. The agent’s “perception of its environment” is an internal construct Ct rather than the
input et.

There are four formal differences between an EMDP and a Partially Observable

Markov Decision Process (POMDP) (Kaelbling, Littman, & Cassandra, 1998): (a) the
agent’s input and output belong to the same set I rather than two different sets

(observations and actions); (b) there is no reward defined as a function of the
environment, and the goal is not that the system reaches a reward state; (c) the cycle
does not start from the environment but from the agent, making the agent’s input et a
consequence of the agent’s output it rather than a premise. Notably, some authors (e.g.,
Pfeifer & Scheier, 1994) have called for this conceptual inversion of the
perception/action cycle, but, to our knowledge, our algorithm is the first attempt to
formalize it. More precisely, what we consider an EMDP agent’s “perception” is an
internal construct created through interaction rather than merely the input et. (d) The
agent’s input et is computed from the state st that precedes the tentative enaction of it
rather than from the state that follows the previous action in a POMDP.

To complete the definition of an EMDP problem, we now need to define the
objectives that we seek to achieve in using the EMDP formalism. In contrast to
reinforcement learning (e.g., Sutton & Barto, 1998), our objective is not to design
agents that learn to maximize a reward function over time. Neither is it to implement an
agent that finds a goal state by exploring a problem space, as in problem-solving.
Instead, an EMDP agent is driven by a more complex form of self-motivation, which
we address next.

Self-motivation
Our approach to agent motivation resonates with Dreyfus’s (2007) vision of a
“Heideggerian Artificial Intelligence” that suggests that “we are drawn to move so as to
achieve a better and better grip on our situation”. Dreyfus notes: “for this movement
towards maximal grip to take place, one doesn’t need a mental representation of one’s
goal nor any subagential problem solving”. In accordance with this vision, we designed
an algorithm to control EMDP agents that learn to successfully enact sequences of
interactions (following our definition of a successful enaction introduced above). This
tendency involves neither a reward nor a goal; it is intrinsically encoded in the
algorithm through discovering, recording, and re-enacting sequences of interactions
that capture regularities in the coupling with the environment, as we will explain in the
next section.

Since the algorithm does not use a reward function or a problem representation, it
constitutes neither a reward maximization algorithm nor a problem-solving algorithm,
but is better described—using Dreyfus’s term—as a “skillful coping” algorithm. This
skillful coping principle relates to the autotelic principle (Steels, 2004) and to the
principle of optimal experience (Csikszentmihalyi, 1990) because, to an external
observer, the agent seems to enjoy being in control of its activity. Here, we call this
motivational principle autotelic motivation. More broadly, autotelic motivation falls
within the area of intrinsic motivation (e.g., Oudeyer, Kaplan, & Hafner, 2007; Blank,
Kumar, Meeden, & Marshall, 2005; Schmidhuber, 2010) because the agent’s
preferences are defined independently of any reference to the environment’s states.
Since autotelic motivation does not involve a reward or problem-solving, but is rather a
“way of being in the world”, it is not assessed through a synthetic scalar value, but is
rather demonstrated through an analysis of the agent’s behavior, as we will do in the
experiment reported below.

In addition to implementing a tendency to successfully enact interactions, we
found that the learning process required an innate value system so that all the
interactions are not equal to the agent. Such an innate value system relates to
fundamental constraints that, metaphorically, involve the agent’s survival. Examples of
such constraints are eating and avoiding being hurt. This is metaphorical because we

are talking about virtual agents or robots that do not really eat or get hurt. This innate
value system, nonetheless, provides a reason why the agent should even learn to cope
with the environment in the first place: the agent should be able to efficiently enact
interactions that favor its survival and avoid interactions that jeopardize its survival.

We found that the EMDP model allowed us to encode metaphorical survival
preferences by associating a value with the interactions that we define as concerning
the agent’s survival needs. These constraints generate a form of motivation that we call
interactional motivation (Georgeon, Marshall, & Gay, 2012): the motivation to enact
interactions with predefined positive values and to avoid interactions with predefined
negative values. We predefine a slightly negative value for interactions that do not
directly concern the agent’s survival needs, to represent a light cost of enacting them.
We expect an EMDP agent to learn to skillfully cope with the environment using all the
interactions at its disposal, and to demonstrate that it can use these skills for its own
good by eventually enacting interactions that have positive values and avoiding
interactions that have strong negative values.

We formally define interactional motivation through a function r: I → ℝ that
associates a scalar value r(e) with each primitive interaction e ∈ I. In addition to
learning to successfully enact interactions, the agent tends to try to enact interactions
whose value r(e) is positive and to try to avoid interactions whose value r(e) is negative.
Note that interactional motivation differs from reinforcement learning with intrinsic
reward (e.g., Singh, Barto, & Chentanez, 2005) by the fact that the value function r(e)
is defined independently of any state of the system (either considered internal or
external to the agent). An EMDP agent is motivated to enact an interaction for the sake
of enacting it rather than for the sake of the outcome of the interaction. As a concrete
example, an interactionally motivated agent would seek to ingest food whereas an
intrinsic-reward agent would seek to get a full stomach. The proclivity to eat is not
acquired from previous experience of eating but is instead primitive. This view
accounts for the fact that newborn mammals are drawn towards their mother’s milk
even before having ever eaten. We feel that this central role given to interactions
conforms to Dreyfus’s view that we should “program this experiential aspect of being
drawn in by an affordance”, and, more generally, to Heidegger’s philosophy that
behavior is prior to knowledge (e.g., cited by Sun, 2004). We also find some resonance
with Dennett’s (1991) inversion of reasoning argument, which he uses to develop his
theory of consciousness. Because of this difference and its implications in the
algorithm design, we do not call r a reward function but rather a value function
associated with interactions.

To fulfill both its autotelic and interactional motivations, an EMDP agent must
learn to actively recognize situations in which interactions with positive values can be
successfully enacted, and to place itself in such situations, while staying away from
situations in which negative interactions cannot be avoided. Because the agent’s
knowledge of the situation is only obtained from regularities learned as the agent
interacts with the environment, we expect the agent to discover, memorize, and exploit
such regularities when they exist. The next subsection formally defines a regularity of
interactions as a series of interactions that can be learned through experience and
enacted as a whole sequence.

Self-programming EMDP agents
We define a serial interaction is as a series of k primitive interactions is = 〈ip1, … ipk〉,
with ip1, … ipk ∈ I. We let Xt be the set of all interactions, primitive or serial, known by

the agent at time t. Xt is initialized with I (i.e., at time t0, X0 = I), and extended as the
agent learns new serial interactions. We extend r to be a function from Xt → ℝ that
gives the motivational value of a serial interaction as the sum of the values of its
primitive interactions, meaning that enacting a serial interaction has the same
motivational value as separately enacting all of its primitive interactions. A self-
programming agent can choose to enact any interaction in Xt, primitive or serial. We
call the mechanism that chooses an interaction the decisional mechanism, the point in
time td when this choice is made a decision time, and the time lapse during which an
interaction is enacted a decision cycle. Decision steps thus do not occur on each time
step but rather between each decision cycle.

At decision time td, trying to enact a serial interaction is ∈ Xd consists of
sequentially trying to enact the k primitive interactions that compose is over the next k
time steps td+1, … td+k. If all the primitive interactions are successfully enacted, then
the enaction of is is a success; the decision cycle ends at time td+k; and the actually
enacted serial interaction is es = is = 〈ep1 … epk〉 = 〈ip1 … ipk〉. If the enaction of the jth
element of is fails, then the decision cycle is interrupted at time td+j and the actually
enacted serial interaction is the series of the j actually enacted primitive interactions: es
= 〈ep1 … epj〉 = 〈ip1 … ipj-1, epj〉. Figure 2 illustrates this principle. The dashed lines
represent the decision cycle and the solid lines the primitive cycle. A full circuit of the
decision cycle involves several circuits of the primitive cycle. As the agent learns
longer sequences, the decisional mechanism thus ascends to higher levels of time scales.
Such a capacity to cover different time scales has often been called for, particularly in
the reinforcement learning (e.g., Sutton, Precup, & Singh, 1999) and cognitive
architectures communities (e.g., Sun, 2004; Albus, 1993).

Environment

Agent

Environment “known” at time td

esd ! Xd isd ! Xd

Decisional mechanism

ep1 ip1 ipj ! I epj ! I

Figure 2: Diagram of a self-programming EMDP agent. At the beginning of decision cycle td (dashed loop),
the agent’s decisional mechanism chooses the intended serial interaction isd = 〈ip1, … ipk〉 from amongst the
set Xd of serial interactions known at time td. The enaction of isd consists of trying to enact the k intended
primitive interactions ip1 … ipk one after another (solid loops). If the enaction of ipj fails (epj ≠ ipj) then the
enaction of isd is interrupted. The decisional mechanism then receives the actually enacted serial interaction
esd = 〈ep1, … epj〉, j ≤ k. From the perspective of the decisional mechanism, esd thus seems to be enacted as a
single interaction in a virtual “environment known by the agent at time td”. Because the decisional
mechanism ignores the primitive loop, the learning algorithm can apply recursively, independently of the
length of the enacted serial interaction.

Self-programming EMDP agents are designed to discover regularities of
interactions through trial and error and to encode such regularities as serial interactions.
Once a serial interaction is learned, the agent tries to enact it again in contexts in which
the agent anticipates that it can be successfully enacted. We describe such an agent as
self-programming because serial interactions work as programs that the agent learns

and subsequently executes. Rather than being written in a conventional programming
language, such programs are written in the “agent’s programming language” in the
sense that they are made of sequences of instructions that the agent knows how to
execute.

Since, at decision step td, the agent knows its situation through serial interactions
that were enacted recently, and since such recently enacted serial interactions were
learned earlier in the agent’s own singular experience, the decision is taken as if it were
based on the “virtual environment known by the agent at time td”. Over time, a given
instance of agent develops its own singular “vision of itself interacting with the
environment” based on its own experience. This results in the evolution of the
relational domain that represents the coupling of the agent with the environment, which
leads to the construction of an individual identity, and thus implements a form of
constitutive autonomy.

Notably, learning regularities of interactions is an intractable problem in the
general case, as in solving a general POMDP problem (Kaelbling et al., 1998); the time
required to discover regularities is likely to grow exponentially with their length. An
EMDP agent will thus only “survive” if the coupling with its environment offers
regularities that the agent can find and exploit before it runs out of resources. In
previous studies (Georgeon & Ritter, 2012; Georgeon & Marshall, in press), we
implemented a learning algorithm to control agents confronted with EMDP problems in
which regularities of interactions had a hierarchical sequential structure. A hierarchical
structure of sequential regularities means that short sequences of interactions
representing low-level regularities constitute subsequences of longer sequences of
interactions representing higher-level regularities. In this case, the agent can start by
discovering and mastering short regularities, then continue to learn higher-level
regularities from sequences of lower-level regularities.

In the present article, we investigate a different class of problems designed to
represent situations in which the coupling between the agent and the environment
offers both hierarchical sequential regularities and spatial regularities. The next
subsection presents such problems.

Spatial Enactive Markov Decision Process (SEMDP)

We formally define a Spatial Enactive Markov Decision Process (SEMDP) as an
EMDP in which additional information σt and τt is provided to inform the agent about
the spatial properties of the enacted interactions et. σt specifies a point in the space
surrounding the agent where et can be approximately situated. In a two-dimensional
environment, σt ∈ ℝ2 represents the Cartesian coordinates of this point in the agent’s
egocentric referential. τt specifies a geometrical transformation that approximately
represents the agent’s movement in space resulting from the enaction of et. In a two-
dimensional environment, τt = (θt, ρt) with θt ∈ ℝ being the angle of rotation of the
environment relative to the agent, and ρt ∈ ℝ2 the two dimensional vector of translation
of the environment relative to the agent. Figure 3 represents the SEMDP formalism.

Agent

ve (et|st,it)
v! (!t|st,it)
v" ("t|st,it)

st it

it ! I

q(st+1|st, it)

MDP

state st+1 state st

et !t "t
	

Figure 3: The Spatial Enactive Markov Decision Process (SEMDP) formalism. Compared to an EMDP
(Figure 1), a SEMDP provides additional spatial information σt and τt when a primitive interaction et is
enacted at time t. σt represents the position of the interaction et relative to the agent, and τt the spatial
displacement of the agent generated by the enaction of et.

The intuition for σt is that the agent has sensory information available that helps it

situate an interaction in space. For example, humans are known to use eye convergence,
kinesthetic information, and interaural time delay (amongst other information) to infer
the spatial origin of their visual, tactile, and auditory experiences. The intuition for τt is
that the agent has sensory information available that helps it keep track of its own
displacements in space. Humans are known to use vestibular and optic flow
information to realize such tracking. In robots, σt and τt can be obtained through
telemeters and accelerometers.

To replicate how humans and animals learn to infer spatial information from
sensory inputs, σt and τt should ideally reflect sensory inputs from which spatial
information could be inferred, rather than directly providing metric values of positions
and displacements. Since, in the SEMDP formalism, σ and τ directly provide metric
values, we acknowledge that SEMDPs do not allow studying such learning
mechanisms. Instead, SEMDPs reduce the scope of research to studying how agents
may use this spatial information, assuming it is available.

We propose SEMDP problems to study how agents learn the existence of physical
entities from the experience of interacting with these entities in space. We call this
problem the problem of autonomous ontology construction. The need for autonomous
ontology construction is supported by pragmatic epistemology (e.g., Hume, 1739) that
posits that the knowledge of objects is constructed through experience rather than given
a priori. More specifically, some phenomenological philosophers (e.g., Merleau-Ponty,
1976) have suggested the idea that the knowledge of objects follows from the sense of
space. We borrowed the term bundle from Hume’s bundle theory of objects (Hume,
1739) to refer to the collection of interactions that are afforded by a type of entity
present in the world. When a bundle of interactions consistently overlap in space, the
agent infers the existence of a kind of entity that affords these interactions. We use the
term phenomenon to refer to an instance of entity, in accordance with the general
definition of this term as an observable occurrence. To be concrete, a physical object
would be a phenomenon that is solid and persistent. We intend a SEMDP agent to learn
to categorize the phenomena with which it can interact, according to the bundles of
interactions that these phenomena afford.

The Enactive Cognitive Architecture (ECA)

Now that we have proposed a formalism to represent a spatio-sequential coupling
between an agent and an environment (the SEMDP formalism), and have stated our
objectives (designing agents that fulfill both their autotelic and interactional motivation
when confronted with such a coupling), we can present the architecture that we
designed to address this objective. Figure 4 gives an overview of this architecture,
which we refer to as the Enactive Cognitive Architecture (ECA).

	

Figure 4 : The Enactive Cognitive Architecture (ECA). Interaction Timeline (bottom): stream of interactions
enacted over time represented by symbols further described in Figure 7. Sequential System (top): learns
hierarchical sequential regularities of interactions that can subsequently be enacted as a whole sequence.
Spatial Memory (center): keeps track of the position (relative to the agent) of enacted interactions over the
short term. Bundle System (left): records bundles of interactions based on their spatial overlap observed in
spatial memory. Once constructed, bundles allow the evocation of phenomena in spatial memory. In turn,
evoked phenomena propose the interactions that they afford. Behavior Selection (right): balances the
propositions made by the sequential system and the spatial memory and selects the next sequence of
interactions to try to enact.

ECA was built upon a previous algorithm implementing sensorimotor self-
programming agents in hierarchical sequential EMDP problems (Georgeon & Ritter,
2012). This previous algorithm remains as a part of ECA in the form of what is now
called the Sequential System (SS). The SS is responsible for the sensorimotor self-
programming effect by learning hierarchical sequences of interactions that can
subsequently be executed as a whole sequence. We begin the description of ECA with
the SS because of this important role.

Sequential System (SS)

We define a composite interaction as a sequence of two interactions ic = 〈ipre, ipost〉,
where ipre and ipost may be primitive interactions or other composite interactions. We
refer to ipre as ic’s pre-interaction, also denoted pre(ic), and to ipost as ic’s post-

interaction, also denoted post(ic). We define Kt as the set of composite interactions
known by the agent at time t, and Jt = I ∪ Kt as the set of all interactions, primitive or
composite, known by the agent at time t. Interactions in Jt are thus hierarchically
organized in a pairwise manner, all the way down to primitive interactions. We define
the serialization function ser: Kt → Xt such that ser(ic) gives the serial interaction is ∈
Xt (defined in previous section) that consists of the series of primitive interactions of ic

∈ Kt. Trying to enact a composite interaction ic consists of trying to enact ser(ic) as
defined previously. The agent uses the hierarchical structure of ic to reconstruct the
hierarchical structure of the actually enacted composite interaction ec ∈ Kt from es
through a mechanism used in the previous version of the algorithm (Georgeon & Ritter,
2012). In fact, ECA agents do not actually record the set Xt; rather, Kt supersedes Xt as
a hierarchically organized way of recording sequences of interactions. Figure 5
synthesizes the principles of the SS mechanism.

=

4. Enact

Propositions Pd

ed

i1

ed-1 ed-2

SEQUENTIAL MEMORY

p

Activations Ad

Context Cd

3. Decide
id ! Pd

j primitive or composite
interactions ! Jt = I "!Kt

k = #i,j$ Composite interactions ! Kt

i
a1 = #ipre, p$

made of two consecutive
a = #ipre! Cd, p$

l ! Ld-1 l ! L%d-1

post(ed-1)

2. Propose

Time t

l =#ipre! Cd, ed$

Learn or reinforce Ld

… …

5. Learn

B
ot

to
m

-u
p

le
ar

ni
ng

…

1. Activate

	

Figure 5: Schematic representation of the Sequential System (SS) at decision time td. ed-1 is the interaction
(primitive or composite) enacted during the previous decision cycle td-1. The situation of the agent at td is
represented by a set of interactions Cd ⊂ Jd referred to as the context. Step 1: previously learned composite
interactions whose pre-interaction belongs to the context are activated, forming the set Ad ⊂ Kd. Step 2:
activated interactions in Ad propose their post-interaction for enaction, forming the set Pd ⊂ Jd. Propositions
are weighted relative to the weight of the activated interactions. Step 3: the intended interaction id is selected
from amongst the proposed interactions in Pd, based on the weight of the proposition and the values of the
proposed interactions. Step 4: the agent tries to enact the intended interaction id, which results in the actually
enacted interaction ed. Step 5: new composite interactions are constructed or reinforced with their pre-
interaction belonging to the context Cd and their post interaction being ed, forming the set of learned or
reinforced interactions Ld to be included in Kd+1. Step 6 (not represented in the figure): the context Cd+1 is
constructed to include stabilized interactions in Ld, ed, and post(ed) if it exists. The set of stabilized
interactions Lηd is the subset of interactions in Ld whose weight passed a fixed threshold η. Note that this
mechanism does not depend on the length of sequence of the enacted interactions ed-2, ed-1, ed. It can,
therefore, apply recursively to learn increasingly higher-level composite interactions that capture longer
sequential regularities of interaction.

By learning sequences of behaviors, the SS relates to adaptive history methods	

(e.g., Dutech, 2000; McCallum, 1996). However, it differs from these methods in that
the selection of behavior is not driven by the search for rewarding states. Instead, the
behavior selection mechanism (Step 3 in Figure 5) balances the various proposition
weights and the motivational values of the proposed interactions r(p). The weight of a

proposition—based on the reinforcement value of the activated interactions—reflects
the confidence that the agent has in the various regularities of interaction that match the
context at time td. The selection mechanism thus results in the agent choosing the
intended interaction id that offers the best balance between the expected value obtained
if the enaction of id succeeds, and the alternate value r(ed) if it fails, as far at the agent
can tell at time td.

Over time, Cd tends to represent the agent’s situation in terms of the sequences of
interactions that are the most representative of the situation at time td. This tendency of
Cd to capture representative regularities is emergent in the sense that it is not directly
specified by the algorithm but rather is observed in experiments. Notably, since the
selected interaction id may contain subsequences with negative values, this mechanism
does not drive the agent to the highest immediate value but rather allows the agent to
enact subsequences of negative interactions to reach even greater positive interactions.
The agent can also avoid immediate positive interactions that likely would lead
subsequently to even more negative interactions.

The SS can work autonomously in the absence of the other elements of ECA. An
agent solely equipped with the SS, however, can only learn to master sequential
regularities of interactions, and is unable to handle the spatial information available in
SEMDP problems. The effect of the SS alone was demonstrated in several examples of
hierarchical sequential EMDP problems: the Small Loop Problem presented in the next
section, other forms of loop-shaped grid environments (Georgeon & Ritter, 2012), an
environment that provides the agent with a rudimentary visual system (Georgeon,
Cohen, & Cordier, 2011), and a continuous two-dimensional environment (as opposed
to a discrete grid) (Georgeon & Sakellariou, 2012). We refer the reader to these articles
for a comprehensive description of this algorithm and for example analyses of the
resulting agent behavior. Interactive demonstrations are also available online1.

Spatial system

We define spatial memory as a set of places where primitive interactions were enacted.
A place γ is defined as γ = (e, λ) with e ∈ Jt, and λ being a location in space defined by
its Cartesian coordinates relative to the agent. When the agent enacts primitive
interaction ep, a place γ = (ep, λ) is added to spatial memory with λ being initialized to
the position σ where ep was enacted. If ep is the last primitive interaction of an enacted
composite interaction ec then another place γd = (ec, λ) is added to spatial memory to
also keep track of the enaction of ec. Subsequently, the transformation τ that resulted
from the enaction of ep is applied to all places in spatial memory, meaning that spatial
memory keeps track of the places where interactions were enacted relative to the
agent’s position as the agent moves. Generally, the location σ and transformation τ
could be imprecise and noisy, causing the position of interactions to become unreliable
after several displacements. To reduce spurious behavior due to imprecision in spatial
memory, we implemented decay in spatial memory so that older places would be
removed after several interaction cycles. The agent, therefore, does not construct a map
of the environment; rather, it uses spatial memory only to detect spatial overlaps of
interactions in its surrounding local space over the persistence time of spatial memory.

1 http://e-ernest.blogspot.fr/2012/03/small-loop-challenge.html

In the experiment presented next, the persistence in spatial memory was set to 10 time
steps.

The agent learns bundles of interactions when the enaction of interactions overlaps
in space. Bundles are defined as sets of interactions b ⊂ Jt. The experimental
environment presented in the next section offers two types of phenomena: walls and
empty cells. In this case, we expect two bundles to be constructed: the bundle that
gathers the interactions afforded by walls and the bundle that gathers the interactions
afforded by empty cells. Environments like this one, which only contain phenomena
affording mutually exclusive bundles, allow a simplification of the bundle construction
algorithm. Table 1 reports the simplified bundle construction algorithm currently
implemented in ECA. In the general case, we expect more difficulties to arise in
representing different kinds of objects that may afford some interactions in common.

Table 1: Simplified bundle construction algorithm.

 when a new place γ = (e, λ) is added to spatial memory
 for each place γj =(ej, λj) previously in spatial memory at the same location as γ (i.e., λj = λ)
 if there exists a bundle b to which ej already belongs, then add e to b
 else, create bundle b = {e, ej}
 check the bundle memory and merge bundles that share a common interaction

Bundles are constructed gradually and are merged when they have an interaction in
common. For example, the agent may first learn to represent empty cells by bundle b0
={i1, i7}, then learn bundle b1 = {i4, i7}; the simplified algorithm assumes that b0 and b1
represent the same kind of phenomenon because both bundles afford i7, therefore, b0
and b1 are merged to form bundle {i1, i4, i7}. Another limitation is that this algorithm is
not resistant to large errors in σ and τ that generate erroneous overlaps of interactions,
which may result in erroneous bundle construction. To address such cases, future
versions of ECA should allow the agent to eliminate erroneous bundles.

In addition to the Sequential System, spatial memory also proposes interactions
that are activated by the evocation of a phenomenon in the surroundings of the agent.
Table 2 reports the phenomenon evocation algorithm.

Table 2: Phenomenon evocation algorithm.

 // Enacted interactions evoke the phenomena that afford them
 for each place γ = (e, λ) in spatial memory
 for each bundle b that contains interaction e
 add a “phenomenon place” in spatial memory φ = (b, λ) if it does not yet exist
 // Evoked phenomena propose to enact the interactions that they afford
 for each “phenomenon place” φ = (b, λ) evoked in spatial memory
 for each interaction e ∈ b
 if λ = σ(e)
 Generate a proposition to enact e with weight r(e) Í CONST

Over time, certain interactions evoke certain phenomena, and evoked phenomena

prompt the agent to enact the other interactions that they afford if the phenomenon’s
position matches the interaction’s position relative to the agent. The weight of the
proposition is proportional to the interaction’s value. For example, when the agent
recognizes an empty cell through feeling, this empty cell incites the agent to move
towards it because moving to an empty cell has high value. Conversely, walls dissuade

the agent from moving towards them because bumping has a negative value. Bundles
not only contain primitive interactions but may also contain composite interactions,
which allows the agent to associate sequences of behaviors with types of phenomena
(e.g., in the run reported in the experiment, the agent learns to turn and move forward
when it recognizes an empty cell on its side). Because bundles may contain learned
sequences of interactions, they support the agent’s self-programming and thereby
contribute to the agent’s constitutive autonomy.

Behavior selection mechanism

On each decision cycle, the Sequential System proposes interactions based on
sequential regularities, and the spatial system proposes interactions based on spatial
regularities. The behavior selection mechanism selects the interactions with the highest
cumulative proposition weight. Once an interaction is selected, the agent tries to enact
it.

CONST (in Table 2) is a constant of proportionality that balances the weight of the
spatial memory relative to the weight of the sequential system. This constant was
adjusted empirically. We chose CONST = 10, meaning that a proposition generated by
the spatial memory had the same weight as a proposition generated by the sequential
system based on an activated interaction that had been reinforced 10 times.
Automatically balancing the spatial and sequential systems would probably require
more complex underlying mechanisms that are still open to research. We envision
implementing spatio-sequential simulation of behavior in future versions of ECA, using
additional modules perhaps inspired by the hippocampus.

Currently, ECA represents the agent’s context as the union of the Sequential
System context Cd and of the Spatial Memory. This context can be thought of as the
agent’s perception of its environment at time td, considering perception as an internal
construct elaborated through interaction. This understanding of perception follows
Gibson’s (1977) idea that the agent perceives the world as possibilities of interaction
called affordances. This context constitutes a directly actionable representation of the
situation as opposed to a “Cartesian representation” that would require subsequent
interpretation (Dennett, 1991). It also relates to the theory of enaction because the agent
perceives its environment in a way that depends on the agent’s individual previous
experiences interacting with it. Indeed, both the sequential and the spatial contexts
contain previously learned composite interactions, meaning that two different instances
of agents will not “see” the same situation in the same way, depending on their
previous experience.

This behavior selection mechanism can be compared to the operator selection
mechanism in Soar 9 (Laird & Congdon, 2009). Soar 9 supports reinforcement
learning: rules that match the context create weighted proposals for operators, and the
highest-weighted operator is selected for firing. There are, however, two main
differences: (a) ECA’s context matching involves temporal pattern matching (over
arbitrarily long sequences of interactions) rather than instantaneous context matching;
(b) since proposed interactions can also be arbitrarily long sequences, the decision
engages the agent for several subsequent time steps rather than only the next time step.
Moreover, this mechanism contrasts with symbolic modeling as it is typically done in
rule-based architectures (Newell & Simon, 1975) by the fact that the behavior selection
mechanism does not involve a predefined semantics associated with symbols by the
modeler.

Experiment

We demonstrate ECA using a benchmark proposed previously: the Small Loop
Problem (SLP) shown in Figure 6 (Georgeon & Marshall, in press).

Figure 6. The Small Loop Problem (SLP) in NetLogo. The environment (left) is a loop of white squares
surrounded by green walls. The brown arrowhead represents the agent. The agent can try to move one cell
forward, turn to the left or to the right, feel in front, to the left or to the right, but it ignores the meaning of
interactions. The experimenter can preset the values of the primitive interactions using the slider controls
(center). The Interaction-Value window shows a trace of ASCII codes representing the primitive interactions
enacted by the agent over time next to their values. The Bump Count graph (right) displays the number of
times the agent bumps into a wall (cumulative total in blue), showing that the agent gradually learns to avoid
bumping into walls. When the agent touches/feels a cell, the cell flashes yellow, and when the agent bumps
into a wall, the wall flashes red, making the agent’s behavior intelligible to the experimenter.

The SLP was originally used as a hierarchical sequential EMDP problem in which
hierarchical sequential regularities of interaction were induced by the loop-shaped
pathway that constrained the agent’s behavior. Now, we use the two-dimensional
spatial structure to provide the agent with additional spatial information. Since ECA
agents exploit spatial information, we expect them to perform better than SS-only
agents. ECA agents, however, still have to learn the meaning of interactions and to
discover that certain sets of interactions are consistently afforded by certain categories
of phenomena present in the environment. The possibilities of interactions are
summarized in Figure 7.

a) Primitive interactions (value) Meaning (ignored by the agent) !

i1(5) i2 (-10) ! ! ! step forward, bump !!

b) Example sequential regularities: !

(reg1) After i7 , attempting i1 or i2 more likely results in i1 than i2 .!

(reg3) After !i9, i3, i1, i8" , sequence !i4, i7, i1" can"
 often be enacted.!

(reg2) After i8 , sequence !i9, i3, i1" can often be enacted.!

c) Spatial information: !

i9 i10!

i5 i6!

i3!
i7 i1!

i8 i2!
i4!

i1 !

i3!

i4!

i3 (-3) i4 (-3) turn left, turn right!

i7 (-1) i8 (-1) feel front empty, feel front wall!
i5 (-1) ! i6 (-1) feel right empty, feel right wall!

i9 (-1) i10 (-1) feel left empty, feel left wall!

!(i1) = !(i2) = !(i7) = !(i8) = (1,0)
"(i1) = (-1,0) , !(i3) = !(i4) = (0,0)
#(i3) = - !/2 , #(i4) = !/2
!(i5) = !(i6) = (0,-1)
!(i9) = !(i10) = (0,1)

Figure 7 : Interactions offered by the Small Loop Problem modeled as a Spatial Enactive Markov Decision
Process. a) The agent has 10 primitive interactions at its disposal but ignores their semantics. Each primitive
interaction has a predefined value (in parentheses) set by the experimenter. b) The coupling offers
hierarchical regularities of interactions. For example, we expect the agent, in discovering and exploiting
(reg1), to choose interaction i7, and if this effectively results in i7, to subsequently choose i1 so as to safely

enact i1 which has a positive value, thus avoiding i2 which has a very negative value. Sequential regularities
have a hierarchical structure: 〈i9, i3, i1〉 in (reg2) is a subsequence of the (reg3) sequence 〈i9, i3, i1, i8〉. c) For
each enacted interaction e, the agent receives the position σ(e) in an egocentric referential, and the
transformation τ(e) consisting of the translation ρ(e) and the rotation θ(e) (represented by arrows when non-
zero). Interactions that are afforded by empty cells are represented in white and interactions that are afforded
by walls are represented in green and red; the agent originally ignores this distinction and must learn that
some interactions inform it about the presence of phenomena in its surrounding space, while simultaneously
learning to categorize these phenomena.

The environment is deterministic, meaning that the corresponding probability

distributions q and v presented in Figure 1 implement no stochasticity. The agent is
nonetheless confronted with uncertainty because it cannot initially predict the
consequences of its intended interactions until it starts learning the regularities afforded
by the environment. For example, when circling the loop counterclockwise, if the agent
feels a wall in front, it can often feel an empty cell to the left, but not always. The
agent’s algorithm is also deterministic, meaning that two runs lead to the same
behavior. Different behaviors can nonetheless be observed by starting the agent from
different initial positions.

Results show that the agent generally learns to avoid bumping into walls by
adopting the behavior of feeling in front before trying to move forward within a
hundred steps. Then, when the agent feels a wall in front, it progressively learns to feel
to the side before deciding on which direction to turn. This behavior generally leads the
agent to start to indefinitely circle the loop after approximately 150 steps. Figure 8
presents the trace of an example run. A video is available online that shows the entire
run, the sequential trace, and the content of the spatial memory dynamically2.

	

Figure 8: First 150 steps of an example trace of an ECA agent in the SEMDP version of the SLP. Tape 1
represents the primitive interactions enacted over time with the same symbols as in Figure 7 except that feel
to the sides are represented by squares above (left) and below (right) the axis rather than trapezoids. Tape 2
represents the values of the enacted primitive interactions as a bar graph (green when positive, red when
negative). Tape 3 represents the level of the enacted composite interaction in the hierarchy (gray when the
primitive enaction was successful, black when it failed, thus interrupting the decision cycle). Tape 4
represents the four adjacent cells in the agent’s spatial memory (cells whose content is unknown to the agent
are gray). Tape 5 represents the construction of bundles over time (gray rounded rectangles that contain

2 http://e-ernest.blogspot.fr/2012/04/ernest-112.html

interactions). The top of the figure shows snapshots of the agent’s spatial memory at different steps. Gray
circles represent bundles localized in spatial memory. These circles are faded to represent decay in spatial
memory. This trace shows that the agent bumped only four times (red triangles on steps 13, 28, 31, and 33).
The agent enacted more consistently positive interactions from step 70 on (less red in Tape 2). The agent
started to try to exploit the composite interaction feel front empty – step forward for the first time on step 84,
but the enaction of this interaction was interrupted due to an unexpected feeling of a wall (black second-level
segment in Tape 3). The agent successfully enacted this sequence as a whole for the first time on steps 89-90
(gray second-level segment in Tape 3). It enacted the third-level sequence feel left wall – turn right – step
forward for the first time on steps 137-139 (gray third-level segment in Tape 3).

In this run, the first instance of bundle construction occurred on step 4. On steps 1
to 4, the agent felt the three cells surrounding it, then stepped forward. Because the feel
front empty on step 1 and the step forward on step 4 overlapped in space, these
interactions were bundled together, to initiate the empty cell bundle (rounded rectangle
on step 4, Tape 5). On step 5, a new feel front empty evoked the empty cell bundle in
front of the agent. The interaction step forward, now belonging to this bundle,
generated additional positive weight to step forward again.

In a similar way, the interaction feel front wall and bump were bundled together on
step 13. On step 19, the interaction feel front wall evoked the newly-created wall
bundle in front of the agent. The bump interaction, now belonging to the wall bundle,
generated negative support for trying to step forward, preventing the agent from
bumping into the wall. On step 96, the learned composite interaction turn right – step
forward was added to the empty cell bundle, which led the agent to subsequently enact
this sequence when an empty cell was again felt on the right. Note that this behavior
does not rest on the construction of a map of the environment but on the fact that the
agent learns to recognize surrounding phenomena through feeling interactions. Once
this behavior was learned, the agent engaged in indefinite tours of the loop. The
learning was improved by the ECA architecture: it involved only 4 bumps and took 150
steps as compared to 18 bumps and 300 steps with the SS-only algorithm (Georgeon &
Marshall, in press).

This experiment illustrates how the agent categorized two types of phenomena
afforded by the environment: the walls and the empty cells, and simultaneously learned
to adapt its behavior to these phenomena. This result constitutes a starting point in
addressing the autonomous ontology construction problem.

Notably, the current bundle construction mechanism works passively with regard
to the agent’s motivation. In future versions, we anticipate implementing other forms of
motivation to incite the agent to actively try different possibilities of interaction
afforded by different types of phenomena.

Conclusion

We have simultaneously introduced: (a) a new approach to model an agent interacting
with an environment while keeping perception and action embedded (the EMDP and
SEMDP formalisms); (b) an approach to self-motivation based on an association of
autotelic motivation and interactional motivation; (c) a new cognitive architecture
(ECA) to control an agent that learns to fulfill its autotelic and interactional motivation;
and (d) a way to assess the agent’s learning through behavioral analysis.

We report experiments that show that certain interactions (e.g., feel) become
meaningful to the agent because it learns to use them to inform its future behavior. This
result demonstrates that the agent learns to perform active perception, that is, the agent

actively uses certain interactions as a form of perception to inform its knowledge of the
current situation. Additionally, the agent addresses the autonomous ontology
construction problem at a rudimentary level. It learns to actively distinguish between
two types of phenomena afforded by its environment and to cope with these
phenomena by successfully enacting learned sequences of interactions (Figure 8).

In the description of the architecture, we point out many questions that remain to
be addressed in moving towards more sophisticated agents confronted with couplings
that offer more complex spatio-sequential regularities of interaction. In its current
version, we acknowledge that ECA relies upon too many hard-coded functions, which
should ultimately be removed in order to provide the agent with more flexibility to
scale up to more complex environments. Some of these functions should be
autonomously constructed by the agent, which would leave room for even more
constitutive autonomy.

In spite of its current limitations, we believe that ECA offers a useful framework in
which to study and advance the theory of enaction for the following reasons: (a) ECA
uses sensorimotor schemes as the atomic elements of cognition rather than separating
perception and action. (b) ECA supports studying how the agent constructs its own
ontology of the environment from its experience interacting with it, in sharp contrast to
traditional rule-based cognitive architectures that require the modeler to specify the
semantics of symbols, which amounts to defining the ontology of the environment a
priori. (c) ECA allows implementing self-motivation in the agent. In the future, we
envision implementing other behavior-selection mechanisms to generate additional
forms of motivation such as curiosity. (d) ECA allows the agent to program itself by
learning a series of sensorimotor interactions and executing them as a single composite
interaction. Self-programming allows constitutive autonomy, which theoreticians of
enaction have identified as an important requirement for autonomous sense-making and
intrinsic teleology.

Acknowledgement

This work was supported by the French Agence Nationale de la Recherche (ANR)
contract ANR-10-PDOC-007-01. We gratefully thank Agnar Aamodt and Frank Ritter
for their useful comments on this article.

References

Albus, J. S. (1993). A reference model architecture for intelligent systems design. In P.
J. Antsaklis and K. M. Passino (Eds.), An introduction to intelligent and
autonomous control (Chapter 2, pp. 27-56). Kluwer Academic Publishers.

Anderson, M. (2003). Embodied cognition: A field guide. Artificial Intelligence, 149,
91–130.

Berthouze, L. & Ziemke, T. (2003). Epigenetic robotics—modelling cognitive
development in robotic systems. Connection Science, 15(4), 147–150.

Berthoz, A. (1997). Le sens du mouvement. Paris: Odile Jacob.
Blank, D.S., Kumar, D., Meeden, L., & Marshall, J. (2005). Bringing up robot:

Fundamental mechanisms for creating a self-motivated, self-organizing architecture.
Cybernetics and Systems, 32(2), 125-150.

Brooks, R. A. (1991). New Approaches to Robotics. Science, 253, 1227–1232.
Chemero, A. & Turvey, M. (2007). Gibsonian Affordances for Roboticists. Adaptive

Behavior, 15(4), 473–480.
Csikszentmihalyi, M. (1990). Flow. The Psychology of Optimal Experience. New

York: Harper and Row.
Dennett, D. (1991). Consciousness explained. New York: The Penguin Press.
Dreyfus, H. (2007). Why Heideggerian AI failed and how fixing it would require

making it more Heideggerian. Philosophical Psychology, 20(2), 247-268
Dutech, A. (2000). Solving POMDPs using selected past events. In proceedings of

European Conference on Artificial Intelligence (ECAI-2000), Berlin, pp.281-285.
Froese, T. & Ziemke, T. (2009). Enactive artificial intelligence: Investigating the

systemic organization of life and mind. Artificial Intelligence, 173(3-4), 466–500.
Georgeon, O. & Marshall, J. (in press). Demonstrating sensemaking emergence in

artificial agents: A method and an example. International Journal of Machine
Consciousness.

Georgeon, O., Marshall, J., & Gay, S. (2012). Interactional motivation in artificial
systems: between extrinsic and intrinsic motivation. In proceedings of the 2nd
International Conference on Development and Learning and on Epigenetic Robotics
(EPIROB2012), San Diego, pp. 1-2.

Georgeon, O. & Ritter, F. (2012). An intrinsically-motivated schema mechanism to
model and simulate emergent cognition. Cognitive Systems Research, 15-16, 73-92.

Georgeon, O., Cohen, M., & Cordier, A. (2011). A model and simulation of early-stage
vision as a developmental sensorimotor process. In proceedings of the Conference
on Artificial Intelligence Applications and Innovations (AIAI), Corfu, Greece, pp.
11-16.

Georgeon, O. & Sakellariou, I. (2012). Designing Environment-Agnostic Agents. In
proceedings of the Adaptive Learning Agents workshop (ALA), at the 11th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), Valencia, Spain, pp. 25-32.

Gibson, J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton
Mifflin.

Gibson, J. (1977). The theory of affordances. In R. E. Shaw, and J. Bransford (Ed.)
Perceiving, Acting, and Knowing. Hillsdale, NJ: Lawrence Erlbaum Associates.

Gross, C. & Graziano, M. (1995). Multiple representations of space in the brain. The
Neuroscientist, 1(1), 43-50.

Hirose, N. (2002). An ecological approach to embodiment and cognition. Cognitive
Systems Research, 3, 289–299.

Holland, O. (2004). The Future of Embodied Artificial Intelligence: Machine
Consciousness? In F. Iida (Ed.), Embodied Artificial Intelligence (pp. 37–53).
Berlin: Springer.

Hume, D. (1739). A treatise of human nature. Oxford University Press.
Hurley, S. (1998). Consciousness in action. Cambridge, MA: Harvard University Press.
Kaelbling, L., Littman, M., & Cassandra, A. (1998). Planning and acting in partially

observable stochastic domains. Artificial Intelligence, 101, 99-134.
Laird, J. & Congdon, C. (2009). The Soar User's Manual Version 9.1, University of

Michigan.
Lungarella, M., Metta, G., Pfeifer, R., & Sandini, G. (2003). Developmental robotics: a

survey. Connection Science, 15(4), 151–190.

McCallum, A. (1996). Learning to use selective attention and short-term memory in
sequential tasks. In proceedings of the Fourth International Conference on
Simulating Adaptive Behavior.

Merleau-Ponty, M. (1976). Phénoménologie de la perception. Paris: Gallimard.
Newell, A. & Simon, H. 1976. Computer science as empirical inquiry: Symbols and

search. Communications of the ACM, 19(3), 113-126.
O’Regan, K. (2012). How to Build a Robot that is Conscious and Feels. Minds and

Machines, 22(2), 117–136.
O’Regan, K., & Noë, A. (2001). A sensorimotor account of vision and visual

consciousness, Behavioral and Brain Sciences, 24(5), 939–1031.
Oudeyer, P.-Y., Kaplan, F., & Hafner, V. (2007). Intrinsic motivation systems for

autonomous mental development. IEEE Transactions on Evolutionary Computation,
11(2), 265-286.

Paul, C. (2006). Morphological computation: A basis for the analysis of morphology
and control requirements. Robotics and Autonomous Systems, 54, 619–630.

Pfeifer, R. (1999). Understanding Intelligence. Cambridge, MA: MIT Press.
Pfeifer, R. & Bongard, S. (2006). How the body shapes the way we think: A new view

of intelligence. Cambridge, MA: MIT Press.
Pfeifer, R. & Scheier, C. (1994). From perception to action: The right direction? In P.

Gaussier and J.-D. Nicoud (Eds.), From Perception to Action (pp. 1-11). IEEE
Computer Society Press.

Piaget, J. (1951). The psychology of intelligence. London: Routledge and Kegan Paul.
Schmidhuber, J. 2010. Formal theory of creativity, fun, and intrinsic motivation. IEEE

Transactions on Autonomous Mental Development, 2(3), 230-247.
Shanahan, M. (2010). “Embodiment and the Inner Life,” Cognition and Consciousness

in the Space of Possible Minds. Oxford: Oxford University Press.
Singh, S., Barto, A., & Chentanez, N. (2005). Intrinsically motivated reinforcement

learning. In L. K. Saul, Y. Weiss, & L. Bottou (Eds), Advances in Neural
Information Processing Systems (pp. 1281-1288). Cambridge, MA: MIT Press.

Steels, L. (2004). The Autotelic Principle. In I. Fumiya, R. Pfeifer, L. Steels, & K.
Kunyoshi (Eds), Embodied Artificial Intelligence (pp. 231-242), Springer Verlag.

Sun, R. (2004). Desiderata for cognitive architectures. Philosophical Psychology, 17(3),
341-373.

Sun, R. & Giles, C. L. (2000). Sequence learning - Paradigms, algorithms, and
applications. Berlin Heidelberg: Springer.

Sutton, R. & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge,
MA: MIT Press.

Sutton, R., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial
Intelligence, 112, 181-211.

Varela, F., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science
and human experience. Cambridge, MA: MIT Press.

Ziemke, T. (2001). The construction of reality in the robot: Constructivist perspective
on situated artificial intelligence and adaptive robotics. Foundations of Science, 6,
163–233.

Zlatev, J. (2001). The Epigenesis of Meaning in Human Beings, and Possibly in Robots.
Minds and Machines, 11, 155–195.

