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Abstract. A novel way to model an agent interacting with an environment is 
introduced, called an Enactive Markov Decision Process (EMDP). An EMDP 
keeps perception and action embedded within sensorimotor schemes rather than 
dissociated, in compliance with theories of embodied cognition. Rather than 
seeking a goal associated with a reward, as in reinforcement learning, an EMDP 
agent learns to master the sensorimotor contingencies offered by its coupling with 
the environment. In doing so, the agent exhibits a form of intrinsic motivation 
related to the autotelic principle (Steels, 2004), and a value system attached to 
interactions called interactional motivation. This modeling approach allows the 
design of agents capable of autonomous self-programming, which provides 
rudimentary constitutive autonomy—a property that theoreticians of enaction 
consider necessary for autonomous sense-making (e.g., Froese & Ziemke, 2009). 
A cognitive architecture is presented that allows the agent to autonomously 
discover, memorize, and exploit spatio-sequential regularities of interaction, called 
Enactive Cognitive Architecture (ECA). In our experiments, behavioral analysis 
shows that ECA agents develop active perception and begin to construct their own 
ontological perspective on the environment.  

Keywords. Enaction; self-motivation; cognitive architecture; developmental 
learning. 

Introduction 

In cognitive science, there has been a customary and traditional tripartite division of the 
mind between perception, the control system, and motor action. This view has been 
nicely dubbed the “classic sandwich model” by Susan Hurley (1998). Many control 
architectures are built in this way. Since the 1980s there have been many attempts to 
challenge this traditional picture particularly in the field of robotics (e.g., Brooks, 
1991) but also from a more psychological and theoretical perspective (e.g., Hirose, 
2002; Shanahan, 2010; Ziemke, 2001). In particular, the idea emerged that it might be a 
mistake to consider sensation independently from action and that we should design 
cognitive systems on the basis of low-level sensorimotor loops that represent 
sensorimotor patterns of interaction. This intuition gained momentum from other 
related views such as embodied cognition (e.g., Anderson, 2003; Holland, 2004), 
ecological psychology (Chemero & Turvey, 2007; Gibson, 1979), sensorimotor 
theories (O’Regan & Noë, 2001; O’Regan, 2012), morphological robotics (Paul, 2006; 



Pfeifer & Bongard 2006; Pfeifer, 1999), developmental robotics (Lungarella, Metta, 
Pfeifer, & Sandini, 2003), and epigenetic robotics (Berthouze & Ziemke, 2003; Zlatev, 
2001). Here, we introduce a modeling approach that goes a step beyond the notion of 
low-level sensorimotor loops by simply considering sensorimotor patterns—also called 
sensorimotor schemes by Piaget (1951)—as the atomic elements manipulated by our 
algorithms.  

Varela and his coauthors (1991) coined the term enactive perception to suggest 
that organism and environment are coupled together. The features of the environment 
to which an organism responds are singled out by the ongoing activity in the organism. 
The domain that defines this coupling has been called the relational domain (e.g., 
Froese & Ziemke, 2009). The theory of enaction, initiated by Varela, stresses that the 
relational domain evolves over the organism’s life in a manner that is codetermined by 
the organism and the environment. The fact that the relational domain is not predefined 
makes possible the organism’s constitutive autonomy—the capacity of the organism to 
“self-constitute its identity” (Froese & Ziemke, 2009). These authors argue that 
constitutive autonomy is an important aspect of organisms because it is a precondition 
of sense-making and intrinsic teleology, and is thus a property that we should seek to 
obtain in artificial agents.  

Furthermore, the term enaction also incorporates the idea that perception involves 
physical activity, or action. A model of reference was offered by O’Regan & Noë’s 
(2001) sensorimotor contingencies theory. To perceive the world is to master the 
sensorimotor contingencies between the body and the world. Every sensor modality is 
characterized by “the structure of the rules governing the sensory changes produced by 
various motor actions, that is, what we call the sensorimotor contingencies” (O’Regan, 
2001, p. 941).  

The enactivist approach suggests modeling a cognitive agent on the basis of 
sensorimotor interactions with the environment. This paper is an attempt in that 
direction. In the next section, we introduce a new type of algorithm that does not 
separate perception from action, called an Enactive Markov Decision Process (EMDP). 
An EMDP provides a useful conceptual framework for designing agents capable of 
intrinsically-motivated self-programming as they interact with their environment. We 
qualify such self-programming as sensorimotor because it consists of learning a series 
of sensorimotor schemes that are subsequently executed as programs. We argue that 
sensorimotor self-programming opens the way to constitutive autonomy.  

While acknowledging that EMDP problems are intractable in the general case, we 
present two instances in which the coupling with the environment allows the agent to 
learn to master sensorimotor contingencies within a reasonable frame. The first is 
called a hierarchical sequential EMDP problem. The second is called a Spatial Enactive 
Markov Decision Process (SEMDP). A SEMDP is intended to model an agent 
interacting with an environment that has a Euclidian spatial structure, such as the real 
world. This work leads us to propose a cognitive architecture dedicated to agents 
confronted with SEMDP problems, called the Enactive Cognitive Architecture (ECA). 

Formalism for enactive learning problems 

The philosophy of an EMDP is that the agent tries to enact an intended sensorimotor 
scheme, and is informed by the environment whether this intended scheme was indeed 
enacted, or whether another scheme was enacted instead. In the former case, the 



intended scheme is considered successfully enacted; in the latter case, the intended 
enaction failed and another scheme was actually enacted instead. While EMDP 
problems differ from reinforcement learning problems, we present them using a similar 
formalism to allow for comparison. 

Enactive Markov Decision Process (EMDP) 
Formally, we define an EMDP as a tuple (S, I, q, v) in which S is the set of environment 
states; I is the set of primitive interactions offered by the coupling between the agent 
and the environment; q is a probability distribution such that q(st+1|st,it) gives the 
probability that the environment transitions to state st+1 ∈ S when the agent chooses 
interaction it ∈ I in state st ∈ S; and v is a probability distribution such that v(et|st,it) 
gives the probability that the agent receives the input et ∈ I after choosing it in state st. 
We call it the intended interaction because it represents the sensorimotor scheme that 
the agent intends to enact at the beginning of step t; it constitutes the agent’s output sent 
to the environment. We call et the enacted interaction because it represents the 
sensorimotor scheme that the agent records as actually enacted at the end of step t; et 
constitutes the agent’s input received from the environment. If the enacted interaction 
equals the intended interaction (et = it) then the attempted enaction of it is considered a 
success, otherwise, it is considered a failure.  

As an example, primitive interactions may represent tactile sensorimotor schemes, 
which consist of the combination of a movement and the sensory stimulation generated 
by the movement. When the agent tries to enact a tactile interaction, this may result in a 
success if the agent indeed touched something, or in a failure if the agent touched 
nothing, in which case the actually enacted interaction represents the sensorimotor 
scheme of touching nothing. Figure 1 shows the EMDP cycle and algorithm. A 
complete EMDP example will be presented later in Figures 7a and 7b. 
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Figure 1: Left: diagram of an Enactive Markov Decision Process (EMDP). Right: the EMDP algorithm. At 
time t, the agent chooses an intended primitive interaction it. The attempt to enact it generates a transition of 
the environment (represented by the Markov Decision Process MDP) from state st to state st+1. The agent then 
receives the enacted primitive interaction et. If et = it then the attempt to enact it is considered a success, 
otherwise, a failure. The agent’s “perception of its environment” is an internal construct Ct rather than the 
input et. 

 
There are four formal differences between an EMDP and a Partially Observable 

Markov Decision Process (POMDP) (Kaelbling, Littman, & Cassandra, 1998): (a) the 
agent’s input and output belong to the same set I rather than two different sets 



(observations and actions); (b) there is no reward defined as a function of the 
environment, and the goal is not that the system reaches a reward state; (c) the cycle 
does not start from the environment but from the agent, making the agent’s input et a 
consequence of the agent’s output it rather than a premise. Notably, some authors (e.g., 
Pfeifer & Scheier, 1994) have called for this conceptual inversion of the 
perception/action cycle, but, to our knowledge, our algorithm is the first attempt to 
formalize it. More precisely, what we consider an EMDP agent’s “perception” is an 
internal construct created through interaction rather than merely the input et. (d) The 
agent’s input et is computed from the state st that precedes the tentative enaction of it 
rather than from the state that follows the previous action in a POMDP.  

To complete the definition of an EMDP problem, we now need to define the 
objectives that we seek to achieve in using the EMDP formalism. In contrast to 
reinforcement learning (e.g., Sutton & Barto, 1998), our objective is not to design 
agents that learn to maximize a reward function over time. Neither is it to implement an 
agent that finds a goal state by exploring a problem space, as in problem-solving. 
Instead, an EMDP agent is driven by a more complex form of self-motivation, which 
we address next. 

Self-motivation 
Our approach to agent motivation resonates with Dreyfus’s (2007) vision of a 
“Heideggerian Artificial Intelligence” that suggests that “we are drawn to move so as to 
achieve a better and better grip on our situation”. Dreyfus notes: “for this movement 
towards maximal grip to take place, one doesn’t need a mental representation of one’s 
goal nor any subagential problem solving”. In accordance with this vision, we designed 
an algorithm to control EMDP agents that learn to successfully enact sequences of 
interactions (following our definition of a successful enaction introduced above). This 
tendency involves neither a reward nor a goal; it is intrinsically encoded in the 
algorithm through discovering, recording, and re-enacting sequences of interactions 
that capture regularities in the coupling with the environment, as we will explain in the 
next section.  

Since the algorithm does not use a reward function or a problem representation, it 
constitutes neither a reward maximization algorithm nor a problem-solving algorithm, 
but is better described—using Dreyfus’s term—as a “skillful coping” algorithm. This 
skillful coping principle relates to the autotelic principle (Steels, 2004) and to the 
principle of optimal experience (Csikszentmihalyi, 1990) because, to an external 
observer, the agent seems to enjoy being in control of its activity. Here, we call this 
motivational principle autotelic motivation. More broadly, autotelic motivation falls 
within the area of intrinsic motivation (e.g., Oudeyer, Kaplan, & Hafner, 2007; Blank, 
Kumar, Meeden, & Marshall, 2005; Schmidhuber, 2010) because the agent’s 
preferences are defined independently of any reference to the environment’s states. 
Since autotelic motivation does not involve a reward or problem-solving, but is rather a 
“way of being in the world”, it is not assessed through a synthetic scalar value, but is 
rather demonstrated through an analysis of the agent’s behavior, as we will do in the 
experiment reported below. 

In addition to implementing a tendency to successfully enact interactions, we 
found that the learning process required an innate value system so that all the 
interactions are not equal to the agent. Such an innate value system relates to 
fundamental constraints that, metaphorically, involve the agent’s survival. Examples of 
such constraints are eating and avoiding being hurt. This is metaphorical because we 



are talking about virtual agents or robots that do not really eat or get hurt. This innate 
value system, nonetheless, provides a reason why the agent should even learn to cope 
with the environment in the first place: the agent should be able to efficiently enact 
interactions that favor its survival and avoid interactions that jeopardize its survival.  

We found that the EMDP model allowed us to encode metaphorical survival 
preferences by associating a value with the interactions that we define as concerning 
the agent’s survival needs. These constraints generate a form of motivation that we call 
interactional motivation (Georgeon, Marshall, & Gay, 2012): the motivation to enact 
interactions with predefined positive values and to avoid interactions with predefined 
negative values. We predefine a slightly negative value for interactions that do not 
directly concern the agent’s survival needs, to represent a light cost of enacting them. 
We expect an EMDP agent to learn to skillfully cope with the environment using all the 
interactions at its disposal, and to demonstrate that it can use these skills for its own 
good by eventually enacting interactions that have positive values and avoiding 
interactions that have strong negative values.   

We formally define interactional motivation through a function r: I → ℝ that 
associates a scalar value r(e) with each primitive interaction e ∈ I. In addition to 
learning to successfully enact interactions, the agent tends to try to enact interactions 
whose value r(e) is positive and to try to avoid interactions whose value r(e) is negative. 
Note that interactional motivation differs from reinforcement learning with intrinsic 
reward (e.g., Singh, Barto, & Chentanez, 2005) by the fact that the value function r(e) 
is defined independently of any state of the system (either considered internal or 
external to the agent). An EMDP agent is motivated to enact an interaction for the sake 
of enacting it rather than for the sake of the outcome of the interaction. As a concrete 
example, an interactionally motivated agent would seek to ingest food whereas an 
intrinsic-reward agent would seek to get a full stomach. The proclivity to eat is not 
acquired from previous experience of eating but is instead primitive. This view 
accounts for the fact that newborn mammals are drawn towards their mother’s milk 
even before having ever eaten. We feel that this central role given to interactions 
conforms to Dreyfus’s view that we should “program this experiential aspect of being 
drawn in by an affordance”, and, more generally, to Heidegger’s philosophy that 
behavior is prior to knowledge (e.g., cited by Sun, 2004). We also find some resonance 
with Dennett’s (1991) inversion of reasoning argument, which he uses to develop his 
theory of consciousness. Because of this difference and its implications in the 
algorithm design, we do not call r a reward function but rather a value function 
associated with interactions.  

To fulfill both its autotelic and interactional motivations, an EMDP agent must 
learn to actively recognize situations in which interactions with positive values can be 
successfully enacted, and to place itself in such situations, while staying away from 
situations in which negative interactions cannot be avoided. Because the agent’s 
knowledge of the situation is only obtained from regularities learned as the agent 
interacts with the environment, we expect the agent to discover, memorize, and exploit 
such regularities when they exist. The next subsection formally defines a regularity of 
interactions as a series of interactions that can be learned through experience and 
enacted as a whole sequence.  

Self-programming EMDP agents 
We define a serial interaction is as a series of k primitive interactions is = 〈ip1, … ipk〉, 
with ip1, … ipk ∈ I. We let Xt be the set of all interactions, primitive or serial, known by 



the agent at time t. Xt is initialized with I (i.e., at time t0, X0 = I), and extended as the 
agent learns new serial interactions. We extend r to be a function from Xt → ℝ that 
gives the motivational value of a serial interaction as the sum of the values of its 
primitive interactions, meaning that enacting a serial interaction has the same 
motivational value as separately enacting all of its primitive interactions. A self-
programming agent can choose to enact any interaction in Xt, primitive or serial. We 
call the mechanism that chooses an interaction the decisional mechanism, the point in 
time td when this choice is made a decision time, and the time lapse during which an 
interaction is enacted a decision cycle. Decision steps thus do not occur on each time 
step but rather between each decision cycle. 

At decision time td, trying to enact a serial interaction is ∈ Xd consists of 
sequentially trying to enact the k primitive interactions that compose is over the next k 
time steps td+1, … td+k. If all the primitive interactions are successfully enacted, then 
the enaction of is is a success; the decision cycle ends at time td+k; and the actually 
enacted serial interaction is es = is = 〈ep1 … epk〉 = 〈ip1 … ipk〉. If the enaction of the jth 
element of is fails, then the decision cycle is interrupted at time td+j and the actually 
enacted serial interaction is the series of the j actually enacted primitive interactions: es 
= 〈ep1 … epj〉 = 〈ip1 … ipj-1, epj〉. Figure 2 illustrates this principle. The dashed lines 
represent the decision cycle and the solid lines the primitive cycle. A full circuit of the 
decision cycle involves several circuits of the primitive cycle. As the agent learns 
longer sequences, the decisional mechanism thus ascends to higher levels of time scales. 
Such a capacity to cover different time scales has often been called for, particularly in 
the reinforcement learning (e.g., Sutton, Precup, & Singh, 1999) and cognitive 
architectures communities (e.g., Sun, 2004; Albus, 1993).      

Environment 
 

Agent 

Environment “known” at time td 

esd ! Xd isd ! Xd 

Decisional mechanism  

ep1  ip1  ipj ! I epj ! I 

 
Figure 2: Diagram of a self-programming EMDP agent. At the beginning of decision cycle td (dashed loop), 
the agent’s decisional mechanism chooses the intended serial interaction isd = 〈ip1, … ipk〉 from amongst the 
set Xd of serial interactions known at time td. The enaction of isd consists of trying to enact the k intended 
primitive interactions ip1 … ipk one after another (solid loops). If the enaction of ipj fails (epj ≠ ipj) then the 
enaction of isd is interrupted. The decisional mechanism then receives the actually enacted serial interaction 
esd = 〈ep1, … epj〉, j ≤ k. From the perspective of the decisional mechanism, esd thus seems to be enacted as a 
single interaction in a virtual “environment known by the agent at time td”. Because the decisional 
mechanism ignores the primitive loop, the learning algorithm can apply recursively, independently of the 
length of the enacted serial interaction.  

Self-programming EMDP agents are designed to discover regularities of 
interactions through trial and error and to encode such regularities as serial interactions. 
Once a serial interaction is learned, the agent tries to enact it again in contexts in which 
the agent anticipates that it can be successfully enacted. We describe such an agent as 
self-programming because serial interactions work as programs that the agent learns 



and subsequently executes. Rather than being written in a conventional programming 
language, such programs are written in the “agent’s programming language” in the 
sense that they are made of sequences of instructions that the agent knows how to 
execute.  

Since, at decision step td, the agent knows its situation through serial interactions 
that were enacted recently, and since such recently enacted serial interactions were 
learned earlier in the agent’s own singular experience, the decision is taken as if it were 
based on the “virtual environment known by the agent at time td”. Over time, a given 
instance of agent develops its own singular “vision of itself interacting with the 
environment” based on its own experience. This results in the evolution of the 
relational domain that represents the coupling of the agent with the environment, which 
leads to the construction of an individual identity, and thus implements a form of 
constitutive autonomy. 

Notably, learning regularities of interactions is an intractable problem in the 
general case, as in solving a general POMDP problem (Kaelbling et al., 1998); the time 
required to discover regularities is likely to grow exponentially with their length. An 
EMDP agent will thus only “survive” if the coupling with its environment offers 
regularities that the agent can find and exploit before it runs out of resources. In 
previous studies (Georgeon & Ritter, 2012; Georgeon & Marshall, in press), we 
implemented a learning algorithm to control agents confronted with EMDP problems in 
which regularities of interactions had a hierarchical sequential structure. A hierarchical 
structure of sequential regularities means that short sequences of interactions 
representing low-level regularities constitute subsequences of longer sequences of 
interactions representing higher-level regularities. In this case, the agent can start by 
discovering and mastering short regularities, then continue to learn higher-level 
regularities from sequences of lower-level regularities.  

In the present article, we investigate a different class of problems designed to 
represent situations in which the coupling between the agent and the environment 
offers both hierarchical sequential regularities and spatial regularities. The next 
subsection presents such problems. 

Spatial Enactive Markov Decision Process (SEMDP) 

We formally define a Spatial Enactive Markov Decision Process (SEMDP) as an 
EMDP in which additional information σt and τt is provided to inform the agent about 
the spatial properties of the enacted interactions et. σt specifies a point in the space 
surrounding the agent where et can be approximately situated. In a two-dimensional 
environment, σt ∈ ℝ2 represents the Cartesian coordinates of this point in the agent’s 
egocentric referential. τt specifies a geometrical transformation that approximately 
represents the agent’s movement in space resulting from the enaction of et. In a two-
dimensional environment, τt = (θt, ρt) with θt ∈ ℝ being the angle of rotation of the 
environment relative to the agent, and ρt ∈ ℝ2 the two dimensional vector of translation 
of the environment relative to the agent. Figure 3 represents the SEMDP formalism. 
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Figure 3: The Spatial Enactive Markov Decision Process (SEMDP) formalism. Compared to an EMDP 
(Figure 1), a SEMDP provides additional spatial information σt and τt when a primitive interaction et is 
enacted at time t. σt represents the position of the interaction et relative to the agent, and τt the spatial 
displacement of the agent generated by the enaction of et. 

 
The intuition for σt is that the agent has sensory information available that helps it 

situate an interaction in space. For example, humans are known to use eye convergence, 
kinesthetic information, and interaural time delay (amongst other information) to infer 
the spatial origin of their visual, tactile, and auditory experiences. The intuition for τt is 
that the agent has sensory information available that helps it keep track of its own 
displacements in space. Humans are known to use vestibular and optic flow 
information to realize such tracking. In robots, σt and τt can be obtained through 
telemeters and accelerometers.  

To replicate how humans and animals learn to infer spatial information from 
sensory inputs, σt and τt should ideally reflect sensory inputs from which spatial 
information could be inferred, rather than directly providing metric values of positions 
and displacements. Since, in the SEMDP formalism, σ and τ directly provide metric 
values, we acknowledge that SEMDPs do not allow studying such learning 
mechanisms. Instead, SEMDPs reduce the scope of research to studying how agents 
may use this spatial information, assuming it is available.  

We propose SEMDP problems to study how agents learn the existence of physical 
entities from the experience of interacting with these entities in space. We call this 
problem the problem of autonomous ontology construction. The need for autonomous 
ontology construction is supported by pragmatic epistemology (e.g., Hume, 1739) that 
posits that the knowledge of objects is constructed through experience rather than given 
a priori. More specifically, some phenomenological philosophers (e.g., Merleau-Ponty, 
1976) have suggested the idea that the knowledge of objects follows from the sense of 
space. We borrowed the term bundle from Hume’s bundle theory of objects (Hume, 
1739) to refer to the collection of interactions that are afforded by a type of entity 
present in the world. When a bundle of interactions consistently overlap in space, the 
agent infers the existence of a kind of entity that affords these interactions. We use the 
term phenomenon to refer to an instance of entity, in accordance with the general 
definition of this term as an observable occurrence. To be concrete, a physical object 
would be a phenomenon that is solid and persistent. We intend a SEMDP agent to learn 
to categorize the phenomena with which it can interact, according to the bundles of 
interactions that these phenomena afford.  



The Enactive Cognitive Architecture (ECA) 

Now that we have proposed a formalism to represent a spatio-sequential coupling 
between an agent and an environment (the SEMDP formalism), and have stated our 
objectives (designing agents that fulfill both their autotelic and interactional motivation 
when confronted with such a coupling), we can present the architecture that we 
designed to address this objective. Figure 4 gives an overview of this architecture, 
which we refer to as the Enactive Cognitive Architecture (ECA). 
 

	
  
Figure 4 : The Enactive Cognitive Architecture (ECA). Interaction Timeline (bottom): stream of interactions 
enacted over time represented by symbols further described in Figure 7. Sequential System (top): learns 
hierarchical sequential regularities of interactions that can subsequently be enacted as a whole sequence. 
Spatial Memory (center): keeps track of the position (relative to the agent) of enacted interactions over the 
short term. Bundle System (left): records bundles of interactions based on their spatial overlap observed in 
spatial memory. Once constructed, bundles allow the evocation of phenomena in spatial memory. In turn, 
evoked phenomena propose the interactions that they afford. Behavior Selection (right): balances the 
propositions made by the sequential system and the spatial memory and selects the next sequence of 
interactions to try to enact. 

 
ECA was built upon a previous algorithm implementing sensorimotor self-
programming agents in hierarchical sequential EMDP problems (Georgeon & Ritter, 
2012). This previous algorithm remains as a part of ECA in the form of what is now 
called the Sequential System (SS). The SS is responsible for the sensorimotor self-
programming effect by learning hierarchical sequences of interactions that can 
subsequently be executed as a whole sequence. We begin the description of ECA with 
the SS because of this important role. 

Sequential System (SS) 

We define a composite interaction as a sequence of two interactions ic = 〈ipre, ipost〉, 
where ipre and ipost may be primitive interactions or other composite interactions. We 
refer to ipre as ic’s pre-interaction, also denoted pre(ic), and to ipost as ic’s post-



interaction, also denoted post(ic). We define Kt as the set of composite interactions 
known by the agent at time t, and Jt = I ∪ Kt as the set of all interactions, primitive or 
composite, known by the agent at time t. Interactions in Jt are thus hierarchically 
organized in a pairwise manner, all the way down to primitive interactions. We define 
the serialization function ser: Kt → Xt such that ser(ic) gives the serial interaction is ∈ 
Xt (defined in previous section) that consists of the series of primitive interactions of ic 

∈ Kt. Trying to enact a composite interaction ic consists of trying to enact ser(ic) as 
defined previously. The agent uses the hierarchical structure of ic to reconstruct the 
hierarchical structure of the actually enacted composite interaction ec ∈ Kt from es 
through a mechanism used in the previous version of the algorithm (Georgeon & Ritter, 
2012). In fact, ECA agents do not actually record the set Xt; rather, Kt supersedes Xt as 
a hierarchically organized way of recording sequences of interactions. Figure 5 
synthesizes the principles of the SS mechanism.  
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Figure 5: Schematic representation of the Sequential System (SS) at decision time td. ed-1 is the interaction 
(primitive or composite) enacted during the previous decision cycle td-1. The situation of the agent at td is 
represented by a set of interactions Cd ⊂ Jd referred to as the context. Step 1: previously learned composite 
interactions whose pre-interaction belongs to the context are activated, forming the set Ad ⊂ Kd. Step 2: 
activated interactions in Ad propose their post-interaction for enaction, forming the set Pd ⊂ Jd. Propositions 
are weighted relative to the weight of the activated interactions. Step 3: the intended interaction id is selected 
from amongst the proposed interactions in Pd, based on the weight of the proposition and the values of the 
proposed interactions. Step 4: the agent tries to enact the intended interaction id, which results in the actually 
enacted interaction ed. Step 5: new composite interactions are constructed or reinforced with their pre-
interaction belonging to the context Cd and their post interaction being ed, forming the set of learned or 
reinforced interactions Ld to be included in Kd+1. Step 6 (not represented in the figure): the context Cd+1 is 
constructed to include stabilized interactions in Ld, ed, and post(ed) if it exists. The set of stabilized 
interactions Lηd is the subset of interactions in Ld whose weight passed a fixed threshold η. Note that this 
mechanism does not depend on the length of sequence of the enacted interactions ed-2, ed-1, ed. It can, 
therefore, apply recursively to learn increasingly higher-level composite interactions that capture longer 
sequential regularities of interaction.  

 
By learning sequences of behaviors, the SS relates to adaptive history methods	
  

(e.g., Dutech, 2000; McCallum, 1996). However, it differs from these methods in that 
the selection of behavior is not driven by the search for rewarding states. Instead, the 
behavior selection mechanism (Step 3 in Figure 5) balances the various proposition 
weights and the motivational values of the proposed interactions r(p). The weight of a 



proposition—based on the reinforcement value of the activated interactions—reflects 
the confidence that the agent has in the various regularities of interaction that match the 
context at time td. The selection mechanism thus results in the agent choosing the 
intended interaction id that offers the best balance between the expected value obtained 
if the enaction of id succeeds, and the alternate value r(ed) if it fails, as far at the agent 
can tell at time td.   

Over time, Cd tends to represent the agent’s situation in terms of the sequences of 
interactions that are the most representative of the situation at time td. This tendency of 
Cd to capture representative regularities is emergent in the sense that it is not directly 
specified by the algorithm but rather is observed in experiments. Notably, since the 
selected interaction id may contain subsequences with negative values, this mechanism 
does not drive the agent to the highest immediate value but rather allows the agent to 
enact subsequences of negative interactions to reach even greater positive interactions. 
The agent can also avoid immediate positive interactions that likely would lead 
subsequently to even more negative interactions. 

The SS can work autonomously in the absence of the other elements of ECA. An 
agent solely equipped with the SS, however, can only learn to master sequential 
regularities of interactions, and is unable to handle the spatial information available in 
SEMDP problems. The effect of the SS alone was demonstrated in several examples of 
hierarchical sequential EMDP problems: the Small Loop Problem presented in the next 
section, other forms of loop-shaped grid environments (Georgeon & Ritter, 2012), an 
environment that provides the agent with a rudimentary visual system (Georgeon, 
Cohen, & Cordier, 2011), and a continuous two-dimensional environment (as opposed 
to a discrete grid) (Georgeon & Sakellariou, 2012). We refer the reader to these articles 
for a comprehensive description of this algorithm and for example analyses of the 
resulting agent behavior. Interactive demonstrations are also available online1. 

Spatial system 

We define spatial memory as a set of places where primitive interactions were enacted. 
A place γ is defined as γ = (e, λ) with e ∈ Jt, and λ being a location in space defined by 
its Cartesian coordinates relative to the agent. When the agent enacts primitive 
interaction ep, a place γ = (ep, λ) is added to spatial memory with λ being initialized to 
the position σ where ep was enacted. If ep is the last primitive interaction of an enacted 
composite interaction ec then another place γd = (ec, λ) is added to spatial memory to 
also keep track of the enaction of ec. Subsequently, the transformation τ that resulted 
from the enaction of ep is applied to all places in spatial memory, meaning that spatial 
memory keeps track of the places where interactions were enacted relative to the 
agent’s position as the agent moves. Generally, the location σ and transformation τ 
could be imprecise and noisy, causing the position of interactions to become unreliable 
after several displacements. To reduce spurious behavior due to imprecision in spatial 
memory, we implemented decay in spatial memory so that older places would be 
removed after several interaction cycles. The agent, therefore, does not construct a map 
of the environment; rather, it uses spatial memory only to detect spatial overlaps of 
interactions in its surrounding local space over the persistence time of spatial memory. 

                                                             
1 http://e-ernest.blogspot.fr/2012/03/small-loop-challenge.html 



In the experiment presented next, the persistence in spatial memory was set to 10 time 
steps.   

The agent learns bundles of interactions when the enaction of interactions overlaps 
in space. Bundles are defined as sets of interactions b ⊂ Jt. The experimental 
environment presented in the next section offers two types of phenomena: walls and 
empty cells. In this case, we expect two bundles to be constructed: the bundle that 
gathers the interactions afforded by walls and the bundle that gathers the interactions 
afforded by empty cells. Environments like this one, which only contain phenomena 
affording mutually exclusive bundles, allow a simplification of the bundle construction 
algorithm. Table 1 reports the simplified bundle construction algorithm currently 
implemented in ECA. In the general case, we expect more difficulties to arise in 
representing different kinds of objects that may afford some interactions in common.  

 
Table 1: Simplified bundle construction algorithm. 

 when a new place γ = (e, λ) is added to spatial memory  
 for each place γj =(ej, λj) previously in spatial memory at the same location as γ (i.e., λj = λ) 
   if there exists a bundle b to which ej already belongs, then add e to b 
   else, create bundle b = {e, ej} 
 check the bundle memory and merge bundles that share a common interaction  

 
Bundles are constructed gradually and are merged when they have an interaction in 
common. For example, the agent may first learn to represent empty cells by bundle b0 
={i1, i7}, then learn bundle b1 = {i4, i7}; the simplified algorithm assumes that b0 and b1 
represent the same kind of phenomenon because both bundles afford i7, therefore, b0 
and b1 are merged to form bundle {i1, i4, i7}. Another limitation is that this algorithm is 
not resistant to large errors in σ and τ that generate erroneous overlaps of interactions, 
which may result in erroneous bundle construction. To address such cases, future 
versions of ECA should allow the agent to eliminate erroneous bundles. 

In addition to the Sequential System, spatial memory also proposes interactions 
that are activated by the evocation of a phenomenon in the surroundings of the agent. 
Table 2 reports the phenomenon evocation algorithm.  

 
Table 2: Phenomenon evocation algorithm. 

  // Enacted interactions evoke the phenomena that afford them 
  for each place γ = (e, λ) in spatial memory 
  for each bundle b that contains interaction e 
   add a “phenomenon place” in spatial memory φ = (b, λ) if it does not yet exist 
  // Evoked phenomena propose to enact the interactions that they afford 
  for each “phenomenon place” φ = (b, λ) evoked in spatial memory 
  for each interaction e ∈ b 
   if λ = σ(e)  
    Generate a proposition to enact e with weight r(e) Í CONST 

 
Over time, certain interactions evoke certain phenomena, and evoked phenomena 

prompt the agent to enact the other interactions that they afford if the phenomenon’s 
position matches the interaction’s position relative to the agent. The weight of the 
proposition is proportional to the interaction’s value. For example, when the agent 
recognizes an empty cell through feeling, this empty cell incites the agent to move 
towards it because moving to an empty cell has high value. Conversely, walls dissuade 



the agent from moving towards them because bumping has a negative value. Bundles 
not only contain primitive interactions but may also contain composite interactions, 
which allows the agent to associate sequences of behaviors with types of phenomena 
(e.g., in the run reported in the experiment, the agent learns to turn and move forward 
when it recognizes an empty cell on its side). Because bundles may contain learned 
sequences of interactions, they support the agent’s self-programming and thereby 
contribute to the agent’s constitutive autonomy.   

Behavior selection mechanism 

On each decision cycle, the Sequential System proposes interactions based on 
sequential regularities, and the spatial system proposes interactions based on spatial 
regularities. The behavior selection mechanism selects the interactions with the highest 
cumulative proposition weight. Once an interaction is selected, the agent tries to enact 
it.  

CONST (in Table 2) is a constant of proportionality that balances the weight of the 
spatial memory relative to the weight of the sequential system. This constant was 
adjusted empirically. We chose CONST = 10, meaning that a proposition generated by 
the spatial memory had the same weight as a proposition generated by the sequential 
system based on an activated interaction that had been reinforced 10 times. 
Automatically balancing the spatial and sequential systems would probably require 
more complex underlying mechanisms that are still open to research. We envision 
implementing spatio-sequential simulation of behavior in future versions of ECA, using 
additional modules perhaps inspired by the hippocampus. 

Currently, ECA represents the agent’s context as the union of the Sequential 
System context Cd and of the Spatial Memory. This context can be thought of as the 
agent’s perception of its environment at time td, considering perception as an internal 
construct elaborated through interaction. This understanding of perception follows 
Gibson’s (1977) idea that the agent perceives the world as possibilities of interaction 
called affordances. This context constitutes a directly actionable representation of the 
situation as opposed to a “Cartesian representation” that would require subsequent 
interpretation (Dennett, 1991). It also relates to the theory of enaction because the agent 
perceives its environment in a way that depends on the agent’s individual previous 
experiences interacting with it. Indeed, both the sequential and the spatial contexts 
contain previously learned composite interactions, meaning that two different instances 
of agents will not “see” the same situation in the same way, depending on their 
previous experience. 

This behavior selection mechanism can be compared to the operator selection 
mechanism in Soar 9 (Laird & Congdon, 2009). Soar 9 supports reinforcement 
learning: rules that match the context create weighted proposals for operators, and the 
highest-weighted operator is selected for firing. There are, however, two main 
differences: (a) ECA’s context matching involves temporal pattern matching (over 
arbitrarily long sequences of interactions) rather than instantaneous context matching; 
(b) since proposed interactions can also be arbitrarily long sequences, the decision 
engages the agent for several subsequent time steps rather than only the next time step. 
Moreover, this mechanism contrasts with symbolic modeling as it is typically done in 
rule-based architectures (Newell & Simon, 1975) by the fact that the behavior selection 
mechanism does not involve a predefined semantics associated with symbols by the 
modeler. 



Experiment 

We demonstrate ECA using a benchmark proposed previously: the Small Loop 
Problem (SLP) shown in Figure 6 (Georgeon & Marshall, in press).  

 

 
Figure 6.  The Small Loop Problem (SLP) in NetLogo. The environment (left) is a loop of white squares 
surrounded by green walls. The brown arrowhead represents the agent. The agent can try to move one cell 
forward, turn to the left or to the right, feel in front, to the left or to the right, but it ignores the meaning of 
interactions. The experimenter can preset the values of the primitive interactions using the slider controls 
(center). The Interaction-Value window shows a trace of ASCII codes representing the primitive interactions 
enacted by the agent over time next to their values. The Bump Count graph (right) displays the number of 
times the agent bumps into a wall (cumulative total in blue), showing that the agent gradually learns to avoid 
bumping into walls. When the agent touches/feels a cell, the cell flashes yellow, and when the agent bumps 
into a wall, the wall flashes red, making the agent’s behavior intelligible to the experimenter. 

The SLP was originally used as a hierarchical sequential EMDP problem in which 
hierarchical sequential regularities of interaction were induced by the loop-shaped 
pathway that constrained the agent’s behavior. Now, we use the two-dimensional 
spatial structure to provide the agent with additional spatial information. Since ECA 
agents exploit spatial information, we expect them to perform better than SS-only 
agents. ECA agents, however, still have to learn the meaning of interactions and to 
discover that certain sets of interactions are consistently afforded by certain categories 
of phenomena present in the environment. The possibilities of interactions are 
summarized in Figure 7. 
 

a) Primitive interactions (value)       Meaning (ignored by the agent) !

i1(5)           i2 (-10) ! ! !       step forward, bump !!

b) Example sequential regularities: !

(reg1) After i7     , attempting i1 or i2 more likely results in i1       than i2        .!

(reg3) After !i9, i3, i1, i8"                     , sequence !i4, i7, i1"                 can"
           often be enacted.!

(reg2) After i8        , sequence !i9, i3, i1"                   can often be enacted.!

c) Spatial information: !

i9 i10!

i5 i6!

i3!
i7 i1!

i8 i2!
i4!

i1 !

i3!

i4!

i3 (-3)             i4 (-3)                             turn left, turn right!

i7 (-1)            i8 (-1)                      feel front empty, feel front wall!
i5 (-1) !            i6 (-1)                      feel right empty, feel right wall!

i9 (-1)           i10 (-1)                       feel left empty, feel left wall!

!(i1) = !(i2) = !(i7) = !(i8) = (1,0) 
"(i1) = (-1,0) , !(i3) = !(i4) = (0,0) 
#(i3) = - !/2 , #(i4) = !/2 
!(i5) = !(i6)  = (0,-1)  
!(i9) = !(i10) = (0,1) 

 
Figure 7 : Interactions offered by the Small Loop Problem modeled as a Spatial Enactive Markov Decision 
Process. a) The agent has 10 primitive interactions at its disposal but ignores their semantics. Each primitive 
interaction has a predefined value (in parentheses) set by the experimenter. b) The coupling offers 
hierarchical regularities of interactions. For example, we expect the agent, in discovering and exploiting 
(reg1), to choose interaction i7, and if this effectively results in i7, to subsequently choose i1 so as to safely 



enact i1 which has a positive value, thus avoiding i2 which has a very negative value. Sequential regularities 
have a hierarchical structure: 〈i9, i3, i1〉 in (reg2) is a subsequence of the (reg3) sequence 〈i9, i3, i1, i8〉. c) For 
each enacted interaction e, the agent receives the position σ(e) in an egocentric referential, and the 
transformation τ(e) consisting of the translation ρ(e) and the rotation θ(e) (represented by arrows when non-
zero). Interactions that are afforded by empty cells are represented in white and interactions that are afforded 
by walls are represented in green and red; the agent originally ignores this distinction and must learn that 
some interactions inform it about the presence of phenomena in its surrounding space, while simultaneously 
learning to categorize these phenomena. 

 
The environment is deterministic, meaning that the corresponding probability 

distributions q and v presented in Figure 1 implement no stochasticity. The agent is 
nonetheless confronted with uncertainty because it cannot initially predict the 
consequences of its intended interactions until it starts learning the regularities afforded 
by the environment. For example, when circling the loop counterclockwise, if the agent 
feels a wall in front, it can often feel an empty cell to the left, but not always. The 
agent’s algorithm is also deterministic, meaning that two runs lead to the same 
behavior. Different behaviors can nonetheless be observed by starting the agent from 
different initial positions. 

Results show that the agent generally learns to avoid bumping into walls by 
adopting the behavior of feeling in front before trying to move forward within a 
hundred steps. Then, when the agent feels a wall in front, it progressively learns to feel 
to the side before deciding on which direction to turn. This behavior generally leads the 
agent to start to indefinitely circle the loop after approximately 150 steps. Figure 8 
presents the trace of an example run. A video is available online that shows the entire 
run, the sequential trace, and the content of the spatial memory dynamically2. 

 
 

	
  
Figure 8: First 150 steps of an example trace of an ECA agent in the SEMDP version of the SLP. Tape 1 
represents the primitive interactions enacted over time with the same symbols as in Figure 7 except that feel 
to the sides are represented by squares above (left) and below (right) the axis rather than trapezoids. Tape 2 
represents the values of the enacted primitive interactions as a bar graph (green when positive, red when 
negative). Tape 3 represents the level of the enacted composite interaction in the hierarchy (gray when the 
primitive enaction was successful, black when it failed, thus interrupting the decision cycle). Tape 4 
represents the four adjacent cells in the agent’s spatial memory (cells whose content is unknown to the agent 
are gray). Tape 5 represents the construction of bundles over time (gray rounded rectangles that contain 

                                                             
2 http://e-ernest.blogspot.fr/2012/04/ernest-112.html 



interactions). The top of the figure shows snapshots of the agent’s spatial memory at different steps. Gray 
circles represent bundles localized in spatial memory. These circles are faded to represent decay in spatial 
memory. This trace shows that the agent bumped only four times (red triangles on steps 13, 28, 31, and 33). 
The agent enacted more consistently positive interactions from step 70 on (less red in Tape 2). The agent 
started to try to exploit the composite interaction feel front empty – step forward for the first time on step 84, 
but the enaction of this interaction was interrupted due to an unexpected feeling of a wall (black second-level 
segment in Tape 3). The agent successfully enacted this sequence as a whole for the first time on steps 89-90 
(gray second-level segment in Tape 3). It enacted the third-level sequence feel left wall – turn right – step 
forward for the first time on steps 137-139 (gray third-level segment in Tape 3). 

In this run, the first instance of bundle construction occurred on step 4. On steps 1 
to 4, the agent felt the three cells surrounding it, then stepped forward. Because the feel 
front empty on step 1 and the step forward on step 4 overlapped in space, these 
interactions were bundled together, to initiate the empty cell bundle (rounded rectangle 
on step 4, Tape 5). On step 5, a new feel front empty evoked the empty cell bundle in 
front of the agent. The interaction step forward, now belonging to this bundle, 
generated additional positive weight to step forward again.  

In a similar way, the interaction feel front wall and bump were bundled together on 
step 13. On step 19, the interaction feel front wall evoked the newly-created wall 
bundle in front of the agent. The bump interaction, now belonging to the wall bundle, 
generated negative support for trying to step forward, preventing the agent from 
bumping into the wall. On step 96, the learned composite interaction turn right – step 
forward was added to the empty cell bundle, which led the agent to subsequently enact 
this sequence when an empty cell was again felt on the right. Note that this behavior 
does not rest on the construction of a map of the environment but on the fact that the 
agent learns to recognize surrounding phenomena through feeling interactions. Once 
this behavior was learned, the agent engaged in indefinite tours of the loop. The 
learning was improved by the ECA architecture: it involved only 4 bumps and took 150 
steps as compared to 18 bumps and 300 steps with the SS-only algorithm (Georgeon & 
Marshall, in press). 

This experiment illustrates how the agent categorized two types of phenomena 
afforded by the environment: the walls and the empty cells, and simultaneously learned 
to adapt its behavior to these phenomena. This result constitutes a starting point in 
addressing the autonomous ontology construction problem. 

Notably, the current bundle construction mechanism works passively with regard 
to the agent’s motivation. In future versions, we anticipate implementing other forms of 
motivation to incite the agent to actively try different possibilities of interaction 
afforded by different types of phenomena. 

Conclusion 

We have simultaneously introduced: (a) a new approach to model an agent interacting 
with an environment while keeping perception and action embedded (the EMDP and 
SEMDP formalisms); (b) an approach to self-motivation based on an association of 
autotelic motivation and interactional motivation; (c) a new cognitive architecture 
(ECA) to control an agent that learns to fulfill its autotelic and interactional motivation; 
and (d) a way to assess the agent’s learning through behavioral analysis. 

We report experiments that show that certain interactions (e.g., feel) become 
meaningful to the agent because it learns to use them to inform its future behavior. This 
result demonstrates that the agent learns to perform active perception, that is, the agent 



actively uses certain interactions as a form of perception to inform its knowledge of the 
current situation. Additionally, the agent addresses the autonomous ontology 
construction problem at a rudimentary level. It learns to actively distinguish between 
two types of phenomena afforded by its environment and to cope with these 
phenomena by successfully enacting learned sequences of interactions (Figure 8).  

In the description of the architecture, we point out many questions that remain to 
be addressed in moving towards more sophisticated agents confronted with couplings 
that offer more complex spatio-sequential regularities of interaction. In its current 
version, we acknowledge that ECA relies upon too many hard-coded functions, which 
should ultimately be removed in order to provide the agent with more flexibility to 
scale up to more complex environments. Some of these functions should be 
autonomously constructed by the agent, which would leave room for even more 
constitutive autonomy.  

In spite of its current limitations, we believe that ECA offers a useful framework in 
which to study and advance the theory of enaction for the following reasons: (a) ECA 
uses sensorimotor schemes as the atomic elements of cognition rather than separating 
perception and action. (b) ECA supports studying how the agent constructs its own 
ontology of the environment from its experience interacting with it, in sharp contrast to 
traditional rule-based cognitive architectures that require the modeler to specify the 
semantics of symbols, which amounts to defining the ontology of the environment a 
priori. (c) ECA allows implementing self-motivation in the agent. In the future, we 
envision implementing other behavior-selection mechanisms to generate additional 
forms of motivation such as curiosity. (d) ECA allows the agent to program itself by 
learning a series of sensorimotor interactions and executing them as a single composite 
interaction. Self-programming allows constitutive autonomy, which theoreticians of 
enaction have identified as an important requirement for autonomous sense-making and 
intrinsic teleology. 
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