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Abstract

The text associated with images provides valuable semantic meanings
about image content that can hardly be described by low-level visual fea-
tures. In this paper, we propose a novel multimodal approach to automat-
ically predict the visual concepts of images through an effective fusion of
textual features along with visual ones. In contrast to the classical Bag-of-
Words approach which simply relies on term frequencies, we propose a novel
textual descriptor, namely the Histogram of Textual Concepts (HTC), which
accounts for the relatedness of semantic concepts in accumulating the contri-
butions of words from the image caption toward a dictionary. In addition to
the popular SIFT-like features, we also evaluate a set of mid-level visual fea-
tures, aiming at characterizing the harmony, dynamism and aesthetic quality
of visual content, in relationship with affective concepts. Finally, a novel se-
lective weighted late fusion (SWLF) scheme is proposed to automatically se-
lect and weight the scores from the best features according to the concept to
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be classified. This scheme proves particularly useful for the image annotation
task with a multi-label scenario. Extensive experiments were carried out on
the MIR FLICKR image collection within the ImageCLEF 2011 photo anno-
tation challenge. Our best model, which is a late fusion of textual and visual
features, achieved a MiAP (Mean interpolated Average Precision) of 43.69%
and ranked 2nd out of 79 runs. We also provide comprehensive analysis of
the experimental results and give some insights for future improvements.

Keywords:
Image classification, textual feature, visual feature, fusion, ImageCLEF
photo annotation.

1. Introduction

Machine-based recognition of visual concepts aims at recognizing auto-
matically from images high-level semantic concepts (HLSC), including scenes
(indoor, outdoor, landscape, etc.), objects (car, animal, person, etc.), events
(travel, work, etc.), or even emotions (melancholic, happy, etc.). It proves
to be extremely challenging because of large intra-class variations (clutter,
occlusion, pose changes, etc.) and inter-class similarities [1, 2, 3, 4]. The past
decade has witnessed tremendous efforts from the research communities as
testified the multiple challenges in the field, e.g., Pascal VOC [5], TRECVID
[6] and ImageCLEF [7, 8, 9, 10]. Most approaches to visual concept recog-
nition (VCR) have so far focused on appropriate visual content description,
and have featured a dominant Bag-of-Visual-Words (BoVW) representation
along with local SIFT descriptors. Meanwhile, increasing works in the lit-
erature have discovered the wealth of semantic meanings conveyed by the
abundant textual captions associated with images [11, 12, 13]. As a result,
multimodal approaches have been increasingly proposed for VCR by making
joint use of user textual tags and visual descriptions to bridge the gap be-
tween low-level visual features and HLSC. The work presented in this paper
is in that line and targets an effective multimodal approach for VCR.

1.1. Related works

The state of the art for VCR using only visual content has proposed a
large set of local visual features, including SIFT [14], Color SIFT [15], HOG
[16], DAISY [17], LBP [18], Color LBP [19], which are all based on the
first order gradient information. The dominant approach for visual content
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representation is the BoVW method [20], which represents an image as an
orderless collection of local visual features extracted from a dense grid or
sparse keypoints over the image. An image can thus be described by a his-
togram, using a hard or soft assignment over a visual dictionary of fixed size
learnt from a training dataset. While this approach has largely demonstrated
its effectiveness in various challenges for VCR such as Pascal VOC [5] and is
also the prevalent technique used in the ImageCLEF Image Annotation task
[9], its major shortcoming is still its lack of descriptive power as regard to
HLSCs because of its nature of low-level features.

There is an increasing interest in capturing emotional and aesthetic as-
pects of visual content, including features based on the experimentally deter-
mined color factors [21, 22], texture attributes [23], shape elements [24, 25]
as well as aesthetic features [26, 27]. Meanwhile, all the emotion related
features so far proposed were only evaluated on rather small and specifically
tailored datasets. In this work, we evaluated the usefulness of these features
along with the aesthetic ones for the recognition of affective concepts as well
as other general visual concepts on a large and general image dataset.

The BoVW approach actually originates from the field of information re-
trieval where a text document is often represented as a Bag-of-Words (BoW)
and described according to the vector space model [28] as a vector of terms,
each component of which is a kind of word count or term frequency as ex-
emplified by TF-IDF (Term Frequency-Inversed Document Frequency). This
model has undergone several extensions, including latent semantic analysis
(LSA) [29], probabilistic LSA [30] and Latent Dirichlet allocation (LDA) [31].
The major drawback of these word frequency statistic-based approaches is
their lack of semantic sensitivity, for two reasons. First, a text document
is simply interpreted as an unordered collection of words, thus disregarding
grammar and even word order; second, a text document is further summa-
rized as a vector of term frequencies, thereby failing to capture the relat-
edness between words. The literature has recorded a number of attempts
trying to remedy these two shortcomings, including in particular the use of
linguistic structures [32], e.g., compound terms such as operating system,
binary relations such as subject-verb or verb-object, etc., or distributional
term representations (DTRs) [33] which propose to characterize the mean-
ing of a term from its context, i.e. the other terms with which it frequently
co-occurs within a window or simply the documents in which it frequently oc-
curs. While various essays using the former approach prove to be surprisingly
ineffective both for the tasks of information retrieval and text categorization
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as compared to the BoW approach [34], the latter clearly represents a step
forward towards taking into account the relatedness of terms through their
context [35]. But still, the component of a context vector is simply a term
frequency count either within a document or within a window of a given size.
It is interesting to note a very recent move which tries, through these DTRs,
to capture the relatedness of terms occurring in the textual bimodalities of
image captions and labels for the purpose of image retrieval [36].

As current BoVW based works seem to be reaching the performance ceil-
ing for VCR, there exists an increasing interest in multimodal approaches
[11, 37, 38], attempting to make joint use of visual descriptions and abun-
dant tags associated with images for better prediction of visual concepts.
Still, the dominant approach for characterizing the textual content of image
tags is the vector space model, using different variants of term counts or
frequencies after some basic preprocessing, e.g., stop words removal, stem-
ming, etc. All these works consistently demonstrate that the textual features
can improve the performance of VCR when used jointly with visual features.
Meanwhile, as these textual features are mostly term counts-based, they fail
to capture the relatedness between semantic concepts.

As far as multimodal approaches are concerned, they require a fusion
strategy to combine information from multiple sources, e.g., visual stream
and sound stream for video analysis [39, 40], textual and visual content for
multimedia information retrieval [41, 42], etc. This fusion can be carried out
at feature level (called early fusion) [43] or at score level (called late fusion)
[44], or even at some intermediate levels, e.g.,kernel level [38, 37]. While early
fusion is straightforward and simply consists of concatenating the features
extracted from various information sources into a single representation, its
disadvantage is also well known: the curse of dimensionality and the diffi-
culty in combining features of different natures into a common homogeneous
representation. As a result, late fusion strategies, which consist of integrat-
ing the scores as delivered by the classifiers on various features through a
fixed combination rule, e.g., sum, are competitive alternatives in the liter-
ature [45, 46]. They not only provide a trade-off between preservation of
information and computational efficiency but also prove to perform favor-
ably as compared to early fusion methods in several comparative studies,
e.g., [47, 39] on visual concept detection in video sequences. Furthermore,
a comprehensive comparative study of various combination rules, e.g., sum,
product, max, min, median, and majority voting, by Kittler et al. [48],
suggests that the sum rule is much less sensitive to the error of individual
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classifiers when estimating posterior class probability. The proposed fusion
scheme, Selective Weighted Late Fusion (SWLF), falls into the category of
late fusion strategies and selectively chooses the best classifiers to optimize
the overall mean average precision.

1.2. The proposed approach

In this paper, we propose a novel multimodal approach for VCR that
builds on a novel textual representation along with visual features through
an effective selective weighted late fusion scheme (SWLF). In contrast to term
frequency-based text representations mostly used in VCR, the proposed novel
textual representation, namely the Histogram of Textual Concepts (HTC),
captures the relatedness of semantic concepts while SWLF automatically se-
lects and weights the best discriminative features for each visual concept to
be predicted in optimizing the overall mean average precision. Furthermore,
we also propose to study the usefulness of a set of mid-level features, e.g.,
emotion and aesthetics related ones, for the recognition of sentiment concepts
as well as other general visual ones. The proposed approach was extensively
evaluated on the MIR FLICKR image collections [7, 8] within the Image-
CLEF 2011 photo annotation challenge and demonstrates its effectiveness.
Indeed, our best prediction model, which is a late fusion of the novel HTCs
and visual features through SWLF, achieved a MiAP (Mean interpolated
Average Precision) of 43.69% and ranked the 2nd best performance out of 79
runs.

Figure 1: The flowchart of the proposed approach for visual concept recognition.
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Figure 1 depicts the flowchart of the proposed approach for VCR which
mainly includes two stages: a training stage and a testing stage. The training
stage consists of training experts through SVM for each pair of concept and
type of features using a training set. These experts are then evaluated using
a validation set to learn SWLF. The testing stage proceeds to extract various
types of features from an input image, and then to apply the corresponding
fusion scheme learnt by SWLF for each concept to deliver a recognition de-
cision. The contributions of this work are threefold and can be summarized
as follows:

• A novel effective textual feature, HTC, is proposed to capture the re-
latedness of semantic concepts and accounts for the sparsity of image
tags. Several variants of HTC are also provided and compared, using
two different semantic word similarities and two different dictionar-
ies, including in particular an English word-based affective database
ANEW [49].

• We investigate a set of mid-level features, which are related to harmony,
dynamism, aesthetic quality, emotional color representation, etc., and
evaluate their efficiency for the specific problem of affective concepts
classification.

• We propose a novel SWLF scheme which selects the best features and
weights their scores for each concept. This fusion scheme proves par-
ticularly efficient for fusing visual and textual modalities in compari-
son with some other standard fusion schemes including min, max, and
mean.

The rest of this paper is organized as follows. The novel textual feature
HTC is introduced in Section 2. Section 3 presents the set of mid-level visual
features along with some popular low-level features such as color, texture,
shape and local descriptors. The fusion strategy is investigated in Section 4.
The experimental results are analyzed in Section 5. Finally, section 6 draws
the conclusion and gives some hints for future work.
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2. Textual features

The last few years have seen an impressive growth of sharing websites
particularly dedicated to videos and images. The famous Flickr website1 for
example, from which is extracted the MIR FLICKR image collection that we
investigate in this paper, allows users to upload and share their images and
to provide a textual description under the form of tags or legends. These tex-
tual descriptions are a rich source of semantic information on visual data that
is interesting to consider for the purpose of VCR or multimedia information
retrieval. However,while there exist abundant captioned images on the Inter-
net, a textual caption for a given image is generally very sparse (8.7 tags on
average per image in MIR FLICKR). An example is given in Figure 2 where
a picture of a peacock is associated with user tags such as “bird”, “beauti-
ful”, “interestingness”. In this section, we first introduce a novel descriptor
of textual content, namely Histograms of Textual Concepts, then present ten
variants using different dictionaries, semantic similarity measurements and
accumulating operators.

Figure 2: An example image with sparse Flickr user tags, including however semantic
concepts, e.g., “bird”, “beautiful”, “interestingness”, etc.

1http://www.flickr.com/
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2.1. HTC: a Histogram of Textual Concepts

We have seen that the dominant BoW approach fails to describe the
fineness and the relatedness of semantic concepts. Indeed, the BoW kind
approaches assume that word terms are basically statistically independent,
thereby mismatching text documents close in content but with different term
vocabulary. In contrast, we propose the Histograms of Textual Concepts
(HTC) to capture the semantic relatedness of concepts. HTC is inspired
from a model that we can call componential space model, such as conceptual
vector [50], which describes the meaning of a word by its atoms, components,
attributes, behavior, related ideas, etc. For instance, the concept of “rain”
can be described by “water”, “liquid”, “precipitation”, “dripping liquid”,
“monsoon”, etc. thus in a much similar way when users tag photos. Similarly,
the concept “peacock” as illustrated in Figure 2 can be described by “bird”,
“male”, “beautiful”, “pretty”, “feathers”, “plumage”, “animal”, etc.

Figure 3: The three steps process of our HTC algorithm (taking Figure 2 as an input
example.)

Specifically, the HTC of a text document is defined as a histogram of
textual concepts towards a vocabulary or dictionary, and each bin of this
histogram represents a concept of the dictionary, whereas its value is the
accumulation of the contribution of each word within the text document to-
ward the underlying concept according to a predefined semantic similarity
measure. Given a dictionary D and a semantic similarity measurement S,
HTC can be simply extracted from the tags of an image through a three-step
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process as illustrated in Figure 3. Note that the tags such as “peacock”,
“bird”, “feathers”, “animal” all contribute to the bin values associated with
the “animal” and “bird” concepts according to a semantic similarity mea-
surement whereas the tags such “beautiful”, “pretty”, “interestingness” all
help peak the bin value associated with the concept “cute”. This is in clear
contrast to the BoW approaches where the relatedness of textual concepts
is simply ignored as word terms are statistically counted. The algorithm for
the extraction of a HTC feature is detailed in Algorithm 1.

Algorithm 1: Histogram of Textual Concepts (HTC)

Input: Tag data W = {wt} with t ∈ [1, T], dictionary D = {di} with i ∈ [1, d].
Output: Histogram f composed of values fi with 0 ≤ fi ≤ 1, i ∈ [1, d].

• Preprocess the tags by using a stop-words filter.

• If the input image has no tags (W = ∅), return f with ∀i fi = 0.5.
1

• Do for each word wt ∈ W :

1. Calculate dist(wt, di), where dist is a semantic similarity distance
between wt and di.

2. Obtain the semantic matrix S as: S(t, i) = dist(wt, di).

• Calculate the feature f as: fi =
∑T

t=1 S(t, i), and normalize it to [0 1] as:

fi = fi/
∑d

j=1 fj .

1
When an input image has no tag at all, in this work we simply assume that every bin value is 0.5,
therefore at halfway between a semantic similarity measurement 0 (no relationship at all with the
corresponding concept in the dictionary) and 1 (full similarity with the corresponding concept in
the dictionary). Alternatively, we can also set these values to the mean of HTCs over the captioned
images of a training set.

The advantages of HTC are multiple. First, for a sparse text document as
image tags, HTC offers a smooth description of the semantic relatedness of
user tags over a set of textual concepts defined within the dictionary. More
importantly, in the case of polysemy, HTC helps disambiguate textual con-
cepts according to the context. For instance, the concept of “bank” can refer
to a financial intermediary but also to the shoreline of a river. However, when
a tag “bank” comes with a photo showing a financial institution, correlated
tags such as “finance”, “building”, “money”, etc., are very likely to be used,
thereby clearly distinguishing the concept “bank” in finance from that of a
river where correlated tags can be “water”, “boat”, “river”, etc. Similarly,
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in the case of synonyms, the HTC will reinforce the concept related to the
synonym as far as the semantic similarity measurement takes into account
the phenomenon of synonyms.

2.2. Variants of HTC

The computation of HTC requires the definition of a dictionary and a
proper semantic relatedness measurement over textual concepts. In this
work, we compare the use of two dictionaries. The first one, namely D 99,
is a dictionary composed of the 99 visual concepts to be detected within the
photo annotation task of ImageCLEF 2011, while the second one, D Anew, is
the set of 1034 English words used in the ANEW study [49]. The interest of
the ANEW dictionary lies in the fact that each of its word is rated on a scale
from 1 to 9 using affective norms in terms of valence (affective dimension
expressing positive versus negative), arousal (affective dimension expressing
active versus inactive) and dominance (affective dimension expressing dom-
inated versus in control). For instance, according to ANEW, the concept
“beauty” has a mean valence of 7.82, a mean arousal of 4.95 and a mean
dominance of 5.23 while the concept “bird” would have a mean valence of
7.27, a mean arousal of 3.17 and a mean dominance of 4.42. Therefore, D 99
allows for the projection of all user tags into the space of 99 visual concepts
to be classified whereas D Anew seems better armed for the 9 sentiment con-
cepts, e.g., melancholic, happy, active, etc. which were newly introduced in
the photo annotation task within ImageCLEF 2011.

Using the affective ratings of the ANEW concepts and the HTCs com-
puted over image tags, one can further define the coordinates of an image
caption in the three dimensional affective space [51], in terms of valence,
arousal and dominance by taking a linear combination of the ANEW con-
cepts weighted by the corresponding HTC values. More precisely, given a
HTC descriptor f extracted from a text document, the valence, arousal and
dominance coordinates of the text document can be computed as follows:

fvalence = (1/d)
∑
i

(fi ∗ Vi) (1)

farousal = (1/d)
∑
i

(fi ∗ Ai) (2)

fdominance = (1/d)
∑
i

(fi ∗Di) (3)
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where Vi, Ai and Di are respectively the valence, the arousal and the dom-
inance of the ith word wi in the D Anew dictionary, and d is the size of
D Anew. However, Bradley et al. [52] pointed out that the measurement of
dominance information is not stable. As a result, we only made use of Equa-
tions (1) and (2) defined as a variant of HTC features in our participation
to the ImageCLEF 2011 photo annotation task.

We also implement and compare two measurements of semantic similar-
ities between two textual concepts, namely the path and the wup distances
[53] that are based on the WordNet ontology [54]. Given two synsets w1 and
w2, the path and the wup distances are defined by:

dpath(w1, w2) =
1

1 + spl(w1, w2)
(4)

dwup(w1, w2) =
2× depth(lcs(w1, w2))

depth(w1) + depth(w1)
(5)

where lcs(w1, w2) denotes the least common subsumer (most specific ancestor
node) of the two synsets w1 and w2 in the WordNet taxonomy, depth(w) is
the length of the path from w to the taxonomy root, and spl(w1, w2) returns
the distance of the shortest path linking the two synsets (if one exists). Note
that the path and the wup measurements have opposite polarity. When the
two synsets w1 and w2 are identical, path returns 1 while wup returns 0.
Therefore, when using wup for accumulating the semantic similarities in the
computation of HTC, its polarity is first changed to a positive one in our
work.

Finally, for comparison purpose, in addition to the sum operator which
accumulates the semantic relatedness of the tags of an image toward a pre-
defined dictionary, we also make use of the max operator which handles the
semantic similarities by keeping only the maximal value of all image tags
toward each concept in the dictionary. In this case, the accumulation of the
semantic relatedness fi =

∑
t S(t, i) in the HTC computation is replaced by

fi = maxt S(t, i).
These different variants of HTC are listed in Table 1. In this table, the

feature names are related to the way they are computed according to the
aforementioned alternatives. For instance, txtf 99ps refers to the HTC vari-
ant using the dictionary D 99 made of ImageCLEF 2011 concepts along with
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Table 1: Different variants of the textual features based on HTC.

Feature name Dictionary
Similarity
measure

Accumulating
method

txtf 99ps D 99 path fi =
∑

t S(t, i)
txtf 99pm D 99 path fi = maxt S(t, i)
txtf 99ws D 99 wup fi =

∑
t S(t, i)

txtf 99wm D 99 wup fi = maxt S(t, i)
txtf 1034ps D Anew path fi =

∑
t S(t, i)

txtf 1034pm D Anew path fi = maxt S(t, i)
txtf 1034ws D Anew wup fi =

∑
t S(t, i)

txtf 1034wm D Anew wup fi = maxt S(t, i)
txtf 1034pva D Anew path fi = maxt S(t, i)
txtf 1034wva D Anew wup fi = maxt S(t, i)
txtf 1034pvad D Anew path fi = maxt S(t, i)
txtf 1034wvad D Anew wup fi = maxt S(t, i)

the path distance as semantic similarity measurement, and the sum accumu-
lating operator. txtf 1034pvad refers to the valence, arousal and dominance
coordinates, namely fvalence, farousal and fdominance, which are computed us-
ing Equations (1), (2) and (3) while the underlying HTC variant is computed
using ANEW vocabulary D Anew and the path distance.

3. Visual features

To describe the visual content of an image, we also follow the dominant
BoVW approach which views an image as an unordered distribution of local
image features extracted from salient image points, called “interest points”
[14, 55] or more simply from points extracted on a dense grid [56, 57]. In this
work, we make use of several popular local descriptors, including C-SIFT,
RGB-SIFT, HSV-SIFT [15] and DAISY [58], extracted from a dense grid
[17]. An image is then modelled as a BoVW using a dictionary of 4000 visual
words and hard assignment. The codebook size, 4000 in this work, results
from a tradeoff between computational efficiency and the performance over
a training dataset. The visual words represent the centers of the clusters
obtained from the k-means algorithm.
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Meanwhile, in order to capture the global ambiance and layout of an
image, we further compute a set of global features, including descriptions
of color information in the HSV color space in terms of means, color his-
tograms and color moments, textures in terms of LBP [18], Color LBP [19],
co-occurrence and auto-correlation, as well as shape information in terms of
histograms of line orientations quantized into 12 different orientations and
computed by the Hough transform [59].

In addition to these local and global low-level features, we also collect
and implement a set of mid-level features [60, 25, 24] which are mostly in-
spired from studies in human visual perception, psychology [21], cognitive
science, art [61], etc., thus in close relationships with the 9 sentiment con-
cepts newly introduced in the image annotation task at ImageCLEF 2011.
These mid-level features include emotion related visual features, aesthetic
and face related features.

Emotion related features.
Color. Valdez and Mehrabian [21] carried out psychological experiments

and evidenced significant relationships between color saturation and bright-
ness, and emotion dimensions. They further expressed these relationships
in terms of pleasure (valence), arousal and dominance axis according to the
following equations:

Pleasure = 0.69V + 0.22S (6)

Arousal = −0.31V + 0.60S (7)

Dominance = 0.76V + 0.32S (8)

where S and V refer to the mean value of brightness and saturation in HSV
color space, respectively.

Texture. Tamura et al. [23] proposed a set of texture features strongly
correlated with human visual perception [23] and proved successful for af-
fective image classification [62, 24]. Therefore, in this work we implemented
Tamura features including coarseness, contrast, directionality.

Harmony. Itten [61] has shown that color combinations can produce
effects such as harmony, non-harmony. Indeed, visual harmony can be ob-
tained by combining hues and saturations so that an effect of stability on
the human eye can be produced. The presence of harmonious colors convey
stability and joy whereas the presence of non complementary colors gives an
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anxious and nervous feeling. This harmony can be represented using the It-
ten sphere where contrasting colors have opposite coordinates [22, 63, 25, 24].
In the case of harmonious colors, color positions on the sphere are connected
thanks to regular polygons. The corresponding harmony feature is thus built
by identifying dominant colors and plotting them into the color sphere. Then,
the polygon linking these colors is characterized by a value in such a way that
a value close to 1 corresponds to a regular polygon whose center is next to
the sphere center, thereby characterizing a harmonious image, while a value
close to 0 corresponds to an irregular polygon characterizing a non harmo-
nious image.

Dynamism. Lines within an image also convey important meanings [63,
25, 24]. Indeed, oblique lines communicate dynamism and action whereas
horizontal or vertical lines rather communicate calmness and relaxation. This
can be combined with colors in order to produce complex effects suggesting
particular feelings or emotions to the viewer. Therefore, to characterize dy-
namism in images, the ratio is computed between the numbers of oblique
lines (detected by a Hough Transform [64]) with respect to the total number
of lines in an image.

Aesthetic qualities. Aesthetics in photographs refers to the feeling of
the beauty perceived by people. An image of good aesthetic quality usually
induces a pleasant experience. Therefore, we have implemented several aes-
thetic features proposed by R. Datta et al. [26] and some others from Y.Ke et
al. [27]. We expect them to be useful for identifying some affective concepts,
for their relatedness to arts and feelings.

Face related features. Finally, we also implemented a face counting
method according to Viola and Jones face detector [65]. The rational is
that the knowledge of the number of faces within an image can give useful
clues to characterize some concepts that involve the human presence such as
“person”, “portrait”, “family”, etc.

Table 2 summarizes all the visual features that we have implemented for
the purpose of VCR.
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Table 2: Summary of the visual features.

Category Short name # Short Description

Color

grey hist 128 128-bin histogram computed from the grey level image.

color hsv 132
Concatenation of the 64-bin histograms computed from each

HSV channel.

color

moment
144

3 central moments (mean, standard deviation and skewness)

on HSV channels using a pyramidal image representation.

color mSB 2 Mean saturation and brightness in HSV color space.

Texture

texture

lbp
256 Standard LBP features [18].

texture

tamura
3

Tamura features [23] including coarseness, contrast, direction-

ality.

texture

cooccu
16

Distribution of co-occurring values in the image at a given

offset [66].

texture

autocorr
132 Autocorrelation image coefficients [67].

hsvLbp

invLbp

rgbLbp

oppoLbp

1311

(each)

Four multi-scale color LBP operators based on different color

spaces [19].

Shape
shape

histLine
12

Histogram of 12 different orientations by using Hough trans-

form [59].

Local

descriptors

c-sift

rgb-sift

hsv-sift

oppo-sift

4000

(each)

Four SIFT descriptors based on different color spaces and com-

puted on a dense grid [15, 68].

daisy 4000 DAISY descriptor computed on a dense grid [17].

Mid-level

mlevel

PAD
3

Emotional coordinates based on HSV color space according to

[21].

mlevel

harmony
1 Color harmony of images based on Itten’s color theory [61].

mlevel

dynamism
1

Ratio between the numbers of oblique lines in images with

respect to the total number of lines [22, 63].

mlevel

aesthetic

YKe

5
Y.Ke et al. [27] aesthetic criteria including: spatial distribu-

tion of edges, hue count, blur, contrast and brightness .

mlevel

aesthetic

Datta

44
Most of the features (44 of 56) except those that are related

to IRM (integrated region matching) technique [26].

mlevel

facect
5

Number of faces in the image detected by using 5 different

pose configurations of the face detector from [65].
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4. Selective Weighted Late Fusion

The fusion scheme that we implement is a selective weighted late fusion
(SWLF), which shares the same idea as the adaptive score level fusion scheme
proposed by Soltana et al. [69]. While a late fusion at score level is reputed
as a simple and effective way to fuse features of different nature for machine-
learning problems, the proposed SWLF builds on two simple insights. First,
the score delivered by a feature type should be weighted by its intrinsic qual-
ity for the classification problem at hand. Second, in a multi-label scenario
where several visual concepts may be assigned to an image, different visual
concepts may require different features which best recognize them. For in-
stance, the “sky” concept may greatly require global color descriptors, while
the best feature to recognize a concept like street could be a segment-based
feature for capturing straight lines of buildings. The whole SWLF framework
is illustrated in Figure 4.

Figure 4: The framework of the SWLF scheme. For each image and each concept, the
associated tags are analysed to extract the textual features for textual classifiers. Mean-
while, visual features are extracted to feed visual classifiers. Experts (classifiers) are then
combined to predict the presence of a given concept in the input image.

Specifically, the SWLF scheme is implemented as follows. The training
dataset is first divided into two parts composed of a training set and a val-
idation set. For each visual concept, a binary classifier (one versus all) is
trained, which is also called expert in the subsequent, for each type of fea-
tures using the data in the training set. Thus, for each concept, we generate
as many experts as the number of different types of features. The quality of
each expert can then be evaluated through a quality metric using the data
in the validation set. In this work, the quality metric is chosen to be the
interpolated Average Precision (iAP). In this case, the higher the iAP is for
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a given expert, the more weight should be given to the score delivered by
that expert in the sum of weighted scores for a late fusion. Concretely, given
a visual concept k, the quality metrics, i.e. iAP, produced by all the experts
are first normalized into wik. To perform a late fusion of all these experts
at score level, the sum of weighted scores is then computed according to
Equation (9):

score : zk =
N∑
i=1

(wik ∗ yik), (9)

where yik represents the score of the ith expert for the concept k, and wik
stands for the normalized iAP performance of the feature fi on the valida-
tion dataset. In the subsequent, late fusion through Equation (9) is called
weighted score rule.

For the purpose of comparison, we also consider three other score level
fusion schemes, namely “min”, “max” or “sum” rules that are recalled re-
spectively in equations (10), (11), (12):

min : zk = min(y1
k, y

2
k, ..., y

N
k ); (10)

max : zk = max(y1
k, y

2
k, ..., y

N
k ); (11)

mean : zk =
1

N

N∑
i=1

yik; (12)

Actually, these three fusion rules can have very simple interpretation.
The min fusion rule is the consensus voting. A visual concept is recognized
only if all the experts recognize it. The max rule can be called alternative
voting. A visual concept is recognized as long as one expert has recognized
it. Finally, the mean rule can be assimilated as the majority voting where a
concept is recognized if the majority of the experts recognize it.

In practice, one discovers that the late fusion of all the experts leads to
a decrease in the global classification accuracy, i.e. the mean iAP over the
whole set of visual concepts to be recognized. The reason could be that some
of the features so far proposed can be noisy and irrelevant to a certain number
of visual concepts, thus disturbing the learning process and lowering the
generalization skill of the learnt expert on the unseen data. For this purpose,
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we further implement the SWLF scheme based on a wrapper feature selection
method, namely the SFS method (Sequential Forward Selection) [70], which
firstly initializes an empty set, and at each step the feature that gives the
highest correct classification rate along with the features already included is
added to the set of selected experts to be fused. More specifically, for each
visual concept, all the experts are sorted in a decreasing order according to
their iAP. At a given iteration N, only the first N experts are used for late
fusion and their performances are evaluated over the data of the validation
set. N keeps increasing until the overall classification accuracy measured in
terms of MiAP starts to decrease. The procedure of the SWLF algorithm is
detailed in Algorithm 2.

Several variants of SWLF are conceivable. For example, instead of fixing
the same number of experts N for all concepts, it is possible to select the
number of experts on a per-concept basis. Thus the number of experts can
be different for each concept. Another variant concerns the way the experts
are selected at each iteration. Indeed, instead of adding the nth best expert
at iteration n to the set of previously selected n − 1 experts, one can also
select the expert which yields the best combination of n experts, in terms of
MiAP , once added to the set of n−1 experts already selected at the previous
iteration.

As a late fusion strategy, the computational complexity of SWLF can
be computed in terms of the number of visual concepts, K and the number
of types of features, M . This complexity is O(K × M2). Note that the
optimized fusion strategy achieved through SWLF only needs to be trained
once on the training and validation datasets.

SWLF combines an ensemble of experts for a better prediction of class
labels, i.e. visual concepts in this work. From this regard, SWLF can also
be viewed as a method of ensemble learning [71] which aims to use multiple
models to achieve better predictive performance than could be obtained from
any of the constituent models. Nevertheless, SWLF differs from popular
bagging methods [72], e.g. random forest, which involve having each expert
in the ensemble trained using a randomly drawn subset of a training set and
vote with equal weight. In the case of SWLF, the training dataset is divided
into a training set and a validation set which are used to train experts and
SWLF to select the best ones for fusing using different weights.
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Algorithm 2: Selective Weighted Late Fusion (SWLF)

Input: Training dataset T (of size NT ) and validation dataset V (of size NV ).
Output: Set of N experts for the K concepts {Cn

k } and the corresponding set
of weights {ωnk} with n ∈ [1, N ] and k ∈ [1,K].
Initialization: N = 1, MiAPmax = 0.

• Extract M types of features from T and V

• For each concept k = 1 to K
– For each type of feature i = 1 to M

1. Train the expert Ci
k using T

2. Compute ωik as the iAP of Ci
k using V

– Sort the ωik in descending order and denote the order as j1, j2, ...,

jM to form Wk = {ωj
1

k , ωj
2

k , ..., ωj
M

k } and the corresponding set of

experts Ek = {Cj1

k , Cj2

k , ..., CjM

k }
• For the number of experts n = 2 to M

– For each concept k = 1 to K

1. Select the first n experts from Ek : En
k = {C1

k , C
2
k , ..., C

n
k }

2. Select the first n weights from Wk : Wn
k = {ω1

k, ω
2
k, ..., ω

n
k}

3. For j = 1 to n : Normalise ωjk
′
= ωjk/

∑n
i=1 ω

i
k

4. Combine the first n experts into a fused expert, using the

weighted score rule through Equation (9): zk =
∑n

j=1 ω
j
k

′
.yjk

where yjk is the output of Cj
k

5. Compute MiAPn
k of the fused expert on the validation set V

– Compute MiAP = 1/K.
∑K

k=1 MiAPn
k

– If MiAP > MiAPmax
∗ Then MiAPmax = MiAP , N = n
∗ Else break

5. Experimental evaluation

We carried out extensive experiments on the MIR FLICKR image col-
lection [7, 8] that was used within the ImageCLEF 2011 photo annotation
challenge [9]. The database is a subset of MIR FLICKR-1M image collec-
tion from thousands of the real world users under a creative common license.
The participants of the challenge were asked to elaborate methods in order
to automatically annotate a test set of 10,000 images with 99 visual concepts
(including 9 new emotional concepts) [73]. A training set of 8,000 images was
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provided. The task could be solved using three different types of approaches
[9]:

• Visual: automatic annotation using visual information only.

• Textual: automatic annotation using textual information only (Flickr
user tags and image metadata).

• Multimodal: automatic multimodal annotation using visual informa-
tion and/or Flickr user tags and/or EXIF information.

The performance was quantitatively measured by the Mean interpolated
Average Precision (MiAP) as the standard evaluation measure, while the
example-based evaluation applies the example-based F-Measure (F-Ex) and
Semantic R-Precision (SRPrecision) [9]. In this paper, we focus on the eval-
uation using MiAP.

In this section, we investigate the proposed approach under the following
conditions: (1) the performance of the visual modality using only visual fea-
tures; (2) the performance of the textual modality using only textual features;
(3) the effect of combining textual and visual features through our SWLF
scheme; (4) the usefulness of the set of affect related features for the recog-
nition of the 9 emotional concepts; (5) the performance of our approaches
in the photo annotation task at ImageCLEF 2011; (6) discussion of the use-
fulness of the proposed textual HTC features to the overall performance of
our participation to ImageCLEF 2011 photo annotation task and the gener-
alization skill of the fused experts. We start by describing the experimental
setup.

5.1. Experimental setup

The initial training dataset, provided by ImageCLEF 2011 for the photo
annotation task, was first divided into a training set (50%, 4005 images)
and a validation set (50%, 3995 images), and balanced the positive samples
of most concepts as half for training and half for validation. These subsets
remain the same for all the following experiments. The proposed features,
both textual and visual, were then extracted from the training and validation
sets. The Support Vector Machines (SVM) [74] were chosen as classifiers (or
experts) for their effectiveness both in terms of computation complexity and
classification accuracy. A SVM expert was trained for each concept and each
type of features, as described in Section 4. Following J. Zhang et al. [75], we
used χ2 kernel for visual histogram-based features (including color histogram,
color hsv histogram, LBP-based, SIFT-based, DAISY) and RBF kernels for
the other features. The RBF and χ2 kernel functions are defined by:
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Krbf (F, F
′) = exp−

1
2σ2
‖(F−F ′)‖2 (13)

Kχ2(F, F ′) = exp
1
I

∑n
1=1

(Fi−F
′
i )

2

Fi+F
′
i (14)

where F and F ′ are the feature vectors, n is their size, I is the parameter for
normalizing the distances which was set at the average value of the training
set, and σ was set at

√
n/2.

We made use of the LibSVM library [76] as the SVM implementation
(C-Support Vector Classification). The tuning of different parameters for
each SVM expert was performed empirically according to our experiments,
in which the weight of negative class (“-w-1”) was set at 1, and the weight
for positive class (“-w1”) was optimized on the validation set using a range
of 1 through 30.

The test dataset, whose labels were not available at the time of our sub-
mission to ImageCLEF 2011 photo annotation task, is composed of 10000
images.

5.2. Experimental results on the visual modality

The visual features were studied in Section 3. There are 24 different types
of visual features as synthesized in Table 2. Figure 5 shows the performance
of each type of visual features on the validation set. As we can see, SIFT
like local features (RGB-SIFT, OPPO-SIFT, C-SIFT, HSV-SIFT) are the
most effective ones among all the visual features. They are followed by
LBP-based global texture features, which in turn outperform the mid-level
features such as harmony, dynamism, etc. The DAISY feature does not
provide a MiAP performance as good as SIFT features, but it uses a shorter
descriptor length and operates 3 times faster [17]. Moreover, four multi-scale
color LBP features perform better than the original LBP as they possess
the enhanced photometric invariance property and discriminative power [19].
The mid-level features (such as dynamism and harmony) yield the lowest
performance. The reason could be that these mid-level features are global
ones and generally of very low dimension, e.g. only 1 value for harmony
and dynamism, respectively. Therefore, they may not capture sufficient local
visual information as compared to local features, e.g., C-SIFT with BoVW
modelling, which are much more comprehensive.
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Figure 5: The MiAP performance of each visual features on the validation set.

We performed the SWLF scheme for fusing visual features, and found that
fusing the top 5 features yield the best MiAP (35.89%) on the validation set,
as shown in Figure 6 (a). The results indicated that the weighted score and
mean rules through SWLF outperforms the other two fusion rules, namely
min and max, and the MiAP performance is increased by 3% using the
weighted score-based SWLF scheme compared to 32.9% achieved by the best
single visual feature (RGB-SIFT). As a result, the visual model, which we
submitted to the photo annotation task at ImageCLEF 2011, performed the
fusion of the top five best visual features using the score-based SWLF scheme.
As shown in Figure 6 (b), the fused experts proved to have a very good
generalization skill on the test set. It can be seen that the weighted score
and mean fusion methods perform better than the others, and the best fused
experts on the validation set, which combine the top 5 features, achieved
a MiAP of 35.54% on the test set, in comparison with a MiAP of 35.89%
achieved by the same fused experts on the validation set.

As it can be seen from Figure 6, the performance by score-based SWLF is
not that different from the performance by mean-based SWLF even though
the former performs slightly better than the latter, especially on the test
set. The reason is that the weights computed by SWLF for all the experts
are not that different, even roughly the same for the 10 best visual features,
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e.g., SIFT-like and LBP-like features. As it can be seen in figure 5, the first
10 features, e.g. SIFT-like features and LBP-like features, display roughly
similar MiAP (∼= 0.3) whereas the last 11 features, e.g., mainly all the mid-
level features, also have a similar but lower MiAP (∼= 0.15). In the SWLF
algorithm, each expert is weighted by its normalized iAP. This eventually
results in roughly the same weights for the 10 first experts, and a range
of weights which is not that big when N goes beyond 10, especially after
weight normalization. Now, when these experts are fused by SWLF using
the number of experts N increased from 2 to 24, the performance difference
in terms of MiAP between the mean and score fusion rules through SWLF are
really hardly noticeable at the scale of accuracy in Figure 6 until N reaches
10, this difference becomes more apparent when the number of experts N
fused by SWLF goes beyond 10. A higher difference between these two
fusion rules would certainly be observed if the performance of the features
was very different.

5.3. Experimental results on the textual modality

The textual features were described in Section 2. As follows the study
by Bradley et al. [52] who pointed out that the measurement of dominance
values is not as stable as those of valence and arousal, we excluded from
our study the textual features making use of dominance values, namely
txtf 1034pvad and txtf 1034wvad, and only investigated the remaining ten
variants of HTC summarized in Table 1 in our participation to the Image-
CLEF 2011 photo annotation task. All these 10 types of textual features were
first extracted from the training set and used to train different SVMs using
two different kernels, namely χ2 and RBF . It is interesting to test and eval-
uate these two kernels since RBF kernel simply assumes a radial distance in
a higher dimensional space where each sample is nonlinearly mapped and is a
reasonable first choice, whereas χ2 kernel measures distributional similarities
between two histograms of occurrence frequencies. On the other side, HTC
feature has the form of a histogram but differs from traditional histogram as
defined statistics and probability. Indeed, we remind that the value for each
bin in HTC, i.e. a textual concept of a given vocabulary, instead of counting
term frequency, accumulates the relatedness of that concept towards each
textual label associated to an image. On the validation set, it turns out that
the RBF kernel outperforms the χ2 kernel in terms of MiAP by 15 points.
Figure 7 shows the MiAP performance of different types of textual features
using the RBF kernel.
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(a)

(b)

Figure 6: The MiAP performance of different fusion methods based on SWLF scheme
using the visual features on the validation set (a) and test set (b). As required by SWLF,
the features are first sorted by descending order in terms of iAP of their corresponding
experts. Then, the number of fused features N is increased from 1 to 24 (total number of
visual features).

As we can see from Figure 7, the best MiAP, close to 0.3, was achieved
by the HTC variant txtf 99ps using the dictionary D 99, the path distance
and the sum accumulator while the textual features making use of affect
coordinates in terms of valence and arousal achieved the lowest MiAP. Af-
ter our submission, we carried out additional experiments using the textual
features txtf 1034wvad and txtf 1034pvad that contains dominance informa-
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Figure 7: The MiAP performance of textual features on the validation set.

tion along with valence and arousal values. We discovered that the addi-
tion of the dominance information improves by 3 or 4 percent the overall
performances achieved by the textual features without dominance values,
namely txtf 1034wva and txtf 1034pva. However, the performances achieved
by txtf 1034wvad and txtf 1034pvad stay still quite far away from the MiAP
displayed by the best textual feature, e.g., txtf 99ps.

The performance of the textual features is thus lower than that displayed
by visual features as shown in Figure 5. However, textual features behave
much differently from the visual ones. The tags associated with images may
provide valuable cues to the visual semantic content so as to correct the
misclassification by the visual features, and their joint use should lead to
the improvement of predictions. To illustrate this, we show in Figure 8
several images from the validation set that were misclassified using the visual
modalities, but correctly classified by the textual ones. In the first example,
the image is taken inside the airplane, which is unusual in the training set and
makes the visual modality fail to detect the “airplane” concept. However,
the associated text contains a “plane” tag, and our textual feature HTC
successfully captures this cue and shows a high value for the bin associated
with the concept “airplane”, thereby facilitating a correct prediction by a
textual classifier.

We also applied the SWLF scheme to fuse textual features. The results
as shown in Figure 9 (a) indicate that the combination of the top 5 best fea-
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Figure 8: The left column shows some visual concepts which can be hardly predicted by the
visual modalities, but can be predicted by the textual ones. The center column shows the
raw text tags associated with the photos; the right column shows the built textual feature
vector HTC using txtf 99ps. As shown in (b), the skateboard is imaged in a unusual viewing
angle with only 6 positive training samples, leading to the misclassification of classifiers
using only the visual modality. On the other hand, the term “skateboard” appears in
the user tags, which is successfully captured by the textual feature vector HTC, thereby
facilitating the correct prediction of the classifiers using the textual modality.
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tures yield the best MiAP value, and the weighted score-based SWLF scheme
outperforms the other fusion rules, and achieves a MiAP of 35.01% which
improves by 6 points the MiAP of 29.1% achieved by the best single textual
feature (txtf 99ps) on the validation set. As a result, we implemented our
text-based prediction model using the weighted score-based SWLF scheme
to fuse the top 5 best textual features. As shown in Figure 9 (b), the fused
experts using the top 5 features achieve a MiAP of 32.12% on the test set.
It thus displays a very good generalization skill when this last figure is com-
pared with the MiAP of 35.01% achieved by the same fused experts on the
validation set. Again, we also discovered that the score and mean-based
SWLFs perform better than the others.

To compare HTC features with the popular BoW approaches, we imple-
mented the typical TF and TF-IDF models, which are based on word counts
or term frequency. Figure 10 compares the MiAP performances of TF, TF-
IDF and HTC features on the test set. It further suggests that HTC features,
in accounting for the relatedness of concepts and smoothing the histograms of
textual concepts, prove to be effective, in particular when dealing with sparse
user tags. We also compared our textual feature HTC with an extended BoW
approach, namely the Latent Dirichlet allocation (LDA) method [31], which
views a document as a mixture of topics with a dirichlet distribution prior.
This topic model can help gain insight into the latent topics within the text
and enables the reduction of the high dimensionality of the feature space.
The LDA approach with 64 topics achieved a MiAP of 13.2% as indicated
by the red line in Figure 10. The results indicate that the proposed HTC
outperforms LDA method with almost 15 points in terms of MiAP. The main
reason is that image captions are generally sparse texts, only having on aver-
age 8.7 tags per image for example in MIR FLICKR image collection. Thus,
they may not provide enough text content to correctly train the LDA topic
model.
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(a)

(b)

Figure 9: The MiAP performance of different fusion methods based on the SWLF scheme
using textual features on the validation set (a) and test set (b). As required by SWLF,
the features are first sorted by descending order in terms of iAP of their corresponding
experts. Then, the number of fused features N is increased from 1 to 10 (total number of
textual features).

Figure 10: The MiAP performance of different textual approaches on the test set.
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5.4. Experimental results on fusing textual and visual features

We also implemented our multimodal approach using the SWLF scheme
as described in Section 4 to fuse the visual and textual features. Recall
that we implemented 24 visual features and 10 textual features. Figure 11
shows the MiAP performance achieved by the different variants of the SWLF
scheme on the validation and test sets as N , the number of features to be
fused, is increased from 1 to 34.

As we can see from Figure 11 (a), the MiAP performance of max and
min-based SWLF schemes tend to decrease when the number of features,
N , is successively increased from 1 to 34, while the performance of weighted
score and mean-based SWLF schemes keep increasing until N reaches 20
and then stays stable. The weighted score-based SWLF scheme performs
slightly better than the mean-based SWLF scheme. The weighted score-
based SWLF scheme using N = 20 displays a MiAP of 43.54% and increases
thus by 9 points the MiAP compared to 34.1% achieved by the best textual
prediction model, and by 7.6 points compared to 35.9% achieved by the best
visual prediction model. These results demonstrate that the weighted score-
based SWLF scheme performs consistently much better than the max and
min-based fusion rules and leads to a slightly better performance than the
mean-based variant. Figure 11 (b) shows the performance on the test set of
the fused experts combining textual and visual features. We can see from that
figure that the results are very similar to the one achieved on the validation
set, which prove that fused experts present a very good generalization skill.

5.5. Experimental results on affect related features

The photo annotation task at ImageCLEF 2011 featured 9 affective con-
cepts, namely “active”, “euphoric”, “funny”, “happy”, “calm”, “inactive”,
“melancholic”, “unpleasant” and “scary”. For this purpose, we investigated
several affect related descriptors, both in textual and visual modalities, in
order to evaluate their usefulness regarding to these affective concepts.

5.5.1. On the usefulness of affective textual features

Using the textual features on the ANEW dictionary, we implemented
in Section 2 the coordinates of an image caption in terms of valence and
arousal, namely fvalence and farousal using Equation (1) and (2). Figure 7
clearly shows that the performance of these two affective textual features
fvalence and farousal is lower than that of the other HTC-based features in
terms of MiAP (averaged on all concepts), one may think that these features
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(a)

(b)

Figure 11: The MiAP performance of different fusion methods based on SWLF scheme
using visual and textual features on the validation set (a) and on the test set (b). As
required by SWLF, the features are first sorted by descending order in terms of iAP of
their corresponding experts. Then, the number of fused features N is increased from 1 to
34 (total number of features).

could be effective for the prediction of affective concepts. As these affective
textual features deliver only two values, we evaluated on the validation set the
effectiveness of fvalence in discriminating the concept happy from the concept
unpleasant at the valence axis and the one of farousal in distinguishing the
concepts active and inactive at the arousal axis, using the training set for
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learning.
Table 3 and 4 shows the confusion matrix of the two features. These

results, unfortunately close to random, show that the prediction of emotional
concepts is extremely challenging. They can be explained by several reasons:
the lack of sufficient training data, the subjective nature underlying these
affective concepts, the empiric ratings of the ANEW words, etc..

Table 3: The confusion matrix of fvalence for happy and unpleasant categories.
H
HHH

HHActual

Predicted
happy unpleasant

happy 50.60 49.40
unpleasant 56.47 43.53

Table 4: The confusion matrix of farousal for active and inactive categories.
H
HHH

HHActual

Predicted
active inactive

active 46.40 53.60
inactive 47.26 52.74

5.5.2. The impact of the dictionary underlying HTC: D 99 versus D Anew

We also compared the performance of the HTC features using different
dictionaries, respectively D 99 and D Anew, shown in Figure 12. Recall that
D 99 is composed of the 99 visual concepts in the photo annotation task at
ImageCLEF 2011 while D Anew is composed of 1034 English words for which
the affective coordinates were defined in ANEW study. The D 99 fully de-
scribes the semantic space spanned by the 99 visual concepts while D Anew
should have some impact on the recognition of the 9 affective concepts. Fig-
ure 12 shows the iAP performance of the feature txtf 99ps using D 99 and
the feature txtf 1034ps using D Anew on each of 99 visual concepts. From
the figure, we can see that txtf 99ps performs slightly better than txtf 1034ps
(31.38% vs. 30.38%), but txtf 1034ps outperforms txtf 99ps on the concepts
related to emotions, e.g., “happy”, “funny”, “euphoric”, “scary”, “unpleas-
ant” and “melancholic”. The reason could lie in the fact that D Anew is built
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with the ANEW dictionary that may contain more words describing the emo-
tions. Thus, the emotional tags are more likely to be better described with
D Anew than D 99. This intuition is further confirmed by the fact that,
for some concepts, e.g. “skateboard”, which is not included in D Anew, the
HTC features built with D 99 achieve much higher iAP than the ones with
D Anew (54.7% vs. 0.23%).

Figure 12: The average precision performance of the textual features txtf 99ps vs.
txtf 1034ps, respectively built with the dictionaries D 99 and D Anew.

32



5.5.3. On the usefulness of affective visual features

We further evaluated the set of mid-level visual features, including har-
mony, dynamism, aesthetic quality, etc., for their usefulness in predicting
the nine affect concepts. Figure 13 shows the prediction capability of each
mid-level feature on the nine emotion classes in comparison with the one
obtained by the best local RGB-SIFT.

Figure 13: The iAP performance of affect related visual features on the 9 sentimental
concepts on the validation set compared to the best single visual feature RGB-SIFT.

Our intuition was that adding mid-level affect-related features would help
bridge the semantic gap between low-level features and very high-level seman-
tic concepts such as emotions. However, these results show that low-level
RGB-SIFT outperforms all mid-level features for almost all the nine affect
concepts. The reason may lie in the fact that these mid-level features are
global features and do not capture sufficient visual content as compared to the
local descriptors. This also further confirms that machine-based prediction
of affective concepts is extremely challenging. In particular, the subjective
nature of these concepts makes it hard to have homogeneous manually la-
beled data. Moreover, the lack of sufficient training data further complicates
this task.

5.6. Experimental results of the ImageCLEF 2011 photo annotation chal-
lenge

We submitted 5 runs to the ImageCLEF 2011 photo annotation challenge
(2 textual prediction models, 1 visual prediction model and 2 multimodal
prediction models). All runs were evaluated on the test set composed of 10000
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images. They were learnt by the weighted score-based SWLF on the training
and validation sets using the features described in the previous sections,
including 10 textual ones (using user tags) and 24 visual ones. The two
textual prediction models made use of only textual features extracted from
the user tags associated with an input image for predicting the visual concepts
within it. The visual prediction model made use of only visual features while
the two multimodal prediction models made joint use of the textual and visual
features. We did not use the EXIF meda data provided for the photos.

1. textual model 1: the combination of the top 4 features among the
10 textual features for each concept based on the weighted score SWFL
scheme.

2. multimodal model 2: the combination of the top 21 features among
34 visual and textual features for each concept based on the weighted
score SWFL scheme.

3. textual model 3: the combination of the top 5 features among the
10 textual features for each concept based on the weighted score SWFL
scheme.

4. visual model 4: the combination of the top 5 features among the 24
visual features for each concept based on the weighted score SWFL
scheme.

5. multimodal model 5: the combination of the top 22 features among
the 34 visual and textual features for each concept based on the weighted
score SWFL scheme.

Table 5: The results of our submitted runs.

Submitted runs MiAP(%) F-Ex(%) SR-Precision(%)

textual model 1 31.76 43.17 67.49
multimodal model 2 42.96 57.57 71.74
textual model 3 32.12 40.97 67.57
visual model 4 35.54 53.94 72.50
multimodal model 5 43.69 56.69 71.82

Best MiAP: TUBFI 44.34 56.59 55.86
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Thanks to the combination of the textual and visual features using our
weighted score-based SWFL scheme, our 5th multimodal run achieved a
MiAP of 43.69% which was ranked the 2nd performance out of 79 runs on the
MiAP evaluation, as shown in Table 5. Indeed, our best visual model with
35.5% was awarded the 5th in comparison to the best performance of 38.8%
in visual configuration. Our best textual model with 32.1% was ranked the
4th performance while the best performance of textual modality was 34.6 %.
Our weighted score-based SWLF fusion method again demonstrated its effec-
tiveness, displaying a MiAP of 43.69% which improves the MiAP of 35.54%
of our visual prediction model by roughly 8% and even by 11% the MiAP of
32.12% of our best textual prediction model.

5.7. Discussion

In this work, we designed a novel textual feature, namely HTC, for the
relatedness of textual concepts and proposed a Selective Weighted Late Fu-
sion (SWLF) scheme to best select and fuse the features for the purpose of
VCR. While one could want to know the real role the proposed HTCs played
in our submissions in comparison with the visual features, another question
which naturally arises is how the size of the validation set impacts the overall
performance on unseen test data, as SWLF requires a validation set to best
select and fuse an ensemble of experts. We discuss these two questions in this
subsection and start with the study of the impact of the size of the validation
set on the overall performance.

5.7.1. Impact of the size of the validation set on the generalization skill of
the fused expert through SWLF

In our experimental setup, defined in Section 5.1, the initial training
dataset was divided into two roughly equal parts: a training set and a vali-
dation set. The SWLF uses the training set to train an ensemble of experts
(classifiers), one for each visual concept and each type of features. It then
selects and combines the best experts while optimizing the overall MiAP on
the validation set.

The first question concerns the generalization skill of a fused expert
through SWLF on unseen data. In Section 5.2, 5.3 and 5.4, we already de-
picted the good generalization skill of the fused experts through the weighted
score-based SWLF, on test dataset. Table 6 further highlights such a be-
haviour of the fused experts in displaying their MiAP performance both on
the validation and test dataset. The prediction models in bold correspond
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to the best prediction model learnt through SWLF on the validation set. It
can be seen that the best fused experts learnt on the validation set keeps
a quite good generalization skill as the performance only drops slightly on
the test set. In our submission, we anticipated this performance drop in
particular for multimodal prediction models. Instead of submitting the best
multimodal model on the validation set which combines the best 20 fea-
tures, we submitted two multimodal runs, namely multimodal model 4 and
multimodal model 5, making use of 21 and 22 best features, respectively.
Surprisingly enough, our best multimodal run, multimodal model 5, which
was ranked the second best MiAP performance out of 79 runs, proves to
perform slightly better on the test set than on the validation set.

Table 6: MiAP performance comparison of the fused experts learnt through the weighted
score-based SWLF on the validation set versus the test set. The prediction models in bold
correspond to the best fused experts learnt through weighted score-based SWLF on the
validation set.

Prediction model Nb of fused experts N Validation set Test set

textual model 1 4 33.21 31.76
textual model 3 5 35.01 32.12
visual model 4 5 35.89 35.54
multimodal model 20 43.54 42.71
multimodal model 2 21 43.52 42.96
multimodal model 5 22 43.53 43.69

The second question is how the size of the validation set impacts the gen-
eralization ability of a fused expert learnt through SWLF. For this purpose,
we evaluated, as shown in Figure 14, the performance of the fused multi-
modal experts learnt through the score-weighted SWLF on the validation
set, by varying the size of that validation set. The results on the test set
were achieved by varying the size of the validation set from 20% to 100% of
the size of the original validation set, i.e. 3995 images as specified in Sec-
tion 5.1, while keeping the training set unchanged. The x axis displays the
number of fused experts while the y axis gives the MiAP performance. The
curves in different colors plot the MiAP performance using different size of
the validation set. From this figure, we can see that the SWLF performance
keeps increasing with the size of the validation set, and the improvement
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becomes slight from 40% of the size of the original validation set. Given the
size of a validation set, the fused expert displays a similar behaviour: the per-
formance increased quickly when N varies from 1 to 20, then it subsequently
remains stable.

Figure 14: The MiAP performance on the test dataset of the fused experts through SWLF
when varying the size of the validation dataset from 20% to 100% of the size of the original
validation set.

5.7.2. Role of HTC features on the MiAP performance of the proposed pre-
diction models

In Section 5.3, we have already highlighted the usefulness of the pro-
posed textual HTC features to predict some visual concepts with a very
small number of training samples, e.g., “airplane”,“skateboard”,“rain”. In
this section, we further investigate the contributions of the proposed HTC
features to the overall performance achieved at the photo annotation task
within ImageCLEF 2011 challenge. Our best run, the prediction model mul-
timodal model 5, achieved the best iAP performance on 13 visual concepts
out of 99 [9]. Figure 15 presents the occurrence frequency of our textual
features within the top 5 feature selected by the SWLF for the 13 concepts.
We can see that our textual features greatly contribute to the performance
of our approaches and improve our final ranking in the challenge.

To further emphasize the contribution of the proposed textual features,
we present in Table 7 the top 22 features selected by multimodal model 5 for
those 13 concepts. As we can see, there are 7 concepts in which the HTC
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Figure 15: The occurrence frequency of textual features within the top 5 features se-
lected by the SWLF for the 13 concepts for which we achieved the best iAP values in the
ImageCLEF 2011 Photo annotation task.

features achieved the best iAP performance, while the most powerful visual
features were the local descriptors and multi-scale color LBP operators.
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(a)

(b)
Figure 16: The iAP performance of our visual and multimodal prediction models, namely
visual model 4 and multimodal model 5, compared to the best TUBFI’s runs on 20 con-
cepts having the smallest set of training samples. These concepts were selected according
to the size of their positive training samples in an ascending order. “skateboard 12”
denotes that 12 training samples are provided for that concept. (a) compares the iAP
performance by TUBFI with our submitted visual model, visual model 4. The TUBFI’s
best visual model achieves a MiAP of 15.23% and 12.32% on the top 20 and 10 concepts
having the smallest number of positive samples, respectively, in comparison with 11.2%
and 9.4% by our run using visual model 4. (b) shows the performance of the submitted
multimodal models on these concepts: our multimodal model 5 run achieves a MiAP of
30.1% and 36.65% on the top 20 and 10 concepts having the smallest set of positive sam-
ples, respectively, in comparison with 27.58% and 29.11% by TUBFI’s best multimodal
run.
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In Section 5.3, we highlighted the interest of the proposed HTC features
which prove to be particularly useful when the training data is small for a
given visual concept. They provide significant complementary information
to the visual features. Figure 16 further spotlights such behaviour in plotting
the performance of our textual and visual features on the top 20 concepts
having the smallest training set, and compares our results with those achieved
by TUBFI’s multimodal run which, with a MiAP of 44.34%, was ranked the
best performance in the challenge. It shows that the MiAP of our prediction
model, multimodal model 5, outperforms TUBFI’s by about 8 % in the first
10 concepts. it can be seen that our multimodal prediction model signif-
icantly outperforms the TUBFI’s best run on the concepts “airplane” and
“skateboard”. Indeed, the number of training samples for these concepts are
only 41 and 12 respectively, thus making it extremely difficult to correctly
train classifiers and to accurately predict those concepts if only visual fea-
tures were used. TUBFI’s multimodal run achieved a iAP of 22.93% and
0.56% for “airplane” and “skateboard” concepts. In contrast, our textual
features significantly improve the performance of our visual classifiers with
regard to these cases. Using our multimodal prediction model learnt through
weighted score-base SWLF, the proposed textual features enhance the MiAP
performance of the visual configuration from 11.62% to 56.01% for “airplane”
and from 0.45% to 55.79% for “skateboard”.

6. Conclusion

In this paper, we investigated a multimodal approach for the purpose
of VCR. Firstly, we proposed a novel textual descriptor, namely the His-
togram of Textual Concepts (HTC), which relies on the semantic similarity
between the user tags and a concept dictionary. We also evaluated a set of
mid-level visual features, aiming at characterizing the harmony, dynamism
and aesthetic quality of visual content, in relationship with affective con-
cepts. Finally, a novel selective weighted late fusion (SWLF) scheme was
also introduced which iteratively selects the best features and weights the
corresponding scores for each concept at hand to be classified.

The extensive experiments were conducted on a subset of the MIR FLICKR
collection used in the photo annotation task in the ImageCLEF 2011 chal-
lenge, where our best multimodal prediction model achieved a MiAP of
43.69% and ranked the 2nd best performance out of 79 runs. From a compre-
hensive analysis of the experimental results, we can conclude the following:
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(i) the proposed textual HTC features greatly improve the performance of
visual classifiers, especially when the training set of a given concept is small;
(ii) the recognition of emotion related concepts is still extremely challenging
and the set of mid-level affect-related features that we implemented did not
help bridge the semantic gap between affective concepts and low-level fea-
tures, and it surprisingly turn out that the low-level features perform better
than mid-level ones. The reason may lie in the fact that these mid-level
features are global features and don’t capture sufficient visual content as
compared to local descriptors; (iii) the fused experts through weighted score-
based SWLF, which best selects and combines an expert ensemble while
optimizing an overall performance metrics, e.g., MiAP in this work, display
a very good generalization skill on unseen test data and prove particularly
useful for the image annotation task with multi-label scenarios in efficiently
fusing visual and textual features.

In our future work, we envisage further investigation of the interplay be-
tween textual and visual content, in studying in particular the visual relat-
edness in regard to textual concepts. We also want to study some mid-level
visual features or representations, for instance using an attentional model,
which better account for affect related concepts.
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