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EULER-LAGRANGE EQUATION FOR A DELAY VARIATIONAL

PROBLEM

JOËL BLOT AND MAMADOU I. KONÉ

Abstract. We establish Euler-Lagrange equations for a problem of Calculus
of variations where the unknown variable contains a term of delay on a segment.
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1. Introduction

We consider the following problem of Calculus of Variations

(P )















Minimize J(x) :=
∫ T

0
F (t, xt, x

′(t))dt
when x ∈ C0([−r, T ],Rn)

x|[0,T ]
∈ C1([0, T ],Rn)

x0 = ψ, x(T ) = ζ.

where r, T ∈ (0,+∞), r < T , F : [0, T ]× C0([−r, 0],Rn)× R
n → R is a functional,

ψ ∈ C0([−r, 0],Rn), ζ ∈ Rn, and xt(θ) := x(t + θ) when θ ∈ [−r, 0] and t ∈ [0, T ].
C0 denotes the continuity and C1 denotes the continuous differentiability.

The aim of this paper is to establish a first-order necessary condition of optimal-
ity which is analogous to the Euler-Lagrange equation of the variational problem
without delay.

Now we describe the contents of the paper.

2. Notation and recall

Let E be a finite-dimensional real normed vector space and a < b be two real
numbers. BV ([a, b], E) denotes the space of the bounded variation functions from
[a, b] into E, [9]. NBV ([a, b], E) denotes the spaces of the functions in BV ([a, b], E)
which are right-continuous on [a, b) and which are equal to 0 at a. Mn(R) denotes
the space of the real n×n matrices. When f ∈ BV ([a, b], E), the total variation of
f on [a, b] is V b

a (f) which is defined as the supremum of the nonnegative numbers
∑k

i=0 ‖f(ti)− f(ti+1)‖ on the finite lists (ti)0≤i≤k such that a = t0 < ... < tk = b.

On NBV ([a, b], E) we consider the norm ‖f‖BV := V b
a (f). When X and Y are

normed vector space, L(X,Y ) is the space of the linear continuous mappings from
X into Y ; when Λ ∈ L(X,Y ), we set ‖Λ‖L := sup{‖Λ(x)‖Y : x ∈ X, ‖x‖X ≤ 1}.
The dual space of Rn is R

n∗ = L(Rn,R). When X is a Banach space, the space
C0([a, b], X) is endowed with the norm ‖f‖∞,[a,b] := supt∈I ‖f(t)‖. B([a, b], E)

is the Banach space of the bounded functions from [a, b] into E. BC0
L([a, b], E)
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2 BLOT KONÉ

(respectively BC0
R([a, b], E)) is the space of the bounded left-continuous (respec-

tively bounded right-continuous) from [a, b] into E. R([a, b], E) is the space of the
regulated functions from [a, b] into E. RI([a, b], E) is the space of the Riemann
integrable functions from [a, b] into E.

Theorem 2.1. Let L ∈ C0([0, T ],L(C0([−r, 0],Rn),R). Then there exists a map-
ping g : [0, T ]× [−r, 0] → R

n∗ which satisfies the following properties.

(i) ∀t ∈ [0, T ], g(t, ·) ∈ NBV ([−r, 0],Rn∗).
(ii) ∀t ∈ [0, T ], ‖g(t, ·)‖BV = ‖L(t)‖L.
(iii) [t 7→ g(t, ·)] ∈ C0([0, T ], NBV ([−r, 0],Rn∗].
(iv) ∀ϕ ∈ C0([−r, 0],Rn), ∀t ∈ [0, T ],

L(t)(ϕ) =
∫ 0

−r
dθg(t, θ)ϕ(θ) =

∑n

k=1

∫ 0

−r
dgjk[t](θ)ϕk(θ),

where [gk[t]]1≤k≤n = g(t, ·).
(v) g is Lebesgue measurable on [0, T ]× [−r, 0].
(vi) g is Riemann integrable on [0, T ]× [−r, 0].

This theorem is proven in [6] (Theorem 4.1) in the case where NBV ([−r, 0],Mn(R))
is the space of the functions in BV ([−r, 0],Mn(R)) which are left-continuous on
(0, T ] and equal to 0 at T . The modifications to do to adapt the proof to the case
of the present paper are clear.

We need the two following results to study the Nemytskii (or superposition)
operators.

Proposition 2.2. Let E, F be two metric spaces, and Φ ∈ C0(E ,F). Pc(E) denotes
the set of the compacts subsets of E. Then we have:
∀K ∈ Pc(E), ∀ǫ > 0, ∃δǫ > 0, ∀x ∈ K, ∀z ∈ E, d(x, z) ≤ δǫ =⇒ d(Φ(x),Φ(z)) ≤ ǫ.

This result is established in [11], p. 355. It permits to compensate the lack for
compact neighborhood of compact subset in non locally compact metric spaces, for
instance in infinite-dimensional normed spaces. In [5] and in [4] we have called it
”Lemma of Heine-Schwartz”.

Theorem 2.3. Let E, F be two metric spaces, A be a nonempty compact metric
space, and Φ : A × E → F be a mapping. Then the two following assertions are
equivalent.

(i) Φ ∈ C0(A× E ,F).
(ii) NΦ ∈ C0(C0(A, E), C0(A,F)) where NΦ(u) := [a 7→ Φ(a, u(a))].

This result is established in [4] (Lemma 8.10).

We need to use the following classical Lemma of Dubois-Reymond.

Theorem 2.4. let α < β be two real numbers, a ∈ C0([α, β],Rn∗) and b ∈
C0([α, β],Rn∗). We assume that, for all h ∈ C1([α, β],Rn) such that h(α) = h(β) =

0, we have
∫ β

α
(a(t) · h(t) + b(t) · h′(t))dt = 0. Then we have b ∈ C1([α, β],Rn∗) and

b′ = a.

This result is proven in [1] (p. 60) when n = 1.

3. The main result

We consider the following assumptions on F .
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(A1) F ∈ C0([0, T ]× C0([−r, 0],Rn)× R
n,R).

(A2) For all (t, ϕ, v) ∈ [0, T ]×C0([−r, 0],Rn)×R
n, the partial Fréchet differen-

tial with respect to the second (function) variable, D2F (t, ϕ, v), exists and
D2F ∈ C0([0, T ]× C0([−r, 0],Rn)× R

n,L(C0([−r, 0],Rn),R)).
(A3) For all (t, ϕ, v) ∈ [0, T ]×C0([−r, 0],Rn)×R

n, the partial Fréchet differential
with respect to the third (vector) variable, D3F (t, ϕ, v), exists and D3F ∈
C0([0, T ]× C0([−r, 0],Rn)× R

n,L(Rn,R)).

Under (A2), for L(t) := D2F (t, xt, x
′(t)), from Theorem 2.1 we know that there

exists a mapping η which represents L. We extend η to a mapping η1 : [0, T + r]×
[−r, 0] → Mn(R) by setting

η1(t, θ) :=

{

η(t, θ) if (t, θ) ∈ [0, T ]× [−r, 0]
η(T, θ) if (t, θ) ∈ (T, T + r]× [−r, 0].

Theorem 3.1. Under (A1, A2, A3) let x be a local solution of the problem (P).
We define q : [0, T ] → L(Rn,R) by setting

q(t) :=

{

∫ 0

−r
g(t− ξ, ξ)dξ if t ∈ [0, T − r]

∫ T

t
g(t, ξ − t)dξ if t ∈ (T − r, T ].

Then the function [t 7→ D3F (t, xt, x
′(t)) − q(t)] is of class C1 on [0, T − r] and is

of class C1 on [T − r, T ], and we have

d

dt
[D3F (t, xt, x

′(t))− q(t)] = g(t, 0).

Comments

4. A function space and operators

We define the following function space

X := {x ∈ C0([−r, T ],Rn) : x|[0,T ]
∈ C1([0, T ],Rn)}. (4.1)

On X we consider the following norm

‖x‖X := sup
−r≤t≤T

‖x(t)‖ + sup
0≤t≤T

‖x′(t)‖. (4.2)

Lemma 4.1. (X, ‖ · ‖X) is a Banach space.

Proof. We can also write ‖x‖X = ‖x‖∞,[−r,T ] + ‖x′‖∞,[0,T ]. Since ‖ · ‖∞,[−r,T ]

and ‖ · ‖∞,[0,T ] are norms, ‖ · ‖X is a norm. We consider the space C1([0, T ],Rn)
endowed with the norm ‖x‖C1,[0,T ] := ‖x‖∞,[0,T ] + ‖x′‖∞,[0,T ]. We know that

(C1([0, T ],Rn), ‖·‖C1,[0,T ]) is a Banach space, ref. Let (xk)k∈N be a Cauchy sequence

in (X, ‖ · ‖X). Since (xk||0,T ]
)k∈N is also a Cauchy sequence in C1([0, T ],Rn) there

exists u ∈ C1([0, T ],Rn) such that limk→+∞ ‖xk|[0,T ]
− u‖C1,[0,T ] = 0. Since (xk)k∈N

is also a Cauchy sequence in the Banach space (C0([−r, T ],Rn), ‖ · ‖∞,[0,T ]) there

exists v ∈ C0([−r, T ],Rn) such that limk→+∞ ‖xk − v‖∞,[−r,T ] = 0.

Since ‖ · ‖∞,[0,T ] ≤ ‖ · ‖C1,[0,T ] we have limk→+∞ ‖xk|[0,T ]
− u‖∞,[0,T ] = 0, and since

‖ · ‖∞,[0,T ] ≤ ‖ · ‖∞,[−r,T ] we have limk→+∞ ‖xk|[0,T ]
− v|[0,T ]

‖∞,[0,T ] = 0. Using

the uniqueness of the limit we obtain v|[0,T ]
= u. Therefore we have v ∈ X and

from the inequality ‖xk − u‖X ≤ ‖xk − v‖∞,[−r,T ] + ‖xk − v‖C1,[O,T ] we obtain

limk→+∞ ‖xk − u‖X = 0. �
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We define the set

A := {x ∈ X : x0 = ψ, x(T ) = ζ}. (4.3)

Lemma 4.2. A is a non empty closed affine subset of X and the unique vector
subspace which is parallel to A is V := {h ∈ X : h0 = 0, h(T ) = 0}.

Proof. Setting y(t) := ψ(t) when t ∈ [−r, 0] and y(t) := t
T
(ζ −ψ(0)) +ψ(0), we see

that y ∈ A which proves that A is nonempty. From the inequalities ‖x(T )‖ ≤ ‖x‖X
and ‖x|[−r,0]

≤ ‖x‖X, we obtain that A is closed in X. It is easy to verify that A is
affine. The unique vector subspace of X is V = A − u where u ∈ A. and we can
easily verify the announced formula for V. �

When x ∈ C0([−r, T ],Rn) we define

x : [0, T ] → C0([−r, 0],Rn), x(t) := xt. (4.4)

Lemma 4.3. When x ∈ C0([−r, T ],Rn) we have x ∈ C0([0, T ], C0([−r, 0],Rn)).

Proof. Using a Heine’s theorem, since [−r, T ] is compact and x is continuous, x is
uniformly continuous on [−r, T ], i.e.
∀ǫ > 0, ∃δǫ > 0, ∀t, s ∈ [−r, T ], |t− s| ≤ δǫ =⇒ ‖x(t)− x(s)‖ ≤ ǫ.
Let ǫ > 0; if t, s ∈ [0, T ] are such that |t − s| ≤ δǫ then, for all θ ∈ [−r, 0] we
have |(t + θ) − (s + θ)| ≤ δǫ which implies ‖x(t + θ) − x(s + θ)‖ ≤ ǫ, therefore
‖x(t)− x(s)‖∞,[0,T ] ≤ ǫ. �

After Lemma 4.3 we can define the operator

S : C0([−r, T ],Rn) → C0([0, T ], C0([−r, 0],Rn)), S(x) := x. (4.5)

Lemma 4.4. S is a linear continuous operator from (C0([−r, T ],Rn), ‖ · ‖∞) into
(C0([0, T ], C0([−r, 0],Rn)), ‖ · ‖∞). Setting S1 := S|X , S1 is a linear continuous

operator from (X, ‖ · ‖X) into (C0([0, T ], C0([−r, 0],Rn)), ‖ · ‖∞).

Proof. The linearity of S is clear. When x ∈ C0([−r, T ],Rn) we have ‖S(x)‖∞ =
sup0≤t≤T (sup−r≤θ≤0 ‖x(t + θ)‖) = sup−r≤s≤T ‖x(s)‖ = ‖x‖∞,[−r,T ] which implies
the continuity of S.
The continuity of S1 results from the inequality ‖ · ‖∞,[−r,T ] ≤ ‖ · ‖X. �

Now we consider the following operator

D : X → C0([0, T ],Rn), D(x) := x′. (4.6)

Lemma 4.5. The operator D is linear continuous from (X, ‖ · ‖X) into
(C0([0, T ],Rn), ‖ · ‖∞).

Proof. The linearity of D is clear.
When x ∈ X, we have ‖D(x)‖∞,[0,T ] = ‖x′‖∞,[0,T ] ≤ ‖x‖X which implies the
continuity of D. �

When V and W are normed vector spaces we consider the operator

B : L(V,W )× E →W,B(L, y) := L · y.

B is bilinear continuous, and when I is a compact interval of R, we consider the
Nemytskii operator defined on B

NB : C0(I,L(V,W ))× C0(I, V ) → C0(I,W )
NB(L, h) := [t 7→ B(L(t), h(t)) = L(t) · h(t)]

}

(4.7)
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where we have assimilated C0(I,L(V,W ))×C0(I, V ) and C0(I,L(V,W ))×V ). NB

is bilinear and the following inequality holds

∀L ∈ C0(I,L(V,W )), ∀h ∈ C0(I, V ), ‖NB(L, h)‖∞ ≤ ‖L‖∞ · ‖h‖∞. (4.8)

This inequality shows that NB is continuous and consequently it is of class C1.

5. The differentiability of the criterion

First we establish a genaral result on the differentiability of the Nemytskii oper-
ators.

Lemma 5.1. Let I be a compact interval of R, V , W be two normed vector spaces,
and Φ : I × V → W be a mapping. We assume that the following conditions are
fulfilled.

(a) Φ ∈ C0(I × V,W ).
(b) For all t ∈ I, the partial Fréchet differential of Φ with respect to the second

variable, D2Φ(t, x), exists for all x ∈ V , and D2Φ ∈ C0(I × V,L(V,W )).

Then the operator NΦ defined by NΦ(v) := [t 7→ Φ(t, v(t))] is of class C1 from
C0(I, V ) into C0(I,W ), and we have DNΦ(v) · δv = [t 7→ D2Φ(t, v(t)) · δv(t)].

Proof. Under our assumptions, from Theorem 2.3 the following assertions hold.

NΦ ∈ C0(C0(I, V ), C0(I,W )) (5.1)

ND2Φ ∈ C0(C0(I, V ), C0(I,L(V,W )). (5.2)

We arbitrarily fix v ∈ C0(I, V ). The set K := {(t, v(t)) : t ∈ I} is compact as the
image of a compact by a continuous mapping. Let ǫ > 0; using Proposition 2.2 we
have

{

∃βǫ > 0, ∀t ∈ I, ∀s ∈ I, ∀y ∈ V,

|t− s|+ ‖v(t)− y‖ ≤ βǫ =⇒ ‖D2Φ(t, u(t))−D2Φ(s, y)‖ ≤ ǫ,

which implies

∃βǫ > 0, ∀t ∈ I, ∀y ∈ V, ‖v(t)− y‖ ≤ βǫ =⇒ ‖D2Φ(t, u(t))−D2Φ(t, y)‖ ≤ ǫ,

Let δv ∈ C0(I, V ) such that ‖δv‖∞ ≤ βǫ. For all y ∈ ]v(t), v(t) + δv(t)[ =
{(1 − λ)v(t) + λ(v(t) + δv(t))}, we have ‖y‖ ≤ ‖δv(t)‖ ≤ βǫ, and consequently
‖D2Φ(t, u(t))−D2Φ(t, y)‖ ≤ ǫ. Using the mean value theorem ([1], Corollaire 1, p.
141 ), we have

{

‖Φ(t, v(t) + δv(t)) − Φ(t, v(t)) −D2Φ(t, v(t)) · δv(t)‖ ≤
supy∈]v(t),v(t)+δv(t)[ ‖D2φ(t, v(t)) −D2Φ(t, y)‖ · ‖δv(t)‖ ≤ ǫ‖δv(t)‖

which implies, taking the supremum on the t ∈ I,

‖NΦ(v + δv)−NΦ(v)−NB(ND2Φ(v), δv)‖∞ ≤ ǫ‖δv‖∞.

And so we have proven that NΦ is Fréchet differentiable at v and

DNΦ(v) · δv = NB(ND2Φ, δv).

When v, v1, δv ∈ C0(I, V ), using (4.8) we have

‖(DNΦ(v)−DNΦ(v
1)) · δv‖∞ = ‖NB(ND2Φ(v), δv)−NB(ND2Φ(v

1), δv)‖∞ =
‖NB(ND2Φ(v)−ND2Φ(v

1), δv)‖∞ ≤ ‖ND2Φ(v)−ND2Φ(v
1)‖ · ‖δv‖∞,

and taking the supremum on the δv ∈ C0(I, V ) such that ‖δv‖∞ ≤ 1 we obtain

‖DNΦ(v)−DNΦ(v
1)‖∞ ≤ ‖ND2Φ(v)−ND2Φ(v

1)‖∞
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and (5.2) implies the continuity of DNΦ. �

In different frameworks, similar results of differentiability of Nemytskii operators
were proven in [4] (for almost periodic functions) , in [5] (for bounded sequences),
in [3](for continuous functions which converge to zero at infinite).

From F : [0, T ] × C0([−r, 0],Rn) × R
n → R we define the following Nemytskii

operator

NF : C0([0, T ], C0([−r, 0],Rn))× C0([0, T ],Rn) → C0([0, T ],Rn)
NF (U, v) := [t 7→ F (t, U(t), v(t))].

}

(5.3)

Lemma 5.2. Under (A1, A2, A3), NF is of class C1 and for all U , δU ∈
C0([0, T ], C0([−r, 0],Rn)), for all v, δv ∈ C0([0, T ],Rn) we have
DNF (U, v) · (δU, δv) = [t 7→ D2F (t, U(t), v(t)) · δU(t) +D3F (t, U(t), v(t)) · δv(t)].

Proof. it is a straightforward consequence of Lemma 5.1 with V = C0([−r, 0],Rn)×
R

n, W = R, Φ = F , and by using that the differential of F (t, ., .) at (U(t), v(t))
applied to (δU(t), δv(t)) is equal to D2F (t, U(t), v(t)) · δU(t) +D3F (t, U(t), v(t)) ·
δv(t). �

Lemma 5.3. Under (A1, A2, A3), J ∈ C1(X,R) and for all x ∈ A and for all
h ∈ V, we have

DJ(x) · h =
∫ T

0
(D2F (t, xt, x

′(t)) · ht +D3F (t, xt, x
′(t)) · h′(t))dt.

Proof. We introduce the operator in : X → C0([−r, T ],Rn) by setting in(x) := x,

and the functional I : C0([0, T ],R) → R by settinf I(f) :=
∫ T

O
f(t)dt the Riemann

integral of f on [0, T ]. The operator in is clearly linear and from the inequality
‖ · ‖∞,[−r,T ] ≤ ‖ · ‖X, it is continuous. I is linear and by using the mean value
theorem, it is continuous.
Note that J = I ◦NF ◦ (S ◦ in,D). Since in, S, D and I are linear continuous, they
are of class C1, and so (S ◦ in,D) is of class C1. Using Lemma 5.2, NF is of class
C1, and so J is of class C1 as a composition of C1 mappings. The calculation of
DJ is a simple application of the Chain Rule :

DJ(x) · h = DI(NF (S(in(x),D(x)) ·DNFS(in(x),D(x)).
(DS(in(x) ·Din(x)h,DD(x) · h)

= I(DNF (x, x
′).(h, h′))

=
∫ T

0
(D2F (t, xt, x

′(t)) · ht +D3F (t, xt, x
′(t)) · h′(t))dt.

�

6. Proof of the main result

Lemma 6.1. For all h ∈ V, we have
∫ T

0
D2F (t, xt, x

′(t)) · htdt =
∫ T

0
g(t, 0) · h(t)dt−

∫ T

0
q(t) · h′(t)dt.

Proof. Using Proposition 3.2 in [6] and g(t,−r) = 0, we have, for all t ∈ [0, T ],

D2F (t, xt, x
′(t)) · ht =

∫ 0

−r
dθg(t, θ) · h(t+ θ)

=
∫ t

t−r
dξg(t, ξ − t) · h(ξ)

= g(t, 0) · h(t)−
∫ t

t−r
g(t, ξ − t) · h′(ξ)dξ,
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which implies
∫ T

0

D2F (t, xt, x
′(t))·htdt =

∫ T

0

g(t, 0)·h(t)dt−

∫ T

0

∫ t

t−r

g(t, ξ−t)·h′(ξ)dξdt. (6.1)

We set A := {(t, ξ) : 0 ≤ t ≤ T, t− r ≤ ξ ≤ t} and from the Fubini-Tonelli theorem
we gave

∫ T

0

∫ t

t−r

g(t, ξ − t) · h′(ξ)dξdt =

∫ ∫

A

f(t, ξ)dξdt (6.2)

where f(t, ξ) := g(t, ξ − t) · h′(ξ). We also define

A1 := {(t, ξ) : T − r ≤ ξ ≤ T, ξ ≤ t ≤ T }
A2 := {(t, ξ) : 0 ≤ ξ ≤ T − r, ξ ≤ t ≤ ξ + r}
A3 := {(t, ξ) : −r ≤ ξ ≤ 0, 0 ≤ t ≤ ξ + r}.

We have A = A1∪A2∩A3 and Ai∩Aj is Lebesgue negligible for all (i, j) ∈ {1, 2, 3}2

such that i 6= j. Therefore we have the following relation.
∫ ∫

A

f(t, ξ)dξdt =

∫ ∫

A1

f(t, ξ)dξdt+

∫ ∫

A2

f(t, ξ)dξdt+

∫ ∫

A3

f(t, ξ)dξdt (6.3)

Note that A1 = {(t, ξ) : T − r ≤ t ≤ T, T − r ≤ ξ ≤ t}. Using the Fubini-Tonelli
theorem, we obtain

∫ ∫

A1
f(t, ξ)dξdt =

∫ T

T−r
(
∫ T

ξ
g(t, ξ − t)dξ)dt

=
∫ T

T−r
(
∫ T

ξ
g(t, ξ − t)dt)h′(ξ)dξ

which implies
∫ ∫

A1

f(t, ξ)dξdt =

∫ T

T−r

q(ξ) · h′(ξ)dξ. (6.4)

Using the Fubini-Tonelli theorem we have
∫ ∫

A2

f(t, ξ)dξdt =

∫ T

0

(

∫ ξ+r

ξ

g(t, ξ − t)dt)dξ

which implies
∫ ∫

A2

f(t, ξ)dξdt =

∫ T−r

0

q(ξ) · h′(ξ)dξ. (6.5)

Using the Fubini-Tonelli theorem we obtain
∫ ∫

A3

f(t, ξ)dξdt =

∫ 0

−r

(

∫ ξ+r

0

g(t, ξ − t)dt)h′(ξ)dξ

and since h′ is equal to zero on [−r, 0] we obtain
∫ ∫

A3

f(t, ξ)dξdt = 0. (6.6)

Using (6.2), (6.3), (6.4), (6.5), (6.6), and the chasles relation we obtain
∫ T

0

(

∫ t

t−r

g(t, ξ − t) · h′(ξ)dξ)dt =

∫ T

O

q(ξ) · h′(ξ)dξ.

Then from this last equality and from (6.1) we obtain the lemma. �
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From Lemma 5.3 and the previous lemma we have, for all h ∈ V the following
relation

0 =
∫ T

0 (D3F (t, xt, x
′(t)) · ht +D2F (t, xt, x

′(t)) · h′(t))dt

=
∫ T

0 (g(t, 0) · h(t) + (D3F (t, xt, x
′(t)) − q(t)) · h′(t))dt.

Using Theorem 2.4 we obtain, for all t ∈ [0, T ], that the function [t 7→ D3F (t, xt, x
′(t))−

q(t)] is differentiable at t and we have d
dt
(D3F (t, xt, x

′(t)) − q(t)) = g(t, 0).
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[4] J. Blot, P. Cieutat, G. M. N’Guérékata, and D. Pennequin, Superposition operators between
various almost periodic function spaces and applications, Commun. Math. Anal. 6(1), 2009,
42-70.

[5] J. Blot and B. Crettez, On the smoothness of optimal paths, Decis. Econ. Finance, 2004,
27, 1-34.
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