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Fracture of granular materials composed of arbitrary grain shapes: a

new cohesive interaction model

A. Neveu∗, R. Artoni, P. Richard, Y. Descantes

LUNAM Université, IFSTTAR, MAST, GPEM, F-44340 Bouguenais, France

Abstract

Discrete Element Methods (DEM) are a useful tool to model the fracture of cohesive granular

materials. For this kind of application, simple particle shapes (discs in 2D, spheres in 3D) are

usually employed. However, dealing with more general particle shapes allows to account for the

natural heterogeneity of grains inside real materials. We present a discrete model allowing to mimic

cohesion between contacting or non-contacting particles whatever their shape in 2D and 3D. The

cohesive interactions are made of cohesion points placed on interacting particles, with the aim of

representing a cohesive phase lying between the grains. Contact situations are solved according

to unilateral contact and Coulomb friction laws. In order to test the developed model, 2D unixial

compression simulations are performed. Numerical results show the ability of the model to mimic

the macroscopic behavior of an aggregate grain subject to axial compression, as well as fracture

initiation and propagation. A study of the influence of model and sample parameters provides

important information on the ability of the model to reproduce various behaviors.
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1. Introduction

Studying the crushing of cohesive materials is of importance for a wide range of natural and

industrial processes. In the production of aggregates, rock blocks are crushed and the resulting

fragments are required to meet high standards mainly in terms of size and shape. Successive

crushing steps are usually carried out to achieve the requested aggregate characteristics, leading to

a waste of good quality raw materials and a high energy cost that could both be mitigated upon

improving the crushing efficiency.
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To better understand the crushing mechanics of this kind of material, previous studies have

attempted to reproduce numerically the behavior of aggregates with the aim of linking the het-

erogeneous microstructure of the material to its macroscopic behavior (Bolton et al., 2008, 2004;

Brown et al., 2014; Jing, 2003; McDowell and Bolton, 1998; Spettl et al., 2015; Affes et al., 2012).

Continuous methods like finite element methods (FEM) are not well suited to deal with the complex

heterogeneous microstructure of aggregates, due to the computational cost required to properly

describe microscale behavior. The Lattice element method (LEM) stands as a compromise using a

network of 1D elements connected at nodes which are positionned on a regular or irregular lattice,

the former being able to carry properties (elastic stiffness, strength) to mimic the behaviour of

the different phases of the material (particle, cohesive matrix...). This method has been used to

study the fracture of cemented aggregates (Affes et al., 2012), and multiphase particulate materials

(Bolander et al., 2005; Asahina et al., 2011; Berton et al., 2006).

Numerical simulations using discrete Element Methods (DEM) have also been successfully used

to describe the elastic behavior and rupture mechanism of a rock piece (Potyondy and Cundall,

2004; Weerasekara et al., 2013; Bolton et al., 2004; Cheng et al., 2003; Bolton et al., 2008; Jiang

et al., 2006; André et al., 2012). In these methods, a grain is represented by a collection of particles

with contact bonds to model cohesion inside the material. In order to describe materials such as

concrete, in which grains are surrounded by a cementitious matrix, Hentz et al. (2004a,b) have

introduced an interaction range which mimics cohesion between two particles even when not in

contact. They have shown that increasing this interaction range allows to take into account the

degree of interlocking of particles in rock (Scholtès and Donzé, 2013). In most cases, only simple

particle shapes (discs in 2D, spheres in 3D) were used because of the increasing complexity of

contact detection and force computation in the case of more irregular shapes. However, in order to

introduce the natural complexity of grains composing an aggregate, some authors have chosen to

use more irregular particles (polygons), built from a Voronoï tessellation (D’Addetta et al., 2002;

Galindo-Torres et al., 2012; Nguyen et al., 2015), or by clustering spherical particles (Cho et al.,

2007; Zhao et al., 2015). Furthermore, using polygons in 2D or polyhedra in 3D allows to build

samples with a high solid fraction up to 1.

In this paper, we introduce a cohesive interaction model for Discrete Element Methods. It

allows to model cohesion between contacting and non contacting particles, and suits any kind of

particle shape. Since the aforementioned model deals independently with cohesive interactions
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and solid contacts, it can be used in the framework of non-smooth or smooth methods. In the

following, section 2 first describes the method used to solve contact situations and then gives a

comprehensive description of the cohesive interaction model which has been developed. Section 3

presents results obtained with 2D uniaxial compression tests and illustrates the influence of the

model parameters. Finally, section 4 is devoted to the conclusions and the perspectives of this

work.

2. Contacts and cohesive interactions model

We aim to develop a model which is applicable to both non contacting and contacting parti-

cles, in order to represent a cemented material composed of particles surrounded by a cohesive

phase. This type of material is present both in industrial and natural configurations (concrete,

sandstone, ...). It is quite natural to represent this material as a collection of particles interacting

through contact and cohesive interactions. We assume that the cohesive behavior is only due to

the cement paste, and has a different nature than the contact between particles. We prefer such a

representation with respect to a lattice one to highlight the effect of contact between particles on

the modeled material.

So a mixed method combining the contact description of rigid particles with the elastic behavior

of cohesive interactions has been developed.

2.1. Contact between particles

The contact problem between two particles is solved using the Non Smooth Contact Dynamics

(NSCD) initially developed by Moreau (1988) and Jean (1999). This method allows to solve long

lasting contacts or collision situations in rigid grains assemblies through a mechanically based

approach that fulfills the non-interpenetration requirement without assuming regularized laws at

contact points (Moreau, 1988). The NSCD method is implemented in the code LMGC90 (Renouf

et al., 2004), which includes contacts detection between polygons (or discs) in 2D or polyhedra (or

spheres) in 3D.

2.2. Cohesive interaction

Cohesion is set inside the modeled material by applying forces which oppose relative motion

between particles. This relative displacement is computed between two cohesion points, each placed

on one of the two interacting particles. These points and associated forces will be denoted as a

“cohesive interaction” in the following. The cohesive paste between two particles is thus modeled
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by one or more cohesive interactions, i.e. one or more pair of cohesion points. As cohesion is

treated separately from geometrical contacts, this allows to apply cohesive forces even if particles

are not touching each other, whatever their shape, with the aim of describing a cohesive paste

between them.

In the present work, the cohesive paste is represented by two cohesive interactions in 2D and

three in 3D. For a 2D system, the cohesion points are located on both sides of the particles at

a distance R from the center (Fig. 1a). This allows to resist relative rotation of the particles

as it will induce relative displacements of cohesion points, and thus a reaction torque which will

oppose this rotation. For a 3D system, at least 3 cohesive interactions are required for each pair

of particles to resist tension/compression, shearing, twisting and bending (Fig. 1b). The cohesion

points are thus regularly placed on each interacting particle at the same distance R from their

center, all being located in a plane orthogonal to the line joining the centers of the two particles.

The intensity of the resistance to rotation can thus be adjusted by changing the distance between

the cohesion points and the center of the particle.

l0

2R
(a) (b)

Figure 1: Setting of cohesive interactions between two particles for a 2D system (a) and a 3D system (b). Each
cohesive interaction is composed of a spring and a damper in compression/tension and shear.

2.2.1. Reaction forces

The cohesive paste between particles is described as an elastic material which can be stretched,

compressed and sheared. A cohesive interaction plane, defined for each cohesive interaction, corre-

sponds to the tangential plane normal to the line of unit vector n which connects the two cohesion

points. The tangential unit vector t is defined by the tangential deformation. The cohesive reac-

tion forces are computed at cohesion points, and then applied to the center of mass of the particle.
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Their expression in the reference frame of the cohesive interaction plane is:

F = Fn · n+ Ft · t,

where the normal and the tangential components are respectively given by:

Fn = −ks
n∆n, (1)

Ft = −ks
t∆t. (2)

with ∆n and ∆t denoting the compressive/tensile components of the relative displacements in the

cohesive interaction plane reference frame, and ks
n and ks

t the corresponding normal and tangential

stiffnesses respectively.

This linear spring model does not dissipate energy. Indeed, in real materials kinetic energy

is dissipated by microscopic processes during contact. Therefore we add dissipation by means of

viscous damping. The normal and tangential reaction forces become:

Fn = −ks
n∆n − kv

nUn,

Ft = −ks
t∆t − kv

tUt,

where Un, Ut denote the relative normal and tangential velocities and kv
n, k

v
t the corresponding

damping coefficients in normal and tangential directions.

It should be observed that, while tension is opposed solely by cohesive interaction forces,

compression may be opposed by both cohesive interaction and contact forces, thus ensuring a

transition from elastic to perfectly rigid behaviour in the latter case.

2.2.2. Model parameters

In order to determine the microscopic coefficients ks
n and ks

t , an analogy is done with the

continuum elastic modulus of a cohesive paste. Thus, the normal spring stiffness ks
n is derived

from the Young’s modulus Eµ of a deformable cohesive paste as :

ks
n =

EµS

l0
, (3)

where S is the cohesive interaction surface, which can be viewed as the sectional area of the cohesive

paste between the grains divided by the number of cohesive interactions used to model this paste (2
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in 2D, 3 in 3D). The initial length of a cohesive contact l0 is the distance between the two cohesion

points when the cohesive interactions are set. Since the cohesive interaction surface S and length

l0 differ for each pair of particles, a microscopic stiffness heterogeneity is thus introduced. The

tangential spring stiffness is determined from the shear modulus, which corresponds to the shear

stress to shear strain ratio. By analogy, the force exerted by the tangential spring is assigned a

value which balances the force needed to shear the cohesive bond over the tangential displacement

∆t. Hence, the shear modulus may be expressed as:

G =
|Ft|l0
S.∆t

. (4)

Replacing in Eq. (4) Ft by its expression given by Eq. (2) yields the following expression:

ks
t =

GS

l0
. (5)

Assuming a perfectly isotropic cohesive paste material, the shear modulus relates to the Young’s

modulus Eµ via the Poisson’s ratio νµ according to:

G =
Eµ

2(1 + νµ)
. (6)

Using Eqs. (3), (5) and (6), the ratio of the normal to tangential stiffnesses may therefore be

expressed as follows:
ks
n

ks
t

= 2(1 + νµ). (7)

The damping coefficients kv
n and kv

t are calculated to obtain a critical damping which prevents

oscillations at contact. It has to be noted that the stiffnesses of cohesive interactions are computed

once and remain constant until breakage. Thus, damage occurs in the sample only by breakage

of cohesive interactions. More sophisticated models such as Cohesive Zone Models (CZM) which

take into account the progressive damage of a cohesive contact can be found in (Raous et al., 1999;

Rivière et al., 2015).

2.2.3. Breakage of cohesive interactions

We assume that in a cemented material, fracture occurs due to the breakage of the cohesive

paste between grains, which corresponds to the rupture of cohesive interactions. Several bond

rupture criteria for the DEM modeling of cohesive materials are available in the literature (Jiang

et al., 2014; Delenne et al., 2004). In the present work, a cohesive interaction can break only due

to tension and/or shear load. When it breaks, the cohesive interaction is no longer able to oppose
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relative displacement, which is equivalent to setting its stiffnesses (kn, kt) to zero. However, the

two (or three in 3D) cohesive interactions used to model cohesion between a pair of particles are

treated independently : if one breaks, the other one remains intact if not above rupture limit. If all

the cohesive interactions between two particles are broken, only contact interaction remains active.

Note also that breakage is not reversible in this model : a broken cohesive interaction cannot be

restored. Besides, the model incorporates a threshold displacement above which rupture of the

cohesion interaction occurs for both tension and shear. For tension, Eqs. (1) and (3) yield:

∆max
n =

l0
Eµ

. σn
r , (8)

and for shear Eqs. (2), (5) and (6) yield:

∆max
t =

2(1 + νµ) l0
Eµ

. σt
r, (9)

with σn
r and σt

r the strength in tension and shear which are input parameters of the model,

taken identical for all the interactions. The threshold displacements have been chosen identical in

tension and shear, which implies from Eqs. (8) and (9):

σt
r =

σn
r

2(1 + νµ)
(10)

In the following, the rupture threshold will be referred as σr, with σn
r = σr and σt

r given by Eq.

(10).

3. 2D Benchmark test

3.1. Initial packing

In the following, the approach described above will be applied to a 2D benchmark, the uniaxial

compression of a rectangular sample composed of polydisperse regular pentagons. The initial

packing is built according to the following method. First, discs of average diameter d are deposited

under gravity in a rectangular box composed of four rigid walls. The grain diameters are uniformly

distributed between 0.5d and 1.5d to prevent crystallization. Then, each disc is replaced by a

regular pentagon which fits exactly inside the disc, with the same arbitrary orientation for all

pentagons. The packing is then subjected to a compression phase to increase its solid fraction.

This is done by moving the walls at a constant velocity (V = 5.10−3

[

d3/2
√

Eµ

m

]

, see section 3.2.1

for scales), with no other external forces than those applied by the walls (i.e. no gravity). The
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relative velocities between top/bottom and left/right walls are chosen to achieve the desired height

to width aspect ratio of the packing.

Due to the displacement of the walls, the solid fraction can be higher close to the walls than

in the packing bulk. To achieve homogenization, the following mixing phase is performed: after a

given number of compression time-steps, walls are kept fixed and random velocities are assigned

to pentagons. To ensure maximum efficiency of the mixing process, the pentagon/pentagon and

pentagon/wall contacts are solved with a full restitution shock law free of friction, so that kinetic

energy is not dissipated. Then, all velocities are set to zero and the compression phase resumes.

As soon as the target solid fraction is reached, the compression phase is stopped. All velocities

are set to zero and only the locations of particles are kept. Some precautions have to be taken at

walls/granular sample contacts during simulations. Indeed, due to the sharp shape of particles,

the probability of applying the load to a single particle is high. This could initiate the rupture

of the packing at an early stage of the simulation, in an unrealistic manner. To avoid this, the

pentagons located at the top and bottom of the packing are smoothed to create a flat wall/packing

surface and so to increase the contact surface area with the walls (Fig. 2a).

(a) (b)

Figure 2: (a) Smoothing of pentagons in the contact boundary with walls. (b) Typical packing of 5000 regular
pentagons used in compression simulations.

Note that, as expected, due to the building process which introduces randomness, two different

packings with the same macroscopic properties (solid fraction, number of particles, size, particle

size distribution...) will generally yield differences in the particle structure. For two samples,

the orientation distributions of normal unit vectors characterizing contacts as well as cohesive

interactions normal unit vector have been plotted in Fig. 3. Although these distributions are
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similar, small differences are visible between the samples. We can also note that the orientations

are fairly isotropically distributed. This packing procedure allows to obtain homogeneous samples

(in terms of solid fraction, random orientations, size distribution) while controlling precisely the

final aspect ratio and solid fraction, and thus provides a good benchmark for the model. In addition,

this random packing of irregular particles can be representative of some common sedimentary rocks

such as sandstone (Yang et al., 2013). The results presented in the following have been obtained

from simulations using packings of an aspect ratio of 1.2 constituted of 5000 regular pentagons,

which have been found sufficient to allow good reproductability, as well as reasonable computational

cost. Such a packing is presented in Fig. 2b.

0

π/4

  π/2

  3π/4

π

5π/4    

3π/2    

7π/4    

(a)

0

π/4

  π/2

  3π/4

π

5π/4    

3π/2    

7π/4    

(b)

Figure 3: Orientation distributions of the normal unit vector n for cohesive interactions (a) and contacts (b)
obtained for two different initial samples (plain line, dashed line).

Once the initial packing is built, the cohesive interactions have to be set inside the modeled

material. As cohesion is active even if particles are not touching, a criterion is required to decide

whether two particles share a cohesion interaction or not. A rather simple way to do this is

to define an interaction range (Hentz et al., 2004a) for cohesive effects, so that if the distance

between two particles is below this range cohesion will act. However, this requires an additional

model parameter, which needs to be added to the calibration procedure. Another method, which is

the one used in this work, consists in determining the list of particles interacting through cohesive

bonds by computing a Delaunay triangulation from the centers of all particles. Each edge of the

triangulation corresponds to a pair of particles undergoing cohesive interaction. This choice is not
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insignificant because it leads to a constant number of cohesive interactions per grain (Gervois et al.,

1995) and thus it may mitigate the effect of the solid fraction (see discussion in Section 3.2.3).

For each cohesive interaction, two (in 2D) or three (in 3D) cohesion points are placed according

to the rules defined at the beginning of section 2.2. The distance R between cohesion points and

center of the particles is chosen as the average radius r (the radius of a disc of same area than

the pentagon) of the smallest pentagon of the pair of particles enduring a cohesive interaction. A

heterogeneity terms of R values is thus introduced for polydisperse packings, and thus only the

R/r ratio is a constant input parameter for all cohesive interactions. A discussion on the influence

of R is provided in section 3.2.6. Once the cohesion is set, the lateral walls are removed and the

packing is then ready for loading.

3.2. Uniaxial Compression

Uniaxial compression tests have been performed on different packings by moving a wall at

constant velocity Vc while maintaining the other wall fixed. The sample is submitted only to

external forces applied by these walls in the absence of gravity. The compression velocity is chosen

sufficiently low to ensure quasi-static equilibrium and avoid unexpected material responses such as

initiation of rupture near a wall. The quasi-static equilibrium is checked by comparing the stresses

applied by the two loading walls.

3.2.1. Simulation parameters

The obtained macroscopic behavior is controlled by microscopic contact and cohesive interac-

tion parameters. Those used in our simulations are made dimensionless using the following scaling

rules :

• Mass scale : mean mass m of particles

• Length scale : mean equivalent diameter d of pentagons, defined as the diameter of a disc

with the same surface area as the pentagon

• Time scale : t0 =
√

m
Eµd

, so that the stress scale is Young’s modulus Eµ of the cohesive paste.

As the Young’s modulus Eµ is that of a cohesive paste, it is taken identical for all cohesive

interactions, with Eµ = 1 according to the chosen stress scale. The Poisson’s ratio of the modeled

cohesive paste is taken as νµ = 0.25. The stiffness heterogeneity of cohesive interactions originates

from geometrical properties (S, l0). Friction coefficients at particle/particle µpp and wall/particle
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µpw contacts are set to 0.3 and 0.5 respectively. The stress threshold in tension is assigned a value

of σn
r = 5.10−3, and thus following Eq. (10) the stress threshold in shear is set to σt

r = 2.10−3.

Finally, the compression velocity is Vc = 2.10−5.

The choice of the time-step dt is important as it guarantees the precision and the stability

of the computation. It has to be sufficiently small compared to all time scales, including the

damping characteristic time of particles motion, but also not too small to allow reasonable sim-

ulation duration time. A dimensionless time-step value of 10−1 is considered a good compromise

between precision and simulation duration. Usually simulations require 50000 to 100000 time-

steps to achieve rupture of the packing, depending on the value of cohesive interaction parameters,

especially the cohesive interaction strength.

3.2.2. Macroscopic behavior

The typical stress/strain curve obtained for uniaxial compression tests is presented in Fig. 4a

together with the variations of the number of broken cohesive interactions. During the first phase of

compression, the material clearly exhibits a linear elastic behavior characterized by the linear part

of the stress-strain curve. During this phase, the cohesive interactions store the increasing strain

energy applied to the packing by the walls. The modeled packing being initially consolidated, it

doesn’t exhibit a non-linear increase of stiffness for small deformations as can be seen in experiments

due to closure of pores or small rearrangements of grains (Wawersik and Fairhurst, 1970).

Then, the stress supported by some cohesive interactions exceeds the elastic limit σr and they

break. These breakages induce small drops in the macroscopic stress and the stress-strain curve

starts to deviate slightly form the linear behavior. Suddenly, when a critical strain ǫp is reached,

large amounts of cohesive interactions break: this leads to a major drop of the stress-strain curve,

and the emergence and propagation of a macroscopic crack across the packing. Although the

propagation of the macroscopic crack is very fast, as we will show, this phenomenon is progressive.

Figure 4b shows the spatial distribution of broken cohesive interactions at different stages of

the compression. Initially, the cohesive interactions seem to break more or less randomly across

the packing but then just before the peak (II) we observe a localization and the appearance of a

crack path. Moreover, the post-peak region exhibits several minor peaks which correspond to the

extension of the macroscopic crack or the initiation of a new one. The fracture planes align with the

diagonals of the sample, forming two fracture cones near the walls. This fracture pattern agrees

qualitatively well with experiments of real cohesive materials under uniaxial compression with
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frictional platens (Jaeger et al., 2007). However, a different boundary condition (e.g. frictionless

walls) would yield a different fracture pattern (D’Addetta et al., 2002).

(a)

I II

IVIII

(b)

Figure 4: (a) Stress/strain curve (blue solid line) obtained together with the cumulative share of broken cohesive
interactions (green dashed line). (b) Broken cohesive interactions at different stages of the compression. The
localization of cohesive interactions breakage and progressive behavior of fracture is clearly seen.

3.2.3. Influence of the initial solid fraction

Different initial packing characteristics yield differences in the modeled microstructure, and

so an expected different macroscopic behavior. An important packing characteristic is the solid
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fraction of the sample. Increasing the solid fraction leads to an increase of the density of cohesive

interactions in the sample, but also to a decrease of the cohesive interaction length l0 since particles

are closer to one another. According to Eq. (3), decreasing l0 will increase the cohesive interaction

stiffnesses and so influence the macroscopic stiffness as well. For results presented below, the

macroscopic Young’s modulus is determined as the slope of a fit of the linear part of the stress/strain

curve corresponding to the linear elastic regime. Figure 5 shows the macroscopic Young’s modulus

EM obtained for discrete solid fraction values ranging between 0.6 and 0.84. As expected, increasing

the solid fraction leads to an increase of macroscopic Young’s modulus, up to 40% in the studied

range. It is clear that solid fraction is an important parameter which controls the macroscopic

stiffness of the modeled material. Note also that as cohesive interactions are set according to a

Delaunay triangulation from the center of particles, the average coordination number of 6 for 2D

packings remains the same whatever the solid fraction (Gervois et al., 1995). Determining the

cohesive neighborhood with another method may lead to a different effect of the solid fraction.

0.55 0.70 0.85
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1.00
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1.45
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[E
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Figure 5: Macroscopic Young’s modulus EM measured for solid fraction φ ranging from 0.6 to 0.84.

3.2.4. Influence of cohesive interactions coordination number

As described before, the Delaunay triangulation used to establish the cohesive interactions

network leads in 2D to a cohesive interactions coordination number z = 6. In order to study

the influence of smaller z on the macroscopic behavior, cohesive interactions have been randomly

removed from the sample. The stress-strain curves for z = 6, 5 ,4 and 3 obtained for samples of solid

fraction φ = 0.84 are presented in Fig. 6. A linear decrease of z leads to a linear decrease of the

macroscopic Young’s modulus because less cohesive interactions contribute to the overall stiffness

of the sample. Therefore, the same strain energy is endured by fewer cohesive interactions and so
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