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Bayesian 3D X-ray Computed Tomography
image reconstruction with a Scaled Gaussian

Mixture prior model
Li WANG1, Nicolas GAC and Ali MOHAMMAD-DJAFARI

Laboratoire des Signaux et Systèmes 3, Rue Joliot-Curie 91192 Gif sur Yvette

Abstract. In order to improve quality of 3D X-ray tomography reconstruction for Non Destructive
Testing (NDT), we investigate in this paper hierarchical Bayesian methods. In NDT, useful prior
information on the volume like the limited number of materials or the presence of homogeneous
area can be included in the iterative reconstruction algorithms. In hierarchical Bayesian methods,
not only the volume is estimated thanks to the prior model of the volume but also the hyper
parameters of this prior. This additional complexity in the reconstruction methods when applied
to large volumes (from 5123 to 81923 voxels) results in an increasing computational cost. To reduce
it, the hierarchical Bayesian methods investigated in this paper lead to an algorithm acceleration by
Variational Bayesian Approximation (VBA) [1] and hardware acceleration thanks to projection and
back-projection operators paralleled on many core processors like GPU [2].

In this paper, we will consider a Student-t prior on the gradient of the image implemented in a
hierarchical way [3, 4, 1]. Operators H (forward or projection) and Ht (adjoint or back-projection)
implanted in multi-GPU [2] have been used in this study. Different methods will be evalued on
synthetic volume "Shepp and Logan" in terms of quality and time of reconstruction. We used
several simple regularizations of order 1 and order 2. Other prior models also exists [5]. Sometimes
for a discrete image, we can do the segmentation and reconstruction at the same time, then the
reconstruction can be done with less projections.

Keywords: Computed Tomography, Limited projections, Non Destructive Testing (NDT), Hierar-
chical Model, Bayesian JMAP, Variational Bayesian Approximation (VBA), Gaussian, Mixture of
Gaussians (MoG) and Student-t prior models

INTRODUCTION OF COMPUTED TOMOGRAPHY

Computed Tomography

X-ray computed tomography (X-ray CT) is a technology that uses computer-
processed X-ray to produce tomographic images of specific areas of a scanned object,
allowing the users to see what is inside it without cutting it. Digital geometry processing
is used to generate a three-dimensional image of the inside of an object from a large
series of two-dimensional radiographic images taken around a single axis of rotation.
X-ray tomographic image reconstruction consist of determining an object function from
its projections. The main forward problem of the tomography is the Radon transform.

When considering a practical problem, a discretization is necessary. If we discretize
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f (x,y) into pixels and put all the pixels in a vector fff and put all the data g(φφφ ,rrr) of
different angles φφφ in a vector ggg, we then obtain:

ggg = HHH fff + εεε (1)

where εεε represents the error, and HHH is the projection operator in which the element HHH i j
represents the length of the ray i in the pixel j.

BAYESIAN APPROACH

From this point, the main objective is to infer on fff given the data ggg assuming the forward
model ggg = HHH fff + εεε . By being Bayesian, we mean to use the Bayes rule:

p( fff | ggg) = p(ggg | fff )p( fff )
p(ggg)

∝ p(ggg | fff )p( fff ) (2)

to obtain what is called the posterior law p( fff |ggg) from the likelihood p(ggg| fff ) and the prior
p( fff ). To be able to use the Bayesian approach, first we need to assign p(ggg| fff ) and p( fff ).
Then, we can obtain the expression of the posterior law. Finally, we can infer on fff using
this posterior law.

Markov model. In the Markov model, the value of f j has a relationship with the
values of its neighbours. For example, in the case of 1D, f j = F( f j1, f j2, · · ·), and in an
image, the value of a pixel depends on the values of its neighbours pixels.

When the value of f j depends only on the values of the neighbours of distance 1, the
model is called to have order 1, and for a Gaussian model we have:

p( f j | f j−1,σ
2) = N

(
f j | f j−1,σ

2)
∝ exp

[
−1

2
( f j− f j−1)

2

σ2
f

]
(3)

From this we can write:

p( fff ) ∝ exp
{
−γ

∣∣∣[DDD fff ] j

∣∣∣β}
where DDD fff represents a suitable defined gradient of the image, γ is a scale parameter and
β a shape parameter. For β = 2 a Gauss-Markov model is obtained.

For the noise term εεε we choose a Gaussia prior law. This leads to

p(ggg | fff ) ∝ exp
{
− 1

2σ2
ε

‖ggg−HHH fff‖2
}

and so

p( fff | ggg,σ2
f ,σ

2
ε ) ∝ exp

{
− 1

2σ2
ε

JJJ( fff )
}

with JJJ( fff ) = ‖ggg−HHH fff‖2+λ‖DDD fff‖β

β
, where λ is the parameter of the regularization term.

When β = 2 (Gauss-Markov case), we got the analytical solution:

f̂ff =
(
HHHtttHHH +λDDDtttDDD

)−1 HHHtttggg



We have considered different prior laws with Markov model: the Gaussian law, the
Generalized Gaussian law, the Cauchy law and the Huber law.

UNSUPERVISED BAYESIAN

In previous section, there are parameters σ2
ε and σ2

f as well as β which have to be
assigned. These are called hyper parameters. For a practical applications we need to
estimate them also. In the Bayesian approach this can be done via the joint posterior:

p( fff ,θθθ | ggg,θ0) =
p(ggg | fff ,θ1)p( fff | θ2)p(θθθ | θ0)

p(ggg | θ0)
(4)

where θθθ = [θ1,θ2] and θ0 is a parameter of θ1 and θ2.
In this paper we set β = 2 but we want to estimate θ1 = vε = σ2

ε and θ2 = v f = σ2
f . As

θ1 and θ2 are variances, we use a conjugate prior for them. Here we choose the inverse
Gamma law as the conjugate prior:{

p(vε | αε ,βε) = I G (vε | αε ,βε)

p(v f | α f ,β f ) = I G (v f | α f ,β f )
(5)

One way to estimate the unknowns of our model is to compute the Joint Maximum A
Posteriori (JMAP) [6]. (

f̂ff , θ̂θθ
)
= argmax

( fff ,θθθ)
p( fff ,θθθ | ggg,θ0) (6)

In the case where the only hyper parameters are vε and v f , we can apply the following
iterative algorithm:

f̂ff = argmax f p
(

f̂ff ,vε ,v f | ggg,θ0

)
=
(

HHHtttHHH + vε

v f
DDDtttDDD

)−1
HHHtttggg

v̂ε =
1
2‖ggg−HHH fff‖2+βε

αε+
M
2 +1

v̂ f =
β f+

1
2‖DDD fff‖2

α f+
N
2 +1

(7)

JMAP AND VBA WITH STUDENT-T PRIOR

In this section, we will consider the hierarchical model which uses a Student-t distribu-
tion for modeling the distribution of sparse signals or images.

For an image in which most parts are homogeneous, the gradient of the image is
sparse. To enforce sparsity, we propose to use a heavy tailed prior law, for example, the
Generalized Gaussian law and the Student-t law. Here we propose to use the Student-t
distribution. For the Student-t prior law, we have the property:

SSSttt
(

f j | ν ,τ
)
=
∫

∞

0
N

(
f j | 0,

1
z j

)
G

(
z j |

ν

2
,
ντ2

2

)
dz j



where the z j is a hidden variable which represents the inverse variance of f j [4, 1].
This property of Infinite Gaussian Mixture gives the possibility to propose the follow-

ing hierarchical model: {
p( f j | z j) = N

(
f j | f j−1,

v f
z j

)
p(z j | αz j ,βz j) = G

(
z j | αz j ,βz j

)
JMAP. With the hierarchical model, we can obtain the expression of the joint a

posterior:

p( fff ,ZZZ,θθθ | ggg) ∝ p(ggg | fff ,vε) p
(

fff | ZZZ,v f
)

p(ZZZ | αZZZ,βZZZ) p(vε) p
(
v f
)

where p
(

fff | ZZZ,v f
)
= ∏ j p

(
f j | z j,v f

)
and p(ZZZ) = ∏ j p

(
z j
)

and for p(vε) and p
(
v f
)

we use Inverse Gamma law which is given in (6).
An alternating optimisation of this JMAP criterion results to the following algorithm:

f̂ff
(k+1)

=

(
HHHtttHHH + v(k)ε

v(k)f

ZZZ(k)
)−1

HHHtttggg

ẑ(k+1)
j =

αz j−
1
2

βz j+

(
f (k+1)
j

)2

2v(k)f

v̂(k+1)
ε =

1
2

∥∥∥ggg−HHH fff (k+1)
∥∥∥2

+βε

αε+
M
2 +1

v̂(k+1)
f =

1
2 ∑

N
j=1 z(k+1)

j

(
f (k+1)

j

)2
+β f

α f +
N
2 +1

(8)

VBA. As we will see, the main inconvenience of the JMAP approach is that we are
summarizing the joint posterior law p( fff ,θθθ |ggg) by its mode only. Also, for obtaining this
mode, in general, an iterative alternating optimization is used, where at each iteration
only the values of the estimates at previous iterations are used without accounting for
their corresponding uncertainties.

In the VBA approach, the main idea here is to approximate p( fff ,θθθ |ggg) by a separable
law q( fff ,θθθ) = q1( fff )q2(θθθ) = ∏ j q1 j( f j)q2(θθθ) which can then be used for inferring on
fff or θθθ . The main criterion used is the Kullback-Leibler divergence[7, 8, 3]. As we will
see, fff depends on q2(θθθ) and q2(θθθ) depends on q1( fff ), thus accounting for uncertainties
in both steps.

We assume that f j | µ j,v f j ,z j ∼ N ( f j | µ j,
σ f j
z j
), z j | αz j ,βz j ∼ G (z j | αz j ,βz j),

vε | αε ,βε ∼I G (vε | αε ,βε) and v f | α f ,β f ∼I G (v f | α f ,β f ). And we are now con-
sidering all the hyper parameters, parameters and unknowns. The alternate optimization



of VBA is then given by:

λ̃
(k+1)
j =

α̃
(k)
f

β̃
(k)
f

β̃
(k)
ε

α̃
(k)
ε
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(k)
z j
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(k)
z j

1
A

µ̃ j
(k+1) =− B

A
(
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(k+1)
j
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σ̃ f j
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(k)
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(
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j
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2
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f
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2
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(
HHHtttHHH
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j j σ̃

(k+1)
f j

)
α̃
(k+1)
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(k)
f + N

2

β̃
(k+1)
f = β

(k)
f + 1
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N
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α̃
(k+1)
z j

β̃
(k+1)
z j

(
(µ̃

(k+1)
j )2 + σ̃

(k+1)
f j

)

(9)

where N is the length of the vector fff , M is the length of the vector ggg, and the definition
of A and B are: {

A =
(
HHHtttHHH

)
j j

B =−
(
HHHtttggg

)
j +
(
HHHtttHHHµµµ

)
j−
(
HHHtttHHH

)
j j µ j

Here we need to determine the diagonals elements of the matrix HHHtttHHH to optimize the
unknowns.

IMPLEMENTATION

In the forward model ggg = HHH fff + εεε , the vector fff correspond to the object, HHH is pro-
jection operator and ggg represents the projections. Here in our simulation, we use the
synthetic volume "Shepp and Logan" with size 256× 256× 256 voxels. In this report,
the projection has been done in 256 angles, and under each angle the screen of detectors
will receive an image of size 256× 256 pixels. The matrix HHH corresponds to the ma-
trix of projection, of which the most component are zero. In the problem 3D, we don’t
know the matrix HHH, but the projection HHH fff and back-projection HHH ′′′ggg can be accessed.
The term εεε represents the noise which follows a Gaussian law. In the algorithm, the
most costly parts of the computation are operations on HHH fff (projection) and the HHHtttggg
(back-projection). These two operations are implemented using a GPU.



NUMERICAL RESULTS

In the numerical implementation part, we have compared the JMAP method with
the results of differents reconstruction methods: simple back-projection, filtered back-
projection, lest square method and Bayes method (MAP) with different regularizations
(Simple Gaussian, Generalized Gaussian, Cauchy and Huber). The middle slice after re-
construction of different methods (after 200 iterations) is shown in FFFIIIGGGUUURRREEE 111, and we
can compare the relatif error of different method, where δ f =

‖ f̂ff− fff‖2

‖ f̂ff‖2 and δg =
‖ĝgg−ggg‖2

‖ĝgg‖2 .

With the theoretical projection HHH and back-projection HHHttt , the object obtained has
a large error, and we can not distinguish the details in the image. With the Feldkamp
back-projection, we can obtain an image which is already clear enough to distinguish
the different materials, but the boundaries are blurred. When we apply the optimisation
with different prior models, we can see that the boundaries are easier to distinguish
and different materials are clearly separated. In the JMAP method, the boundaries of
different materials are more clear than the others methods.

Image reelle
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FIGURE 1. Middle slice obtained with different methods.

A more accurate compare is showed in FFFIIIGGGUUURRREEE 222, the error of the JMAP method is
smaller than the other non-hirarchical methods.

We can see that the method JMAP has the lowest error among the methods that we
considered. With the JMAP method, the borders of two different materials are more
distinct.

The VBA method for the big data 3D problem is more complicated than the JMAP
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method. The calculate of the diagonals elements of the matrix HHHtttHHH for the case 3D
is very difficult because of the unknown huge size matrix HHH and the time needed for
the projection and back-projection. Thus we have compared the VBA method and other
methods for a case 1D where the fff is of size N = 29 , ggg is of size M = 96 and the matrix
HHH is known. The relative error of different methods in this case is showed in fff iiiggguuurrreee 333.
From the compare of different method we can see that the VBA method works better
than the others.

CONCLUSIONS

In this paper, JMAP method and VBA method are proposed for doing Bayesian com-
putations for inverse problems where a hierarchical prior modeling is used for the un-
knowns. A Student-t prior model, which can be written via hidden variables, is con-
sidered, and it gives the model a hierarchical structure. En comparing the different re-
construction models, we can say that the method JMAP, which considers a hierarchical
problem, has a better property than the other methods. The VBA method also considers
the hierarchical problem. The difference is that the VBA method will take into account
not only the unknown parameters, but also the uncertainties of the unknowns. The main
problem of VBA is to calculate the diagonal elements of the matrix HHHtttHHH. For a cube of
512×512×512 voxels, it takes more than 10 days to calculate the diagonals elements.
The next step is to optimise the coding of projection and back-projection to reduce the
time of calculation and compare these two methods.
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