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A STABILITY APPROACH FOR SOLVING MULTIDIMENSIONAL

QUADRATIC BSDES

April 6, 2017

Jonathan Harter,1 Adrien Richou2

Abstract

We establish an existence and uniqueness result for a class of multidimensional quadratic backward stochastic
differential equations (BSDEs). This class is characterized by constraints on some uniform a priori estimates
on solutions of a sequence of approximated BSDEs. We also present effective examples of applications. Our
approach relies on the strategy developed by Briand and Elie in [Stochastic Process. Appl. 123 2921–2939]
concerning scalar quadratic BSDEs.

1 INTRODUCTION

Backward Stochastic Differential Equations Backward stochastic differential equations (BSDEs) have been
first introduced in a linear version by Bismut [Bis73], but since the early nineties and the seminal work of Pardoux
and Peng [PP90], there has been an increasing interest for these equations due to their wide range of applications
in stochastic control, in finance or in the theory of partial differential equations. Let us recall that, solving a BSDE
consists in finding an adapted pair of processes (Y,Z), where Y is a Rd-valued continuous process and Z is a
Rd×k-valued progressively measurable process, satisfying the equation

Yt = ξ +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
Zs dWs, 0≤ t ≤ T, a.s. (1.1)

where W is a k-dimensional Brownian motion with filtration (Ft)t∈R+ , ξ is a FT -measurable random variable
called the terminal condition, and f is a (possibly random) function called the generator. Since the seminal paper
of Pardoux and Peng [PP90] that gives an existence and uniqueness result for BSDEs with a Lipschitz generator, a
huge amount of paper deal with extensions and applications. In particular, the class of BSDEs with generators of
quadratic growth with respect to the variable z, has received a lot of attention in recent years. Concerning the scalar
case,i.e. d = 1, existence and uniqueness of solutions for quadratic BSDEs has been first proved by Kobylanski
in [Kob00]. Since then, many authors have worked on this question and the theory is now well understood: we
refer to [Kob00, Tev08, BE13] when the terminal condition is bounded and to [BH06, BEK13, DHR11] for the
unbounded case.
In this paper we will focus on existence and uniqueness results for quadratic BSDEs in the multidimensional set-
ting, i.e. d > 1. Let us remark that, in addition to his intrinsic mathematical interest, this question is important
due to many applications of such equations. We can mention for example following applications: nonzero-sum
risk-sensitive stochastic differential games in [EKH03, HT16], financial market equilibrium problems for several
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interacting agents in [ET15, FDR11, Fre14, BLDR15], financial price-impact models in [KP16, KP16], principal
agent contracting problems with competitive interacting agents in [EP16], stochastic equilibria problems in incom-
plete financial markets [KXŽ15, XŽ16] or existence of martingales on curved spaces with a prescribed terminal
condition [Dar95].
Let us note that moving from the scalar framework to the multidimensional one is quite challenging since tools
usually used when d = 1, like monotone convergence or Girsanov transform, can no longer be used when d > 1.
Moreover, Frei and dos Reis provide in [FDR11] an example of multidimensional quadratic BSDE with a bounded
terminal condition and a very simple generator such that there is no solution to the equation. This informative
counterexample show that it is hopeless to try to obtain a direct generalization of the Kobylanski existence and
uniqueness theorem in the multidimensional framework or a direct extension of the Pardoux and Peng existence
and uniqueness theorem for locally-Lipschitz generators. Nevertheless, we can find in the literature several papers
that deal with special cases of multidimensional quadratic BSDEs and we give now a really brief summary of them.
First of all, a quite general result was obtain by Tevzadze in [Tev08], when the bounded terminal condition is
small enough, by using a fixed-point argument and the theory of BMO martingales. Some generalizations with
somewhat more general terminal conditions are considered in [Fre14, KP16]. In [CN15], Cheridito and Nam treat
some quadratic BSDEs with very specific generators. Before these papers, Darling was already able to construct a
martingale on a manifold with a prescribed terminal condition by solving a multidimensional quadratic BSDE (see
[Dar95]). Its proof relies on a stability result obtained by coupling arguments. Recently, the so-called quadratic
diagonal case has been considered by Hu and Tang in [HT16]. To be more precise, they assume that the nth line of
the generator has only a quadratic growth with respect to the nth line of Z. This type of assumption allows authors
to use Girsanov transforms in their a priori estimates calculations. Some little bit more general assumptions are
treated by Jamneshan, Kupper and Luo in [JKL14] (see also [LT15]). Finally, in the very recent paper [XŽ16], Xing
and Žitković obtained a general result in a Markovian setting with weak regularity assumptions on the generator and
the terminal condition. Instead of assuming some specific hypotheses on the generator, they suppose the existence
of a so called Liapounov function which allows to obtain a uniform a priori estimate on some sequence (Y n,Zn)
of approximations of (Y,Z). Their approach relies on analytic methods. We refer to this paper for references on
analytic and PDE methods for solving systems of quadratic semilinear parabolic PDEs.

Our approach Our approach for solving multidimensional quadratic BSDEs relies on the theory of BMO mar-
tingales and stability results as in [BE13]. To get more into the details about our strategy, let us recall the sketch of
the proof used by Briand and Elie in [BE13]. The generator f is assumed to be locally Lipschitz and, to simplify,
we assume that it depends only on z. First of all, they consider the following approximated BSDE

Y M
t = ξ +

∫ T

t
f (ρM(ZM

s ))ds−
∫ T

t
ZM

s dWs, 0≤ t ≤ T, a.s.

where ρ
M is a projection on the centered Euclidean ball of radius M. Then existence and uniqueness of (Y M,ZM) is

obvious since this new BSDE has a Lipschitz generator. Now, if we assume that ξ is Malliavin differentiable with a
bounded Malliavin derivative, they show that ZM is bounded uniformly with respect to M. Thus, (Y M,ZM) = (Y,Z)
for M large enough. Importantly, the uniform bound on ZM is obtained thanks to a uniform (with respect to M)

a priori estimate on the BMO norm of the martingale
∫ .

0
ZM

s dWs. Subsequently, they extend their existence and

uniqueness result for a general bounded terminal condition: ξ is approximated by a sequence (ξ n)n∈N of bounded
terminal conditions with bounded Malliavin derivatives and they consider (Y n,Zn) the solution of the following
BSDE

Y n
t = ξ

n +
∫ T

t
f (Zn

s )ds−
∫ T

t
Zn

s dWs, 0≤ t ≤ T, a.s.

By using a stability result for quadratic BSDEs, they show that (Y n,Zn) is a Cauchy sequence that converges to
the solution of the initial BSDE (1.1). Once again, the stability result used by Briand and Elie relies on a uniform

(with respect to n) a priori estimate on the BMO norm of the martingale
∫ .

0
ZndWs.

The aim of this paper is to adapt this approach in our multidimensional setting. In the first approximation step,
we are able to show that ZM is bounded uniformly with respect to M if we have a small enough uniform (with

respect to M) a priori estimate on the BMO norm of the martingale
∫ .

0
ZM

s dWs. But, contrarily to the scalar case,

it is not possible to show that we have an a priori estimate on the BMO norm of the martingale
∫ .

0
ZM

s dWs under

general quadratic assumptions on the generator (let us recall the counterexample provides by Frei and dos Reis
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in [FDR11]). So, this a priori estimate on the BMO norm of the martingale
∫ .

0
ZM

s dWs becomes in our paper

an a priori assumption and this assumption has to be verified on a case-by-case basis according to the BSDE
structure. In the second approximation step, we are facing the same issue: we are able to show the existence and
uniqueness of a solution to (1.1) by using a stability result if we have a small enough uniform (with respect to n) a

priori estimate on the BMO norm of the martingale
∫ .

0
Zn

s dWs, and this a priori estimate becomes, once again, an

assumption that has to be verified on a case-by-case basis according to the BSDE structure. Let us emphasize that
the estimate on the boundedness of ZM and the stability result used in the second step come from an adaptation of
results obtained by Delbaen and Tang in [DT08].
To show the interest of these theoretical results, we have to find now some frameworks for which we are able
to obtain estimates on the BMO norm of martingales

∫ .

0
ZM

s dWs and
∫ .

0
Zn

s dWs. This is the purpose of Section 5

where results of [Tev08, Dar95, HT16] are revisited. Let us note that one interest of our strategy comes from the
fact that we obtain these estimates by very simple calculations that allow to easily get new results: for example, we
are able to extend the result of Tevzadze when the generator satisfies a kind of monotone assumption with respect
to y (see subsection 2.2.2). Moreover, we can remark that obtaining such estimates is strongly related to finding a
so-called Liapounov function in [XŽ16]. Result on the boundedness of Z is also interesting in itself since it allows
to consider the initial quadratic BSDE (1.1) as a simple Lipschitz one which gives access to numerous results on
Lipschitz BSDEs: numerical approximation schemes, differentiability, stability, and so on.

Structure of the paper In the remaining of the introduction, we introduce notations, the framework and general
assumptions. We have collected in Section 2 all our main results in order to improve the readability of the paper.
Section 3 contains some general results about SDEs and linear BSDEs adapted from [DT08]. Section 4 is devoted
to the proof of stability properties, existence and uniqueness theorems for multidimensional quadratic BSDEs.
Finally, proofs of the applications of previous theoretical results are given in Section 5.

§ 1.1. Notations
� Let T > 0. We consider

(
Ω,F ,(Ft)t∈[0,T ],P

)
a complete probability space where (Ft)t∈[0,T ] is a Brownian

filtration satisfying the usual conditions. In particular every càdlàg process has a continuous version. Every
Brownian motion will be considered relatively to this filtered probability space. A k-dimensional Brownian
motion W =

(
W i)

16i6k is a process with values in Rk and with independent Brownian components. Almost
every process will be defined on a finite horizon [0,T ], either we will precise it explicitly. The stochastic integral
of an adapted process H will be denoted by H ?W , and the Euclidean quadratic variation by 〈., .〉. The Dolean-
Dade exponential of a continuous real local martingale M is denoted by

E (M) := exp
(

M− 1
2
〈M,M〉

)
.

� Linear notions – On each Rp, the scalar product will be simply denoted by a dot, including the canonical scalar
product on Mdk(R):

M.N = ∑
16i6d,16 j6k

Mi, jNi, j.

For A∈Mdk(R), A(:,p) will be the column p∈{1, ...,k} of A, and A(l,:) the line l ∈{1, ...,d}. If B∈L (Rd×k,Rd),

we write for i ∈ {1, ...,k}, B(:,i,:) ∈L (Rd ,Rd) the linear map such that Bx =
k

∑
i=1

B(:,i,:)x(:,i) for all x ∈Rd×k. If A

and B are two processes with values in Mdk(R) and Rk, the quadratic variation 〈A,B〉 is the Rd vector process(
d

∑
l=1

〈
Ail ,Bl

〉)d

i=1

and we have the integration by part formula d(AB) = dA.B+A.dB+d〈A,B〉. We can also define the covariation
of (A,B) ∈Mdk(R)×Mkd′(R) by (

d

∑
l=1

〈
Ail ,Bl j

〉)d,d′

i, j=1

.
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� Functional spaces – In a general way, Euclidean norms will be denoted by |.| while norms relatively to ω and t
will be denoted by ‖.‖.
For a F -adapted continuous process Y with values in Rd and 1 6 p 6 ∞ , let us define

‖Y‖S p = E
(

sup
06s6T

|Ys|p
)1/p

, and ‖Y‖S ∞ = esssup sup
06s6T

|Ys| .

If Z is a random variable with values in Rd , we define

‖Z‖Lp = E(|Z|p)1/p .

A continuous martingale M with values in R is in H p(R), or only H p when it is not necessary to specify the
state space, if

√
〈M,M〉T ∈ Lp. And we define the H p norm by

‖M‖H p := E
(
〈M,M〉p/2

T

)1/p
< ∞.

If M is a martingale with values in Rd , M is in H p(Rd) if |M| is in H p(R). A real martingale M = (Mt)06t6T
is said to be BMO (bounded in mean oscillation) if there exists a constant C > 0 such that for every stopping
time 0 6 τ 6 T :

E
(
(MT −Mτ)

2∣∣Fτ

)
6C2 a.s.

The best constant C is called the BMO norm of M, denoted by ‖M‖BMO(P) or sometimes only ‖M‖BMO. In

particular, the one dimensional local martingale Z ?W 1 =
∫ .

0
Zs dW 1

s is BMO if there exists a constant C > 0

such that, for all stopping time τ with values in [0,T ], we have

E
(∫ T

τ

|Zs|2 ds
∣∣∣∣Fτ

)
6C2 a.s.

In the sequel, to simplify notations we will skip the superscript .1 on the Brownian motion after a star. For more
details about BMO martingales, we can refer to [Kaz94].
For k > 1, C ∞

b (Rk) is the set of all C ∞ functions with values in R defined on Rk, which have bounded derivatives.
Let g : [0,T ]×Rd → Rd and α ∈ (0,1], we denote by C α the space of all Hölderian functions of exponent α/2
with respect to the first variable and exponent α with respect to the second variable. More precisely, g ∈ C α if

sup
(t,x)6=(t ′,x′)∈[0,T ]×Rd

|g(t,x)−g(t ′,x′)|
|t− t ′|α/2 + |x− x′|α

< ∞.

� Inequalities – BDG inequalities claim that ‖.‖S p and ‖.‖H p are equivalent on martingale spaces with two
universal constants denoted C′p,Cp. It means that for all continuous local martingales M vanishing at 0,

‖M‖H p 6Cp ‖M‖S p

and
‖M‖S p 6C′p ‖M‖H p .

In [MR16], Marinelli and Röckner deal with martingales taking values in a separable Hilbert space. In particular,
the upper constant C′ (Proposition 2.1 and Proposition 3.1) defined below is valid for all dimensions:

C′p =



(
p

p−1

) p
2
(

p(p−1)
2

)2

if p > 2,

4

√
2
p

if p < 2,

4 if p = 2.

We remark that in the case p = 2, the scalar BDG constant is valid. In the following every BDG inequality
should be understood with this choice of C′. The Doob maximal inequality claims that for every Rd-valued
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martingale M and p > 1,
‖M‖S p 6

p
p−1

‖MT‖Lp ,

and for p = ∞,
‖M‖S ∞ 6 ‖MT‖L∞ .

If p ∈]1,∞[, we will denote by p∗ the conjugated exponent of p such that
1
p
+

1
p∗

= 1. Finally, we say that a

process L = (Lt)06t6T with values in Rd satisfies a reverse Hölder inequality for some integer 1 6 p < ∞ if there
exists some constant Kp such that for every stopping time 0 6 τ 6 T a.s,

E(|LT |p|Fτ)6 Kp |Lτ |p a.s.

� BMO martingales properties – We recall here several results on BMO martingales that will be useful in the
sequel. The energy inequality (see [Kaz94]) tells us that for every BMO martingale M and every integer n > 1,
we have

E(〈M〉nT )6 n!‖M‖2n
BMO , (1.2)

and a conditional version of this inequality is also true: for all t ∈ [0,T ],

E((〈M〉T −〈M〉t)n|Ft)6 n!‖M‖2n
BMO . (1.3)

Consequently the space of BMO martingales is a subset of
⋂
p>1

H p. We recall also the so-called Fefferman

inequality: for X ∈H 1 and Y ∈ BMO,

E
(∫ T

0
|d〈X ,Y 〉s|

)
6 ‖X‖H 1 ‖Y‖BMO .

This inequality yields the following technical lemma (see [BB88] and [DT08] for more details).

LEMMA – 1.1 Let m > 1. We consider X an adapted process and M a local martingale.

(i) If X ∈S m and M ∈ BMO, then X ?M ∈H m and

‖X ?M‖H m 6
√

2‖X‖S m ‖M‖BMO .

(ii) If X ∈H m and M ∈ BMO, then 〈X ,M〉T ∈ Lm and

‖〈X ,M〉T‖Lm 6
√

2m‖X‖H m ‖M‖BMO .

The John-Nirenberg inequality gives a useful estimation on exponential moments of 〈Z ?W 〉T : if ‖Z ?W‖BMO <
1, for any stopping time τ ∈ [0,T ] we have

E
(

e
∫ T

τ |Zs|2 ds
∣∣∣Fτ

)
6

1

1−‖Z ?W‖2
BMO

. (1.4)

We have also a result about changes of probability law and equivalence of BMO norms on a BMO ball (see
Lemma A.4 in [HT16] and Theorem 3.6 in [Kaz94]).

PROPOSITION – 1.1 Let B > 0. There are two constants c1 > 0 and c2 > 0 depending only on B, such that for
any BMO martingale M, we have for any BMO martingale N such that ‖N‖BMO(P) 6 B,
c1 ‖M‖BMO(P) 6 ‖M−〈M,N〉‖BMO(Q) 6 c2 ‖M‖BMO(P) , where dQ = E (N)T dP.

To conclude this paragraph, let us show a technical proposition that will be useful in this paper.

PROPOSITION – 1.2 Let m > 1 and a sequence of BMO-uniformly bounded local martingales (Zn ?W )n∈N. We
denote K = sup

n∈N
‖Zn ?W‖BMO < ∞ and assume that Zn ?W converge in H m to a martingale Z ?W. Then Z ?W

is BMO too and satisfies the same inequality ‖Z ?W‖BMO 6 K.
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Proof. Let us define by M the measure dM = dP⊗dx. Firstly we show that convergence in H m implies the
convergence for the measure M . Indeed, if m > 2, the Jensen inequality gives us

E
(∫ T

0
|Zn

s −Zs|2 ds
)
6 ‖Zn ?W −Z ?W‖2

H m ,

and thus we get the convergence in measure, since for all ε > 0,

M (|Zn−Z|> ε)6
1
ε2 ‖Z

n ?W −Z ?W‖2
H 2 6

1
ε2 ‖Z

n ?W −Z ?W‖2
H m .

Moreover, if m < 2 we also have

M (|Zn−Z|> ε)6
1

εm E
(∫ T

0
|Zn

s −Zs|m ds
)
6

T 1−m/2

εm E

((∫ T

0
|Zn

s −Zs|2 ds
)m/2

)
.

For the both cases, we get convergence in measure. Hence there exists a subsequence (nk)k∈N such that

|Znk |2 −→
k→∞

|Z|2 M − a.e.

The Fatou lemma gives us for all stopping time τ ∈ [0,T ],∫ T

τ

|Zs|2 ds 6 liminf
k→∞

∫ T

τ

|Znk
s |

2 ds a.s,

and taking the conditional expectation

E
(∫ T

τ

|Zs|2 ds
∣∣∣∣Fτ

)
6 E

(
liminf

k→∞

∫ T

τ

|Znk
s |

2 ds
∣∣∣∣Fτ

)
6 liminf

k→∞
E
(∫ T

τ

|Znk
s |

2 ds
∣∣∣∣Fτ

)
6 K a.s.

Finally Z ?W is BMO and ‖Z ?W‖BMO 6 K. �

� Sliceability – For a process X and a stopping time τ we denote by τ X the process started at time τ , that is
τ X = Xmax(.,τ)−Xcτ where Xcτ is the process stopped at τ . For two stopping times τ 6 σ a.s, we denote by
τ Xcσ the process started at τ and stopped at σ :

τ Xcσ = (τ X)cσ .

Associativity property of the stochastic integral can be rewritten with this notation:

τ (H ?W )cσ = H ? τW cσ .

Between τ and σ , the started and stopped process is simply a translation of the stopped process: for all u such
that τ 6 u 6 σ a.s,

τ Xcσu = Xu−Xτ .

This process is constant after σ and vanishes before τ . Let us suppose that X is a BMO martingale. We say that
X is ε-sliceable if there exists a subsequence of stopping times 0 = T0 6 T1 6 ...6 TN = T such that∥∥∥Tn(X)cTn+1

∥∥∥
BMO

6 ε.

The set of all ε-sliceable processes will be denoted by BMOε . Schachermayer proved in [Sch96] that⋂
ε>0

BMOε = H ∞
BMO

.

Moreover the BMO norm of a started and stopped stochastic integral process τ Z ?W cσ has a simple expression:
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PROPOSITION – 1.3 ∥∥∥τ Z ?W cσ
∥∥∥

BMO
= esssup sup

τ ′∈Tτ,σ

E
(∫

σ

τ ′
|Zs|2 ds

∣∣∣∣Fτ ′

)
,

where Tτ,σ =
{

τ
′ stopping time : τ 6 τ

′ 6 σ a.s
}
.

A proof of this proposition is given in the appendix part.
� Malliavin calculus – We denote by

P = { f ((g1 ?W )T , ...,(gn ?W )T ) : f ∈ C ∞
b (Rn),gi adapted ,n > 1} ,

the set of all Wiener functions. For F ∈P , the Malliavin derivative of F is a progressively measurable process
DF ∈ L2([0,T ]×Ω,B([0,T ])⊗F ,dx⊗dP

)
defined by

DtF =
n

∑
i=1

∂i f ((g1 ?W )T , ...,(gn ?W )T )gi(t).

In particular D((h?W )T ) = h for all adapted process h. We define a kind of Sobolev norm on P with the
following definition

‖F‖1,2 :=
[
E
(
|F |2

)
+E

(
‖DF‖2

L2(dx)

)]1/2
.

We can show that D is closable, consequently it is possible to extend the definition of D to D1,2 =P
1,2

. Besides,
D1,2 is dense in L2(Ω). For further considerations on Malliavin calculus we can refer to [Nua06]. We finish this
paragraph by the following useful result proved in [Nua06] (Proposition 1.2.4).

PROPOSITION – 1.4 Let ϕ : Rd → R. We assume that there exists a constant K such that for all x,y ∈ Rd ,

|ϕ(x)−ϕ(y)|6 K |x− y| .

Let (F1, ...,Fd) a vector in D1,2(Rd)∩L∞(Ω). Then ϕ(F)∈D1,2(Rd) and there exists a random vector (G1, ...,Gd)
such that

Dϕ(F) =
d

∑
i=1

GiDF i, and |G|6 K.

§ 1.2. Framework and first assumptions

In this paper we consider the following quadratic BSDE on Rd :

Yt = ξ +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, 0 6 t 6 T, a.s. (1.5)

where f is a random function Ω× [0,T ]×Rd ×Rd×k → Rd called the generator of the BSDE such that for all
(y,z) ∈ Rd ×Rd×k and t ∈ [0,T ], ( f (t,y,z))06t6T is progressively measurable, (Y,Z) is a process with values in

Rd×Rd×k and ξ ∈ L2
(
FT ,Rd

)
.

DEFINITION – 1.1 A solution of BSDE (1.5) is a process (Y,Z) ∈S 2(Rd)×H 2(Rd×k) satisfying usual integra-
bility conditions and solving initial BSDE:

(i)
∫ T

0

(
| f (s,Ys,Zs)|2 + |Zs|2

)
ds < ∞ a.s.,

(ii) Yt = ξ +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, 0 6 t 6 T, a.s.

Some locally Lipschitz assumptions on f and integrability assumptions on ξ and f will be assumed all along this
paper.

(H) (i) For all (y,y′,z,z′) ∈
(

Rd
)2
×
(

Rd×k
)2

, we assume that there exists (Ky,Ly,Kz,Lz) ∈ (R+)4

7



such that P− a.s for all t ∈ [0,T ]:

| f (t,y,z)− f (t,y′,z)|6 (Ky +Ly|z|2)|y− y′|,

| f (t,y,z)− f (t,y,z′)|6
(
Kz +Lz(|z|+ |z′|)

)
|z− z′|,

(ii) E
(
|ξ |2 +

∫ T

0
| f (s,0,0)|2 ds

)
<+∞.

We denote by Bm(Ly,Lz) the following quantity depending on Ly and Lz:

Bm(Ly,Lz) :=


−LzC′m +

√
mLy +(LzC′m)2
√

2mLy
if Ly 6= 0,

1
2
√

2LzC′m
if Ly = 0.

(1.6)

For all m > 1, let us denote by Z m
BMO the set

Z m
BMO =

{
Z, Rd×k−valued process

/
2mLy ‖|Z|?W‖2

BMO +2
√

2LzC′m ‖|Z|?W‖BMO < 1

}
,

which can be rewritten as

Z m
BMO =

{
Z, Rd×k−valued process

/
‖|Z|?W‖BMO < Bm(Ly,Lz)

}
,

where Bm(Ly,Lz) is defined in (1.6). We also denote by Z slic,m
BMO the set of all Rd×k-valued processes Z for which

there exists a sequence of stopping times 0= T0 6 T1 6 ...6 TN = T such that TiZcTi+1 ∈Z m
BMO for all i∈ {0, ...,N}.

To conclude this introduction, we finally consider an approximation of the BSDE (1.5). To this purpose let us
introduce a localisation of f defined by f M(t,y,z) = f (t,y,ρM(z)) where ρ

M : Rd×k→Rd×k satisfies the following
properties :

• ρ
M is the identity on BRd×k(0,M),

• ρ
M is the projection on BRd×k(0,M+1) outside BRd×k(0,M+1) ,

• ρ
M is a C ∞ function with |∇ρ

M(z)|6 1 for all z ∈ Rd×k.

Thus f M is a globally Lipschitz function with constants depending on M. Indeed we have for all (t,y,y′,z,z′) ∈

[0,T ]× (Rd)2×
(

Rd×k
)2

,∣∣ f M(t,y,z)− f M(t,y′,z′)
∣∣6 ∣∣ f (t,y,ρM(z)

)
− f

(
t,y′,ρM(z)

)∣∣+ ∣∣ f (t,y′,ρM(z)
)
− f

(
t,y′,ρM(z′)

)∣∣
6
(
Ky +Ly|ρM(z)|2

)∣∣y− y′
∣∣+ (Kz +Lz

(
|ρM(z)|+ |ρM(z′)|

))∣∣z− z′
∣∣

6(Ky +Ly(M+1)2)
∣∣y− y′

∣∣+(Kz +2Lz(M+1))
∣∣z− z′

∣∣ .
Then, according to the classical result of Pardoux and Peng in [PP90], there exists a unique solution (Y M,ZM) ∈
S 2(Rd)×H 2(Rd×k) of the localized BSDE

Y M
t = ξ +

∫ T

t
f M (s,Y M

s ,ZM
s
)

ds−
∫ T

t
ZM

s dWs, 0 6 t 6 T. (1.7)
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2 MAIN RESULTS

We have collect in this section principal results proved in our article. All proofs are postponed to sections 4 and
5. The following subsection gives some existence and uniqueness results while subsection 2.2 is dedicated to
particular frameworks where these existence and uniqueness results apply.

§ 2.1. Some general existence and uniqueness results
2.1.1 Existence and uniqueness results when the terminal condition and the generator have bounded Malli-

avin derivatives

We consider here a particular framework where the terminal condition and the random part of the generator have
bounded Malliavin derivatives. More precisely, let us consider the following assumptions.

(Dxi,b) The Malliavin derivative of ξ is bounded:

‖Dξ‖S ∞ = sup
06t6T

‖Dtξ‖L∞ < ∞.

(Df,b) (i) For all (t,y,z) ∈ [0,T ]×Rd×Rd×k, we have

f (t,y,z) ∈ D1,2(Rd), and E
(∫ T

0

∫ T

0
|Du f (s,y,z)|duds

)
< ∞.

(ii) There exists C > 0 such that for all (u, t,y,z) ∈ [0,T ]2×Rd×Rd×k,

|Du f (t,y,z)|6C
(

1+ |z|2
)

a.s.

(iii) For all (u, t) ∈ [0,T ]2, there exists a random variable Cu(t) such that for all (y1,z1,y2,z2) ∈(
Rd×Rd×k

)2
,

∣∣Du f (t,y1,z1)−Du f (t,y2,z2)
∣∣ 6Cu(t)

((
1+
∣∣z1∣∣2 + ∣∣z2∣∣2)∣∣y1− y2∣∣+ (1+ ∣∣z1∣∣+ ∣∣z2∣∣))∣∣z1− z2∣∣) a.s.

By recalling that (Y M,ZM) is the unique solution of (1.7), we will also assume that we have an a priori estimate
on |ZM|?W uniform in M and small enough. For a given m > 1 we consider the following assumption:

(BMO,m) there exists a constant K< Bm(Ly,Lz) such that

sup
M∈R+

∥∥∣∣ZM∣∣?W
∥∥

BMO 6K.

THEOREM – 2.1 (EXISTENCE AND UNIQUENESS (1)) Let m > 1. Under the main assumption (H), the BMO
a priori estimate (BMO,m), and the boundedness of the Malliavin derivatives of ξ and f , (Dxi,b)—(Df,b), the
quadratic BSDE (1.5) has a unique solution (Y,Z) ∈S 2(Rd)×Z m

BMO such that

esssupΩ×[0,T ] |Z|<+∞.

A result similar to Theorem 2.1 can be obtained when the quadratic growth of z has essentially a diagonal structure.
Thus, we replace assumption (H) by the following one:

(Hdiag)

• There exist fdiag : Ω× [0,T ]×Rd×k→ Rd and g : Ω× [0,T ]×Rd×Rd×k→ Rd such that for
all i ∈ {1, ...,d} we have

f i(t,y,z) = f i
diag(t,z)+gi(t,y,z).

9



• There exist five nonnegative constants Ld ,Kd,y,Ld,y,Kd,z,Ld,z such that for all (t,y,y′,z,z′) ∈
[0,T ]× (Rd)2× (Rd×k)2 and i ∈ {1, ...,d}:∣∣ f i

diag(t,z)− f i
diag(t,z

′)
∣∣6 Ld

(∣∣∣z(i,:)∣∣∣+ ∣∣∣(z′)(i,:)∣∣∣)∣∣∣(z− z′)(i,:)
∣∣∣ ,

∣∣g(t,y,z)−g(t,y′,z)
∣∣6 (Kd,y +Ld,y |z|2

)∣∣y− y′
∣∣ ,∣∣g(t,y,z)−g(t,y,z′)

∣∣6 (Kd,z +Ld,z
(
|z|+

∣∣z′∣∣))∣∣z− z′
∣∣ .

This kind of framework has been introduced by Hu and Tang in [HT16] (see also [JKL14]).

THEOREM – 2.2 (EXISTENCE AND UNIQUENESS (1) - DIAGONAL CASE) We assume that (Hdiag), (Dxi,b), (Df,b)
hold true and that there exists a constant B such that

(i) sup
M∈R+

∥∥∣∣ZM∣∣?W
∥∥

BMO 6 B,

(ii) c2
2dLd,yB2 < 1,

(
c2

c1

√
Ld,y +

2c2
2

√
d

c2
1

Ld,z

)
4
√

dc2
2Ld,zB2

1− c2
2dLd,yB2 < 1, where c1 and c2 are given by Proposition

1.1 with B = 2LdB.

We also assume that ξ ∈ L∞(Ω,FT ) and f (.,0,0) ∈ S ∞(Rd). Then, the quadratic BSDE (1.5) has a unique
solution (Y,Z) ∈S ∞(Rd)×BMOB such that

esssupΩ×[0,T ] |Z|<+∞.

2.1.2 Extension to general terminal values and generators

Now we are able to relax assumptions (Dxi,b) and (Df,b) with some density arguments. To do so, we assume that
we can write f as a deterministic function f of a progressively measurable continuous process: the randomness of
the generator will be contained into this process.

(H’) (i) There exists a progressively measurable continuous process α ∈
⋂

p∈N∗
S p with values in Rd′ ,

d′> 1, and a function f : Rd′×Rd×Rd×k −→Rd such that for all (t,y,z)∈ [0,T ]×Rd×Rd×k:

f (t,y,z) = f(αt ,y,z).

Besides, we assume that (H) holds true for f.

(ii) There exists D ∈ R+ and δ ∈ (0,1] such that for all (y,z) ∈ Rd×Rd×k, (β ,β ′) ∈ (Rd′)2:∣∣f(β ,y,z)− f(β ′,y,z)
∣∣6 D

(
1+ |z|2

)∣∣β −β
′∣∣δ . (2.1)

For η ∈ L2(Ω,FT ), β ∈S ∞ and M ∈ R+, we denote by
(

Y (M,η ,β ),Z(M,η ,β )
)

the unique solution of the BSDE

Y (M,η ,β )
t = η +

∫ T

t
fM
(

βs,Y
(M,η ,β )
s ,Z(M,η ,β )

s

)
ds−

∫ T

t
Z(M,η ,β )

s dWs, 0 6 t 6 T, (2.2)

where for all (t,y,z) ∈ [0,T ]×Rd ×Rd×k and Rd′ -valued processes α , we have fM(αt ,y,z) = f M(t,y,z). Finally,
assumption (BMO,m) will be replaced by the following one.

(BMO2,m) We assume that ξ ∈ L2m∗(Ω,FT ) and that there exists a constant K< Bm(Ly,Lz) such that

sup
M∈R+

sup
‖η‖

L2m∗ (Ω,FT )
6‖ξ‖

L2m∗ (Ω,FT )

‖β‖L2(Ω×[0,T ])6‖α‖L2(Ω×[0,T ])

∥∥∥∣∣∣Z(M,η ,β )
∣∣∣?W

∥∥∥
BMO

6K.
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THEOREM – 2.3 (EXISTENCE AND UNIQUENESS (2)) Let m> 1. Under the main assumption (H’) and the BMO
estimation (BMO2,m), the quadratic BSDE (1.5) has a unique solution in S 2m∗(Rd)× (H m∗(Rd×k)∩Z m

BMO).

REMARK – 2.1 It is also possible to extend the result of Theorem 2.2 (diagonal case) to more general terminal
conditions and generators. Nevertheless, the result obtained would be less general than Theorem 2.3. See Remark
4.8 for more details.

§ 2.2. Applications to multidimensional quadratic BSDEs with special structures
In this subsection we give some explicit frameworks where assumptions (BMO,m) and (BMO2,m) or assumptions
(i) and (ii) of Theorem 2.2 are fulfilled. The aim is to show that numerous results on multidimensional quadratic
BSDEs already proved in the literature can be obtained with similar assumptions by our approach. We want to
underline the simplicity of this approach since we just have to obtain some a priori estimates on the BMO norm
of |Z| ?W by using classical tools as explained in section 5. Moreover, it is quite easy to construct some “new”
frameworks where (BMO,m) and (BMO2,m) or assumptions (i) and (ii) of Theorem 2.2 are also fulfilled.

2.2.1 An existence and uniqueness result for BSDEs with a small terminal condition

In [Tev08], Tevzadze obtains a result of existence and uniqueness for multidimensional quadratic BSDEs when the
terminal condition is small enough by using a contraction argument in S ∞×BMO. We are able to deal with this
kind of assumption with our approach. We consider the following hypothesis.

(HQ) (i) There exists γ ∈R+ such that for all (t,y,z) ∈ [0,T ]×Rd×Rd×k, we have | f (t,y,z)|6 γ |z|2 ,

(ii) 4γ
2 ‖ξ‖2

L∞ 6 1.

PROPOSITION – 2.1 Let m > 1. Under (H’)—(HQ), and the following condition on γ:

1√
2γ

(
1−
√

1−4γ2 ‖ξ‖2
L∞

) 1
2
< Bm(Ly,Lz),

the BSDE (1.5) has a unique solution in S 2m∗(Rd)× (H m∗(Rd×k)∩Z m
BMO). If in addition (Dxi,b) and (Df,b)

hold true, there exists an unique solution (Y,Z) ∈S ∞(Rd)×Z m
BMO such that

esssupΩ×[0,T ] |Z|<+∞.

2.2.2 An existence and uniqueness result for BSDEs with a monotone generator

In this part we investigate the case where we have for f a kind of monotonicity assumption with respect to y.

(HMon) (i) There exists µ > 0 and α,γ > 0 such that for all (s,y,z) ∈ [0,T ]×Rd×Rd×k

y. f (s,y,z)6 α |y|−µ |y|2 + γ |y| |z|2 ,

(ii) 4γ
2 ‖ξ‖2

L∞ 6 1.

PROPOSITION – 2.2 Let m > 1. Under (H’)—(HMon) and the following estimate on γ:

1√
2γ

(
1−
√

1−4γ2A2
) 1

2
< Bm(Ly,Lz)

with A = max
(
‖ξ‖L∞ ,

α

µ

)
, the quadratic BSDE (1.5) has a solution in S 2m∗(Rd)× (H m∗(Rd×k)∩Z m

BMO). If

in addition (Dxi,b) and (Df,b) hold true, there exists a unique solution (Y,Z) ∈S ∞(Rd)×Z m
BMO such that

esssupΩ×[0,T ] |Z|<+∞.
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2.2.3 An existence and uniqueness result for diagonal quadratic BSDEs

Now we consider the diagonal framework introduced in section 2.1.1. We assume that the generator satisfies
(Hdiag), i.e. the generator f can be written as f (t,y,z) = fdiag(t,z)+g(t,y,z) where fdiag has a diagonal structure
with respect to z.

PROPOSITION – 2.3 We assume that

(i) (Hdiag), (Dxi,b) and (Df,b) hold true,

(ii) there exist nonnegative constants Gd and G such that, for all (t,y,z) ∈ [0,T ]×Rd×Rd×k, we have∣∣ fdiag(t,z)
∣∣6 Gd |z|2 , |g(t,y,z)|6 G |z|2 , (2.3)

(iii)
4∑

d
i=1 e2Gd‖ξ i‖L∞

Gd
G 6 1,

(iv) c2
2dLd,y(4GdG)−1 < 1,

(
c2

c1

√
Ld,y +

2c2
2

√
d

c2
1

Ld,z

)
4
√

dc2
2Ld,z(4GdG)−1

1− c2
2dLd,y(4GdG)−1 < 1, where c1 and c2 are given

by Proposition 1.1 with B = 2Ld(4GdG)−1/2.

Then, the quadratic BSDE (1.5) has a unique solution (Y,Z) ∈S ∞(Rd)×BMO(4GdG)−1/2 such that

esssupΩ×[0,T ] |Z|<+∞.

REMARK – 2.2 The growing assumption (2.3) is only one example of hypothesis that can be tackle by our ap-
proach. It is also possible to obtain the same kind of result by replacing (2.3) by one of the following assumption:

• We assume that for all (t,y,z) ∈ [0,T ]×Rd×Rd×k,

|g(t,y,z)|6C(1+ |y|)+ ε |z|2

and T,ε are supposed to be small enough. This framework is studied in [HT16, JKL14].

• We assume that for all (t,y,z) ∈ [0,T ]×Rd×Rd×k,

|g(t,y,z)|6C(1+ |y|).

This situation is already studied in [HT16].

2.2.4 Existence and uniqueness of martingales in manifolds with prescribed terminal condition

The problem of finding martingales on a manifold with prescribed terminal value has generated a huge amount of
literature. On the one hand with geometrical methods, Kendall in [Ken90] treats the case where the terminal value
lies in a geodesic ball and is expressed as a functional of the Brownian motion. Kendall gives also a characterisation
of the uniqueness in terms of existence of a convex separative function, i.e. a convex function on the product space
which vanishes exactly on the diagonal. Besides, in [Ken92], Kendall proved that the property every couple of
points are connected by a unique geodesic is not sufficient to ensure existence of a separative convex function,
which was conjectured by Émery. An approach by barycenters, of the martingale notion on a manifold, is used by
Picard in [Pic94] for Brownian filtrations. Arnaudon in [Arn97] solved the problem in a complex analytic manifold
having a convex geometry property for continuous filtrations: the main idea is to consider a differentiable family
of martingales. For all these results, a convex geometry property is assumed. The first approach using the tool of
BSDEs is proposed by Darling in [Dar95].
Let us now define more precisely the problem. A so-called linear connection structure is required to define martin-
gales on a manifold M in a intrinsic way. A contrario for the semimartingales a differential structure is enough.
The definition of a martingale can be rewritten with a system of coupled BSDEs having a quadratic growth, so we
begin to recall it. We can refer to [Eme89] for more details about stochastic calculus on manifolds.
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Let us consider (M ,∇) a differential manifold equipped with a linear connection ∇. This is equivalent to give
ourselves a Hessian notion or a covariant derivative. We say that a continuous process X is a semimartingale on M
if for all F ∈C 2(M ), F ◦X is a real semimartingale. Consistence of the definition is simply due to the Itô formula.
We say that a continuous process Y is a (local) ∇-martingale if for all F ∈ C 2(M ),

F(Y )t −
1
2

∫ t

0
∇dF(dY,dY )s

is a real local martingale on [0,T ]. Again it is not very hard to see with the Itô formula that this definition is

equivalent to the Euclidean one in the flat case. Let us remember that
∫ .

0
∇dF(dY,dY )s is a notation for the

quadratic variation of Y with respect to the (0,2)-tensor field ∇dF . This notion is defined by considering a
proper embedding (xi)16i6d into Rd such that every bilinear form b can be written as b = bi j dxi⊗ dx j (implicit
summation). On the other hand it can be proved that the quantity∫ .

0
b(dY,dY )s :=

∫ .

0
bi j(Ys)d

〈
Y i,Y j〉

s

does not depend on (xi)16i6d and so the quantity
∫ .

0
∇dF(dY,dY )s is intrinsic. It is well-known that for all m∈M ,

(∇dF)i j (m) = Di jF(m)−Γ
k
i j(m)DkF(m),

where Γ
k
i j(m) denotes a ∇-Christoffel symbol at the point m. The coefficients are symmetric with respect to i, j.

Hence martingale property in the domain of a local chart is equivalent to the existence of a process Z such that
(Y,Z) solves the following BSDE

Yt = ξ +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
Zs dWs, 0 6 t 6 T,

with f : [0,T ]×Rd ×Rd×k → Rd defined by f (s,y,z) =
1
2

(
Γ

k
i j(y)z

(i,:).z( j,:)
)

16k6d
. It is an easy consequence of

the representation theorem for Brownian martingales and the definition applied to F = xi. We consider in addition
the following assumption

(HGam) there exists two constants Ly and Lz such that for all i, j,k ∈ {1, ...,d}∣∣∣Γk
i j(y)−Γ

k
i j(y
′)
∣∣∣6 2Ly

∣∣y− y′
∣∣ , ∣∣∣Γk

i j(y)
∣∣∣6 2Lz.

For example (HGam) is in force if the domain of the chart is a compact set. It is also true if we choose an
exponential chart. Without loss of generality we can suppose that M has a global system of coordinates: all the
Christoffel symbols will be computed in this system.

Under (HGam), assumption (H) is in force: for all (y,y′,z,z′) ∈ (Rd)2×
(

Rd×k
)2

,∣∣ f (t,y,z)− f (t,y′,z)
∣∣6 Ly |z|2

∣∣y− y′
∣∣ ,

and with the symmetric property of the Christoffel symbols, we have

f (t,y,z′)− f (t,y,z)=−1
2 ∑

i, j
Γ
•
i j(y)

(
z(i,:).z( j,:)− (z′)(i,:).(z′)( j,:)

)
=−1

2 ∑
i, j

Γ
•
i j(y)

(
z(i,:)− (z′)(i,:)

)(
z( j,:)+(z′)( j,:)

)
,

which implies that ∣∣ f (t,y,z)− f (t,y,z′)
∣∣6 Lz

(
|z|+

∣∣z′∣∣) ∣∣z− z′
∣∣ .

To obtain some important a priori estimate for the BMO norm of Z ?W , Darling introduce in [Dar95] a convex
geometry assumption.

DEFINITION – 2.1 We say that a function F ∈ C 2(M ,R) (seen as a function on Rd) is doubly convex on a set
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G⊂ Rd if for all y ∈ G and z ∈ Rd ,

min{HessF(y)(z,z),∇dF(y)(z,z)}> 0,

and, for α > 0, F is α-strictly doubly convex on G if for all y ∈ G and z ∈ Rd ,

min{HessF(y)(z,z),∇dF(y)(z,z)}> α |z|2 .

This property means that F is convex with respect to the flat connection, and, with respect to the connection ∇.

THEOREM – 2.4 Let m > 1 and assume that:

(i) there exists a function Fdc ∈ C 2(M ,R), such that G =
(

Fdc
)−1

(]−∞,0]) is compact and ξ ∈ G,

(ii) Fdc is doubly convex on M , and there exists α > 0 and m > 1 such that Fdc is α-strictly doubly convex on
G and satisfies (

sup
(x,y)∈G2

{
Fdc(x)−Fdc(y)

})1/2

6

√
α

2
×Bm(Ly,Lz),

(iii) (HGam) holds true.

Then there exists a unique ∇-martingale Y in S ∞(Rd) with terminal value ξ such that
√
| 〈Y,Y 〉 | ?W ∈ Z m

BMO.
Moreover, if (Dxi,b) holds true we have

esssupΩ×[0,T ] | 〈Y,Y 〉 |<+∞.

REMARK – 2.3 By using the same approach, it should be possible to extend the previous result to ∇-Christoffel
symbols that depend on time or even that are random progressively measurable processes.

2.2.5 The Markovian setting

The aim of this subsection is to refine some results of Xing and Žitković obtained in [XŽ16]: in this paper, authors
establish existence and uniqueness results for a general class of Markovian multidimensional quadratic BSDEs.
Let us start by introducing the Markovian framework. For all t ∈ [0,T ] and x ∈ Rk we denote X t,x a diffusion
process satisfying the following SDE{

dX t,x
s = b(s,X t,x

s )dt +σ(s,X t,x
s )dWs, s ∈ [t,T ],

X t,x
s = x, s ∈ [0, t].

(2.4)

In all this part, we assume following assumptions that ensure, in particular, that for all (t,x) ∈ [0,T ]×Rk, there
exists a unique strong solution of (2.4).

(HX) • The drift vector b : [0,T ]×Rk→ Rk is measurable and uniformly bounded,

• The dispersion matrix σ : [0,T ]×Rk → Rk×k is symmetric, measurable and there exists a

constant Λ > 0 such that Λ |u|2 > |σ(t,x)u|2 > 1
Λ
|u|2 for all (t,x) ∈ [0,T ]×Rk and u ∈ Rk,

• b and σ are Lipschitz functions with respect to x.

The aim of this subsection is to study the following Markovian BSDE

Y t,x
u = G (X t,x

T )+
∫ T

u
f
(
s,X t,x

s ,Y t,x
s ,Zt,x

s
)

ds−
∫ T

u
Zt,x

s dWs, t 6 u 6 T, (2.5)

for which we assume following assumptions:

(HMark) • (s,y,z) ∈ [0,T ]×Rd×Rd×k 7−→ f(s,X t,x
s ,y,z) satisfies (H),
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• There exists D ∈ R+ and κ ∈ (0,1] such that for all (x,x′) ∈ (Rk)2,

|G (x)|6 D,
∣∣G (x)−G (x′)

∣∣6 D
∣∣x− x′

∣∣κ .
As in [XŽ16] we say that a pair (v,w) of functions is a continuous Markovian solution of (2.5) if

• v : [0,T ]×Rk→ Rd is a continuous function and w : [0,T ]×Rk→ Rd×k is a measurable function,

• for all (t,x) ∈ [0,T ]×Rk, (Y t,x,Zt,x) := (v(.,X t,x),w(.,X t,x)) is a solution of (2.5).

Two Markovian solutions, (v,w) and (v′,w′), are considered equal if v(t,x) = v′(t,x) for all (t,x) ∈ [0,T ]×Rk and
w = w′ a.s. with respect to the Lebesgue measure on [0,T ]×Rk.
Some existence and uniqueness results about continuous Markovian solutions of (2.5) are obtained in [XŽ16] by
assuming the existence of a so-called Lyapunov function. We recall here the definition of these functions given in
[XŽ16].

DEFINITION – 2.2 (LYAPUNOV FUNCTION ASSOCIATED TO g) Let g : [0,T ]×Rk ×Rd ×Rd×k → Rd a Borel
function. A nonnegative function F ∈ C 2(Rd ,R) is said to be a Lyapunov function associated to g if for all
(t,x,y,z) ∈ [0,T ]×Rk×Rd×Rd×k:

1
2

d

∑
l=1

HessF(y)
(

z(:,l),z(:,l)
)
−dF(y)g(t,x,y,z)> |z|2 .

We are now able to give a uniqueness result that partially refine the result given by [XŽ16].

THEOREM – 2.5 (UNIQUENESS FOR THE MARKOVIAN CASE) We assume that

(i) (HX) and (HMark) are in force.

(ii) there exists a Lyapunov function F associated to f.

Then (2.5) admits at most one continuous Markovian solution (v,w) such that v is bounded.

Moreover, we are also able to precise the regularity of the solution when it exists.

THEOREM – 2.6 (REGULARITY OF THE MARKOVIAN SOLUTION) We assume that:

(i) (HX) and (HMark) are in force,

(ii) there exists D ∈ R+ and κ ∈ (0,1] (same constant κ as in (HMark)) such that for all (s,x,x′,y,z) ∈ [0,T ]×
(Rk)2×Rd×Rd×k,

|f(s,x,y,z)|6 D(1+ |y|+ |z|2),
∣∣f(s,x,y,z)− f(s,x′,y,z)

∣∣6 D(1+ |z|2)
∣∣x− x′

∣∣κ ,
(iii) there exists a Lyapunov function F associated to f.

If (v,w) is a continuous Markovian solution of (2.5) such that v is bounded, then v ∈ C κ . In particular, if κ = 1
then w is essentially bounded: the multidimensional quadratic BSDE (2.5) becomes a standard multidimensional
Lipschitz BSDE by a localisation argument.

REMARK – 2.4 An existence result is given by Theorem 2.7 in [XŽ16]. A less general existence result can be
obtained thanks to our approach by combining small BMO estimates obtained in the proof of 2.5 and Remark 4.7
but the approach is less direct than in [XŽ16]. Concerning the uniqueness, Xing and Žitković give a uniqueness
result for generators that do not depend on y: our result allows to fill this small gap. Finally, Xing and Žitković
prove that the Markovian solution, when there exists, satisfies v ∈ C κ ′ with κ

′ ∈ (0,κ]. Thus, our regularity result
gives a better estimation of the solution regularity since the regularity of the terminal condition and the generator is
retained. In particular, we obtain that Z is bounded when κ = 1 which can have important applications, as pointed
out in the introduction.
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REMARK – 2.5 The existence of a Lyapunov function seems to be an ad hoc theoretical assumption at first sight
but Xing and Žitković provide in [XŽ16] a lot of examples and concrete criteria to obtain such kind of functions.
Moreover we can note that the Lyapunov function can be used to obtain a priori estimates on ‖|Z|?W‖BMO (see
the proof of Theorem 2.5 and Theorem 2.6).

3 GENERALITIES ABOUT SDES AND LINEAR BSDES

We collect in this section some technical results that will be useful for section 4 and section 5.

§ 3.1. The linear case: representation of the solutions
We investigate here the following linear BSDE

Ut = ζ +
∫ T

t
(AsUs +BsVs + fs)ds−

∫ T

t
VsdWs, 0 6 t 6 T, (3.1)

where ζ ∈ L2(FT ,Rd), f ∈ L2(Ω× [0,T ]) and A,B, f are three bounded processes with values in L (Rd ,Rd),
L
(

Rd×k,Rd
)

and Rd . For the linear case we have an explicit formulation of the solution. Let us begin to recall
the classical scalar formula which can be obtained using the Girsanov transform.

REMARK – 3.1 (ONE-DIMENSIONAL CASE (d = 1)) It is well-known that the solution of (3.1) is given by the
formula

Ut = E
(

S−1
t ST ζ +

∫ T

t
S−1

t Ss fsds
∣∣∣∣Ft

)
, 0 6 t 6 T,

where

St = exp
(∫ t

0
BsdWs−

1
2

∫ t

0
|Bs|2ds+

∫ t

0
Asds

)
= E (B?W )t exp

(∫ t

0
Asds

)
.

To extend this last formula in the general case we define, as in [DT08], a process S as the unique strong solution of

dSt =
k

∑
p=1

StB
(:,p,:)
t dW p

t +StAtdt, S0 = Id×d .

PROPOSITION – 3.1 (FORMULA FOR U )

(i) The process S is almost surely invertible for all t ∈ [0,T ] and S−1 is the solution of

dS−1
t =

[(
k

∑
p=1

(
B(:,p,:)

t

)2
−At

)
dt−

k

∑
p=1

B(:,p,:)
t dW p

t

]
S−1

t , S−1
0 = Id×d .

(ii) The BSDE (3.1) has a unique solution (U,V ) in S 2
(

Rd
)
×H 2

(
Rd×k

)
, and U is given by:

Ut = E
(

S−1
t ST ζ +

∫ T

t
S−1

t Ss fsds
∣∣∣∣Ft

)
. (3.2)

Proof. Existence and uniqueness of a solution (U,V ) in S 2(Rd)×H 2(Rd×k) is guaranteed by the Pardoux and
Peng result in [PP90]. The solution (U,V ) satisfies

Ut = ζ +
∫ T

t

(
AsUs +

k

∑
p=1

B(:,p,:)
s V (:,p)

s + fs

)
ds−

k

∑
p=1

∫ T

t
V (:,p)

s dW p
s .

16



The Itô formula gives the invertibility of S and the formula for S−1 on the one hand. On the other hand:

d(StUt) =−St ft dt +
k

∑
p=1

(
StB

(:,p,:)
t Ut +StV

(:,p)
t

)
dW p

t ,

and thus we get, for all t ∈ [0,T ],

StUt = ST ζ +
∫ T

t
Ss fs ds−

∫ T

t

k

∑
p=1

(
SsB

(:,p,:)
s Us +SsV

(:,p)
s

)
dW p

s .

By taking the conditional expectation StUt = E
(

ST ζ +
∫ T

t
Ss fs ds

∣∣∣∣Ft

)
. Adaptability and invertibility of S give

the result. �

§ 3.2. A result about SDEs
We consider a SDE on Rd×d of the form

Xt = X0 +
∫ t

0
F(s,Xs)ds+

k

∑
p=1

∫ t

0
Gp(s,Xs)dW p

s , (3.3)

where F : Ω× [0,T ]×Rd×d → Rd×d and for all p ∈ {1, ...,k}, Gp : Ω× [0,T ]×Rd×d → Rd×d are progressively
measurable functions. We start by recalling a result of Delbaen and Tang (see [DT08], Theorem 2.1) about exis-
tence and uniqueness of a solution to the equation (3.3), under BMO assumptions.

PROPOSITION – 3.2 Let m > 1. We suppose that there are two non-negative adapted processes α and β such that

(i) (Regularity) F(t,0) = 0, G(t,0) = 0 and for all (x1,x2, t) ∈ (Rd)2× [0,T ],

|F(t,x1)−F(t,x2)|6 αt |x1− x2| a.s,

k

∑
p=1
|Gp(t,x1)−Gp(t,x2)|2 6 β

2
t |x1− x2|2 a.s.

(ii) (Sliceability) (
√

α ?W, β ?W ) ∈ BMOε1 ×BMOε2 with the condition

2mε
2
1 +
√

2ε2C′m < 1.

Then there exists a solution X ∈S m(Rd) to the equation (3.3) and a constant Km,ε1,ε2 such that

‖X‖S m 6 Km,ε1,ε2 ‖X0‖Lm .

For the reader convenience a proof of this result can be found in the appendix. From this last proposition we can
deduce the following corollary (see [DT08], Corollary 2.1)

COROLLARY – 3.1 Let m > 1. We suppose that there are two non-negative adapted processes α and β such that

(i) (Regularity) F(t,0) = 0, G(t,0) = 0 and for all (x1,x2, t) ∈ (Rd)2× [0,T ],

|F(t,x1)−F(t,x2)|6 αt |x1− x2| a.s,

k

∑
p=1
|Gp(t,x1)−Gp(t,x2)|2 6 β

2
t |x1− x2|2 a.s.

(ii) (Sliceability) (
√

α ?W, β ?W ) ∈ BMOε1 ×BMOε2 with the condition

2mε
2
1 +
√

2ε2C′m < 1.
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For t ∈ [0,T ], let X t,Id the unique solution defined on [t,T ] of the SDE (3.3) such that X t,Id
t = Id . Then X t,Id is in

S m(Rd) and satisfies for a constant Km depending only on C′m, m, k and ε1,ε2:

E
(

sup
t6s6T

∣∣X t,Id
s
∣∣m∣∣∣∣Ft

)
6 Km

m,ε1,ε2
.

In particular, if X is an invertible solution to the equation (3.3), we get the reverse Hölder inequality

E
(

sup
t6s6T

∣∣X−1
t Xs

∣∣m∣∣∣∣Ft

)
6 Km

m,ε1,ε2
.

Proof. We can use Proposition 3.2. For all t ∈ [0,T ] and all event A ∈Ft ,∥∥X t,Id ×1A
∥∥

S m([t,T ]) 6 Km,ε1,ε2 ‖Id×1A‖Lm .

Then we get, for all t ∈ [0,T ],

E
(

sup
t6s6T

∣∣X t,Id
s ×1A

∣∣m)6 Km
m,ε1,ε2

E(|1A|m) ,

and we have

E
(

sup
t6s6T

∣∣X t,Id
s
∣∣m×1A)6 Km

m,ε1,ε2
E(1A) .

Finally, the definition of conditional expectation gives us the result. �

§ 3.3. Estimates for the solution to BSDE (3.1)
We come back to the linear BSDE (3.1), and we want to obtain some S q-estimations for U with q large enough,
including q = ∞, under BMO assumptions.

PROPOSITION – 3.3 Let m > 1. We assume that B and A are adapted, bounded respectively by two non negative
processes β and α such that: (

√
α ?W, β ?W ) ∈ BMOε1 ×BMOε2 with the condition

2mε
2
1 +
√

2ε2C′m < 1.

Then

(i) If ζ ∈ L∞(Ω,FT ) and f ∈S ∞, then U ∈S ∞(Rd) and

‖U‖S ∞ 6 Km,ε1,ε2 (‖ζ‖L∞ +T ‖ f‖S ∞) ,

(ii) Let us assume that m > 1. If ζ ∈ L∞(Ω,FT ), and
√
| f |?W ∈ BMO, then U ∈S ∞ and

‖U‖S ∞ 6 (m∗)!Km,ε1,ε2

(
‖ξ‖L∞ +

∥∥∥√| f |?W
∥∥∥2

BMO

)
.

(iii) Let us assume that m > 1. For all q > m∗ =
m

m−1
, if
(

ζ ,
∫ T

0
| fs| ds

)
∈ Lq×Lq, then U ∈S q(Rd) and

‖U‖q
S q 6 2q−1Kq

m,ε1,ε2

(
q

q−m∗

)q/m∗(
‖ζ‖q

Lq +

∥∥∥∥∫ T

0
| fs|ds

∥∥∥∥q

Lq

)
.

In the following we will denote simply Kq,m,ε1,ε2 = 2q−1Kq
m,ε1,ε2

(
q

q−m∗

)q/m∗

.

18



Proof. The formula (3.2) gives us, for all t ∈ [0,T ]:

|Ut |6 E
(∣∣S−1

t ST
∣∣ |ζ |∣∣Ft

)
+E
(∫ T

t

∣∣S−1
t Ss

∣∣ | fs|ds
∣∣∣∣Ft

)
,

with

dSt =
k

∑
p=1

StB
(:,p,:)
t dW p

t +StAtdt, S0 = Id×d .

S is the solution of an SDE on Rd×d for which we can use Corollary 3.1 by taking, for all 1 6 p 6 k and (x,y) ∈
(Rd×d)2, Gp(s,x) = xB(:,p,:)

s and F(s,y) = yAs. Let us note that
∣∣∣B(:,p,:)

∣∣∣ 6 |B| for all p ∈ {1, ...,k}. Thus there
exists a constant Km,ε1,ε2 such that:

E
(

sup
t6s6T

∣∣S−1
t Ss

∣∣m)6 Km
m,ε1,ε2

.

� If ζ ∈ L∞ and f ∈S ∞, by using the Hölder inequality we have

|Ut |6‖ξ‖L∞ Km,ε1,ε2 +‖ f‖S ∞ E
(
(T − t) sup

t6s6T

∣∣S−1
t Ss

∣∣m∣∣∣∣Ft

)1/m

6Km,ε1,ε2 (‖ζ‖L∞ +T ‖ f‖S ∞) .

� Let us consider m > 1 and assume that ζ ∈ L∞,
√
| f |?W is BMO. Then, by using Hölder and energy inequalities

|Ut |6Km,ε1,ε2 ‖ξ‖L∞ +Km,ε1,ε2E

((∫ T

t
| fs|ds

)m∗
∣∣∣∣∣Ft

)1/m∗

6(m∗)!Km,ε1,ε2

(
‖ξ‖L∞ +

∥∥∥√| f |?W
∥∥∥2

BMO

)
.

� Let us consider m > 1 and q > m∗. We get, for all t ∈ [0,T ],

|Ut |q 62q−1
(

E
(∣∣S−1

t ST
∣∣ |ζ |∣∣Ft

)q
+E
(∫ T

t

∣∣S−1
t Ss

∣∣ | fs|ds
∣∣∣∣Ft

)q)
62q−1E

(∣∣S−1
t ST

∣∣m∣∣∣Ft

)q/m
E
(
|ζ |m

∗ ∣∣∣Ft

)q/m∗

+2q−1E
(

sup
t6s6T

∣∣S−1
t Ss

∣∣m∣∣∣∣Ft

)q/m

E

((∫ T

t
| fs|ds

)m∗
∣∣∣∣∣Ft

)q/m∗

62q−1Kq
m,ε1,ε2

E
(
|ζ |m

∗ ∣∣∣Ft

)q/m∗

+E

((∫ T

0
| fs|ds

)m∗
∣∣∣∣∣Ft

)q/m∗
 .

The processes Mt = E
(
|ζ |m

∗ ∣∣∣Ft

)
and Nt = E

((∫ T

0
| fs|ds

)m∗
∣∣∣∣∣Ft

)
are two martingales with terminal values,

respectively given by |ζ |m
∗

and
(∫ T

0
| fs|ds

)m∗

. Hence the Doob maximal inequality gives us, if q > m∗,

E
(

sup
06t6T

|Mt |q/m∗
)
= ‖M‖q/m∗

S q/m∗ 6

(
q

q−m∗

)q/m∗

‖MT‖q/m∗

Lq/m∗ =

(
q

q−m∗

)q/m∗

‖ζ‖q
Lq ,

and

E
(

sup
06t6T

|Nt |q/m∗
)
6

(
q

q−m∗

)q/m∗ ∥∥∥∥∫ T

0
| fs|ds

∥∥∥∥q

Lq
.
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So we obtain the announced result:

‖U‖q
S q 6 2q−1Kq

m,ε1,ε2

(
q

q−m∗

)q/m∗(
‖ζ‖q

Lq +

∥∥∥∥∫ T

0
| fs|ds

∥∥∥∥q

Lq

)
.

�

COROLLARY – 3.2 (AFFINE UPPER BOUND) Let m > 1. Let us consider A and B adapted, bounded respectively
by two real processes α and β of the form

αs = K +LAs, βs = K′+L′Bs,

with (K,L,K′,L′) ∈ (R+)4, A , B two non negative real processes such that
√

A ?W and B ?W are BMO with
the condition

2mL
∥∥∥√A ?W

∥∥∥2

BMO
+
√

2L′ ‖B ?W‖BMO C′m < 1.

We have the following estimates, with constants Km, Kq,m depending only on m,q,Ky,Kz,Ly,Lz and the BMO

norms
∥∥∥√A ?W

∥∥∥
BMO

, ‖B ?W‖BMO:

(i) If ζ ∈ L∞(Ω,FT ) and f ∈S ∞, then U ∈S ∞(Rd) and

‖U‖S ∞ 6 Km (‖ζ‖L∞ +T ‖ f‖S ∞) ,

(ii) Let us assume that m > 1. If ζ ∈ L∞(Ω,FT ),
√
| f |?W ∈ BMO, then U ∈S ∞ and

‖U‖S ∞ 6 (m∗)!Km

(
‖ξ‖L∞ +

∥∥∥√| f |?W
∥∥∥2

BMO

)
.

(iii) Let us assume that m > 1. For all q > m∗ =
m

m−1
, if
(

ζ ,
∫ T

0
| fs| ds

)
∈ Lq×Lq, then U ∈S q(Rd) and

‖U‖q
S q 6 2q−1Kq

m

(
q

q−m∗

)q/m∗(
‖ζ‖q

Lq +

∥∥∥∥∫ T

0
| fs|ds

∥∥∥∥q

Lq

)
.

In the following we will denote simply Kq,m = 2q−1Kq
m

(
q

q−m∗

)q/m∗

.

Proof. We obtain easily estimates about BMO-norms of
√

α ?W and β ?W by using the triangle inequality,

‖
√

α ?W‖BMO 6
√

KT +
√

L‖
√

A ?W‖BMO, ‖β ?W‖BMO 6 K′
√

T +L′‖B ?W‖BMO,

and it follows that
√

α ?W,β ?W are BMO. To use Proposition 3.3 we just have to show that
√

α ?W and β ?W
are respectively ε1 and ε2 sliceable with 2mε

2
1 +
√

2ε2C′m < 1. To this end, we consider the following uniform
sequence of deterministic stopping times

Tj = j
T
N
, j ∈ {0, ...,N} ,

and a parameter η > 0. With the Proposition 1.3, previous inequalities become on [Ti,Ti+1]∥∥∥Ti+1
√

α ?W cTi+1
∥∥∥

BMO
6
√

Kη +
√

L‖
√

A ?W‖BMO, (3.4)

‖Ti+1β ?W cTi+1‖BMO 6 K′
√

η +L′‖B ?W‖BMO, (3.5)
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By taking η small enough, we get 2mε
2
1 +
√

2ε2C′m < 1 since the following upper bound holds true

2mL
∥∥∥√A ?W

∥∥∥2

BMO
+
√

2L′ ‖B ?W‖BMO C′m < 1.

�

REMARK – 3.2 In inequalities (3.4) and (3.5), we have used that
∥∥∥TiB ?W cTi+1

∥∥∥
BMO

6 ‖B ?W‖BMO and∥∥∥Ti
√

A ?W cTi+1
∥∥∥

BMO
6
∥∥∥√A ?W

∥∥∥
BMO

. We can easily obtain a more general result by replacing the following

assumption: A , B are two positive real processes such that
√

A ?W,B ?W are BMO with the condition

2mL
∥∥∥√A ?W

∥∥∥2

BMO
+
√

2L′ ‖B ?W‖BMO C′m < 1,

by the new one: A , B are two positive real processes such that
√

A ?W,B ?W are in BMOε1 and BMOε2 with
the condition

2mLε
2
1 +
√

2L′ε2C′m < 1.

REMARK – 3.3 We have not mentioned the dependence of the constants with respect to
∥∥∥√A ?W

∥∥∥
BMO

and

‖B ?W‖BMO in the notations but we will precise it explicitly when it will be important.

4 STABILITY, EXISTENCE AND UNIQUENESS RESULTS FOR GENERAL

MULTIDIMENSIONAL QUADRATIC BSDES

§ 4.1. Stability results
With the classical linearisation tool we can prove a stability theorem for the BSDE (1.5) by using results of section
3. Let us consider two solutions of (1.5) in Rd×Rd×k, denoted (Y 1,Z1) and (Y 2,Z2), with terminal conditions ξ

1

and ξ
2 and generators respectively f1 and f2:

Y 1
t = ξ

1 +
∫ T

t
f1
(
s,Y 1

s ,Z
1
s
)

ds−
∫ T

t
Z1

s dWs, 0 6 t 6 T,

Y 2
t = ξ

2 +
∫ T

t
f2
(
s,Y 2

s ,Z
2
s
)

ds−
∫ T

t
Z2

s dWs, 0 6 t 6 T.

We assume that f1, f2 satisfies the usual conditions (H). Let us denote

δYs = Y 1
s −Y 2

s , δZs = Z1
s −Z2

s , δFs = f1(s,Y 1
s ,Z

1
s )− f2(s,Y 2

s ,Z
2
s ),

δ fs = f1(s,Y 2
s ,Z

2
s )− f2(s,Y 2

s ,Z
2
s ) and δξ = ξ

1−ξ
2.

The process (δY,δZ) solves the BSDE

δYt = δξ +
∫ T

t
δFsds−

∫ T

t
δZsdWs, 0 6 t 6 T. (4.1)

THEOREM – 4.1 (STABILITY RESULT) Let m > 1, p >
m∗

2
and let us suppose that

(i) 2mLy
∥∥∣∣Z1∣∣?W

∥∥2
BMO +

√
2Lz
(∥∥∣∣Z1∣∣?W

∥∥
BMO +

∥∥∣∣Z2∣∣?W
∥∥

BMO

)
C′m < 1,
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(ii) (ξ1,ξ2) ∈ (L2p)2,

(iii)
∫ T

0
|δ fs|ds ∈ L2p.

Then, there exists a constant K̃p
(∥∥∣∣Z1∣∣?W

∥∥
BMO ,

∥∥∣∣Z2∣∣?W
∥∥

BMO

)
(depending only on p,Ky,Ly,Kz,Lz,T and the

BMO norms of
∣∣Z1∣∣?W and

∣∣Z2∣∣?W) such that

‖δY‖p
S 2p +‖|δZ|?W‖p

H p 6 K̃p
(∥∥∣∣Z1∣∣?W

∥∥
BMO ,

∥∥∣∣Z2∣∣?W
∥∥

BMO

)(
‖δξ‖p

L2p +

∥∥∥∥∫ T

0
|δ fs|ds

∥∥∥∥p

L2p

)
.

Proof. By using the classical linearisation tool, we can rewrite (4.1) as

δY = δξ +
∫ T

t
(AsδYs +Bs(δZs)+δ fs)ds−

∫ T

t
δZsdWs,

where

� B is a L (Rd×k,Rd) process defined by blocks by, for all i ∈ {1, ...,k},

Bi
s =


f1(s,Y 2

s ,Z
1
s )− f 1

1 (s,Y
2
s ,Z

2
s )

|δZs|2
(T

δZ(:,i)
s ) if δZs 6= 0,

0 otherwise,

and BsδZs =
k

∑
i=1

Bi
sδZ(:,i)

s ,

� A is a L (Rd ,Rd)-process defined by

As =


f1(s,Y 1

s ,Z
1
s )− f1(s,Y 2

s ,Z
1
s )

|δYs|2
(

T
δYs

)
if δYs 6= 0,

0 otherwise,

Assumption (H) on f1 and f2 gives the following inequalities:

|Bs|6 Kz +Lz
(∣∣Z1

s
∣∣+ ∣∣Z2

s
∣∣) ,

|As|6 Ky +Ly
∣∣Z1

s
∣∣2 .

Step 1 – Control of δY . A and B are bounded respectively by two real processes α and β defined by

α = Ky +Ly|Z1|2, β = Kz +Lz
(
|Z1|+ |Z2|

)
,

and (δY, δZ) solves a linear BSDE of the form (3.1) with δ f instead of f . We can apply Corollary 3.2, (iii) with

B =
∣∣Z1∣∣+ ∣∣Z2∣∣ , A =

∣∣Z1∣∣2 , L′ = Lz, K = Ky, K′ = Kz, and L = Ly,

which gives, for all q > 1 such that q > m∗,

‖δY‖q
S q 6 Kq,m

(
‖δξ‖q

Lq +

∥∥∥∥∫ T

0
|δ fs|ds

∥∥∥∥q

Lq

)
. (4.2)

Step 2 – Control of δZ. The Itô formula applied to |δY |2 gives us∫ T

0
|δZs|2 ds = |δξ |2−|δY0|2−2

∫ T

0
δYs.(δZs dWs)+2

∫ T

0
(δY.δF)s ds

6 |δξ |2−2
∫ T

0
δYs.(δZs dWs)+2

∫ T

0
(δY.δF)s ds. (4.3)
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Recalling assumption (H) we have

|δFs|=
∣∣ f1(s,Y 1

s ,Z
1
s )− f2(s,Y 2

s ,Z
2
s )
∣∣6 (Ky +Ly

∣∣Z1
s
∣∣2) |δYs|+

(
Kz +Lz

(∣∣Z1
s
∣∣+ ∣∣Z2

s
∣∣)) |δZs|+ |δ fs| .

With the Cauchy-Schwarz and Young inequalities, we get

2
∫ T

0
(δY.δF)s ds 6 2

∫ T

0
|δYs| |δFs|ds

62
∫ T

0

[(
Ky +Ly

∣∣Z1
s
∣∣2) |δYs|2 +

(
Kz +Lz

(∣∣Z1
s
∣∣+ ∣∣Z2

s
∣∣)) |δYs| |δZs|+ |δ fs| |δYs|

]
ds

62
(

sup
06s6T

|δYs|2
)∫ T

0

[
Ky +Ly

∣∣Z1
s
∣∣2 + (Kz +Lz

(∣∣Z1
s
∣∣+ ∣∣Z2

s
∣∣))2

+
1
2

]
ds+

1
2

∫ T

0
|δZs|2 ds+

(∫ T

0
|δ fs|ds

)2

.

By using this last inequality in (4.3) we obtain

1
2

∫ T

0
|δZs|2 ds 6 |δξ |2−2

∫ T

0
δYs.(δZs dWs)

+2
(

sup
06s6T

|δYs|2
)∫ T

0

[
Ky +Ly

∣∣Z1
s
∣∣2 + (Kz +Lz

(∣∣Z1
s
∣∣+ ∣∣Z2

s
∣∣))2

+
1
2

]
ds+

(∫ T

0
|δ fs|ds

)2

.

Thus, for all p > 1, there exists a constant K depending only on p such that

‖|δZ|?W‖p
H p 6 K

[
‖δξ‖p

Lp +E

((
sup

06t6T

∣∣∣∣∫ t

0
δYs.(δZs dWs)

∣∣∣∣)p/2
)

+E

((
sup

06s6T
|δYs|2

∫ T

0

[
Ky +Ly

∣∣Z1
s
∣∣2 + 1

2
(
Kz +Lz

(∣∣Z1
s
∣∣+ ∣∣Z2

s
∣∣))2

+1
]

ds
)p/2

)
+E

((∫ T

0
|δ fs|ds

)p)]
.

In the following we keep the notation K for all constants appearing in the upper bounds. Then, according to the
BDG inequalities, we get for all p > 1:

E

((
sup

06t6T

∣∣∣∣∫ t

0
δYs.(δZs dWs)

∣∣∣∣)p/2
)

=

∥∥∥∥∫ .

0
δYs.(δZs dWs)

∥∥∥∥p/2

S p/2
6 (C′p/2)

p/2
∥∥∥∥∫ .

0
δY.(δZs dWs)

∥∥∥∥p/2

H p/2
.

Since we have∥∥∥∥∫ .

0
δY.(δZs dWs)

∥∥∥∥p/2

H p/2
= E

( k

∑
i=1

∫ T

0

(
δYs.δZ(:,i)

s

)2
ds

)p/4
6 E

((
sup

06s6T
|δYs|2×

∫ T

0
|δZs|2 ds

)p/4
)
,

then the Cauchy-Schwartz inequality gives us

E

((
sup

06t6T

∣∣∣∣∫ t

0
δYs.(δZs dWs)

∣∣∣∣)p/2
)

6 (C′p/2)
p/2 ‖|δZ|?W‖p/2

H p ‖δY‖p/2
S p .
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Moreover we obtain with Cauchy-Schwarz and Young inequalities:

‖|δZ|?W‖p
H p

6K

[
‖δξ‖p

Lp +‖|δZ|?W‖p/2
H p ‖δY‖p/2

S p +

‖δY‖p
S 2p E

((∫ T

0

[
1+
∣∣Z1

s
∣∣2 + ∣∣Z2

s
∣∣2]ds

)p)1/2

+E
((∫ T

0
|δ fs|ds

)p)]

6K

[
‖δξ‖p

Lp +‖δY‖p
S p +‖δY‖p

S 2p E
((∫ T

0

[
1+
∣∣Z1

s
∣∣2 + ∣∣Z2

s
∣∣2]ds

)p)1/2

+E
((∫ T

0
|δ fs|ds

)p)]

+
1
2
‖|δZ|?W‖p

H p .

The energy inequality allows us to bound E
((∫ T

0

[
1+
∣∣Z1

s
∣∣2 + ∣∣Z2

s
∣∣2]ds

)p)
by

K
(

1+
∥∥∣∣Z1∣∣?W

∥∥2p
BMO +

∥∥∣∣Z2∣∣?W
∥∥2p

BMO

)
,

which is finite recalling assumption (i). Finally, for all p > 1, there exists a constant K (which depends only on
p,Ky,Ly,Kz,Lz,T and the BMO norms of

∣∣Z1∣∣?W ,
∣∣Z2∣∣?W ) such that

‖|δZ|?W‖p
H p 6 K

(
‖δξ‖p

Lp +‖δY‖p
S 2p +

∥∥∥∥∫ T

0
|δ fs|ds

∥∥∥∥p

Lp

)
. (4.4)

Step 3 – Stability. Considering p >
m∗

2
and combining (4.2) where q = 2p with (4.4), we obtain existence of

a constant K̃p
(∥∥∣∣Z1∣∣?W

∥∥
BMO ,

∥∥∣∣Z2∣∣?W
∥∥

BMO

)
which depends only on p,Ky,Ly,Kz,Lz,T,K and the BMO norms

of
∣∣Z1∣∣?W ,

∣∣Z2∣∣?W such that

‖δY‖p
S 2p +‖|δZ|?W‖p

H p 6 K̃p
(∥∥∣∣Z1∣∣?W

∥∥
BMO ,

∥∥∣∣Z2∣∣?W
∥∥

BMO

)(
‖δξ‖p

L2p +

∥∥∥∥∫ T

0
|δ fs|ds

∥∥∥∥p

L2p

)
.

�

REMARK – 4.1 We can obtain also a symmetrized version of assumption (i) in Theorem 4.1 by changing the
linearisation step in the proof. For example we can commute Z1 and Z2 and (i) becomes

2mLy
∥∥∣∣Z2∣∣?W

∥∥2
BMO +

√
2Lz
(∥∥∣∣Z1∣∣?W

∥∥
BMO +

∥∥∣∣Z2∣∣?W
∥∥

BMO

)
C′m <

1
2
.

But we can also note that δFs = ÃsδYs + B̃sδZs +δ fs, where

ÃsδYs =
1
2
(

f 1(s,Y 1
s ,Z

1
s )− f 1(s,Y 2

s ,Z
1
s )+ f 1(s,Y 1

s ,Z
2
s )− f 1(s,Y 2

s ,Z
2
s )
)
,

B̃sδZs =
1
2
(

f 1(s,Y 2
s ,Z

1
s )− f 1(s,Y 2

s ,Z
2
s )+ f 1(s,Y 1

s ,Z
1
s )− f 1(s,Y 1

s ,Z
2
s )
)
,

and we get symmetric bounds for Ã and B̃:∣∣∣Ãs

∣∣∣6 Ky +
Ly

2

(∣∣Z1
s
∣∣2 + ∣∣Z2

s
∣∣2) , ∣∣∣B̃s

∣∣∣6 Kz +Lz
(∣∣Z1

s
∣∣+ ∣∣Z2

s
∣∣) .

Then (i) becomes

mLy

(∥∥∣∣Z1∣∣?W
∥∥2

BMO +
∥∥∣∣Z2∣∣?W

∥∥2
BMO

)
+
√

2LzC′m
(∥∥∣∣Z1∣∣?W

∥∥
BMO +

∥∥∣∣Z2∣∣?W
∥∥)

BMO < 1.
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We keep the notation K̃p
(∥∥∣∣Z1∣∣?W

∥∥
BMO ,

∥∥∣∣Z2∣∣?W
∥∥

BMO

)
for the constant appearing in the following stability

result.

COROLLARY – 4.1 (STABILITY RESULT (2)) Let m > 1, p >
m∗

2
and let us assume that

(i) (ξ1,ξ2) ∈ (L2p)2,

(ii)
∫ T

0
|δ fs|ds ∈ L2p.

If Z1 and Z2 are in Z m
BMO, then there exists a constant K̃p

(∥∥∣∣Z1∣∣?W
∥∥

BMO ,
∥∥∣∣Z2∣∣?W

∥∥
BMO

)
(depending only on

p,Ky,Ly,Kz,Lz,T and the BMO norms of
∣∣Z1∣∣?W,

∣∣Z2∣∣?W) such that

‖δY‖p
S 2p +‖|δZ|?W‖p

H p 6 K̃p
(∥∥∣∣Z1∣∣?W

∥∥
BMO ,

∥∥∣∣Z2∣∣?W
∥∥

BMO

)(
‖δξ‖p

L2p +

∥∥∥∥∫ T

0
|δ fs|ds

∥∥∥∥p

L2p

)
.

REMARK – 4.2 By using Remark 3.2, it is clear that Corollary 4.1 stays true when Z1 and Z2 are only in Z slic,m
BMO .

Indeed, if we denote 0 = T j
0 6 T j

1 6 ... 6 T j
N j the sequence of stopping times associated to Z j ?W for j ∈ {1,2},

we can define a new common sequence of stopping times:

TkN1+i = (T 1
i ∨T 2

k )∧T 2
k+1, i ∈ {0, ...,N1−1}, k ∈ {0, ...,N2−1}.

Then, by applying the stability result on each interval [Ti,Ti+1] for i ∈ {0,N1N2−1} we obtain

‖δY‖p
S 2p +‖|δZ|?W‖p

H p 6N1N2
N1N2−1

∏
k=0

K̃p

(∥∥∥Tk
∣∣Z1∣∣?W cTk+1

∥∥∥
BMO

,
∥∥∥Tk
∣∣Z2∣∣?W cTk+1

∥∥∥
BMO

)(
‖δξ‖p

L2p +

∥∥∥∥∫ T

0
|δ fs|ds

∥∥∥∥p

L2p

)
.

Obviously, when sequences of stopping times are the same for
∣∣Z1∣∣?W and

∣∣Z2∣∣?W , we can use it directly as the
common sequence of stopping time.

§ 4.2. A stability result for the diagonal quadratic case
We give here a specific result when the quadratic growth of z has essentially a diagonal structure: we assume that
assumption (Hdiag) is in force. As explained in section 2.1.1, this kind of framework has been introduced by Hu
and Tang in [HT16] (see also [JKL14]).
To simplify notations in this paragraph, the line i of z will be denoted in a simple way by (z)i, or zi if there is
no ambiguity, instead of z(i,:). Let us consider two solutions (Y 1,Z1) and (Y 2,Z2) which correspond to terminal
conditions ξ

1,ξ 2 and generators f1 = fdiag,1 +g1, f2 = fdiag,2 +g2. We have for all i ∈ {1, ...,d},

δY i
t = δξ

i +
∫ T

t
δF i

s ds−
∫ T

t
δZi

s.dWs,

with
δYs := Y 1

s −Y 2
s , δZs := Z1

s −Z2
s ,

δFs :=
(

fdiag,1(s,Z1
s )− fdiag,2(s,Z2

s )
)
+
(
g1(s,Y 1

s ,Z
1
s )−g2(s,Y 2

S ,Z
2
s )
)

and δξ := ξ
1−ξ

2.

We also define
δ fs = f1(s,Y 2

s ,Z
2
s )− f2(s,Y 2

s ,Z
2
s ).

THEOREM – 4.2 (STABILITY RESULT FOR THE DIAGONAL QUADRATIC CASE) Let us assume that

(i) f1 and f2 satisfy (Hdiag),

(ii) there exists B> 0 such that (Y 1,Z1) and (Y 2,Z2) are in S ∞(Rd)×BMOB and

c2
2dLd,yB2 < 1,

(
c2

c1

√
Ld,y +

2
√

dc2
2

c2
1

Ld,z

)
4
√

dc2
2Ld,zB2

1− c2
2dLd,yB2 < 1, (4.5)
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where c1 and c2 are given by Proposition 1.1 with B = 2LdB.

Then there exists a constant K̃diag
(∥∥∣∣Z1∣∣?W

∥∥
BMO ,

∥∥∣∣Z2∣∣?W
∥∥

BMO

)
depending only on B and constants in (Hdiag)

such that

‖δY‖S ∞ +‖|δZ|?W‖BMO 6 K̃diag
(∥∥∣∣Z1∣∣?W

∥∥
BMO ,

∥∥∣∣Z2∣∣?W
∥∥

BMO

)(
‖δξ‖L∞ +

∥∥∥√|δ f |?W
∥∥∥2

BMO

)
.

REMARK – 4.3 For a given Ld and a given B, condition (4.5) is fulfilled as soon as Ld,y and Ld,z are small enough.

Proof.

Step 1 – Control of δY . We write δF i as

δF i
s =

(
fdiag,1(s,Z1

s )− fdiag,1(s,Z2
s )
)i
+
(
g1(s,Y 1

s ,Z
1
s )−g1(s,Y 2

s ,Z
2
s )
)i
+δ f i

s

= β
i
sδZi

s +α
i
sδYs +Tr(γ i

sδZs)+δ f i
s ,

where β
i,α i and γ

i are defined by:

β
i
s =


f i
diag,1(s,Z

1
s )− f i

diag,1(s,Z
2
s )

|δZi
s|

2

(
T

δZi
s

)
if δZi

s 6= 0,

0 otherwise
,

α
i
s =


gi

1(s,Y
1
s ,Z

1
s )−gi

1(s,Y
2
s ,Z

1
s )

|δYs|2
(

T
δYs

)
if δYs 6= 0

0 otherwise
, γ

i
s =


gi

1(s,Y
2
s ,Z

1
s )−gi

1(s,Y
2
s ,Z

2
s )

|δZs|2
(

T
δZs

)
if δZs 6= 0

0 otherwise
.

Since we have the following estimate on β
i, for all i ∈ {1, ...,d},∣∣β i∣∣6 Ld

(∣∣(Z1)i∣∣+ ∣∣(Z2)i∣∣) ,
and that

(
|(Z1)i|?W, |(Z2)i|?W

)
∈BMO×BMO, we deduce that |β i|?W is BMO too and E

(
β

i ?W
)

is an uniform
integrable martingale. Consequently we can apply the Girsanov theorem:

δY i
t = δξ

i +
∫ T

t

(
α

i
sδYs +Tr(γ i

sδZs)+δ f i
s
)

ds−
∫ T

t
δZi

s.
(
dWs−β

i
s ds
)

= δξ
i +
∫ T

t

(
α

i
sδYs +Tr(γ i

sδZs)+δ f i
s
)

ds−
∫ T

t
δZi

s.dWs
i
, (4.6)

where W i is a Brownian motion with respect to the probability Qi defined by dQi = E
(
β

i ?W
)

T dP. Taking the
Qi-conditional expectation we get

δY i
t = EQi

(
δξ

i +
∫ T

t

(
α

i
sδYs +Tr(γ i

sδZs)+δ f i
s
)

ds
∣∣∣∣Ft

)
.

Following estimates hold true:

|α|6 Kd,y +Ld,y
∣∣Z1∣∣2 , |γ|6 Kd,z +Ld,z

(∣∣Z1∣∣+ ∣∣Z2∣∣) ,
and consequently, we obtain∥∥∥√|α|?W

∥∥∥2

BMO
6Kd,yT +Ld,y

∥∥∣∣Z1∣∣?W
∥∥2

BMO , ‖|γ|?W‖BMO 6Kd,z
√

T +Ld,z
(∥∥∣∣Z1∣∣?W

∥∥
BMO +

∥∥∣∣Z2∣∣?W
∥∥

BMO

)
.

Since
√

(|α i| |δY |+ |γ i| |δZ|+ |δ f i|)?W is a BMO martingale, we can apply Proposition 1.1: there exists a con-
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stant c2 that depend only on Ld and B such that

∣∣δY i
t
∣∣6∥∥δξ

i∥∥
L∞ + c2

2

(
‖δY‖S ∞

∥∥∥∥√|α i|?W
∥∥∥∥2

BMO
+‖|δZ|?W‖BMO

∥∥∣∣γ i∣∣?W
∥∥

BMO +

∥∥∥∥√|δ f i|?W
∥∥∥∥2

BMO

)
,

and consequently we get

‖δY‖S ∞ 6
d

∑
i=1

∥∥δY i∥∥
S ∞

6
√

d ‖δξ‖L∞ + c2
2

(
d ‖δY‖S ∞

∥∥∥√|α|?W
∥∥∥2

BMO
+d ‖|δZ|?W‖BMO ‖|γ|?W‖BMO +d

∥∥∥√|δ f |?W
∥∥∥2

BMO

)
6
√

d ‖δξ‖L∞ + c2
2d ‖δY‖S ∞

(
Kd,yT +Ld,y

∥∥∣∣Z1∣∣?W
∥∥2

BMO

)
+ c2

2 ‖|δZ|?W‖BMO

(
dKd,z

√
T +dLd,z

(∥∥∣∣Z1∣∣?W
∥∥

BMO +
∥∥∣∣Z2∣∣?W

∥∥
BMO

))
+ c2

2d
∥∥∥√|δ f |?W

∥∥∥2

BMO
.

(4.7)

As in the proof of Proposition 3.2, now we slice [0,T ] in small pieces. We consider η =
T
N

with N ∈ N∗ and we

set Ti = iη for i ∈ {0, ...,N}. The process δY is equal to

δYt = δYT1{T}(t)+
N−1

∑
k=1

δ̃Y
k
t 1[Tk,Tk+1[(t), with δ̃Y

k
t = δYt1[Tk,Tk+1](t), k ∈ {0, ...,N−1}. (4.8)

On the interval [Tk,Tk+1] the inequality (4.7) becomes:∥∥∥∥δ̃Y
k
∥∥∥∥

S ∞

6
√

d
∥∥∥∥δ̃Y

k
Tk+1

∥∥∥∥
L∞

+dc2
2

∥∥∥√|δ f |?W
∥∥∥2

BMO

+ c2
2

(
d
∥∥∥∥δ̃Y

k
∥∥∥∥

S ∞

(
Kd,yη +Ld,yB2)+∥∥∥Tk |δZ|?W cTk+1

∥∥∥
BMO

(
dKd,z

√
η +2dLd,zB

))
.

Then, we can choose N large enough to get 1− c2
2d(Kd,yη +Ld,yB2)> 0. Finally we obtain∥∥∥∥δ̃Y

k
∥∥∥∥

S ∞

6

√
d

1− c2
2d(Kd,yη +Ld,yB2)

∥∥∥∥δ̃Y
k
Tk+1

∥∥∥∥
L∞

+
∥∥∥Tk |δZ|?W cTk+1

∥∥∥
BMO

c2
2d(Kd,z

√
η +2Ld,zB)

1− c2
2d(Kd,yη +Ld,yB2)

+
∥∥∥√|δ f |?W

∥∥∥2

BMO

c2
2d

1− c2
2d(Kd,yη +Ld,yB2)

.

(4.9)

Step 2 – Control of δZ. Applying the Itô formula for the process
∣∣δY i∣∣2 and taking the Qi-conditional expecta-

tion, we get for all t ∈ [0,T ],

∣∣δY i
t
∣∣2 +EQi

(∫ T

t

∣∣δZi
s
∣∣2 ds

∣∣∣∣Ft

)
=
∣∣δξ

i∣∣2 +2EQi
(∫ T

t

(
δY i

s .(g1(s,Y 1
s ,Z

1
s )−g1(s,Y 2

s ,Z
2
s ))

i)ds
∣∣∣∣Ft

)
+2EQi

(∫ T

t
δY i

s .(δ f i)s ds
∣∣∣∣Ft

)
.

Martingales
√
|δY i| |(g1(.,Y 1,Z1)−g1(.,Y 2,Z2))i| ?W and

√
|δY i| |δ f i| ?W are BMO, since under (Hdiag) we

have, for all s ∈ [0,T ],∣∣g1(s,Y 1
s ,Z

1
s )−g1(s,Y 2

s ,Z
2
s )
∣∣6 (Kd,y +Ld,y

∣∣Z1
s
∣∣2) |δYs|+

(
Kd,z +Ld,z

(∣∣Z1
s
∣∣+ ∣∣Z2

s
∣∣)) |δZs| .
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By using Proposition 1.1, there exist two constants c1 > 0 and c2 > 0 that depend only on Ld and B such that

c2
1
∥∥∣∣δZi∣∣?W

∥∥2
BMO 6

∥∥δξ
i∥∥2

L∞ +2c2
2

∥∥∥∥√|δY i| |(g1(.,Y 1,Z1)−g1(.,Y 2,Z2))i|?W
∥∥∥∥2

BMO

+2c2
2

∥∥∥∥√|δY i| |δ f i|?W
∥∥∥∥2

BMO
.

By summing with respect to i and by using assumption (Hdiag) we obtain

c2
1 ‖|δZ|?W‖2

BMO 6 ‖δξ‖2
L∞ +2c2

2d ‖δY‖S ∞

∥∥∥∥√|g1(.,Y 1,Z1)−g1(.,Y 2,Z2)|?W
∥∥∥∥2

BMO
+2c2

2d ‖δY‖S ∞

∥∥∥√|δ f |?W
∥∥∥2

BMO

6 ‖δξ‖2
L∞ +2c2

2vd
(

T Kd,y +Ld,y
∥∥∣∣Z1∣∣?W

∥∥2
BMO

)
‖δY‖2

S ∞

+2c2
2d
(
Kd,zT +Ld,z

(∥∥∣∣Z1∣∣?W
∥∥

BMO +
∥∥∣∣Z2∣∣?W

∥∥
BMO

))
‖|δZ|?W‖BMO ‖δY‖S ∞

+2c2
2d ‖δY‖S ∞

∥∥∥√|δ f |?W
∥∥∥2

BMO
.

Once again, for each k ∈ {0, ...,N−1} we can write this inequality on [Tk,Tk+1], and with the same notations as in
(4.8) we obtain

c2
1

∥∥∥Tk |δZ|?W cTk+1
∥∥∥2

BMO
6

∥∥∥∥δ̃Y
k
Tk+1

∥∥∥∥2

L∞

+2c2
2d
(
ηKd,y +Ld,yB2)∥∥∥∥δ̃Y

k
∥∥∥∥2

S ∞

+2c2
2d
(
ηKd,z +2BLd,z

)∥∥∥∥δ̃Y
k
∥∥∥∥

S ∞

∥∥∥Tk |δZ|?W cTk+1
∥∥∥

BMO
+2c2

2d
∥∥∥∥δ̃Y

k
∥∥∥∥

S ∞

∥∥∥√|δ f |?W
∥∥∥2

BMO
.

We apply Young inequality to the terms
∥∥∥Tk |δZ|?W cTk+1

∥∥∥
BMO

and
∥∥∥√|δ f |?W

∥∥∥2

BMO
and we obtain

2c2
2d
(
ηKd,z +2BLd,z

)∥∥∥∥δ̃Y
k
∥∥∥∥

S ∞

∥∥∥Tk |δZ|?W cTk+1
∥∥∥

BMO
6 2

c4
2d2

c2
1

(
ηKd,z +2BLd,z

)2
∥∥∥∥δ̃Y

k
∥∥∥∥2

S ∞

+
c2

1
2

∥∥∥Tk |δZ|?W cTk+1
∥∥∥2

BMO
,

and for all ε > 0

2c2
2d
∥∥∥∥δ̃Y

k
∥∥∥∥

S ∞

∥∥∥√|δ f |?W
∥∥∥2

BMO
6 ε

2
∥∥∥∥δ̃Y

k
∥∥∥∥2

S ∞

+
c4

2d2

ε2

∥∥∥√|δ f |?W
∥∥∥4

BMO
.

Consequently we get

c1√
2

∥∥∥Tk |δZ|?W cTk+1
∥∥∥

BMO
6

∥∥∥∥δ̃Y
k
Tk+1

∥∥∥∥
L∞

+

(√
2c2
√

d
(√

ηKd,y +
√

Ld,yB
)
+
√

2
c2

2d
c1

(
ηKd,z +2BLd,z

)
+ ε

)∥∥∥∥δ̃Y
k
∥∥∥∥

S ∞

+
c2

2d
ε

∥∥∥√|δ f |?W
∥∥∥2

BMO
. (4.10)

Step 3 – Stability. Combining (4.9) and (4.10), we can obtain a stability result on [Tk,Tk+1] as soon as η and ε

are sufficiently small to get c2
2d(Kd,yη +Ld,yB2)< 1 and

√
2

c1

(√
2c2
√

d
(√

ηKd,y +
√

Ld,yB
)
+
√

2
c2

2d
c1

(
ηKd,z +2BLd,z

)
+ ε

)
c2

2d(Kd,z
√

η +2Ld,zB)
1− c2

2d(Kd,yη +Ld,yB2)
< 1.

We obtain the existence of a constant K which does not depend on k such that∥∥∥∥δ̃Y
k
∥∥∥∥

S ∞

+
∥∥∥Tk |δZ|?W cTk+1

∥∥∥
BMO

6 K
(∥∥∥∥δ̃Y

k
Tk+1

∥∥∥∥
L∞

+
∥∥∥√|δ f |?W

∥∥∥2

BMO

)
.
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Since ‖δY‖S ∞ 6
N−1

∑
k=0

∥∥∥∥δ̃Y
k
∥∥∥∥

S ∞

and ‖|δZ|?W‖BMO 6
N−1

∑
k=0

∥∥∥Tk |δZ|?W cTk+1
∥∥∥

BMO
, by a direct iteration we finally

obtain a constant K such that

‖δY‖S ∞ +‖|δZ|?W‖BMO 6 K
(
‖δξ‖L∞ +

∥∥∥√|δ f |?W
∥∥∥2

BMO

)
,

and K depends only on B and constants in (Hdiag). �

§ 4.3. Proofs of Theorem 2.1 and Theorem 2.2
We recall first that (Y M,ZM) is the unique solution of the localized BSDE (1.7). To show Theorem 2.1 we begin to
prove the following proposition which gives an uniform estimates for ZM . This is the keystone of our procedure.

PROPOSITION – 4.1 Let m > 1. If assumptions (H)—(BMO,m)—(Dxi,b)—(Df,b) hold true then

sup
M

esssupΩ×[0,T ] |ZM|<+∞.

Proof.

Step 1 — Malliavin differentiation. We assume that f is continuously differentiable with respect to (y,z). This
assumption is not restrictive by considering a smooth regularization of f .
Recalling assumptions (Dxi,b) and (Df,b), Proposition 5.3 in [EKPQ97] gives us that for all 0 6 u 6 t 6 T , Y M

t
and ZM

t are respectively in D1,2(Rd) and D1,2(Rd×k). Moreover the process (DuY M,DuZM)= (DuY M
t ,DuZM

t )06t6T
solves for all u the following linear BSDE in Rd×k:

DuY M
t = Duξ +

∫ T

t

(
∇y f M (s,Y M

s ,ZM
s
)

DuY M
s +∇z f M (s,Y M

s ,ZM
s
)

DuZM
s

+(Du f M)
(
s,Y M

s ,ZM
s
))

ds−
∫ T

t
DuZM

s dWs, (4.11)

and (DtYt)06t6T is a version of (Zt)06t6T . In particular, there exists a continuous version of Z. Let us emphasize
that BSDE (4.11) means that for each p ∈ {1, ...,k},

Dp
uY M

t = Dp
uξ +

∫ T

t

(
∇y f M (s,Y M

s ,ZM
s
)

Dp
uY M

s +∇z f M (s,Y M
s ,ZM

s
)

Dp
uZM

s

+(Dp
u f M)

(
s,Y M

s ,ZM
s
))

ds−
∫ T

t
Dp

uZM
s dWs, (4.12)

besides DpY M is a process with values in Rd for each p ∈ {1, ...,k}.

Step 2 — S ∞-Estimation. We are looking for an S ∞-estimate of DuY M for all u ∈ [0,T ] applying results of
section 3. Since |∇zρ

M(z)|6 1, we obtain the following inequalities by recalling the main assumption (H),∣∣∇y f M (s,Y M
s ,ZM

s
)∣∣= ∣∣∇y f

(
s,Y M

s ,ρM(ZM
s )
)∣∣6 Ky +Ly

∣∣ZM
s
∣∣2 ,∣∣∇z f M (s,Y M

s ,ZM
s
)∣∣= ∣∣∇z f

(
s,Y M

s ,ρM(ZM
s )
)∣∣6 Kz +2Lz

∣∣ZM
s
∣∣ .

Let us consider the two positive processes α
M and β

M defined below,

α
M = Ky +Ly

∣∣ZM∣∣2 , β
M = Kz +2Lz

∣∣ZM∣∣ .
For all p ∈ {1, ...,k}, by recalling (BMO,m), we can apply Corollary 3.2 (iii), to the BSDE (4.12) with the follow-
ing constants and processes:

L = Ly, K = Ky, K′ = Kz, L′ = 2Lz, A =
∣∣ZM∣∣2 , B =

∣∣ZM∣∣ .
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Thus, we obtain, for all u ∈ [0,T ],

∥∥DuY M∥∥
S ∞ 6

k

∑
p=1

∥∥Dp
uY M∥∥

S ∞ 6 (m∗)!Km

k

∑
p=1

(
‖Dp

uξ‖L∞ +

∥∥∥∥√∣∣Dp
u f M(.,Y M,ZM)

∣∣?W
∥∥∥∥2

BMO

)

6Cm

(
‖Duξ‖L∞ +

∥∥∥∥√|Du f M(.,Y M,ZM)|?W
∥∥∥∥2

BMO

)
,

where Cm does not depend on M. Indeed, it is important to remark that the constant Km given by Corollary 3.2
depends on

∥∥∣∣ZM∣∣?W
∥∥

BMO and so, could depends on M. But, by checking the proof of Proposition 3.2 in the
Appendix it is easy to see that the constant Km given by Corollary 3.2 is equal to

N−1

∑
i=0

(
1

1−2mLy ‖ZM ?W‖2
BMO−2Lz ‖ZM ?W‖BMO C′m

)i

6
N−1

∑
i=0

(
1

1−2mLyK2−2LzKC′m

)i

,

where N is an integer large enough and the uniform bound with respect to M follows.
Under the assumption (Df,b) together with (BMO,m), the last term has a S ∞-upper bound uniform with respect
to M. Indeed we have, for all (u, t) ∈ [0,T ]2,

E
(∫ T

t

∣∣Du f M(s,Y M
s ,ZM

s )
∣∣ds
∣∣∣∣Ft

)
6C

(
T +

∥∥∣∣ZM∣∣?W
∥∥2

BMO

)
,

hence we deduce

sup
M

∥∥∥∥√|Du f M(.,Y M,ZM)|?W
∥∥∥∥

BMO
6
√

C
(√

T + sup
M

∥∥∣∣ZM∣∣?W
∥∥

BMO

)
.

The last supremum is finite under assumption (BMO,m) and we obtain the announced result since

sup
M

∥∥ZM∥∥
S ∞ = sup

M

∥∥(DtY M
t )t∈[0,T ]

∥∥
S ∞ 6 sup

M
sup

u

∥∥DuY M∥∥
S ∞ <+∞.

When f is not continuously differentiable with respect to (y,z) we consider a smooth regularization of f and we
obtain by this classical approximation that

sup
M

esssupΩ×[0,T ] |ZM|<+∞.

�

We are now able to prove Theorem 2.1.

Proof. [of Theorem 2.1] For the existence result, we can fix M? > sup
M

esssupΩ×[0,T ] |ZM| according to Proposition

4.1. Thanks to assumptions on f and f M , we get

f M?
(

s,Y M?

s ,ZM?

s

)
= f

(
s,Y M?

s ,ρM∗
(

ZM?

s

))
= f

(
s,Y M?

s ,ZM?

s

)
P⊗ [0,T ]a.e.

Then,
(

Y M?
,ZM?

)
becomes a solution of the quadratic BSDE (1.5) in S 2(Rd)× (S ∞(Rd×k)∩Z m

BMO). The
uniqueness comes from the classical uniqueness result of Pardoux and Peng [PP90]: indeed, if we have two
solutions (Y 1,Z1) and (Y 1,Z1) with esssupΩ×[0,T ] |Z1|+ |Z2|<+∞ then they are solution of the Lipschitz localized
BSDE (1.7) where M = esssupΩ×[0,T ] |Z1|+ |Z2|.

�

REMARK – 4.4 By using Remark 3.2, Theorem 2.1 can be adapted if we replace (BMO,m) by the following one:
there exist a constant K and a sequence 0 = T0 6 T1 6 ...6 TN = T of stopping times (that does not depend on M)
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such that

(i) 2mLyK2 +
√

2LzKC′m < 1, or equivalently K< Bm(Ly,Lz),

(ii) for all i ∈ {0, ...N−1}, sup
M∈R+

∥∥∥Ti
∣∣ZM∣∣?W cTi+1

∥∥∥
BMO

6K.

In this case, if all the other assumptions of Theorem 2.1 are fulfilled, then the quadratic BSDE (1.5) has a unique
solution (Y,Z) ∈S ∞(Rd)×Z slic,m

BMO such that

esssupΩ×[0,T ] |Z|<+∞.

We do not give the proof of Theorem 2.2 since it is quite similar to the proof of Theorem 2.1. Indeed, the main point
is to show that Proposition 4.1 stays true. To do that we just have to mimic its proof and replace the application of
Corollary 3.2 (iii) by a new tailored one adapted to the diagonal framework and proved by using the same strategy
as in the proof of Theorem 4.2.

§ 4.4. Proof of Theorem 2.3

Theorem 2.3 is proved by relaxing assumptions (Dxi,b) and (Df,b) of Theorem 2.1 thanks to some density argu-
ments. To ensure the convergence, the keystone result will be the stability Theorem 4.1.

Proof. [of Theorem 2.3]

Step 1– Approximations. We can approach ξ with a sequence of random variables (ξ n)n∈N such that for every
n, ξ

n has a bounded Malliavin derivative:
‖Dξ

n‖S ∞ < ∞.

More precisely ξ
n can be chosen of the form Φ

n(Wt1 , ...,Wtn) where Φ
n ∈C ∞

b (Rn), (t1, ..., tn)∈ [0,T ]n and ξ
n tends

to ξ in every Lp for p > 1 (see [Nua06], Exercise 1.1.7).
Since α is adapted, we can approach this process with a sequence of sample processes α

n of the form

α
n
t =

pn−1

∑
i=0

αtn
i
1[tn

i ,t
n
i+1[

(t),

where (tn
i )

pn
i=0 is a sequence of subdivisions of [0,T ], with sup

06i6pn−1

∣∣tn
i+1− tn

i
∣∣−→n→∞ 0, and, for all 0 6 i 6 pn−1,

n ∈ N, α
i,n is a Ftn

i
-measurable random variable. We have a convergence of this sequence to α in L2(Ω× [0,T ]):

E
(∫ T

0
|αn

s −αs|2 ds
)
−→
n→∞

0.

We can assume in addition that for all n and for all 0 6 i 6 pn, α
i,n has a bounded Malliavin derivative since this

set is dense in L2(Ω). It is obvious that for all 0 6 u 6 T and 0 6 t 6 T ,

Duα
n
t =

pn−1

∑
i=0

Duα
i,n
t 1[tn

i ,t
n
i+1[

(u).

According to Proposition 1.4 applied to ϕ = f(.,y,z), there exists for all n ∈ N and t ∈ [0,T ] a bounded random
variable G such that

Dt f(αn
t ,y,z) = G.Dtα

n
t , and |G|6 D(1+ |z|2).

For each n∈N: ξ
n satisfies (Dxi,b), f(αn

. , ., .) satisfies (Df,b) and (BMO,m) is fulfilled. So, we can apply Theorem
2.1: there exists an unique solution (Y n,Zn) ∈S 2(Rd)×Z m

BMO of the equation

Y n
t = ξ

n +
∫ T

t
f(αn

s ,Y
n
s ,Z

n
s )ds−

∫ T

t
Zn

s dWs, 0 6 t 6 T.
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Step 2– Application of the stability result. We can assume that for all n, ‖ξ n‖L2m∗ 6 ‖ξ‖L2m∗ . If it is not true,

we consider the sequence ξ̃ n =
‖ξ‖L2m∗

‖ξ‖L2m∗ +‖ξ n−ξ‖L2m∗
ξ

n instead of ξ
n. The same argument allows us to assume

that
‖αn‖L2m∗ (Ω×[0,T ]) 6 ‖α‖L2m∗ (Ω×[0,T ]) .

Under (BMO2,m), we have the estimate

mLy ‖|Zn|?W‖2
BMO +

√
2Lz ‖|Zn|?W‖BMO C′m 6 mLyK2 +

√
2LzKC′m <

1
2
.

Hence, for all n1,n2 ∈ N, we can use Corollary 4.1 for p = m∗ which gives us:

‖Y n1 −Y n2‖m∗
S 2m∗ +‖|Zn1 −Zn2 |?W‖m∗

H m∗

6K̃m∗

‖ξ n1 −ξ
n2‖m∗

L2m∗ +E

((∫ T

0

∣∣f(αn1
t ,Y n2

t ,Zn2
t
)
− f
(
α

n2
t ,Y n2

t ,Zn2
t
)∣∣dt

)2m∗
)1/2

 .

where the constant K̃m∗ appearing does not depend on n under (BMO2,m). This fact was already highlighted in the
proof of Proposition 4.1 where an explicit formula for K̃m∗ was given. We recall that (ξ n)n∈N is a Cauchy sequence
in L2m∗ , so

‖ξ n1 −ξ
n2‖L2m∗ −→

n1,n2→∞
0.

For the second term, we use the Hölder inequality:

E

((∫ T

0

∣∣f(αn1
t ,Y n2

t ,Zn2
t
)
− f
(
α

n2
t ,Y n2

t ,Zn2
t
)∣∣dt

)2m∗
)

6D2m∗E

((∫ T

0

(
1+
∣∣Zn2

t
∣∣2)∣∣αn1

t −α
n2
t
∣∣δ dt

)2m∗
)

6D2m∗ ‖αn1 −α
n2‖2m∗δ

S 4m∗δ E

((∫ T

0

(
1+
∣∣Zn2

t
∣∣2)dt

)4m∗
)1/2

. (4.13)

Since |Zn|?W ∈ BMO, and (BMO2,m) holds true, we have

sup
n2∈N

E

((∫ T

0

(
1+
∣∣Zn2

t
∣∣2)dt

)4m∗
)1/2

<+∞.

Moreover, by using the uniform continuity of trajectories of α on [0,T ], we get:

sup
t∈[0,T ]

∣∣αn1
t −α

n2
t
∣∣ −→

n1,n2→∞
0 a.s.

Since we have

E

(
sup

t∈[0,T ]

∣∣αn1
t −α

n2
t
∣∣4m∗+1

)
6 2CE

(
sup

t∈[0,T ]
|αt |4m∗+1

)
<+∞,

then, a uniform integrability argument gives us

E

(
sup

t∈[0,T ]

∣∣αn1
t −α

n2
t
∣∣4m∗

)
−→

n1,n2→∞
0.

Finally we get

E

((∫ T

0

∣∣f(αn1
t ,Y n2

t ,Zn2
t
)
− f
(
α

n2
t ,Y n2

t ,Zn2
t
)∣∣dt

)2m∗
)
−→

n1,n2→∞
0.

Consequently (Y n,Zn?W )n∈N is a Cauchy sequence in S 2m∗(Rd)×H m∗(Rd×k), thus it converges in S 2m∗(Rd)×
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H m∗(Rd×k) to a process (Y,Z ?W ), and (Y,Z) solves the BSDE (1.5). Finally, according to Proposition 1.2 the
upper bound for ‖|Zn|?W‖BMO holds true for ‖|Z|?W‖BMO and so the uniqueness follows from the stability the-
orem. �

REMARK – 4.5 If f is a deterministic function, then the assumption (Df,b) is not required.

REMARK – 4.6 If we replace the inequality (2.1) by the new one: there exist η > 0, D > 0 and δ ∈ (0,1] such
that for all (β ,β ′,y,z) ∈ (Rd′)2×Rd×Rd×k we have∣∣f(β ,y,z)− f(β ′,y,z)

∣∣6 D
(

1+ |z|2−η
)∣∣β −β

′∣∣δ ,
then we do not have to assume that α is a continuous process. Indeed, we can change the inequality (4.13) by the
following one: by using the Hölder and Cauchy-Schwartz inequalities we have, for all p > 1,

E

((∫ T

0

∣∣f(αn1
t ,Y n2

t ,Zn2
t
)
− f
(
α

n2
t ,Y n2

t ,Zn2
t
)∣∣dt

)2m∗
)

6D2m∗E

((∫ T

0

(
1+
∣∣Zn2

t
∣∣2−η

)∣∣αn1
t −α

n2
t
∣∣δ dt

)2m∗
)

6D2m∗E

((∫ T

0

(
1+
∣∣Zn2

t
∣∣2−η

)p
dt
)2m∗/p

×
(∫ T

0

∣∣αn1
t −α

n2
t
∣∣δ p∗ dt

)2m∗/p∗
)

6D2m∗E

((∫ T

0

(
1+
∣∣Zn2

t
∣∣2−η

)p
dt
)2m∗

)1/p

E

((∫ T

0

∣∣αn1
t −α

n2
t
∣∣δ p∗ dt

)2m∗
)1/p∗

6D2m∗T
4m∗
p∗ −2m∗E

((∫ T

0

(
1+
∣∣Zn2

t
∣∣2−η

)p
dt
)2m∗

)1/p∥∥∥|αn1 −α
n2 |δ p∗ ?W

∥∥∥4m∗/p∗

H 4m∗
.

With the energy inequality, the first term is uniformly bounded with respect to n2 under the assumption (BMO2,m)

by choosing 1 < p 6
2

2−η
. The second one tends to zero when n1,n2 go to infinity since the convergence in every

H r for r > 1 holds true.

REMARK – 4.7 By using Remark 3.2 once again, Theorem 2.3 can be adapted if we replace the assumption
(BMO2,m) by the following one: ξ ∈ L2m∗ and there exist a constant K and a sequence 0 = T0 6 T1 6 ...6 TN = T
of stopping times (that does not depend on M) such that

(i) 2mLyK2 +2
√

2LzKC′m < 1,

(ii) for all i ∈ {0, ...N−1}, sup
M∈R+

sup
‖η‖

L2m∗6‖ξ‖L2m∗
‖β‖L2(Ω×[0,T ])6‖α‖L2(Ω×[0,T ])

∥∥∥Ti
∣∣∣Z(M,η ,β )

∣∣∣?W cTi+1
∥∥∥

BMO
6K.

In this case, if all the other assumptions of Theorem 2.3 are fulfilled, then the quadratic BSDE (1.5) has a unique
solution (Y,Z) ∈S ∞(Rd)×Z slic,m

BMO such that

esssupΩ×[0,T ] |Z|<+∞.

REMARK – 4.8 It is possible to extend the existence and uniqueness result for the diagonal case given by Theorem
2.2 to more general terminal conditions and generators. More precisely, it is possible to apply the same strategy
as for the proof of Theorem 2.3 by applying the stability result given by Theorem 4.2 instead of Corollary 4.1.
Nevertheless we can only obtain an existence and uniqueness result for terminal conditions (resp. generators) that
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can be approximated in L∞ (resp. BMO) by terminal conditions satisfying assumption (Dxi,b) (resp. generators
satisfying assumption (Df,b)).

5 PROOFS OF SECTION 2.2 RESULTS

§ 5.1. Proof of Proposition 2.1
We start by proving some uniform (with respect to M) a priori estimates on

(
Y M,ZM).

PROPOSITION – 5.1 Let us assume that (H) and (HQ) are in force. Then
∣∣ZM∣∣ ?W ∈ BMO, Y M ∈S ∞ and we

have the following estimates:

(i)
∥∥∣∣ZM∣∣?W

∥∥2
BMO 6

1
2γ2

(
1−
√

1−4γ2 ‖ξ‖2
L∞

)
,

(ii)
∥∥Y M∥∥

S ∞ 6 ‖ξ‖L∞ + γ
∥∥∣∣ZM∣∣?W

∥∥2
BMO.

We can note that upper bound do not depend on M.

Proof. To simplify notations in the proof, we skip the superscript M on (Y M,ZM) and f M . The unique solution
(Y,Z) ∈S 2×H 2 of (1.7) can be constructed with a Picard principle as in the seminal paper of Pardoux and Peng
(see [PP90]). We consider a sequence (Y n,Zn)n∈N such that (Y n,Zn)n∈N tends to (Y,Z) in S 2

(
Rd
)
×H 2

(
Rd×k

)
.

This sequence is given by

Y n+1
t = ξ +

∫ T

t
f (s,Y n

s ,Z
n
s )ds−

∫ T

t
Zn+1

s dWs, 0 6 t 6 T, (Y 0,Z0) = (0,0).

We will prove with an induction that: for all n ∈ N, Y n ∈S ∞, |Zn|?W ∈ BMO and

‖|Zn|?W‖2
BMO 6

1
2γ2

(
1−
√

1−4γ2 ‖ξ‖2
L∞

)
.

Loosely speaking the case n = 0 is satisfied. Let us suppose that Y n ∈ S ∞ and |Zn| ?W ∈ BMO. Then for all
t ∈ [0,T ], under (HQ), ∣∣Y n+1

t
∣∣6 E(|ξ ||Ft)+ γ×E

(∫ T

t
|Zn

s |
2 ds
∣∣∣∣Ft

)
. (5.1)

We get Y n+1 ∈S ∞ since
∥∥Y n+1∥∥

S ∞ 6 ‖ξ‖L∞ + γ ‖|Zn|?W‖2
BMO. Itô formula gives the following equality

∣∣Y n+1
t
∣∣2 = |ξ |2 +2

∫ T

t
Y n+1

s . f (s,Y n
s ,Z

n
s )ds−2

∫ T

t
Y n+1

s .
(
Zn+1

s dWs
)
−
∫ T

t

∣∣Zn+1
s
∣∣2 ds.

By taking conditional expectation we get for every stopping time τ:

∣∣Y n+1
τ

∣∣2 +E
(∫ T

τ

∣∣Zn+1
s
∣∣2 ds

∣∣∣∣Fτ

)
6 |ξ |2 +2E

(∫ T

τ

Y n+1
s . f (s,Y n

s ,Z
n
s )ds

∣∣∣∣Fτ

)
6‖ξ‖2

L∞ +2
∥∥Y n+1∥∥

S ∞ E
(∫ T

τ

γ |Zn
s |

2 ds
∣∣∣∣Fτ

)
6‖ξ‖2

L∞ +2γ
∥∥Y n+1∥∥

S ∞ ‖|Zn|?W‖2
BMO ,

and finally

∥∥Y n+1∥∥2
S ∞ +E

(∫ T

τ

∣∣Zn+1
s
∣∣2 ds

∣∣∣∣Fτ

)
6‖ξ‖2

L∞ +2γ
∥∥Y n+1∥∥

S ∞ ‖|Zn|?W‖2
BMO

6‖ξ‖2
L∞ +

∥∥Y n+1∥∥2
S ∞ + γ

2 ‖|Zn|?W‖4
BMO .
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Thus |Zn+1|?W ∈ BMO and we have∥∥∣∣Zn+1∣∣?W
∥∥2

BMO 6 ‖ξ‖2
L∞ + γ

2 ‖|Zn|?W‖4
BMO .

Using the induction assumption we obtain

∥∥∣∣Zn+1∣∣?W
∥∥2

BMO 6
1

2γ2

(
1−
√

1−4γ2 ‖ξ‖2
L∞

)
.

The induction is achieved. Now we can use Proposition 1.2 with K =
1

2γ2

(
1−
√

1−4γ2 ‖ξ‖2
L∞

)
: since Zn ?W

tends to Z ?W in H 2, we conclude that ‖|Z|?W‖2
BMO 6

1
2γ2

(
1−
√

1−4γ2 ‖ξ‖2
L∞

)
. Finally, we use that Y n

tends to Y in S 2 to obtain the final upper bound on ‖Y‖S ∞ . �

Proof. [of Proposition 2.1] The proof of the proposition is a direct consequence of Theorem 2.3 together with
Proposition 5.1: since the map

x ∈ R+ 7−→ 1√
2γ

(
1−
√

1−4γ2x2
) 1

2

is nondecreasing, the assumption (BMO2,m) is satisfied. �

§ 5.2. Proof of Proposition 2.2

Once again, we start by proving some uniform (with respect to M) a priori estimates on (Y M,ZM).

PROPOSITION – 5.2 Let us assume that (H) and (HMon) are in force. Then
∣∣ZM∣∣?W ∈ BMO, Y M ∈S ∞ and we

have

(i) esssup sup
t∈[0,T ]

E
(∫ T

t
e−µ(s−t) ∣∣ZM

s
∣∣2 ds

∣∣∣∣Ft

)
6

1
2γ2

(
1−
√

1−4γ2A2
)
,

(ii)
∥∥Y M∥∥

S ∞ 6
1
2γ

(
1−
√

1−4γ2A2
)
+

√
A2 +

1
4γ2

(
1−
√

1−4γ2A2
)2

.

with A = max
(
‖ξ‖L∞ ,

α

µ

)
.

Proof. To simplify notations in the proof, we skip the superscript M on (Y M,ZM) and f M . The unique solu-
tion (Y,Z) of (1.7) can be constructed with a Picard principle. We consider a sequence (Y n,Zn)n∈N such that

(Y n,Zn ?W )n∈N tends to (Y,Z ?W ) in S 2
(

Rd
)
×H 2

(
Rd×k

)
, with

Y n+1
t = ξ +

∫ T

t
f
(
s,Y n+1

s ,Zn
s
)

ds−
∫ T

t
Zn+1

s dWs, 0 6 t 6 T, (Y 0,Z0) = (0,0), .

We can easily show that replacing Y n+1 by Y n in the generator does not affect the convergence of the scheme since
f is a Lipschitz function. Moreover, applying Itô formula to eKt ∣∣Y n+1

t
∣∣2 with K large enough, we justify with

classical inequalities that for all n ∈ N, Y n+1 ∈S ∞, with a bound that depend on M for the moment. Applying Itô

35



formula to the process e−µt ∣∣Y n+1
t
∣∣2, we obtain

e−µt ∣∣Y n+1
t
∣∣2 =e−µT |ξ |2−

∫ T

t

(
−µe−µs ∣∣Y n+1

s
∣∣2−2e−µsY n+1

s . f (s,Y n+1
s ,Zn

s )+
∣∣Zn+1

s
∣∣2)ds

−2
∫ T

t
e−µsY n+1

s .
(
Zn+1

s dWs
)
.

Taking conditional expectation, and using assumption (HMon), we get:

∣∣Y n+1
t
∣∣2 6e−µ(T−t) ‖ξ‖2

L∞ +E
(∫ T

t
2e−µ(s−t)

(
α
∣∣Y n+1

s
∣∣− µ

2

∣∣Y n+1
s
∣∣2 + γ

∣∣Y n+1
s
∣∣ |Zn

s |
2
)

ds
∣∣∣∣Ft

)
−E
(∫ T

t
e−µ(s−t) ∣∣Zn+1

s
∣∣2 ds

∣∣∣∣Ft

)
.

With the Young inequality we have the following estimate for all n and s ∈ [0,T ]:

α
∣∣Y n+1

s
∣∣6 µ

2

∣∣Y n+1
s
∣∣2 + α2

2µ
,

and thus ∣∣Y n+1
t
∣∣2 6e−µ(T−t) ‖ξ‖2

L∞ +E
(∫ T

t
2e−µ(s−T )

(
α2

2µ
+ γ
∣∣Y n+1

s
∣∣ |Zn

s |
2
)

ds
∣∣∣∣Ft

)
−E
(∫ T

t
e−µ(s−t) ∣∣Zn+1

s
∣∣2 ds

∣∣∣∣Ft

)
6e−µ(T−t) ‖ξ‖2

L∞ +
α2

µ2

(
1− e−µ(T−t)

)
︸ ︷︷ ︸

6A2

+2γ×E
(∫ T

t
e−µ(s−t) ∣∣Y n+1

s
∣∣ |Zn

s |
2 ds
∣∣∣∣Ft

)

−E
(∫ T

t
e−µ(s−t) ∣∣Zn+1

s
∣∣2 ds

∣∣∣∣Ft

)
.

Finally we obtain

∣∣Y n+1
t
∣∣2 +E

(∫ T

t
e−µ(s−t) ∣∣Zn+1

s
∣∣2 ds

∣∣∣∣Ft

)
6 A2 +2γ×E

(∫ T

t
e−µ(s−t) ∣∣Y n+1

s
∣∣ |Zn

s |
2 ds
∣∣∣∣Ft

)
.

Then ∥∥Y n+1∥∥2
S ∞ + esssup sup

t∈[0,T ]
E
(∫ T

t
e−µ(s−t) ∣∣Zn+1

s
∣∣2 ds

∣∣∣∣Ft

)
6A2 +2γ

∥∥Y n+1∥∥
S ∞ esssup sup

t∈[0,T ]
E
(∫ T

t
e−µ(s−t) |Zn

s |
2 ds
∣∣∣∣Ft

)
(5.2)

6A2 +
∥∥Y n+1∥∥2

S ∞ + γ
2 esssup sup

t∈[0,T ]
E
(∫ T

t
e−µ(s−t) |Zn

s |
2 ds
∣∣∣∣Ft

)2

.

Once again with an induction we show easily that for all n ∈ N, |Zn| ?W ∈ BMO, Y n ∈S ∞ and

esssup sup
t∈[0,T ]

E
(∫ T

t
e−µ(s−t) |Zn

s |
2 ds
∣∣∣∣Ft

)
6

1
2γ2

(
1−
√

1−4γ2A2
)
.

Moreover the inequality (5.2) gives us

∥∥Y n+1∥∥
S ∞ 6 γ×esssup sup

t∈[0,T ]
E
(∫ T

t
e−µ(s−t) |Zn

s |
2 ds
∣∣∣∣Ft

)
+

√√√√A2 + γ2

(
esssup sup

t∈[0,T ]
E
(∫ T

t
e−µ(s−t) |Zn

s |
2 ds
∣∣∣∣Ft

))2

.
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Letting n to infinity, and with the Proposition 1.2, we finally get

esssup sup
t∈[0,T ]

E
(∫ T

t
e−µ(s−t) |Zs|2 ds

∣∣∣∣Ft

)
6

1
2γ2

(
1−
√

1−4γ2A2
)
.

and so we deduce that

‖Y‖S ∞ 6
1
2γ

(
1−
√

1−4γ2A2
)
+

√
A2 +

1
4γ2

(
1−
√

1−4γ2A2
)2

.

�

REMARK – 5.1 What about the BMO norm of ZM ? — we can slice [0,T ] with a uniform sequence (Ti)
N
i=1 such

that 0 = T0 6 T1 6 ...6 TN = T and for all i, h = |Ti+1−Ti|=
T
N

. The last inequality can be used for each started

and stopped process Ti
∣∣ZM∣∣?W cTi+1 :

esssup sup
Ti6t6Ti+1

E
(∫ Ti+1

t

∣∣ZM
s
∣∣2 ds

∣∣∣∣Ft

)
6eµh

(
esssup sup

Ti6t6Ti+1

E
(∫ Ti+1

t
e−µ(s−t) ∣∣ZM

s
∣∣2 ds

∣∣∣∣Ft

))

6
eµh

2γ2

(
1−
√

1−4γ2A2
)
.

We are now in position to prove Proposition 2.2.

Proof. [of Proposition 2.2] The previous Remark 5.1 shows that for all M ∈R+ and all h > 0, the process
∣∣ZM∣∣?W

is (
e

1
2 µh
√

2γ

(
1−
√

1−4γ2A2
) 1

2

)
.

We just have to apply an adaptation of Theorem 2.3 given by Remark 4.7. �

§ 5.3. Proof of Proposition 2.3
We consider the diagonal framework introduced in section 2 and subsection 4.2. We assume that the generator
satisfies (Hdiag), so the generator f can be written as f = fdiag(t,z)+g(t,y,z) where fdiag is diagonal with respect
to z. If we want to apply Theorem 2.2, we have to obtain a uniform estimate on

∥∥∣∣ZM∣∣?W
∥∥

BMO where (Y M,ZM)
is the unique solution of the Lipschitz localized BSDE (1.7). This is the purpose of the following lemma.

PROPOSITION – 5.3 Let us assume that there exist nonnegative constants Gd and G such that

(i) for all (t,y,z) ∈ [0,T ]×Rd×Rd×k,∣∣ fdiag(t,z)
∣∣6 Gd |z|2 , |g(t,y,z)|6 G |z|2 .

(ii)
4∑

d
i=1 e2Gd‖ξ i‖L∞

Gd
G 6 1. (5.3)

Then,
∣∣ZM∣∣?W ∈ BMO, Y M ∈S ∞ and we have following estimates:

∥∥∣∣ZM∣∣?W
∥∥

BMO 6 (4GdG)−1/2,
∥∥Y M∥∥

S ∞ 6 ‖ξ‖L∞ +

√
d log2
2Gd

.
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Proof. To simplify notations in the proof, we skip once again the superscript M on
(
Y M,ZM) and f M . The unique

solution (Y,Z)∈S 2
(

Rd
)
×H 2

(
Rd×k

)
of (1.7) can be constructed with a Picard principle slightly different than

the one used in the seminal paper of Pardoux and Peng (see [PP90]). We consider a sequence (Y n,Zn)n∈N defined
by

Y n+1
t = ξ +

∫ T

t
fdiag(s,Zn+1

s )+g(s,Y n
s ,Z

n
s )ds−

∫ T

t
Zn+1

s dWs, 0 6 t 6 T, (Y 0,Z0) = (0,0).

Obviously, we can easily show that (Y n,Zn)n∈N tends to (Y,Z ?W ) in S 2
(

Rd
)
×H 2

(
Rd×k

)
since we are in the

Lipschitz framework. We will prove by induction that: for all n ∈ N, Y n ∈S ∞, |Zn|?W ∈ BMO and

‖|Zn|?W‖BMO 6 (4GdG)−1/2, ‖Y n‖S ∞ 6 ‖ξ‖L∞ +

√
d log2
2Gd

. (5.4)

The result is obvious for n = 0. Let us assume that for a given n ∈ N we have Y n ∈S ∞

(
Rd
)

, |Zn| ?W ∈ BMO

and (5.4) is true. The Lipschitz regularity of f gives us that (Y n+1,
∣∣Zn+1∣∣?W ) ∈S ∞

(
Rd
)
×BMO. By following

the idea of [BC08], we introduce the C2 function ϕ : R 7−→ (0,+∞) defined by

ϕ : x 7→ e2Gd |x|−1−2Gd |x|
|2Gd |2

, so that ϕ
′′(.)−2Gd

∣∣ϕ ′(.)∣∣= 1.

We pick a stopping time τ and applying Itô’s formula to the regular function φ , we compute, for all components
i ∈ {1, ...,d},

ϕ

(
Y n+1,i

τ

)
=ϕ
(
ξ

i)+∫ T

τ

ϕ
′ (Y n+1,i

s
)(

fdiag(s,Zn+1,i
s )+g(s,Y n,i

s ,Zn,i
s )
)
−

ϕ ′′
(

Y n+1,i
s

)∣∣∣Zn+1,i
s

∣∣∣2
2

ds

−
∫ T

τ

ϕ
′ (Y n+1,i

s
)

Zn+1,i
s dWs

6ϕ
(∥∥ξ

i∥∥
L∞

)
+
∫ T

τ

2Gd

∣∣∣ϕ ′(Y n+1,i
s

)∣∣∣−ϕ ′′
(

Y n+1,i
s

)
2

∣∣Zn+1,i
s

∣∣2 +G
∣∣ϕ ′(Y n+1,i

s )
∣∣ |Zn

s |
2

ds

−
∫ T

τ

ϕ
′(Y n+1,i

s )Zn+1,i
s dWs.

Since ϕ
′′(.)−2Gd

∣∣ϕ ′(.)∣∣= 1, ϕ > 0 and
∣∣ϕ ′(x)∣∣6 (2Gd)

−1e2Gd‖Y n+1,i‖S ∞ whenever |x|6
∥∥Y n+1,i∥∥

S ∞ , taking the
conditional expectation with respect to Fτ , we compute

1
2

E
(∫ T

τ

∣∣Zn+1,i
s

∣∣2 ds
∣∣∣∣Fτ

)
6 ϕ(

∥∥ξ
i∥∥

L∞)+G(2Gd)
−1e2Gd‖Y n+1,i‖S ∞ ‖|Zn|?W‖2

BMO .

Thus, we get the estimate

1
2

∥∥∣∣Zn+1,i∣∣?W
∥∥2

BMO 6 ϕ(
∥∥ξ

i∥∥
L∞)+G(2Gd)

−1e2Gd‖Y n+1,i‖S ∞ ‖|Zn|?W‖2
BMO . (5.5)

By using the a priori estimate given by Proposition 1 in [BH08] we also have, for all stopping time τ and i ∈
{1, ...,d},

e2Gd

∣∣∣Y n+1,i
τ

∣∣∣
6 e2Gd‖ξ i‖L∞ E

(
e2GdG

∫ T
τ |Zn

s |2 ds
∣∣∣Fτ

)
.

Then, the John-Nirenberg inequality (1.4) coupled with the induction assumption on Zn gives us

e2Gd‖Y n+1,i‖S ∞ 6
e2Gd‖ξ i‖L∞

1−2GdG‖|Zn|?W‖2
BMO

.
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We put this last inequality into (5.5) to obtain

∥∥∣∣Zn+1∣∣?W
∥∥2

BMO 6
∑

d
i=1 e2Gd‖ξ i‖L∞

2G2
d

1

1−2GdG‖|Zn|?W‖2
BMO

.

Since we have assumed that ‖|Zn|?W‖2
BMO 6 (4GdG)−1 and (5.3) is fulfilled, we get∥∥∣∣Zn+1∣∣?W

∥∥2
BMO 6 (4GdG)−1

and, by using previous calculations,

∥∥Y n+1,i∥∥
S ∞ 6

∥∥ξ
i∥∥

L∞ +
log2
2Gd

, and so
∥∥Y n+1∥∥

S ∞ 6 ‖ξ‖L∞ +

√
d log2
2Gd

,

which concludes the induction. Finally, we just have to use the fact that (Y n,Zn ?W )n∈N tends to (Y,Z ?W ) in

S 2
(

Rd
)
×H 2

(
Rd×k

)
and Proposition 1.2 to obtain the desired result. �

Then the proof of Proposition 2.3 is direct: we just have to apply Theorem 2.2 by using Proposition 5.3.

REMARK – 5.2 As explained in Remark 4.8, it is possible to extend Proposition 2.3 to more general terminal
conditions and generators.

§ 5.4. Proof of Theorem 2.4

Proof. [of Theorem 2.4] Let us consider for all M ∈ R+ a smooth map hM : Rd×k→ R satisfying:

hM(z) =


0 if |z|6 M,(
|z|

M+1

)2

−1 if |z|> M+1,

and let us define a localisation ρ
M : Rd×k→ Rd×k given by

ρ
M(z) =

z√
1+hM(z)

.

As usual we denote by (Y M,ZM) the solution obtained by replacing f by f M . This choice of ρ
M will be useful

in the following computations. For F ∈ C 2(M ,R), the Itô formula with F seen as a function on Rd gives for all
stopping time τ:

E
(
F(ξ )−F(Y M

τ )
∣∣Fτ

)
= E

(∫ T

τ

(
1
2

k

∑
l=1

HessF(Y M
s )
(

ZM,(:,l)
s ,ZM,(:,l)

s

)
−dF

(
Y M

s
)

f M (Y M
s ,ZM

s
))

ds

∣∣∣∣∣Fτ

)
,

since the local martingale part is a martingale because F has bounded first derivative. By using the definition of f ,
its formulation in the local chart and the link between ZM and ρ

M(ZM), we get

E
(
F(ξ )−F(Y M

τ )
∣∣Fτ

)
=

1
2

E

(∫ T

τ

k

∑
l=1

(
hM(ZM

s )HessF(Y M
s )
(

ρ
M(ZM

s )(:,l),ρM(ZM
s )(:,l)

)
+∇dF

(
Y M

s
)(

ρ
M(ZM

s )(:,l),ρM(ZM
s )(:,l)

))
ds

∣∣∣∣∣Fτ

)
.

(5.6)

By using same arguments as Darling in [Dar95] we can show that Y M is in G almost surely. Indeed, we know with
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(5.6) applied to F = Fdc, integrating between τ and σ together with (ii), that for all σ > τ a.s,

E
(

Fdc(Y M
σ )
∣∣∣Fτ

)
> Fdc(Y M

τ ) a.s.

Let us consider for all n ∈ N the following sequence of stopping times: σ
n = inf

{
u > τ

∣∣∣∣ Fdc(Y M
u )6

1
n

a.s
}
.

Each σ
n is finite almost surely since ξ ∈G. Continuity of Y M gives for all n ∈N, Fdc (Y M

σn
)
6

1
n

a.s. So we get for
all stopping time τ:

Fdc (Y M
τ

)
6 E

(
Fdc (Y M

σn
)∣∣∣Fτ

)
6

1
n

a.s.

and, consequently, P(Yt ∈ G) = 1 for all t ∈ [0,T ]. Moreover the α-strictly doubly convexity on G gives us

E
(

Fdc(ξ )−Fdc(Y M
τ )
∣∣∣Fτ

)
>

α

2
E

(∫ T

τ

k

∑
l=1

(
hM(ZM

s )
∣∣∣ρM(ZM

s )(:,l)
∣∣∣2 + ∣∣∣ρM(ZM

s )(:,l)
∣∣∣2)ds

∣∣∣∣∣Fτ

)
=

α

2
E
(∫ T

τ

∣∣ZM
s
∣∣2 ds

∣∣∣∣Fτ

)
. (5.7)

And finally, continuity of Fdc on G yields

∥∥∣∣ZM∣∣?W
∥∥

BMO 6

√√√√ 2
α
×

(
sup

(x,y)∈G×G
{Fdc(x)−Fdc(y)}

)
.

Thus, assumption (ii) ensures assumption (BMO,m). Since the terminal value is bounded (in G), Theorem 2.3
together with Remark 4.5 gives the result. �

§ 5.5. Proofs of Theorem 2.5 and Theorem 2.6

Proof. [of Theorem 2.5 and Theorem 2.6]

Uniqueness We start by proving Theorem 2.5. Let us consider two continuous Markovian solutions (v,w) and
(ṽ, w̃) such that v and ṽ are bounded. We set (t,x) ∈ [0,T ]×Rk and we denote (Y t,x,Zt,x) (resp. (Ỹ t,x, Z̃t,x)) the
solution of the BSDE (2.5) associated to (v,w) (resp. (ṽ, w̃)). The idea of the proof is to compare the two solutions
by using the stability result given by Remark 4.2. In order to do that, we must show that

∣∣Zt,x∣∣?W and
∣∣Z̃t,x∣∣?W

are ε-sliceable BMO martingales. By applying Theorem 2.5 in [XŽ16], we obtain the existence of κ
′ ∈ (0,1] such

that v ∈ C κ ′ and ṽ ∈ C κ ′ . We underline the fact that Theorem 2.5 in [XŽ16] only gives a locally (in x) Hölderian
estimate of v and ṽ when G is only locally Hölderian but the result stated before can easily stem from a careful
reading of the proof of Xing and Žitković (see also [Str81]). Now, let us apply the Itô formula to F(Y t,x): we
consider two stopping times τ and σ such that τ 6 σ a.s and we take the conditional expectation

E
(
F
(
v(σ ,X t,x

σ )
)
−F

(
v(τ,X t,x

τ )
)∣∣Fτ

)
= E

(
−
∫

σ

τ

dF(v(u,X t,x
u )f(u,X t,x

u ,Y t,x
u ,Zt,x

u )du+
1
2

k

∑
l=1

∫
σ

τ

HessF
(
v(u,X t,x

u )
)((

Zt,x
u
)(:,l)

,
(
Zt,x

u
)(:,l))du

∣∣∣∣∣Fτ

)

> E
(∫

σ

τ

∣∣Zt,x
u
∣∣2 du

∣∣∣∣Fτ

)
.

The map F is a Lipschitz function on the centred Euclidean ball of radius ‖u‖L∞([0,T ]×Rk)∨‖ũ‖L∞([0,T ]×Rk). Denot-
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ing by L its Lipschitz constant, we obtain

E
(∫

σ

τ

∣∣Zt,x
u
∣∣2 du

∣∣∣∣Fτ

)
6 L×E

(∣∣v(σ ,X t,x
σ )− v(τ,X t,x

τ )
∣∣∣∣Fτ

)
6C×E

(
|σ − τ|κ

′/2 +
∣∣X t,x

σ −X t,x
τ

∣∣κ ′ ∣∣∣Fτ

)
6C |σ − τ|κ

′/2 .

where we have used in the last inequality a classical estimate for SDEs. For N ∈ N∗ we set Ti =
iT
N

. Then, for all

i ∈ {0, ...,N−1} and stopping time Ti 6 τ 6 Ti+1 we get

E
(∫ Ti+1

τ

∣∣Zt,x
u
∣∣2 du

∣∣∣∣Fτ

)
6C

T
N
,

and finally, for N large enough, we have that∥∥∥Ti
∣∣∣Z(t,x)

∣∣∣?W cTi+1
∥∥∥

BMO
6K, ∀i ∈ {0, ...,N−1}

with 2LyK2 +2
√

2LzKC′2 < 1. Obviously, this estimate is also true for Z̃t,x which means that Zt,x ?W and Z̃t,x ?W

are in Z slic,2
BMO . By using Remark 4.2 we get that v(t,x) = ṽ(t,x) and E

(∫ T

t
|w(s,X t,x

s )−w′(s,X t,x
s )|2 ds

)
= 0. Since

this is true for all (t,x) ∈ [0,T ]×Rk and, due to (HX), X0,x
s has positive density on Rk for s ∈ (0,T ], w = w̃ a.s.

with respect to the Lebesgue measure on [0,T ]×Rk. Then, (v,w) and (v′,w′) are equal.

Regularity Now we prove Theorem 2.6. We consider (v,w) a continuous Markovian solution of (2.5). We set
t, t ′ ∈ [0,T ] and x,x′ ∈ Rk. Without restriction, we can assume that t 6 t ′. Then,∣∣v(t,x)− v(t ′,x′)

∣∣= ∣∣∣Y t,x
t −Y t ′,x′

t ′

∣∣∣6 ∣∣∣Y t,x
t −Y t ′,x′

t

∣∣∣+ ∣∣∣Y t ′,x′
t −Y t ′,x′

t ′

∣∣∣ .
Since we have, for s 6 t ′,

Y t ′,x′
s = Y t ′,x′

t ′ +
∫ t ′

s
f
(

u,x′,Y t ′,x′
u ,0

)
du

then, a standard estimate gives us ∣∣∣Y t ′,x′
t −Y t ′,x′

t ′

∣∣∣6C
∣∣t− t ′

∣∣ .
To conclude we just have to study the remaining term

∣∣∣Y t,x
t −Y t ′,x′

t

∣∣∣. Thanks to calculations done in the uniqueness
part of the proof, we know that there exist some deterministic times 0 = T0 6 T1 6 ...6 TN = T such that
TiZt,x ?W cTi+1 ∈ Z 2

BMO for all i ∈ {0, ...,N− 1}. Let us emphasize that times 0 = T0 6 T1 6 ... 6 TN = T can be
chosen independently from (t,x). Then, by using once again Remark 4.2 and assumptions on G and f, we obtain∣∣∣Y t,x

t −Y t ′,x′
t

∣∣∣6 ∥∥∥Y t,x−Y t ′,x′
∥∥∥

S 4

6C

E
(∣∣∣G (X t,x

T

)
−G

(
X t ′,x′

T

)∣∣∣4)1/4

+E

(∣∣∣∣∫ T

0

∣∣∣f(s,X t,x
s ,Y t,x

s ,Zt,x
s
)
− f
(

s,X t ′,x′
s ,Y t,x

s ,Zt,x
s

)∣∣∣ds
∣∣∣∣4
)1/4


6C

E
(∣∣∣X t,x

T −X t ′,x′
T

∣∣∣4κ
)1/4

+E

(
sup

s∈[0,T ]

∣∣∣X t,x
s −X t ′,x′

s

∣∣∣4κ
(

1+
∫ T

0

∣∣Zt,x
s
∣∣2 ds

)4
)1/4


6CE

(∣∣∣X t,x
T −X t ′,x′

T

∣∣∣4κ
)1/4

+CE

(
sup

s∈[0,T ]

∣∣∣X t,x
s −X t ′,x′

s

∣∣∣8κ

)1/8
1+E

((∫ T

0

∣∣Zt,x
s
∣∣2 ds

)8
)1/8
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where C does not depend on (t,x). Since we have an upper bound on
∥∥∣∣Zt,x∣∣?W

∥∥
BMO uniform with respect to

(t,x), then an energy inequality gives us

|Y t,x
t −Y t ′,x′

t |6CE

(
sup

s∈[0,T ]

∣∣∣X t,x
s −X t ′,x′

s

∣∣∣8κ

)1/8

.

Thus, we just have to use the classical estimate on SDEs given by∥∥∥X t ′,x′ −X t,x
∥∥∥

S 8
6C

(∣∣x− x′
∣∣+ ∣∣t− t ′

∣∣1/2
)
,

to obtain that
|Y t,x

t −Y t ′,x′
t |6C

(∣∣x− x′
∣∣κ + ∣∣t− t ′

∣∣κ/2
)
.

�

6 APPENDIX – TECHNICAL PROOFS

Proof. [of Proposition 1.3] Let us show the BMO property for a started and stopped process. Let us consider a
stopping time τ

′ such that 0 6 τ
′ 6 T a.s. we have

E
(〈

τ |Z|?W cσ
〉

T
−
〈

τ |Z|?W cσ
〉

τ ′

∣∣∣Fτ ′

)
= E

((
〈τ |Z|?W 〉

σ
−〈τ |Z|?W 〉min(τ ′,σ)

)∣∣∣Fτ ′

)
= E

(
(〈τ |Z|?W 〉

σ
−〈τ |Z|?W 〉

τ ′)1(06τ ′6σ)

∣∣Fτ ′
)
.

Since τ |Z|?W vanishes before τ and Fτ ′ ⊂Fmax(τ ′,τ), we get:

E
(
(〈τ |Z|?W 〉

σ
−〈τ |Z|?W 〉

τ ′)1(06τ ′6σ)

∣∣Fτ ′
)
=E
((
〈|Z|?W 〉

σ
−〈|Z|?W 〉max(τ ′,τ)

)
1(06τ ′6σ)

∣∣∣Fτ ′

)
=E
(

E
((
〈|Z|?W 〉

σ
−〈|Z|?W 〉max(τ ′,τ)

)
1(06τ ′6σ)

∣∣∣Fmax(τ,τ ′)

)∣∣∣Fτ ′

)
6esssup sup

τ̃∈T τ,σ
E(〈|Z|?W 〉

σ
−〈|Z|?W 〉

τ̃
|Fτ̃) .

Finally we have shown that

esssup sup
06τ ′6T

E
(〈

τ |Z|?W cσ
〉

T
−
〈

τ |Z|?W cσ
〉

τ ′

∣∣∣Fτ ′

)
6 esssup sup

τ̃∈T τ,σ
E(〈|Z|?W 〉

σ
−〈|Z|?W 〉

τ̃
|Fτ̃) ,

and the inequality is obviously an equality. �

Proof. [of Proposition 3.2] We are going to use inequalities given by Lemma 1.1. Let us suppose the existence of
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a solution X for the equation (3.3). We have for all m > 1,

‖X‖S m 6‖X0‖Lm +

∥∥∥∥∫ .

0
F(s,Xs)ds

∥∥∥∥
S m

+

∥∥∥∥∥ k

∑
p=1

∫ .

0
Gp(s,Xs)dW p

s

∥∥∥∥∥
S m

6‖X0‖Lm +E
(

sup
06u6T

(∫ u

0
αs |Xs|ds

)m)1/m

+C′mE

( k

∑
p=1

∫ T

0
|Gp(s,Xs)|2 ds

)m/2
1/m

6‖X0‖Lm +E
((∫ T

0
αs |Xs|ds

)m)1/m

+C′mE

((∫ T

0
β

2
s |Xs|2 ds

)m/2
)1/m

.

On the one hand, according to Lemma 1.1 we have

E
((∫ T

0
αs |Xs|ds

)m)1/m

=
∥∥〈√α ?W,(

√
α |X |)?W

〉
T

∥∥
Lm

6
√

2m
∥∥√α ?W

∥∥
BMO

∥∥(√α |X |)?W
∥∥

H m

62m‖X‖S m

∥∥√α ?W
∥∥2

BMO .

On the other hand, we get for the last term

E

((∫ T

0
β

2
s |Xs|2 ds

)m/2
)1/m

= ‖(β |X |)?W‖H m = ‖|X |? (β ?W )‖H m 6
√

2‖X‖S m ‖β ?W‖BMO .

Hence we obtain the following inequality

‖X‖S m

(
1−2m

∥∥√α ?W
∥∥2

BMO−
√

2C′m ‖β ?W‖BMO

)
6 ‖X0‖Lm . (6.1)

The constant behind ‖X‖S m is not always positive, but we can use the sliceability assumption in order to construct
piece by piece the process X , and on each piece the constant will be positive.
More precisely there exists a sequence of stopping times 0 = T0 6 T1 6 ... 6 TN = T a.s such that for all i ∈
{0, ...,N−1}: ∥∥∥Ti

√
α ?W cTi+1

∥∥∥
BMO

6 ε1,
∥∥∥Tiβ ?W cTi+1

∥∥∥
BMO

6 ε2.

The process X is equal to

Xt =
N−1

∑
i=1

X̃ i
t 1[Ti,Ti+1[(t)

where each X̃ i is the restriction of X to the stochastic interval [Ti,Ti+1]. By convention we extend X̃ i to [0,T ] by
zero outside [Ti,Ti+1]. X̃i satisfies the following SDE:

X̃ i
t = X̃Ti

i−1
+
∫ t

Ti

F(s, X̃ i
s)ds+

k

∑
p=1

∫ t

Ti

Gp(s, X̃ i
s)d

TiW cTi+1
s , t ∈ [Ti,Ti+1[, and X̃−1 = X0.

For all i ∈ {0, ...,N−1}, by considering above computations on each [Ti,Ti+1[, (6.1) becomes∥∥∥X̃ i
∥∥∥

S m

(
1−2mε

2
1 − ε2

√
2C′m

)
6
∥∥∥X̃Ti

i−1
∥∥∥

Lm
.

Denoting by Kε1,ε2 the constant

Kε1,ε2 :=
1

1−2mε2
1 − ε2

√
2C′m

> 0,

we have ∥∥∥X̃ i
∥∥∥

S m
6 Ki

ε1,ε2

∥∥X0∥∥
Lm ,
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and finally we obtain

‖X‖S m 6
N−1

∑
i=0

∥∥∥X̃ i
∥∥∥

S m
6

(
N−1

∑
i=0

Ki
ε1,ε2

)∥∥X0∥∥
Lm .

The result follows by setting Km,ε1,ε2 =
N−1

∑
i=0

Ki
ε1,ε2

. �
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