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A STABILITY APPROACH FOR SOLVING MULTIDIMENSIONAL

QUADRATIC BSDES

June 29, 2016

Jonathan Harter,1 Adrien Richou2

Abstract

We establish an existence and uniqueness result for a class of multidimensional quadratic backward stochastic
differential equations (BSDE). This class is characterized by constraints on some uniform a priori estimate on so-
lutions of a sequence of approximated BSDEs. We also present effective examples of applications. Our approach
relies on the strategy developed by Briand and Elie in [Stochastic Process. Appl. 123 2921–2939] concerning
scalar quadratic BSDEs. This manuscript is only a working paper.

1 INTRODUCTION

Backward Stochastic Differential Equations Backward stochastic differential equations (BSDEs) have been
first introduced in a linear version by Bismut [Bis73], but since the early nineties and the seminal work of Pardoux
and Peng [PP90], there has been an increasing interest for these equations due to their wide range of applications
in stochastic control, in finance or in the theory of partial differential equations. Let us recall that, solving a BSDE
consists in finding an adapted pair of processes (Y,Z), where Y is a Rd-valued continuous process and Z is a
Rd×k-valued progressively measurable process, satisfying the equation

Yt = ξ +

∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, 0 ≤ t ≤ T, a.s. (1.1)

where W is a k-dimensional Brownian motion with filtration F , ξ is a FT -measurable random variable called
the terminal condition, and f is a (possibly random) function called the generator. Since the seminal paper of
Pardoux and Peng [PP90] that gives an existence and uniqueness result for BSDEs with a Lipschitz generator, a
huge amount of paper deal with extensions and applications. In particular, the class of BSDE, with generators of
quadratic growth with respect to the variable z, has received a lot of attention in recent years. Concerning the scalar
case, i.e. d = 1, existence and uniqueness of solutions for quadratic BSDEs has been first proved by Kobylanski in
[Kob00]. Since then, many authors worked on this question: when the terminal condition is bounded, we refer to
[Kob00, Tev08, BE13] and [BH06, BEK13, DHR11].
In this paper we will focus on existence and uniqueness results for quadratic BSDEs in the multidimensional
setting, i.e. d > 1. Let us remark that, in addition to his intrinsic mathematical interest, this question is im-
portant due to many applications of such equations. We can mention e.g. following applications: nonzero-sum
risk-sensitive stochastic differential games in [EKH03, HT16], financial market equilibrium problems for several
interacting agents in [ET15, FDR11, Fre14, BLDR15], financial price-impact models in [KP16, KP16], principal
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agent contracting problems with competitive interacting agents in [EP16], stochastic equilibria problems in incom-
plete financial markets [KXŽ15, XŽ16] or existence of martingales on curved spaces with a prescribed terminal
condition [Dar95].
Let us note that moving from the scalar framework to the multidimensional one is quite challenging since tools
used when d = 1, like monotone convergence or Girsanov transform, can no longer be used when d > 1. Moreover,
Frei and dos Reis provide in [FDR11] an example of multidimensional quadratic BSDE with a bounded terminal
condition and a very simple generator such that there is no solution to the equation. This informative counterex-
ample show that it is hopeless to try to obtain a direct generalization of the Kobylanski existence and uniqueness
theorem in the multidimensional framework or a direct extension of the Pardoux and Peng existence and unique-
ness theorem for locally-Lipschitz generators. Nevertheless, we can find in the literature several papers that deal
with special cases of multidimensional quadratic BSDEs. We give now a really brief summary of all these papers,
up to our knowledge.
First of all, a quite general result was obtain by Tevzadze in [Tev08], when the bounded terminal condition is
small enough, by using a fixed-point argument and the theory of BMO martingales. Some generalizations with
somewhat more general terminal conditions are considered in [Fre14, KP16]. In [CN15], Cheridito and Nam treat
some quadratic BSDEs with very specific generators. Before these papers, Darling was already able to construct a
martingale on a manifold with a prescribed terminal condition by solving a multidimensional quadratic BSDE (see
[Dar95]). Its proof relies on a stability result obtained by coupling arguments. Recently, the so-called quadratic
diagonal case has been considered by Hu and Tang in [HT16]. To be more precise, they assume that the nth line of
the generator has only a quadratic growth with respect to the nth line of Z. This type of assumption allows authors
to use Girsanov transforms. Some little bit more general assumptions are treated by Jamneshan, Kupper and Luo
in [JKL14] (see also [LT15]). Finally, in the very recent paper [XŽ16], Xing and Žitković obtained a general result
in a Markovian setting with weak regularity assumptions on the generator and the terminal condition. Instead of
assuming some specific hypotheses on the generator, they suppose the existence of a so called Liapounov function
which allows to obtain a uniform a priori estimate on some sequence (Y n,Zn) of approximations of (Y,Z). Their
approach relies on analytic methods. We refer to this paper for references on analytic and PDE methods for solving
systems of quadratic semilinear parabolic PDEs.

Our approach Our approach for solving multidimensional quadratic BSDEs relies on the theory of BMO mar-
tingales and stability results as in [BE13]. To get more into the details about our strategy, let us recall the sketch of
the proof used by Briand and Elie in [BE13]. The generator f is assumed to be locally Lipschitz and, to simplify,
we assume that it depends only on z. First of all, they consider the following approximated BSDE

Y M
t = ξ +

∫ T

t
f (ρM(ZM

s ))ds−
∫ T

t
ZM

s dWs, 0 ≤ t ≤ T, a.s.

where ρM is a projection on the centered Euclidean ball of radius M. This new BSDE has a Lipschitz generator,
so existence and uniqueness of (Y M,ZM) is obvious. Now, if we assume that ξ is Malliavin differentiable with a
bounded Malliavin derivative, they show that ZM is bounded uniformly with respect to M. Thus, (Y M,ZM) = (Y,Z)
for M large enough. Importantly, the uniform bound on ZM is obtain thanks to a uniform (with respect to M) a

priori estimate on the BMO norm of the martingale
∫ .

0
ZMdWs. Subsequently, they extend their existence and

uniqueness result for a general bounded terminal condition: ξ is approximated by a sequence (ξ n)n∈N of bounded
terminal conditions with bounded Malliavin derivatives and they consider (Y n,Zn) the solution of the following
BSDE

Y n
t = ξ n +

∫ T

t
f (Zn

s )ds−
∫ T

t
Zn

s dWs, 0 ≤ t ≤ T, a.s. .

By using a stability result for quadratic BSDEs, they show that (Y n,Zn) is a Cauchy sequence that converges to
the solution of the initial BSDE (1.1). Once again, the stability result used by Briand and Elie relies on a uniform

(with respect to n) a priori estimate on the BMO norm of the martingale
∫ .

0
ZndWs.

The aim of this paper is to adapt this approach in our multidimensional setting. In the first approximation step,
we are able to show that ZM is bounded uniformly with respect to M if we have a small enough uniform (with

respect to M) a priori estimate on the BMO norm of the martingale
∫ .

0
ZMdWs. But, contrarily to the scalar case,

it is not possible to show that we have an a priori estimate on the BMO norm of the martingale
∫ .

0
ZMdWs under

general quadratic assumptions on the generator (let us recall the counterexample provides by Frei and dos Reis in
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[FDR11]). So, this a priori estimate on the BMO norm of the martingale
∫ .

0
ZMdWs becomes in our paper an a priori

assumption and this assumption has to be verified on a case-by-case basis according to the BSDE structure. In the
second approximation step, we are facing the same issue: we are able to show the existence and uniqueness of a
solution to (1.1) by using a stability result if we have a small enough uniform (with respect to n) a priori estimate

on the BMO norm of the martingale
∫ .

0
ZndWs, and this a priori estimate becomes, once again, an assumption that

has to be verified on a case-by-case basis according to the BSDE structure. Let us emphasize that the estimate on
the boundedness of ZM and the stability result used in the second step come from an adaptation of results obtained
by Delbaen and Tang in [DT08].
To show the interest of these theoretical results, we have to find now some frameworks for which we are able

to obtain estimates on the BMO norm of martingales
∫ .

0
ZMdWs and

∫ .

0
ZndWs. This is the purpose of Section 4

where results of [Tev08, Dar95] are revisited. Let us note that one interest of our strategy comes from the fact
that we obtain these estimates by very simple calculations that allows to easily get new results: for example, we
are able to extend the result of Tevzadze when the generator satisfies a kind of monotone assumption with respect
to y. Moreover, we can remark that obtaining such estimates is strongly related to finding a so-called Liapounov
function in [XŽ16]. Result on the boundedness of Z is also interesting in itself since it allows to consider the initial
quadratic BSDE (1.1) as a simple Lipschitz one which gives access to numerous results on Lipschitz BSDEs:
numerical approximation schemes, differentiability, stability, and so on.

Structure of the paper In the rest of the introduction, we introduce notations, the framework and general as-
sumptions. Section 2 contains some general results about SDEs and linear BSDEs adapted from [DT08]. Section
3 is devoted to our main results: stability properties, existence and uniqueness theorems for multidimensional
quadratic BSDEs. Finally, some applications of previous theoretical results are treated in Section 4.

§ 1.1. Notations.

⋄ Let T > 0.
(
Ω,F ,(Ft )t∈[0,T ],P

)
will be a complete probability space and Ft is a Brownian filtration satisfying

the usual conditions. In particular every càdlàg process has a continuous version. Every Brownian motion will
be considered relatively to this filtered probability space. A k-dimensional Brownian motion W =

(
W i
)

16i6k
is

a process with values in Rk and with independent Brownian components. Almost every process will be defined
on a finite horizon [0,T ], either we will precise it explicitly. The stochastic integral of an adapted process H

will be denoted by H ⋆W , and the Euclidean quadratic variation by 〈., .〉. The Dolean-Dade exponential of a
continuous real local martingale M is denoted by

E (M) := exp

(
M− 1

2
〈M,M〉

)
.

⋄ Linear notions – For every d,k, we denote by (Ei j)16i6d,16 j6k the canonical basis of Mdk(R). On each Rp, the
scalar product will be simply denoted by a dot, including the canonical scalar product on Mdk(R):

M.N = ∑
16i6d,16 j6k

Mi, jNi, j.

For A∈Mdk(R), A(:,p) will be the column p∈{1, ...,k} of A, and A(l,:) the line l ∈{1, ...,d}. If B∈L (Rd×k,Rd),
the space of all linear maps from Rd×k to Rd , we can see B as a matrix of size (dk)× d and we write for

p ∈ {1, ...,k}, B
(:,p,:)
t the d×d matrix formed by the columns indexed by (1, p),(2, p), ...,(d, p) of B, in the basis

(E11, ...,E1p, ...,E1k,E21, ...,E2p, ...,E2k, ...,Edk).

If A and B are two processes with values in Mdk(R) and Rk, the quadratic variation 〈A,B〉 is the Rd vector

(
d

∑
l=1

〈
Ail ,Bl

〉)d

i=1

in order that the integration by part formula d(AB) = dA.B+A.dB+d〈A,B〉 be in force. We can also define the
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covariation of two (A,B) ∈ Mdk(R)×Mkd′(R) by

(
d

∑
l=1

〈
Ail ,Bl j

〉)d,d′

i, j=1

.

⋄ Functional spaces – In a general way, Euclidean norms will be denoted by |.| while relatively to ω and t by ‖.‖.
For a F -adapted continuous process Y with values in Rd and 1 6 p 6 ∞ , let us define

‖Y‖
S p = E

(
sup

06s6T

|Ys|p
)1/p

, ‖Y‖
S ∞ = esssup sup

06s6T

|Ys| .

For Z, a random variable with values in Rd , we define

‖Z‖Lp = E(|Z|p)1/p .

A continuous martingale M with values in Rd is in H
p(Rd), or only H

p when it is not necessary to specify the
state space, if

√
〈M,M〉T ∈ Lp. And we define the H

p norm by

‖M‖
H p := E

(
〈M,M〉p/2

T

)1/p

< ∞.

A martingale M = (Mt)06t6T is said to be BMO (bounded in mean oscillation) if there exists a constant C > 0
such that for every stopping time 0 6 τ 6 T :

E
(
(MT −Mτ)

2
∣∣Fτ

)
6C2 a.s.

The best constant C is called the BMO norm of M, denoted by ‖M‖BMO. In particular, the local martingale

Z ⋆W =
∫ .

0
Zs dWs is BMO if there exists a constant C > 0 such that

∀τ, E

(∫ T

τ
|Zs|2 ds

∣∣∣∣Fτ

)
6C2 a.s.

For more details about BMO martingales, we can refer to [Kaz94]. For k > 1, C
∞
b (Rk) is the set of all C

∞

functions with values in R defined on Rk, which have bounded derivatives.
⋄ Inequalities – BDG inequalities claim that ‖.‖

S p and ‖.‖
H p are equivalent on martingale spaces with two

universal constants denoted C′
p,Cp. It means that for all continuous local martingales M vanishing at 0,

‖M‖H p 6Cp ‖M‖S p

and
‖M‖S p 6C′

p ‖M‖H p .

We can choose universal constants valid for every dimension. In [MR16], Marinelli and Röckner consider the
most general case; martingale with values in a separable Hilbert space. In particular, the upper constant C′

(Proposition 2.1 and Proposition 3.1) defined below is valid for all dimensions:

C′
p =





(
p

p− 1

) p
2
(

p(p− 1)
2

)2

if p > 2,

4

√
2
p

if p < 2,

4 if p = 2.

The first two cases are shown in [MR16], and the third one is the constant obtained in the scalar case which still
valid in the general case. In the following every BDG inequality should be understood with this choice of C′.
The Doob maximal inequality claims that for every Rd-valued martingale M and p > 1,

‖M‖
S p 6

p

p− 1
‖MT‖Lp .
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And for p = ∞,
‖M‖

S ∞ 6 ‖MT‖L∞ .

If p ∈]1,∞[, we will denote by p∗ the conjugated exponent of p, they are linked by
1
p
+

1
p∗

= 1. We say that

a process L = (Lt)06t6T with values in Rd satisfies a reverse Hölder inequality for some integer 1 6 p < ∞ if
there exists some constant Kp such that for every stopping time 0 6 τ 6 T a.s,

E(|LT |p|Fτ)6 Kp |Lτ |p a.s.

The energy inequality (see [Kaz94]) tells us that for every BMO process Z and every integer n > 1, we have

E(〈Z ⋆W 〉n
T )6 n!‖Z ⋆W‖2n

BMO . (1.2)

A conditional version of this inequality is the following: for all t ∈ [0,T ],

E((〈Z ⋆W〉T −〈Z ⋆W〉t)
n|Ft )6 n!‖Z ⋆W‖2n

BMO .

Consequently,

BMO ⊂
(
⋂

p>1

H
p

)
.

We recall also the so-called Fefferman inequality: for X ∈ H
1 and Y ∈ BMO,

E

(∫ T

0
|d〈X ,Y 〉s|

)
6 ‖X‖

H 1 ‖Y‖BMO .

This inequality yields the following technical lemma (see [BB88] and [DT08]) for more details.

LEMMA – 1.1 Let m > 1. We consider X an adapted process and M a local martingale.

(i) If X ∈ S
m and M ∈ BMO then X ⋆M ∈ H

m and

‖X ⋆M‖H m 6
√

2‖X‖S m ‖M‖BMO .

(ii) If X ∈ H
m and M ∈ BMO then 〈X ,M〉T ∈ Lm and

‖〈X ,M〉T‖Lm 6
√

2m‖X‖H m ‖M‖BMO .

To conclude this paragraph, let us show a technical proposition that will be useful in this paper.

PROPOSITION – 1.1 Let us consider m > 1 and a sequence of uniformly bounded in BMO local martingales

(Zn ⋆W )n∈N. We denote K = sup
n∈N

‖Zn ⋆W‖BMO < ∞ and assume that Zn ⋆W converge in H
m to a martingale

Z ⋆W. Then Z ⋆W is BMO too and satisfies the same inequality ‖Z ⋆W‖BMO 6 K.

Proof. Let us define by M the measure dM = dP⊗ dx. Firstly we show that convergence in H
m implies the

convergence for the measure M .
Indeed, if m > 2, the Jensen inequality gives us

E

(∫ T

0
|Zn

s −Zs|2 ds

)
6 ‖Zn ⋆W −Z ⋆W‖2

H m ,

and thus we get the convergence in measure, since for all ε > 0, we have

M (|Zn −Z|> ε)6
1
ε2 ‖Zn ⋆W −Z ⋆W‖2

H 2 6
1
ε2 ‖Zn ⋆W −Z ⋆W‖2

H m .

Moreover, if m < 2, we get

M (|Zn −Z|> ε)6
1

εm
E

(∫ T

0
|Zn

s −Zs|m ds

)
6

T 1−m/2

εm
E

((∫ T

0
|Zn

s −Zs|2 ds

)m/2
)
.
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For both cases, we get convergence in measure for M . Hence there exists a subsequence (nk)k∈N such that

|Znk |2 −→
k→∞

|Z|2 M − a.s.

The Fatou lemma gives us, for all stopping time τ ,

∫ T

τ
|Zs|2 ds 6 liminf

k→∞

∫ T

τ
|Znk

s |2 ds a.s,

and then the conditional version for the second inequality gives us

E

(∫ T

τ
|Zs|2 ds

∣∣∣∣Fτ

)
6 E

(
liminf

k→∞

∫ T

τ
|Znk

s |2 ds

∣∣∣∣Fτ

)
6 liminf

k→∞
E

(∫ T

τ
|Znk

s |2 ds

∣∣∣∣Fτ

)
6 K a.s.

Finally we conclude that Z ⋆W is BMO with ‖Z ⋆W‖BMO 6 K. ⋄

⋄ Sliceability – For a process X and a stopping time τ we denote by τ X the process started at time τ , that is
τ X = X −X ⌋τ where X ⌋τ is the process stopped at τ . For two stopping times τ 6 σ a.s, we denote by τ X ⌋σ the
process started at τ and stopped at σ :

τ X ⌋σ = (τ X)⌋σ .

Associativity property of the stochastic integral gives us

τ (H ⋆W)⌋σ = H ⋆ τW ⌋σ .

Between τ and σ , the started stopped process is simply a translation of the stopped process: for all u such that
τ 6 u 6 σ a.s,

τ X
⌋σ
u = Xu −Xτ .

This process is thus constant after σ and vanishes before τ . Let us suppose that X is a BMO martingale. We say
that X is ε-sliceable if there exists some subsequence 0 = T0 6 T1 6 ...6 TN = T a.s of stopping times such that

∥∥∥Tn(X)⌋Tn+1

∥∥∥
BMO

6 ε.

The set of all ε-sliceable processes will be denoted by BMOε . In [Sch96], Schachermayer proved that

⋂

ε>0

BMOε = H ∞BMO
,

Moreover, BMO norm of a stopped started stochastic integral process τ Z ⋆W ⌋σ is given by the following propo-
sition

PROPOSITION – 1.2 ∥∥∥τ Z ⋆W ⌋σ
∥∥∥

BMO
= esssup sup

τ ′∈Tτ,σ

E

(∫ σ

τ ′
|Zs|2 ds

∣∣∣∣Fτ ′

)
,

where Tτ,σ =
{

τ ′ stopping time : τ 6 τ ′ 6 σ a.s
}
.

A proof of this proposition is given in the appendix part.
⋄ Malliavin calculus – We denote by

P = { f ((g1 ⋆W )T , ...,(gn ⋆W)T ) : f ∈ C
∞
b (Rn),gi adapted ,n > 1} ,

the set of all Wiener functions. For F ∈ P , the Malliavin derivative of F is a progressively measurable process
DF ∈ L2([0,T ]×Ω,B([0,T ])⊗F ,dx⊗ dP

)
defined by

DtF =
n

∑
i=1

∂i f ((g1 ⋆W )t=T , ...,(gn ⋆W)t=T )gi(t).

In particular D((h ⋆W)T ) = h for all adapted process h. We define such a kind of Sobolev norm on P with the
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following formula

‖F‖1,2 =
[
E
(
|F |2

)
+E

(
‖DF‖2

L2(dx)

)]1/2
.

We can prove that D is closable, consequently it is possible to extend the definition of D to D
1,2 = P

1,2
.

Besides, D1,2 is dense in L2(Ω). For considerations on Malliavin calculus we can refer to [Nua06]. Let us cite
also a useful result: all Lipschitz functionals of random variables in D

1,2(Rd) are in D
1,2(Rd) (see [Nua06],

Proposition 1.2.4).

PROPOSITION – 1.3 Let ϕ : Rd → R. We assume that there exists a constant K such that for all x,y ∈ Rd ,

|ϕ(x)−ϕ(y)|6 K |x− y| .

Let (F1, ...,Fd) a vector in D
1,2(Rd)∩L∞(Ω). Then ϕ(F) ∈D

1,2(Rd) and there exists a vector (G1, ...,Gd) such

that

Dϕ(F) =
d

∑
i=1

Gi DF i, |G|6 K.

§ 1.2. Framework and first assumptions. In this paper we consider the following quadratic BSDE on Rd :

Yt = ξ +

∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, 0 6 t 6 T, (1.3)

where f is a random function Ω× [0,T ]×Rd ×Rd×k → Rd called the generator of the BSDE such that for all
(y,z) ∈ Rd ×Rd×k and t ∈ [0,T ], ( f (t,y,z))06t6T is progressively measurable, (Y,Z) is a process with values in

Rd ×Rd×k and ξ ∈ L2
(
FT ,R

d
)

.

DEFINITION – 1.1 A solution of BSDE (1.3) is a process (Y,Z) ∈ S
2(Rd)×H

2(Rd×k) satisfying usual integra-

bility conditions and solving initial BSDE:

(i)

∫ T

0

(
| f (s,Ys,Zs)|2 + |Zs|2

)
ds < ∞ a.s,

(ii) Yt = ξ +

∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, 0 6 t 6 T, a.s.

Locally Lipschitz assumptions on f are assumed.

(H) For all (y,y′,z,z′) ∈
(

Rd
)2

×
(

Rd×k
)2

, we suppose that there exists (Ky,Ly,Kz,Lz) ∈ (R+)4 such

that P− a.s for all t ∈ [0,T ]:

| f (t,y,z)− f (t,y′,z)|6 (Ky +Ly|z|2)|y− y′|,

| f (t,y,z)− f (t,y,z′)|6
(
Kz +Lz(|z|+ |z′|)

)
|z− z′|.

Let us also introduce a localisation of f defined by f M(t,y,z) = f (t,y,ρM(z)) where ρM : Rd×k → Rd×k satisfies
the following properties :

• ρM is the identity on BRd×k(0,M),

• the projection on BRd×k (0,M+ 1) outside BRd×k(0,M+ 1) ,

• ρM is a C
∞ function with |∇ρM(z)|6 1.

Thus f M is a globally Lipschitz function with constants depending on M. Indeed we have for all (t,y,y′,z,z′) ∈
[0,T ]× (Rd)2 ×

(
Rd×k

)2
,

∣∣ f M(t,y,z)− f M(t,y′,z′)
∣∣6
∣∣ f
(
t,y,ρM(z)

)
− f

(
t,y′,ρM(z)

)∣∣+
∣∣ f
(
t,y′,ρM(z)

)
− f

(
t,y′,ρM(z′)

)∣∣

6
(
Ky +Ly|ρM(z)|2

) ∣∣y− y′
∣∣+
(
Kz +Lz

(
|ρM(z)|+ |ρM(z′)|

))∣∣z− z′
∣∣

6(Ky +Ly(M + 1)2)
∣∣y− y′

∣∣+(Kz + 2Lz(M+ 1))
∣∣z− z′

∣∣ .
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According to the classical Pardoux-Peng result in [PP90], there exists a unique solution (Y M,ZM) ∈ S
2(Rd)×

H
2(Rd×k) of the localized BSDE

Y M
t = ξ +

∫ T

t
f M
(
s,Y M

s ,ZM
s

)
ds−

∫ T

t
ZM

s dWs, 0 6 t 6 T. (1.4)

2 GENERALITIES ABOUT SDES AND LINEAR BSDES

§ 2.1. Representation of the solution in the linear case. We investigate here the following linear BSDE

Ut = ζ +

∫ T

t
(AsUs +BsVs + fs)ds−

∫ T

t
VsdWs, 0 6 t 6 T, (2.1)

where ζ ∈ L2(FT ,R
d), f ∈ L2(Ω× [0,T ]) and A,B, f are three bounded processes with values in L (Rd ,Rd),

L

(
Rd×k,Rd

)
and Rd . For the linear case we have an explicit formulation of the solution. Let us begin to recall

the classical scalar formula which comes from the Girsanov Theorem.

REMARK – 2.1 (ONE-DIMENSIONAL CASE (d = 1)) It is well-known that the solution of (2.1) is given by the

formula

Ut = E

(
S−1

t ST ζ +

∫ T

t
S−1

t Ss fsds

∣∣∣∣Ft

)
,0 6 t 6 T,

where

St = exp

(∫ t

0
BsdWs−

1
2

∫ t

0
|Bs|2ds+

∫ t

0
Asds

)
= E (B⋆W)t exp

(∫ t

0
Asds

)
.

In particular, the case A = 0 a.s is an easy consequence of the Girsanov theorem: U becomes an expectation with

respect to an other probability measure.

To extend this last formula in the general case we define a process S as the unique strong solution of

dSt =
k

∑
p=1

StB
(:,p,:)
t dW

p
t + StAtdt, S0 = Id×d.

The case B = 0 a.s is treated in [DT08], we deduce easily the following generalization.

PROPOSITION – 2.1 (FORMULA FOR U )

(i) The process S is invertible for all t ∈ [0,T ] and S−1 is the solution of

dS−1
t =

[(
k

∑
p=1

(
B
(:,p,:)
t

)2
−At

)
dt −

k

∑
p=1

B
(:,p,:)
t dW

p
t

]
S−1

t , S−1
0 = Id×d.

(ii) The BSDE (2.1) has a unique solution (U,V ) in S
2
(

Rd
)
×H

2
(

Rd×k
)

, and U is given by:

Ut = E

(
S−1

t ST ζ +

∫ T

t
S−1

t Ss fsds

∣∣∣∣Ft

)
. (2.2)

Proof. Existence and uniqueness of a solution (U,V ) in S
2(Rd)×H

2(Rd×k) is guaranteed by the Pardoux and
Peng result in [PP90]. The solution (U,V ) satisfies

Ut = ζ +
∫ T

t

(
AsUs +

k

∑
p=1

B
(:,p,:)
s V

(:,p)
s + fs

)
ds−

k

∑
p=1

∫ T

t
V
(:,p)
s dW p

s .
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The Itô formula gives the invertibility of S and the formula for S−1 on the one hand. On the other hand:

d(StUt) =−St ft dt +
k

∑
p=1

(
StB

(:,p,:)
t Ut + StV

(:,p)
t

)
dW

p
t ,

and thus we get, for all t ∈ [0,T ],

StUt = ST ζ +

∫ T

t
Ss fs ds−

∫ T

t

k

∑
p=1

(
SsB

(:,p,:)
s Us + SsV

(:,p)
s

)
dW p

s .

By taking the conditional expectation StUt = E

(
ST ζ +

∫ T

t
Ss fs ds

∣∣∣∣Ft

)
. Adaptability and invertibility of S give

the result. ⋄

§ 2.2. A result about SDEs. We consider a SDE on Rd×d of the form

Xt = X0 +
∫ t

0
F(s,Xs)ds+

k

∑
p=1

∫ t

0
Gp(s,Xs)dW p

s , (2.3)

where F : Ω× [0,T ]×Rd×d → Rd×d and for all p ∈ {1, ...,k}, Gp : Ω× [0,T ]×Rd×d → Rd×d are progressively
measurable functions. We start by recalling a result of Delbaen and Tang (see [DT08], Theorem 2.1.) about
existence and uniqueness of a solution to the equation (2.3), under BMO assumptions.

PROPOSITION – 2.2 Let m > 1. We suppose that there are two non-negative adapted processes α and β such that

(i) (Regularity) F(t,0) = 0, G(t,0) = 0 and for all (x1,x2, t) ∈ (Rd)2 × [0,T ],

|F(t,x1)−F(t,x2)|6 αt |x1 − x2| a.s,

k

∑
p=1

|Gp(t,x1)−Gp(t,x2)|2 6 β 2
t |x1 − x2|2 a.s.

(ii) (Sliceability)
√

α ⋆W, β ⋆W are BMO and respectively ε1, ε2 sliceable with the condition

2mε2
1 +

√
2ε2C′

m < 1.

Then there exists a solution X ∈ S
m(Rd) to the equation (2.3) and a constant Km,ε1,ε2 such that

‖X‖
S m 6 Km,ε1,ε2 ‖X0‖Lm .

A proof can be found in the appendix for reader convenience. From this last proposition we can deduce the
following corollary (see [DT08], Corollary 2.1)

COROLLARY – 2.1 Let m > 1. We suppose that there are two non-negative adapted processes α and β such that

(i) (Regularity) F(t,0) = 0, G(t,0) = 0 and for all (x1,x2, t) ∈ (Rd)2 × [0,T ],

|F(t,x1)−F(t,x2)|6 αt |x1 − x2| a.s,

k

∑
p=1

|Gp(t,x1)−Gp(t,x2)|2 6 β 2
t |x1 − x2|2 a.s.

(ii) (Sliceability)
√

α ⋆W, β ⋆W are BMO and respectively ε1, ε2 sliceable with the condition

2mε2
1 +

√
2ε2C′

m < 1.
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For t ∈ [0,T ], let X t,Id the unique solution defined on [t,T ] of the SDE (2.3) such that X
t,Id
t = Id . Then X t,Id is in

S
m(Rd) and satisfies for a constant Km depending only on C′

m, m, k and ε1,ε2:

E

(
sup

t6s6T

∣∣X t,Id
s

∣∣m
∣∣∣∣Ft

)
6 Km

m,ε1,ε2
.

In particular, if X is an invertible solution to the equation (2.3), we get the reverse Hölder inequality

E

(
sup

t6s6T

∣∣X−1
t Xs

∣∣m
∣∣∣∣Ft

)
6 Km

m,ε1,ε2
.

Proof. We can use Proposition 2.2. For all t ∈ [0,T ] and all event A ∈ Ft ,
∥∥X t,Id ×1A

∥∥
S m([t,T ])

6 Km,ε1,ε2 ‖Id ×1A‖Lm .

We get, for all t ∈ [0,T ],

E

(
sup

t6s6T

∣∣X t,Id
s ×1A

∣∣m
)
6 Km

m,ε1,ε2
E(|1A|m) ,

and we have

E

(
sup

t6s6T

∣∣X t,Id
s

∣∣m ×1A

)
6 Km

m,ε1,ε2
E(1A) .

Definition of conditional expectation gives the result. ⋄

§ 2.3. Estimates for the first component of the solution to (2.1) . We come back to the linear BSDE (2.1),
and we will be able to deduce S

q-estimations for U with q large enough, including q = ∞.

PROPOSITION – 2.3 Let m > 1. We assume that B and A are adapted, bounded in absolute value respectively by

two real processes β and α such that:
√

α ⋆W, β ⋆W are BMO and respectively ε1, ε2 sliceable with the condition

2mε2
1 +

√
2ε2C′

m < 1.

Then

(i) If ζ ∈ L∞ and f ∈ S
∞, then U ∈ S

∞(Rd) and

‖U‖S ∞ 6 Km,ε1,ε2 (‖ζ‖L∞ +T ‖ f‖S ∞) ,

(ii) Let us assume that m > 1. If ζ ∈ L∞,
√
| f |⋆W ∈ BMO, then U ∈ S

∞ and

‖U‖S ∞ 6 (m∗)!Km,ε1,ε2

(
‖ξ‖L∞ +

∥∥∥
√
| f | ⋆W

∥∥∥
2

BMO

)
.

(iii) Let us assume that m > 1. For all q > m∗ =
m

m− 1
, if

(
ζ ,

∫ T

0
| fs| ds

)
∈ Lq ×Lq, then U ∈ S

q(Rd) and

‖U‖q

S q 6 2q−1K
q
m,ε1,ε2

(
q

q−m∗

)q/m∗(
‖ζ‖q

Lq +

∥∥∥∥
∫ T

0
| fs|ds

∥∥∥∥
q

Lq

)
.

In the following we will denote simply Kq,m,ε1,ε2 = 2q−1K
q
m,ε1,ε2

(
q

q−m∗

)q/m∗

.

Proof. By using Proposition 2.1, the Cauchy-Schwartz inequality applied to (2.2) gives us, for all t ∈ [0,T ]:

|Ut |6 E
(∣∣S−1

t ST

∣∣ |ζ |
∣∣Ft

)
+E

(∫ T

t

∣∣S−1
t Ss

∣∣ | fs|ds

∣∣∣∣Ft

)
,
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with

dSt =
k

∑
p=1

StB
(:,p,:)
t dW

p
t + StAtdt, S0 = Id×d.

If S satisfies a reverse Hölder inequality, we will be able to bound the right member. And S is the solution of a

SDE on Rd×d for which we can use Corollary 2.1 with, for all 1 6 p 6 k and (x,y) ∈ (Rd×d)2, Gp(s,x) = xB
(:,p,:)
s ,

F(s,y) = yAs. Let us note that
∣∣∣B(:,p,:)

∣∣∣6 |B| for all p ∈ {1, ...,k}. Thus there exists a constant Km,ε1,ε2 such that:

E

(
sup

t6s6T

∣∣S−1
t Ss

∣∣m
)
6 Km

m,ε1,ε2
.

⋄ If ζ ∈ L∞ and f ∈ S
∞, with the Hölder inequality we have

|Ut |6‖ξ‖L∞ Km,ε1,ε2 + ‖ f‖S ∞ E

(
(T − t) sup

t6s6T

∣∣S−1
t Ss

∣∣m
∣∣∣∣Ft

)1/m

6Km,ε1,ε2 (‖ζ‖L∞ +T ‖ f‖
S ∞) .

⋄ Let us consider m > 1, and assume that ζ ∈ L∞,
√
| f |⋆W is BMO. Then with the Hölder and energy inequalities

|Ut |6Km,ε1,ε2 ‖ξ‖L∞ +Km,ε1,ε2E

((∫ T

t
| fs|ds

)m∗∣∣∣∣∣Ft

)1/m∗

6(m∗)!Km,ε1,ε2

(
‖ξ‖L∞ +

∥∥∥
√
| f |⋆W

∥∥∥
2

BMO

)

⋄ Let us consider m > 1 and q > m∗. We get, for all t ∈ [0,T ],

|Ut |q 62q−1
(

E
(∣∣S−1

t ST

∣∣ |ζ |
∣∣Ft

)q
+E

(∫ T

t

∣∣S−1
t Ss

∣∣ | fs|ds

∣∣∣∣Ft

)q)

62q−1E
(∣∣S−1

t ST

∣∣m
∣∣∣Ft

)q/m

E
(
|ζ |m∗∣∣∣Ft

)q/m∗

+ 2q−1E

(
sup

t6s6T

∣∣S−1
t Ss

∣∣m
∣∣∣∣Ft

)q/m

E

((∫ T

t
| fs|ds

)m∗ ∣∣∣∣∣Ft

)q/m∗

62q−1K
q
m,ε1,ε2


E
(
|ζ |m∗∣∣∣Ft

)q/m∗

+E

((∫ T

0
| fs|ds

)m∗ ∣∣∣∣∣Ft

)q/m∗
 .

The processes Mt = E
(
|ζ |m∗∣∣∣Ft

)
and Nt = E

((∫ T

0
| fs|ds

)m∗ ∣∣∣∣∣Ft

)
are two martingales with terminal values,

respectively, |ζ |m∗
and

(∫ T

0
| fs|ds

)m∗

. Hence the Doob maximal inequality gives us, if q > m∗,

E

(
sup

06t6T

|Mt |q/m∗
)
= ‖M‖q/m∗

S q/m∗ 6

(
q

q−m∗

)q/m∗

‖MT‖q/m∗

Lq/m∗ =

(
q

q−m∗

)q/m∗

‖ζ‖q
Lq ,

and

E

(
sup

06t6T

|Nt |q/m∗
)
6

(
q

q−m∗

)q/m∗ ∥∥∥∥
∫ T

0
| fs|ds

∥∥∥∥
q

Lq

.

So we obtain the announced result

‖U‖q

S q 6 2q−1K
q
m,ε1,ε2

(
q

q−m∗

)q/m∗(
‖ζ‖q

Lq +

∥∥∥∥
∫ T

0
| fs|ds

∥∥∥∥
q

Lq

)
.

⋄
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COROLLARY – 2.2 (AFFINE UPPER BOUND) Let m > 1. Let us consider A and B adapted, bounded in absolute

value respectively by two real processes α and β of the form

αs = K +LAs, βs = K′+L′
Bs,

with (K,L,K′,L′)∈ (R+)4, A , B two positive real processes such that
√

A ⋆W,B⋆W are BMO with the condition

mL

∥∥∥
√

A ⋆W

∥∥∥
2

BMO
+L′‖B ⋆W‖BMO C′

m <
1
2
.

We have the following estimates, with constants Km, Kq,m depending only on m,q,Ky,Kz,Ly,Lz and the BMO

norms

∥∥∥
√

A ⋆W

∥∥∥
BMO

, ‖B ⋆W‖BMO:

(i) If ζ ∈ L∞ and f ∈ S
∞, then U ∈ S

∞(Rd) and

‖U‖S ∞ 6 Km (‖ζ‖L∞ +T ‖ f‖S ∞) ,

(ii) Let us assume that m > 1. If ζ ∈ L∞,
√
| f |⋆W ∈ BMO, then U ∈ S

∞ and

‖U‖S ∞ 6 (m∗)!Km

(
‖ξ‖L∞ +

∥∥∥
√
| f | ⋆W

∥∥∥
2

BMO

)
.

(iii) Let us assume that m > 1. For all q > m∗ =
m

m− 1
, if

(
ζ ,

∫ T

0
| fs| ds

)
∈ Lq ×Lq, then U ∈ S

q(Rd) and

‖U‖q

S q 6 2q−1Kq
m

(
q

q−m∗

)q/m∗(
‖ζ‖q

Lq +

∥∥∥∥
∫ T

0
| fs|ds

∥∥∥∥
q

Lq

)
.

In the following we will denote simply K
q

q,m

(
q

q−m∗

)q/m∗

.

Proof. We obtain easily estimates about BMO-norms of
√

α ⋆W and β ⋆W , since for every stopping time 0 6 τ 6

T :

E

(∫ T

τ
β 2

s ds

∣∣∣∣Fτ

)
= E

(∫ T

τ
(K′+L′

Bs)
2ds

∣∣∣∣Fτ

)

62

(
(K′)2T +(L′)2E

(∫ T

τ
B

2
s ds

∣∣∣∣Fτ

))
,

E

(∫ T

τ
αsds

∣∣∣∣Fτ

)
6KT +LE

(∫ T

τ
Asds

∣∣∣∣Fτ

)
.

By taking essential supremum in the set of all stopping times, we get

‖
√

α ⋆W‖BMO 6
√

KT +
√

L‖
√

A ⋆W‖BMO, ‖β ⋆W‖BMO 6
√

2
(

K′√T +L′‖B ⋆W‖BMO

)
,

and it follows that
√

α ⋆W,β ⋆W are BMO.
Let us show that

√
α ⋆W and β ⋆W are respectively ε1 and ε2 sliceable with 2mε2

1 +
√

2ε2C′
m < 1. We consider

the following uniform sequence of stopping times

Tj = j
T

N
, j ∈ {0, ...,N} ,

and a parameter η > 0. The Young inequality gives the following estimation: for all i ∈ {0, ...,N},

E

(∫ Ti+1

Ti

β 2
s ds

∣∣∣∣FTi

)
6 2

[
K′2
(

1+
1
η

)
T

N
+L′2(1+η)E

(∫ Ti+1

Ti

B
2
s ds

∣∣∣∣FTi

)]
,
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and

E

(∫ Ti+1

Ti

αsds

∣∣∣∣FTi

)
6

KT

N
+LE

(∫ Ti+1

Ti

Asds

∣∣∣∣FTi

)
.

Proposition 1.2 yields

∥∥∥Tn β ⋆W ⌋Tn+1

∥∥∥
BMO

= esssup sup
τ∈T n

(
E

(∫ Tn+1

τ
β 2

s ds

∣∣∣∣Fτ

))1/2

6
√

2

(
esssup sup

τ∈T n

(
K′2 T

N

(
1+

1
η

)
+L′2 (1+η)E

(∫ Ti+1

τ
B

2
s ds

∣∣∣∣Fτ

))1/2
)
.

Taking η =
1√
N

, we get

‖Tn(β ⋆W)⌋Tn+1‖BMO 6
√

2

(
K′
√

T

N

√
1+

√
N +L′

√
1+

1√
N
‖B ⋆W‖BMO

)
, (2.4)

and

‖Tn(
√

α ⋆W)⌋Tn+1‖BMO 6

√
K

T

N
+
√

L

∥∥∥
√

A ⋆W

∥∥∥
BMO

. (2.5)

By taking N large enough, we get 2mε2
1 +

√
2ε2C′

m < 1 since the following upper bound holds true

2mL

∥∥∥
√

A ⋆W

∥∥∥
2

BMO
+ 2L′‖B ⋆W‖BMO C′

m < 1.

⋄

REMARK – 2.2 In the inequalities (2.4) and (2.5), we used that

∥∥∥TiB ⋆W ⌋Ti+1

∥∥∥
BMO

6 ‖B ⋆W‖BMO and
∥∥∥Ti

√
A ⋆W ⌋Ti+1

∥∥∥
BMO

6

∥∥∥
√

A ⋆W

∥∥∥
BMO

. We can easily obtain a more general result by replacing the following

asumption: A , B are two positive real processes such that
√

A ⋆W,B ⋆W are BMO with the condition

2mL

∥∥∥
√

A ⋆W

∥∥∥
2

BMO
+ 2L′‖B ⋆W‖BMO C′

m < 1,

by the new one: A , B are two positive real processes such that
√

A ⋆W,B ⋆W are in BMOε1 and BMOε2 with

the condition

2mLε2
1 + 2L′ε2C′

m < 1.

REMARK – 2.3 We have not mentioned the dependance of the constants with respect to

∥∥∥
√

A ⋆W

∥∥∥
BMO

and

‖B ⋆W‖BMO in the notations, since in the following, under our assumptions it will be not. But we will precise

it explicitly when it is important.

3 STABILITY, EXISTENCE AND UNIQUENESS RESULTS FOR GENERAL

MULTIDIMENSIONAL QUADRATIC BSDES

The δZ control step is treated as in [BE13] by Briand and Elie. The δY control step should be changed for the
multidimensional case: this step requires a BMO control assumption and the previous results concerning linear
BSDEs.

§ 3.1. Stability result. With a linearization tool we can prove a stability lemma for the BSDE (1.3). Let us

consider two solutions of (1.3) in Rd ×Rd×k, (Y 1,Z1),(Y 2,Z2), with terminal conditions ξ 1 and ξ 2 and generators
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respectively f1 and f2. We assume that f1, f2 satisfies the usual conditions (H).

Y 1
t = ξ 1 +

∫ T

t
f1
(
s,Y 1

s ,Z
1
s

)
ds−

∫ T

t
Z1

s dWs, 0 6 t 6 T,

Y 2
t = ξ 2 +

∫ T

t
f2
(
s,Y 2

s ,Z
2
s

)
ds−

∫ T

t
Z2

s dWs, 0 6 t 6 T.

Let us denote
δYs = Y 1

s −Y2
s , δZs = Z1

s −Z2
s , δFs = f1(s,Y

1
s ,Z

1
s )− f2(s,Y

2
s ,Z

2
s ),

δ fs = f1(s,Y
2
s ,Z

2
s )− f2(s,Y

2
s ,Z

2
s ) and δξ = ξ 1 − ξ 2.

The process (δY,δZ) solves the BSDE

δYt = δξ +
∫ T

t
δFsds−

∫ T

t
δZsdWs, 0 6 t 6 T. (3.1)

LEMMA – 3.1 (STABILITY RESULT) Let m > 1 and p >
m∗

2
and let us suppose that

(i) 2mLy

∥∥Z1 ⋆W
∥∥2

BMO
+ 2Lz

(∥∥Z1 ⋆W
∥∥

BMO
+
∥∥Z2 ⋆W

∥∥
BMO

)
C′

m < 1,

(ii) (ξ1,ξ2) ∈ (L2p)2,

(iii)

∫ T

0
|δ fs|ds ∈ L2p,

then there exists a constant K̃p

(∥∥Z1 ⋆W
∥∥

BMO
,
∥∥Z2 ⋆W

∥∥
BMO

)
(depending only on p,Ky,Ly,Kz,Lz,T and the BMO

norms of Z1 ⋆W, Z2 ⋆W) such that

‖δY‖p

S 2p + ‖δZ ⋆W‖p
H p 6 K̃p

(∥∥Z1 ⋆W
∥∥

BMO
,
∥∥Z2 ⋆W

∥∥
BMO

)(
‖δξ‖p

L2p +

∥∥∥∥
∫ T

0
|δ fs|ds

∥∥∥∥
p

L2p

)
.

Proof. By using a linearization tool, we can rewrite (3.1) as

δY = δξ +

∫ T

t
(AsδYs +Bs(δZs)+ δ fs)ds−

∫ T

t
δZsdWs,

where

⋄ B is a L (Rd×k,Rd) process defined by blocks with

Bs =





(
f 1
1 (s,Y

2
s ,Z

1
s )− f 1

1 (s,Y
2

s ,Z
2
s )

|δZs|2
δZs . . .

f d
1 (s,Y

2
s ,Z

1
s )− f d

1 (s,Y
2
s ,Z

2
s )

|δZs|2
δZs

)
if δZs 6= 0,

0 otherwise,

since we can see a linear map in L

(
Rd×k,Rd

)
as a matrix of size d× (dk) (see the introduction). For all i, the

i-block is thus a Rd×k vector.
⋄ A is a L (Rd ,Rd)-process defined by

As =





f1(s,Y
1
s ,Z

1
s )− f1(s,Y

2
s ,Z

1
s )

|δYs|2
(

TδYs

)
if δYs 6= 0,

0 otherwise.
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Let us compute the term Bs(δZs) on the basis (E11, ...,E1k,E21, ...,E2k, ...,Edk):

Bs(δZs) = ∑
(p,p′)∈{1,...,d}×{1,...,k}

δZp,p′
s Bs(Epp′)

=

(

∑
(p,p′)∈{1,...,d}×{1,...,k}

δZp,p′
s

f i
1(s,Y

2
s ,Z

1
s )− f i

1(s,Y
2
s ,Z

2
s )

|δZs|2
δZp,p′

s

)

16i6d

= f2
(
s,Y 2

s ,Z
1
s

)
− f2

(
s,Y 2

s ,Z
2
s

)
.

In the following B(δZ) will be simply denoted BδZ. Assumption (H) on f1 and f2 gives the following inequalities:

|Bs|=
d

∑
i=1

∣∣∣∣∣
f i
1(s,Y

2
s ,Z

1
s )− f i

1(s,Y
2
s ,Z

2
s )

|δZs|2
δZs

∣∣∣∣∣6 Kz +Lz

(∣∣Z1
s

∣∣+
∣∣Z2

s

∣∣) ,

|As|6 Ky +Ly

∣∣Z1
s

∣∣2 .

Step 1 – Control of δY . A and B are bounded in absolute value respectively by two real processes α and β
defined by

α = Ky +Ly|Z1|2, β = Kz +Lz

(
|Z1|+ |Z2|

)
,

and (δY, δZ) solves a linear BSDE of the form (2.1) with δ f instead of f . We can apply Corollary 2.2, (iii) with

B =
∣∣Z1
∣∣+
∣∣Z2
∣∣ , A =

∣∣Z1
∣∣2 , L′ = Lz, K = Ky, K′ = Kz, and L = Ly,

which gives, for all q > 1 such that q > m∗,

‖δY‖q

S q 6 Kq,m,ε1,ε2

(
‖δξ‖q

Lq +

∥∥∥∥
∫ T

0
|δ fs|ds

∥∥∥∥
q

Lq

)
. (3.2)

Step 2 – Control of δZ. The Itô formula applied to |δY |2 gives us

∫ T

0
|δZs|2 ds = |δξ |2 −|δY0|2 − 2

∫ T

0
δYs.(δZs dWs)+ 2

∫ T

0
(δY.δF)s ds

6 |δξ |2 − 2
∫ T

0
δYs.(δZs dWs)+ 2

∫ T

0
(δY.δF)s ds. (3.3)

Recalling assumption (H) we have

|δFs|=
∣∣ f1(s,Y

1
s ,Z

1
s )− f2(s,Y

2
s ,Z

2
s )
∣∣6
(

Ky +Ly

∣∣Z1
s

∣∣2
)
|δYs|+

(
Kz +Lz

(∣∣Z1
s

∣∣+
∣∣Z2

s

∣∣)) |δZs|+ |δ fs| .

With the Cauchy-Schwarz and Young inequalities, we get

2
∫ T

0
(δY.δF)s ds 6 2

∫ T

0
|δYs| |δFs|ds

62
∫ T

0

[(
Ky +Ly

∣∣Z1
s

∣∣2
)
|δYs|2 +

(
Kz +Lz

(∣∣Z1
s

∣∣+
∣∣Z2

s

∣∣)) |δYs| |δZs|+ |δ fs| |δYs|
]

ds

62

(
sup

06s6T

|δYs|2
)∫ T

0

[
Ky +Ly

∣∣Z1
s

∣∣2 +
(
Kz +Lz

(∣∣Z1
s

∣∣+
∣∣Z2

s

∣∣))2
+

1
2

]
ds+

1
2

∫ T

0
|δZs|2 ds+

(∫ T

0
|δ fs|ds

)2

.

By using this last inequality in (3.3) we obtain

1
2

∫ T

0
|δZs|2 ds 6 |δξ |2 − 2

∫ T

0
δYs.(δZs dWs)

+ 2

(
sup

06s6T

|δYs|2
)∫ T

0

[
Ky +Ly

∣∣Z1
s

∣∣2 +
(
Kz +Lz

(∣∣Z1
s

∣∣+
∣∣Z2

s

∣∣))2
+

1
2

]
ds+

(∫ T

0
|δ fs|ds

)2

.
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Thus, for all p > 1, there exists a constant K depending only on p such that

‖δZ ⋆W‖p

H p 6 K

[
‖δξ‖p

Lp +E

((
sup

06t6T

∣∣∣∣
∫ t

0
δY.(δZs dWs)

∣∣∣∣
)p/2

)

+E

((
sup

06s6T

|δYs|2
∫ T

0

[
Ky +Ly

∣∣Z1
s

∣∣2 + 1
2

(
Kz +Lz

(∣∣Z1
s

∣∣+
∣∣Z2

s

∣∣))2
+ 1

]
ds

)p/2
)
+E

((∫ T

0
|δ fs|ds

)p)]
.

In the following we keep the notation K for all constants appearing in the upper bounds. Since

(∫ .

0
(δY δZ)s.dWs

)

is a local martingale vanishing at 0, then, according to the BDG inequalities, we get for all p > 1:

E

((
sup

06t6T

∣∣∣∣
∫ t

0
(δY δZ)s.dWs

∣∣∣∣
)p/2

)
=

∥∥∥∥
∫ .

0
(δY δZ)s.dWs

∥∥∥∥
p/2

S p/2
6 (C′

p/2)
p/2

∥∥∥∥
∫ .

0
δY.(δZs dWs)

∥∥∥∥
p/2

H p/2
.

Since we have

∥∥∥∥
∫ .

0
δY.(δZs dWs)

∥∥∥∥
p/2

H p/2
= E



(

d

∑
k=1

∫ T

0

(
δYs.δZ

(:,k)
s

)2
ds

)p/4

6 E

((
sup

06s6T

|δYs|2 ×
∫ T

0
|δZs|2 ds

)p/4
)
,

then the Cauchy-Schwartz inequality gives us

E

((
sup

06t6T

∣∣∣∣
∫ t

0
(δY δZ)s.dWs

∣∣∣∣
)p/2

)
6 (C′

p/2)
p/2‖δZ ⋆W‖p/2

H p ‖δY‖p/2
S p .

Moreover we obtain with the Cauchy-Schwarz and Young inequalites:

‖δZ ⋆W‖p

H p

6K

[
‖δξ‖p

Lp + ‖δZ ⋆W‖p/2
H p ‖δY‖p/2

S p +

‖δY‖p

S 2p E

((∫ T

0

[
1+
∣∣Z1

s

∣∣2 +
∣∣Z2

s

∣∣2
]

ds

)p)1/2

+E

((∫ T

0
|δ fs|ds

)p)]

6K

[
‖δξ‖p

Lp + ‖δY‖p

S p + ‖δY‖p

S 2p E

((∫ T

0

[
1+
∣∣Z1

s

∣∣2 +
∣∣Z2

s

∣∣2
]

ds

)p)1/2

+E

((∫ T

0
|δ fs|ds

)p)]

+
1
2
‖δZ ⋆W‖p

H p .

The energy inequality allows us to bound E

((∫ T

0

[
1+
∣∣Z1

s

∣∣2 +
∣∣Z2

s

∣∣2
]

ds

)p)
by

K
(

1+
∥∥Z1 ⋆W

∥∥2p

BMO
+
∥∥Z2 ⋆W

∥∥2p

BMO

)
,

which is finite recalling (i). Finally, for all p> 1, there exists some constant K (which depends only on p,Ky,Ly,Kz,Lz,T

and the BMO norms of Z1 ⋆W , Z2 ⋆W ) such that

‖δZ ⋆W‖p

H p 6 K

(
‖δξ‖p

Lp + ‖δY‖p

S 2p +

∥∥∥∥
∫ T

0
|δ fs|ds

∥∥∥∥
p

Lp

)
. (3.4)

Step 3 – Stability. Considering p >
m∗

2
and combining (3.2) where q = 2p with (3.4), we obtain existence of

a constant K̃p

(∥∥Z1 ⋆W
∥∥

BMO
,
∥∥Z2 ⋆W

∥∥
BMO

)
which depends only on p,Ky,Ly,Kz,Lz,T,K and the BMO norms of
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Z1 ⋆W , Z2 ⋆W such that

‖δY‖p

S 2p + ‖δZ ⋆W‖p

H p 6 K̃p

(∥∥Z1 ⋆W
∥∥

BMO
,
∥∥Z2 ⋆W

∥∥
BMO

)(
‖δξ‖p

L2p +

∥∥∥∥
∫ T

0
|δ fs|ds

∥∥∥∥
p

L2p

)
.

⋄

REMARK – 3.1 We can obtain also a symmetrized version of (i) by changing the linearization step in the proof.

For example we can commute Z1 and Z2 and (i) becomes

mLy

∥∥Z2 ⋆W
∥∥2

BMO
+Lz

(∥∥Z1 ⋆W
∥∥

BMO
+
∥∥Z2 ⋆W

∥∥
BMO

)
C′

m <
1
2
.

But we can also note that δFs = ÃsδYs + B̃sδZs + δ fs, where

ÃsδYs =
1
2

(
f 1(s,Y 1

s ,Z
1
s )− f 1(s,Y 2

s ,Z
1
s )+ f 1(s,Y 1

s ,Z
2
s )− f 1(s,Y 2

s ,Z
2
s )
)
,

B̃sδZs =
1
2

(
f 1(s,Y 2

s ,Z
1
s )− f 1(s,Y 2

s ,Z
2
s )+ f 1(s,Y 1

s ,Z
1
s )− f 1(s,Y 1

s ,Z
2
s )
)
,

and symmetric estimates for Ã and B̃ hold true:

∣∣∣Ãs

∣∣∣6 Ky +
Ly

2

(∣∣Z1
s

∣∣2 +
∣∣Z2

s

∣∣2
)
,
∣∣∣B̃s

∣∣∣6 Kz +Lz

(∣∣Z1
s

∣∣+
∣∣Z2

s

∣∣) .

Then (i) becomes

mLy

(∥∥Z1 ⋆W
∥∥2

BMO
+
∥∥Z2 ⋆W

∥∥2
BMO

)
+LzC

′
m

(∥∥Z1 ⋆W
∥∥

BMO
+
∥∥Z2 ⋆W

∥∥)
BMO

< 1.

Let us denote for all m > 1 by Z
m

BMO the set of all BMO processes for which an a priori upper bound on this norm
is in force:

Z
m

BMO =

{
Z, Rd×k − valued BMO process

/
mLy ‖Z ⋆W‖2

BMO +LzC
′
m ‖Z ⋆W‖BMO <

1
2

}
.

If Ly 6= 0 we have:

Z
m

BMO =

{
Z, Rd×k − valued BMO process

/
∥∥ZM ⋆W

∥∥
BMO

<
−LzC

′
m +

√
2mLy +(LzC′

m)
2

2mLy

}
,

and if Ly = 0 we can assume that Lz 6= 0 (otherwise we obtain the classical Lipschitz framework) and we have

Z
m

BMO =

{
Z, Rd×k − valued BMO process

/
∥∥ZM ⋆W

∥∥
BMO

<
1

2LzC′
m

}
.

We denote by B
m(Ly,Lz):

B
m(Ly,Lz) =





−LzC
′
m +

√
2mLy +(LzC′

m)
2

2mLy

if Ly 6= 0,

1
2LzC′

m

if Ly = 0.

We keep the notation K̃
(∥∥Z1 ⋆W

∥∥
BMO

,
∥∥Z2 ⋆W

∥∥
BMO

)
for the constant appearing in the following stability result.
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COROLLARY – 3.1 (STABILITY RESULT (2)) Let m > 1, p >
m∗

2
and let us suppose that

(i) (ξ1,ξ2) ∈ (L2p)2,

(ii)

∫ T

0
|δ fs|ds ∈ L2p.

If Z1 and Z2 are in Z
m

BMO, then there exists a constant K̃p

(∥∥Z1 ⋆W
∥∥

BMO
,
∥∥Z2 ⋆W

∥∥
BMO

)
(depending only on

p,Ky,Ly,Kz,Lz,T and the BMO norms of Z1 ⋆W, Z2 ⋆W) such that

‖δY‖p

S 2p + ‖δZ ⋆W‖p

H p 6 K̃p

(∥∥Z1 ⋆W
∥∥

BMO
,
∥∥Z2 ⋆W

∥∥
BMO

)(
‖δξ‖p

L2p +

∥∥∥∥
∫ T

0
|δ fs|ds

∥∥∥∥
p

L2p

)
.

§ 3.2. Existence and uniqueness results when terminal condition and the generator have bounded Malli-

avin derivative. Let us consider some assumptions on Malliavin derivatives of ξ and f .

(Dxi,b) Malliavin derivative of ξ is bounded. That is

‖Dξ‖S ∞ = sup
06t6T

‖Dtξ‖L∞ < ∞.

(Df,b) (i) For all (t,y,z) ∈ [0,T ]×Rd ×Rd×k, we have

f (t,y,z) ∈ D
1,2(Rd), and E

(∫ T

0

∫ T

0
|Du f (s,y,z)|duds

)
< ∞.

(ii) There exists C > 0 such that for all (u, t,y,z) ∈ [0,T ]2 ×Rd ×Rd×k,

|Du f (t,y,z)| 6C

(
1+ |z|2

)
a.s.

(iii) For all (u, t) ∈ [0,T ]2, there exists a random variable Cu(t) such that for all (y1,z1,y2,z2) ∈(
Rd ×Rd×k

)2
,

∣∣Du f (t,y1,z1)−Du f (t,y2,z2)
∣∣ 6Cu(t)

(∣∣y1 − y2
∣∣+
∣∣z1 − z2

∣∣) a.s.

We recall first that (Y M,ZM) is the unique solution of (1.4). For all m> 1, let us consider the following assumption:

(BMO,m) there exists a constant K such that

(i) mLyK
2 +LzKC′

m <
1
2
, or equivalently K< B

m(Ly,Lz),

(ii) sup
M∈R+

∥∥ZM ⋆W
∥∥

BMO
6 K.

THEOREM – 3.1 (EXISTENCE AND UNIQUENESS (1)) Let m > 1. Under the main assumption (H), the BMO

estimation (BMO,m), and the boundeness of the Malliavin derivatives of ξ and f , (Dxi,b)—(Df,b), the quadratic

BSDE (1.3) has a unique solution in S
∞(Rd)× (S ∞(Rd×k)∩Z

m
BMO).

To show this theorem we begin to prove the following proposition which gives an uniform S
∞ estimates for Y M.

This is the keystone of our procedure.

PROPOSITION – 3.1 Let m > 1. If assumptions (H)—(BMO,m)—(Dxi,b)—(Df,b) hold true then ZM ∈ S
∞(Rd)

and

sup
M

‖ZM‖S ∞ < ∞.
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Proof.

Malliavin differentiation. We assume that f is continuously differentiable with respect to (y,z). This assumption
is not restrictive by considering a smooth regularization of f .
Recalling assumptions (Dxi,b) and (Df,b), Proposition 5.3 in [EKPQ97] gives us that for all 0 6 u 6 t 6 T , Y M

t

and ZM
t are respectively in D

1,2(Rd) and D
1,2(Rd×k). Moreover the process (DuY M,DuZM) = (DuY M

t ,DuZM
t )06t6T

solves for all u the following linear BSDE in Rd×k:

DuY M
t = Duξ +

∫ T

t

(
∇y f M

(
s,Y M

s ,ZM
s

)
DuY M

s +∇z f M
(
s,Y M

s ,ZM
s

)
DuZM

s

+(Du f M)
(
s,Y M

s ,ZM
s

))
ds−

∫ T

t
DuZM

s dWs, (3.5)

and (DtYt)06t6T is a version of (Zt)06t6T .
Let us emphasize that BSDE (3.5) means that for each p ∈ {1, ...,k},

Dp
uY M

t = Dp
u ξ +

∫ T

t

(
∇y f M

(
s,Y M

s ,ZM
s

)
Dp

uY M
s +∇z f M

(
s,Y M

s ,ZM
s

)
Dp

uZM
s

+(Dp
u f M)

(
s,Y M

s ,ZM
s

))
ds−

∫ T

t
Dp

u ZM
s dWs, (3.6)

besides DpY M is a process with values in Rd for each integer p.

S
∞-Estimation. We are looking for an S

∞-estimate for DuY M for all u ∈ [0,T ] applying results of section 2.
Since |∇zρ

M(z)|6 1, we obtain the following inequalities by recalling the main assumption (H),

∣∣∇y f M
(
s,Y M

s ,ZM
s

)∣∣=
∣∣∇y f

(
s,Y M

s ,ρM(ZM
s )
)∣∣6 Ky +Ly

∣∣ZM
s

∣∣2 ,
∣∣∇z f M

(
s,Y M

s ,ZM
s

)∣∣=
∣∣∇z f

(
s,Y M

s ,ρM(ZM
s )
)∣∣6 Kz + 2Lz

∣∣ZM
s

∣∣ .

Let us consider the two positive processes αM and β M defined below,

αM = Ky +Ly

∣∣ZM
∣∣2 , β M = Kz + 2Lz

∣∣ZM
∣∣ .

For all p ∈ {1, ...,k}, by recalling (BMO,m), we can apply Corollary 2.2 (iii), to the BSDE (3.6) with the following
constants and processes:

L = Ly, K = Ky, K′ = Kz, L′ = 2Lz, A =
∣∣ZM

∣∣2 , B =
∣∣ZM

∣∣ .

Thus, we obtain for all u ∈ [0,T ]

∥∥DuY M
∥∥

S ∞ 6

k

∑
p=1

∥∥Dp
uY M

∥∥
S ∞ 6 (m∗)!Km

k

∑
p=1

(
‖Dp

u ξ‖L∞ +

∥∥∥∥
√
|Dp

u f M(.,Y M,ZM)|⋆W

∥∥∥∥
2

BMO

)

6k× (m∗)!Km

(
‖Duξ‖L∞ +

∥∥∥∥
√
|Du f M(.,Y M,ZM)|⋆W

∥∥∥∥
2

BMO

)
.

Under the assumption (Df,b) together with (BMO,m), the last term has an uniformly S
∞-upper bound with respect

to M since, for all (u, t) ∈ [0,T ]2,

E

(∫ T

t

∣∣Du f M(s,Y M
s ,ZM

s )
∣∣ds

∣∣∣∣Ft

)
6C

(
T +

∥∥ZM ⋆W
∥∥2

BMO

)
,

hence we deduce

sup
M

∥∥∥∥
√
|Du f M(.,Y M,ZM)|⋆W

∥∥∥∥
BMO

6
√

C

(√
T + sup

M

∥∥ZM ⋆W
∥∥

BMO

)
.

The last supremum is finite under assumption (BMO,m) and we obtain the announced result taking u = t.
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We omitted the dependance with respect to
∥∥ZM ⋆W

∥∥
BMO

of the constant Km, since Km is equal (see the appendix
part) to

N−1

∑
i=0

(
1

1− 2mLy‖ZM ⋆W‖2
BMO − 2Lz‖ZM ⋆W‖BMO C′

m

)i

6

N−1

∑
i=0

(
1

1− 2mLyK
2 − 2LzKC′

m

)i

,

where N is an integer large enough and the uniform bound with respect to M follows. ⋄

Proof. [of Theorem 3.1] Uniqueness is already shown with stability Lemma 3.1 since, for all p > 1, S
∞(Rd) ⊂

S
p(Rd) and

S
∞(Rd×k)∩Z

m
BMO ⊂ H

p(Rd×k)

for all p > 1. For existence, we can fix M⋆ > sup
M

‖ZM‖S ∞ thanks to Proposition 3.1. Because of the assumptions

about f M we get

f M⋆
(

s,Y M⋆

s ,ZM⋆

s

)
= f

(
s,Y M⋆

s ,ρM∗
(

ZM⋆

s

))
= f

(
s,Y M⋆

s ,ZM⋆

s

)
.

(
Y M⋆

,ZM⋆
)

becomes a solution of the quadratic BSDE (1.3) in S
∞(Rd)× (S ∞(Rd×k)∩Z

m
BMO). ⋄

§ 3.3. Extension to general terminal values and generators. The aim of this subsection is to relax the as-
sumptions (Dxi,b) and (Df,b) with density arguments. To ensure the convergence, the keystone result will be the
stability Lemma 3.1.
We are going to assume that we can see f as a deterministic function f of a progressively measurable continuous
process. Randomness will be contained into this process.

(H’) (i) There exists a progressively measurable continuous process α ∈S
∞ with values in Rd′ ,d′

> 1,
and a function f : Rd′ ×Rd ×Rd×k −→ Rd such that for all (t,y,z) ∈ [0,T ]×Rd ×Rd×k:

f (t,y,z) = f(αt ,y,z).

Besides, we assume that (H) is true for f.

(ii) There exists D ∈ R+ such that for all (y,z) ∈ Rd ×Rd×k, (β ,β ′) ∈ (Rd′)2:

∣∣f(β ,y,z)− f(β ′,y,z)
∣∣ 6 D

(
1+ |z|2

)∣∣β −β ′∣∣ . (3.7)

Notation. For η ∈ L2(Ω,FT ), β ∈ S
∞ and M ∈ R+, we denote by (Y (M,η,β ),Z(M,η,β )) the unique solution of

the BSDE

Y
(M,η,β )

t = η +

∫ T

t
fM
(

βs,Y
(M,η,β )
s ,Z

(M,η,β )
s

)
ds−

∫ T

t
Z
(M,η,β )
s dWs, 0 6 t 6 T, (3.8)

where for all (t,y,z) ∈ [0,T ]×Rd ×Rd×k and α a process with values in (Rd′), fM(αt ,y,z) = f M(t,y,z).

(BMO2,m) We assume that ξ ∈ L2m∗
and that there exists a constant K such that

(i) mLyK
2 +LzKC′

m <
1
2
,

(ii) sup
M∈R+

sup
‖η‖

L2m∗6‖ξ‖
L2m∗

‖β‖
L2(Ω×[0,T ])6‖α‖

L2(Ω×[0,T ])

∥∥∥Z(M,η,β ) ⋆W

∥∥∥
BMO

6K.

THEOREM – 3.2 (EXISTENCE AND UNIQUENESS (2)) Let m> 1. Under the main assumption (H’) and the BMO

estimation (BMO2,m), the quadratic BSDE (1.3) has a unique solution in S
2m∗

(Rd)× (H m∗
(Rd×k)∩Z

m
BMO).
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Proof.

Step 1– Approximations. We can approach ξ with a sequence of random variables (ξ n)n∈N such that for every
n, ξ n has a bounded Malliavin derivative:

‖Dξ n‖S ∞ < ∞.

More precisely ξ n can be chosen of the form Φn(Wt1 , ...,Wtn) where Φn ∈C
∞
b (Rn), (t1, ..., tn)∈ [0,T ]n and ξ n tends

to ξ in every Lp for p > 1 (see [Nua06], Exercise 1.1.7).
Since α is adapted, we can approach this process with a sequence of sample processes αn of the form

αn
t =

pn−1

∑
i=0

αtn
i
1[tn

i ,t
n
i+1[

(t),

where (tn
i )

pn

i=0 is a sequence of subdivisions of [0,T ], with sup
06i6pn−1

∣∣tn
i+1 − tn

i

∣∣−→n→∞ 0, and, for all 0 6 i 6 pn−1,

n ∈ N, α i,n is a Ftn
i
-measurable bounded random variable. We have a convergence of this sequence to α in

L2(Ω× [0,T ]):

E

(∫ T

0
|αn

s −αs|2 ds

)
−→
n→∞

0.

We can assume in addition that for all n and for all 0 6 i 6 pn, α i,n has a bounded Malliavin derivative since this
set is dense in L2(Ω). It is obvious that for all 0 6 u 6 T and 0 6 t 6 T ,

Duαn
t =

pn−1

∑
i=0

Duα i,n
t 1[tn

i ,t
n
i+1[

(u).

According to Proposition 1.3 applied to ϕ = f(.,y,z), there exists for all n ∈ N and t ∈ [0,T ] a bounded random
variable G such that

Dt f(α
n
t ,y,z) = G.Dtα

n
t , and |G|6 D(1+ |z|2).

For each n ∈ N: ξ n satisfies (Dxi,b), f(αn
. , ., .) satisfies (Df,b) hence for all M ∈ R+, fM(αn

. , ., .) too. And we can
consider the localized approximated BSDE for all M ∈ R+ and n ∈ N:

Y
M,n

t = ξ n +
∫ T

t
fM
(
αn

s ,Y
M,n
s ,ZM,n

s

)
ds−

∫ T

t
ZM,n

s dWs, 0 6 t 6 T.

For each n ∈ N, under (H’), (Dxi,b) for ξ n, (Df,b) for fM(αn
. , ., .) and (BMO2,m), we can apply Proposition 3.1

and we obtain that sup
M∈R+

∥∥ZM,n
∥∥

S ∞ < ∞. The classical procedure of localization allows us to take M large enough

and we get (Y n,Zn) solution in S
2(Rd)×H

2(Rd×k) of

Y n
t = ξ n +

∫ T

t
f(αn

s ,Y
n
s ,Z

n
s )ds−

∫ T

t
Zn

s dWs, 0 6 t 6 T.

Step 2– Application of the stability result. We can assume that for all n, ‖ξ n‖L2m∗ 6 ‖ξ‖L2m∗ . If it is not true,

we consider the sequence ξ̃ n =
‖ξ‖Lm∗

‖ξ‖Lm∗ + ‖ξ n − ξ‖Lm∗
ξ n instead of ξ n. The same argument allows us to assume

that
‖αn‖L2m∗

(Ω×[0,T ]) 6 ‖α‖L2m∗
(Ω×[0,T ]) .

Under (BMO2,m), we have the estimate

mLy ‖Zn ⋆W‖2
BMO +Lz ‖Zn ⋆W‖BMO C′

m 6 mLyK
2 +LzKC′

m <
1
2
.
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Hence, for all n1,n2 ∈ N, we can use the stability Lemma 3.1 for p = m∗ which gives us

‖Y n1 −Y n2‖m∗
S 2m∗ + ‖Zn1 ⋆W −Zn2 ⋆W‖m∗

H m∗

6K̃m∗


‖ξ n1 − ξ n2‖m∗

L2m∗ +E

((∫ T

0

∣∣f
(
αn1

t ,Y n2
t ,Zn2

t

)
− f
(
αn2

t ,Y n2
t ,Zn2

t

)∣∣dt

)2m∗)1/2

 .

The constant K̃m∗ appearing does not depend on n under (BMO2,m): this fact was already highlighted in the proof
of Proposition 3.1 where an explicit formula for K̃m∗ is given. (ξ n)n∈N is a Cauchy sequence in L2m∗

:

‖ξ n1 − ξ n2‖L2m∗ −→
n1,n2→∞

0.

For the second term, we use the Hölder inequality:

E

((∫ T

0

∣∣f
(
αn1

t ,Y n2
t ,Zn2

t

)
− f
(
αn2

t ,Y n2
t ,Zn2

t

)∣∣dt

)2m∗)

6D2m∗
E

((∫ T

0

(
1+
∣∣Zn2

t

∣∣2
)∣∣αn1

t −αn2
t

∣∣dt

)2m∗)

6Dm∗ ‖αn1 −αn2‖2m∗
S 4m∗ E

((∫ T

0

(
1+
∣∣Zn2

t

∣∣2
)

dt

)4m∗)1/2

. (3.9)

Since Zn ⋆W ∈ BMO, and (BMO2,m) holds true, the last term is uniformly bounded with respect to n2 with the
energy inequality. Besides, let us show that the first one tends to 0 when n1,n2 go to infinity by using the dominated
convergence theorem. We show

E

(
sup

t∈[0,T ]
|αn

t −αt |4m∗
)

−→
n→∞

0.

For all t ∈ [0,T ] and n ∈ N,
|αn

t −αt |6 |αn
t |+ |αt |6 2‖α‖S ∞ a.s,

and by using the uniform continuity of α on [0,T ], we get:

sup
t∈[0,T ]

|αn
t −αt | −→

n→∞
0 a.s.

And finally

E

((∫ T

0

∣∣f
(
αn1

t ,Y n2
t ,Zn2

t

)
− f
(
αn2

t ,Y n2
t ,Zn2

t

)∣∣dt

)2m∗)
−→

n1,n2→∞
0.

Consequently (Y n,Zn ⋆W )n∈N is a Cauchy sequence in S
2m∗

(Rd)× H
m∗
(Rd×k), hence the convergence in

S
2m∗

(Rd)×H
m∗
(Rd×k) to a process (Y,Z ⋆W), and (Y,Z) solves the BSDE (1.3). Uniqueness follows from the

stability lemma, since, according to Proposition 4.5, the upper bound for ‖Zn ⋆W‖BMO holds true for ‖Z ⋆W‖BMO.
⋄

REMARK – 3.2 If f is a deterministic function, then the assumption (Df,b) is not required: for example when we

consider the problem of martingale in manifolds with prescribed terminal value.

REMARK – 3.3 If we replace the inequality 3.7 by the new one: there exists η > 0 such that for all (β ,β ′,y,z) ∈
(Rd′)2 ×Rd ×Rd×k: ∣∣f(β ,y,z)− f(β ′,y,z)

∣∣ 6 D
(

1+ |z|2−η
)∣∣β −β ′∣∣ ,

α progressively measurable is enough, and does not need to be continuous. Let us show this property. We change
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the inequality (3.9) by the following for all p > 1, by using the Hölder and Cauchy-Schwartz inequalities:

E

((∫ T

0

∣∣f
(
αn1

t ,Y n2
t ,Zn2

t

)
− f
(
αn2

t ,Y n2
t ,Zn2

t

)∣∣dt

)2m∗)

6 D2m∗
E

((∫ T

0

(
1+
∣∣Zn2

t

∣∣2−η
)∣∣αn1

t −αn2
t

∣∣dt

)2m∗)

6D2m∗
E

((∫ T

0

(
1+
∣∣Zn2

t

∣∣2−η
)p

dt

)2m∗/p

×
(∫ T

0

∣∣αn1
t −αn2

t

∣∣p∗ dt

)2m∗/p∗
)

6D2m∗
E

((∫ T

0

(
1+
∣∣Zn2

t

∣∣2−η
)p

dt

)4m∗/p
)1/2

E

((∫ T

0

∣∣αn1
t −αn2

t

∣∣p∗ dt

)4m∗/p∗
)1/2

6D2m∗
T

4m∗
p∗ −2m∗

E

((∫ T

0

(
1+
∣∣Zn2

t

∣∣2−η
)p

dt

)4m∗)1/2p

‖(αn1 −αn2)⋆W‖2m∗
H 4m∗ .

With the energy inequality, the first term is uniformly bounded with respect to n2 under the assumption (BMO2,m)

by choosing 1 < p 6
2

2−η
. The second one tends to zero when n1,n2 go to infinity since the convergence in every

H
r for r > 1 holds true.

4 APPLICATION OF EXISTENCE AND UNIQUENESS RESULTS TO

MULTIDIMENSIONAL QUADRATIC BSDES WITH SPECIAL STRUCTURE.

In this part we consider the initial quadratic BSDE (1.3):

Yt = ξ +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, 0 6 t 6 T,

and the localized one (1.4)

Y M
t = ξ +

∫ T

t
f M
(
s,Y M

s ,ZM
s

)
ds−

∫ T

t
ZM

s dWs, 0 6 t 6 T.

The aim of this section is to give explicit assumptions on the terminal condition and the generator to ensure that
(BMO2,m) is fulfilled for one m > 1.
More precisely, let us consider a Lipschitz random generator g : [0,T ]×Rd ×Rd×k and the following BSDE:

Yt = ξ +

∫ T

t
g(s,Ys,Zs)ds−

∫ T

t
Zs dWs. (4.1)

The generator g will play the role of f M in the localized BSDE (1.4), so g will always be assumed to be a Lipschitz
function. In this section we will display different assumptions on ξ and g that implies (BMO2,m) for one m > 1.

§ 4.1. An existence and uniqueness result for BSDEs with a small terminal condition. In [Tev08], Tevzadze
obtains a result of existence and uniqueness for multidimensional quadratic BSDEs when the terminal condition is
small enough by using a contraction argument in S

∞ ×BMO. We are able to deal with this kind of assumptions
with our approach.
Let us assume in this subsection the following hypothesis.

(HQ) (i) there exists γ ∈ R+ such that for all (t,y,z) ∈ [0,T ]×Rd ×Rd×k, we have |g(t,y,z)|6 γ |z|2 ,
(ii) 4γ2 ‖ξ‖2

L∞ 6 1.

PROPOSITION – 4.1 Let us assume that (HQ) is in force. Then Z ⋆W ∈ BMO, Y ∈ S
∞ and we have following

estimates:
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(i) ‖Z ⋆W‖2
BMO 6

1
2γ2

(
1−
√

1− 4γ2‖ξ‖2
L∞

)
,

(ii) ‖Y‖S ∞ 6 ‖ξ‖L∞ + γ ‖Z ⋆W‖2
BMO.

We can note that the first upper bound does not depend on Lipschitz constants of g. So, for g = f M , it will not
depend on M.

Proof. The unique solution (Y,Z) ∈S
2×H

2 of (4.1) can be constructed with a Picard principle as in the seminal
paper of Pardoux and Peng (see [PP90]). We consider a sequence (Y n,Zn)N∈N such that (Y n,Zn)n∈N tends to (Y,Z)

in S
2
(

Rd
)
×H

2
(

Rd×k
)

. This sequence is given by

Y n+1
t = ξ +

∫ T

t
g(s,Y n

s ,Z
n
s )ds−

∫ T

t
Zn+1

s dWs, 0 6 t 6 T, (Y 0,Z0) = (0,0).

We will prove with an induction that: for all n ∈ N, Y n ∈ S
∞, Zn ⋆W ∈ BMO and

‖Zn ⋆W‖2
BMO 6

1
2γ2

(
1−
√

1− 4γ2‖ξ‖2
L∞

)
.

Loosely speaking the case n = 0 is satisfied. Let us suppose that Y n ∈ S
∞ and Zn ⋆W ∈ BMO. Then for all

t ∈ [0,T ], under (HQ),
∣∣Y n+1

t

∣∣6 E(|ξ ||Ft)+ γ ×E

(∫ T

t
|Zn

s |2 ds

∣∣∣∣Ft

)
. (4.2)

We get Y n+1 ∈ S
∞ since

∥∥Y n+1
∥∥

S ∞ 6 ‖ξ‖L∞ + γ ‖Zn ⋆W‖BMO. Itô formula gives the following equality

∣∣Y n+1
t

∣∣2 = |ξ |2 + 2
∫ T

t
Y n+1

s .g(s,Y n
s ,Z

n
s )ds− 2

∫ T

t
Y n+1

s .
(
Zn+1

s dWs

)
−
∫ T

t

∣∣Zn+1
s

∣∣2 ds.

By taking conditional expectation we get for every stopping time τ:

∣∣Y n+1
τ

∣∣2 +E

(∫ T

τ

∣∣Zn+1
s

∣∣2 ds

∣∣∣∣Fτ

)
6 |ξ |2 + 2E

(∫ T

τ
Y n+1

s .g(s,Y n
s ,Z

n
s )ds

∣∣∣∣Fτ

)

6‖ξ‖2
L∞ + 2

∥∥Y n+1
∥∥

S ∞ E

(∫ T

τ
γ |Zn

s |2 ds

∣∣∣∣Fτ

)

6‖ξ‖2
L∞ + 2γ

∥∥Y n+1
∥∥

S ∞ ‖Zn ⋆W‖2
BMO .

And finally

∥∥Y n+1
∥∥2

S ∞ +E

(∫ T

τ

∣∣Zn+1
s

∣∣2 ds

∣∣∣∣Fτ

)
6‖ξ‖2

L∞ + 2γ
∥∥Y n+1

∥∥
S ∞ ‖Zn ⋆W‖2

BMO

6‖ξ‖2
L∞ +

∥∥Y n+1
∥∥2

S ∞ + γ2‖Zn ⋆W‖4
BMO .

Thus Zn+1 ⋆W ∈ BMO and we have
∥∥Zn+1 ⋆W

∥∥2
BMO

6 ‖ξ‖2
L∞ + γ2‖Zn ⋆W‖4

BMO .

Finally, it yields with the induction assumption that

∥∥Zn+1 ⋆W
∥∥2

BMO
6

1
2γ2

(
1−
√

1− 4γ2‖ξ‖2
L∞

)
.

The induction is achieved. Now we can use Proposition 4.5 with K =
1

2γ2

(
1−
√

1− 4γ2‖ξ‖2
L∞

)
, since Zn ⋆W

tends to Z ⋆W in H
2, we conclude ‖Z ⋆W‖2

BMO 6
1

2γ2

(
1−
√

1− 4γ2‖ξ‖2
L∞

)
and the final upper bound on

‖Y‖
S ∞ . ⋄
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We come back to the initial quadratic BSDE (1.3).

PROPOSITION – 4.2 Let m > 1. Under (H’)—(HQ), and the following condition on γ:

1√
2γ

(
1−
√

1− 4γ2‖ξ‖2
L∞

) 1
2

< B
m(Ly,Lz),

the BSDE (1.3) has a unique solution in S
2m∗

(Rd)× (H m∗
(Rd×k)∩Z

m
BMO). If in addition (Dxi,b) holds true,

there exists an unique solution in S
∞(Rd)× (S ∞(Rd×k)∩Z

m
BMO).

Proof. The proof of the proposition is a direct consequence of Theorem 3.2 together with Proposition 4.1, since
the map

x ∈ R+ 7→ 1√
2γ

(
1−
√

1− 4γ2x2
) 1

2

is nondecreasing, the assumption (BMO2,m) is satisfied. ⋄

§ 4.2. An existence and uniqueness result for BSDEs with a monotone generator. In this subsection we
investigate the case where we have for g a kind of monocity assumption with respect to y.

(HMon) (i) There exists µ > 0 and α,γ > 0 such that for all (s,y,z) ∈ [0,T ]×Rd ×Rd×k

y.g(s,y,z) 6 α |y|− µ |y|2 + γ |y| |z|2 ,

(ii) 4γ2 ‖ξ‖2
L∞ 6 1.

PROPOSITION – 4.3 Let us assume that (HMon) is in force. Then Z ⋆W ∈ BMO, Y ∈ S
∞ and we have

(i) esssup sup
t∈[0,T ]

E

(∫ T

t
e−µ(s−t) |Zs|2 ds

∣∣∣∣Ft

)
6

1
2γ2

(
1−
√

1− 4γ2A2
)
,

(ii) ‖Y‖
S ∞ 6

1
2γ

(
1−
√

1− 4γ2A2
)
+

√
A2 +

1
4γ2

(
1−
√

1− 4γ2A2
)2

.

with A = max

(
‖ξ‖L∞ ,

α

µ

)
.

Proof. The unique solution (Y,Z) of (4.1) can be constructed with a Picard principle. We consider a sequence

(Y n,Zn)N∈N such that (Y n,Zn)n∈N tends to (Y,Z) in S
2
(

Rd
)
×H

2
(

Rd×k
)

, with

Y n+1
t = ξ +

∫ T

t
g
(
s,Y n+1

s ,Zn
s

)
ds−

∫ T

t
Zn+1

s dWs, 0 6 t 6 T, (Y 0,Z0) = (0,0), .

We can easily show that replacing Y n+1 by Y n in the generator does not affect the convergence of the scheme since

g is a Lipschitz function. Itô formula to the process e−µt
∣∣Y n+1

t

∣∣2 gives

e−µt
∣∣Y n+1

t

∣∣2 =e−µT |ξ |2 −
∫ T

t

(
−µe−µs

∣∣Y n+1
s

∣∣2 − 2e−µsY n+1
s .g(s,Y n+1

s ,Zn
s )+

∣∣Zn+1
s

∣∣2
)

ds

− 2
∫ T

t
e−µsY n+1

s .
(
Zn+1

s dWs

)
.

Taking conditional expectation, and using assumption (HMon), we get:

∣∣Y n+1
t

∣∣2 6e−µ(T−t) ‖ξ‖2
L∞ +E

(∫ T

t
2e−µ(s−t)

(
α
∣∣Y n+1

s

∣∣− µ

2

∣∣Y n+1
s

∣∣2 + γ
∣∣Y n+1

s

∣∣ |Zn
s |2
)

ds

∣∣∣∣Ft

)

−E

(∫ T

t
e−µ(s−t)

∣∣Zn+1
s

∣∣2 ds

∣∣∣∣Ft

)
.
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With the Young inequality we get the following estimate for all n and s ∈ [0,T ]:

α
∣∣Y n+1

s

∣∣6 µ

2

∣∣Y n+1
s

∣∣2 + α2

2µ
,

and thus

∣∣Y n+1
t

∣∣2 6e−µ(T−t) ‖ξ‖2
L∞ +E

(∫ T

t
2e−µ(s−T)

(
α2

2µ
+ γ
∣∣Y n+1

s

∣∣ |Zn
s |2
)

ds

∣∣∣∣Ft

)

−E

(∫ T

t
e−µ(s−t)

∣∣Zn+1
s

∣∣2 ds

∣∣∣∣Ft

)

6e−µ(T−t) ‖ξ‖2
L∞ +

α2

µ2

(
1− e−µ(T−t)

)

︸ ︷︷ ︸
6A2

+2γE

(∫ T

t
e−µ(s−t)

∣∣Y n+1
s

∣∣ |Zn
s |2 ds

∣∣∣∣Ft

)

−E

(∫ T

t
e−µ(s−t)

∣∣Zn+1
s

∣∣2 ds

∣∣∣∣Ft

)
.

Finally we get

∣∣Y n+1
t

∣∣2 +E

(∫ T

t
e−µ(s−t)

∣∣Zn+1
s

∣∣2 ds

∣∣∣∣Ft

)
6 A2 + 2γE

(∫ T

t
e−µ(s−t)

∣∣Y n+1
s

∣∣ |Zn
s |2 ds

∣∣∣∣Ft

)
.

With the Itô formula applied to eKt
∣∣Y n+1

t

∣∣2 with K large enough, we justify with classical inequalities since g is
Lipschitz, and that for all n ∈ N, Y n+1 ∈ S

∞. And then

∥∥Y n+1
∥∥2

S ∞ + esssup sup
t∈[0,T ]

E

(∫ T

t
e−µ(s−t)

∣∣Zn+1
s

∣∣2 ds

∣∣∣∣Ft

)

6A2 + 2γ
∥∥Y n+1

∥∥
S ∞ esssup sup

t∈[0,T ]
E

(∫ T

t
e−µ(s−t) |Zn

s |2 ds

∣∣∣∣Ft

)
(4.3)

6A2 +
∥∥Y n+1

∥∥2
S ∞ + γ2 esssup sup

t∈[0,T ]

E

(∫ T

t
e−µ(s−t) |Zn

s |2 ds

∣∣∣∣Ft

)
.

With an induction we show easily that for all n, Zn ⋆W ∈ BMO, Y n ∈ S
∞ and

esssup sup
t∈[0,T ]

E

(∫ T

t
e−µ(s−t) |Zn

s |2 ds

∣∣∣∣Ft

)
6

1
2γ2

(
1−
√

1− 4γ2A2
)
.

The inequality (4.3) gives

∥∥Y n+1
∥∥

S ∞ 6 γ esssup sup
t∈[0,T ]

E

(∫ T

t
e−µ(s−t) |Zn

s |2 ds

∣∣∣∣Ft

)
+

√√√√
A2 + γ2

(
esssup sup

t∈[0,T ]
E

(∫ T

t
e−µ(s−t) |Zn

s |2 ds

∣∣∣∣Ft

))2

.

Letting n to infinity, and with the Proposition 4.5, we finally get

esssup sup
t∈[0,T ]

E

(∫ T

t
e−µ(s−t) |Zs|2 ds

∣∣∣∣Ft

)
6

1
2γ2

(
1−
√

1− 4γ2A2
)
.

We deduce

‖Y‖
S ∞ 6

1
2γ

(
1−
√

1− 4γ2A2
)
+

√
A2 +

1
4γ2

(
1−
√

1− 4γ2A2
)2

.

⋄
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REMARK – 4.1 What about the BMO norm of Z ? — we can slice [0,T ] with a uniform sequence (Ti)
N
i=1 such that

0 = T0 6 T1 6 ...6 TN = T and for all i, h = |Ti+1 −Ti|=
T

N
. The last inequality can be used for each started and

stopped process Ti Z ⋆W ⌋Ti+1 :

esssup sup
Ti6t6Ti+1

E

(∫ Ti+1

t
|Zs|2 ds

∣∣∣∣Ft

)
6eµh

(
esssup sup

Ti6t6Ti+1

E

(∫ Ti+1

t
e−µ(s−t) |Zs|2 ds

∣∣∣∣Ft

))

6
eµh

2γ2

(
1−
√

1− 4γ2A2
)
.

Previous remark showed that Z ⋆W is

(
e

1
2 µh

√
2γ

(
1−
√

1− 4γ2A2
) 1

2

)
-sliceable for each h > 0. According to Re-

mark 2.2, we can enounce an other result of existence and uniqueness for the BSDE (1.3).

PROPOSITION – 4.4 Let m > 1. Under (H’)—(HMon) and the following estimate on γ:

1√
2γ

(
1−
√

1− 4γ2A2
) 1

2
< B

m(Ly,Lz)

with A = max

(
‖ξ‖L∞ ,

α

µ

)
, the quadratic BSDE (1.3) has a solution in S

2m∗
(Rd)× (H m∗

(Rd×k)∩Z
m

BMO). If

in addition (Dxi,b) holds true, there exists a unique solution in S
∞(Rd)× (S ∞(Rd×k)∩Z

m
BMO).

Proof. By using Remark 4.1, we obtain that assumption (BMO2,m) is fulfilled. Since the map x ∈ R+ 7→
1√
2γ

(
1−
√

1− 4γ2x2
) 1

2
is nondecreasing, assumption (BMO2,m) is satisfied. ⋄

§ 4.3. Convexity assumption and martingales in manifolds with prescribed terminal condition. Problem
of finding martingales on a manifold with prescribed terminal value generated a huge literature. On the one hand
with geometrical methods, Kendall in [Ken90] treat the case where the terminal value lies in a geodesic ball and
is expressed as a functional of the Brownian motion. Kendall gives too a characterization of the uniqueness in
terms of existence of a convex separative function: a convex function on the product which vanishes exactly on the
diagonal. Besides, in [Ken92], Kendall proved that the following property every couple of points are connected

by a unique geodesic is not sufficient to ensure existence of a separative convex function, which was conjectured
by Émery. An approach by barycenters, of the martingale notion on a manifold, is used by Picard in [Pic94] for
Brownian filtrations. Arnaudon in [Arn97] solved the problem in a complex analytic manifold having a convex
geometry property for continuous filtrations. The main ideas are related to differentiable families of martingales.
For all this results, a convex geometry property is assumed. The first approach by systems of BSDEs is shown by
Darling in [Dar95].

A so-called linear connection structure is required to define martingales on a manifold M in a intrinsic way. A

contrario for the semimartingales a differential structure is enough. Definition of martingale can be rewritten with
a system of coupled BSDEs having a quadratic growth. We begin to recall it. We can refer to [Eme89] for more
details about stochastic calculus on manifolds.
Let us consider (M ,∇) a differential manifold equipped with a linear connection ∇. This is equivalent to give
ourself a Hessian notion or a covariant derivative. We say that a continuous process X is a semimartingale on M if
for all F ∈ C

2(M ), F ◦X is a real semimartingale. Consistance of the definition is simply due to the Itô formula.
We say that a continuous process Y is a (local) ∇-martingale if for all F ∈ C

2(M ),

F(Y )t −
1
2

∫ t

0
∇dF(dY,dY )s

is a real local martingale on [0,T ]. Again it is not very hard to see with the Itô formula that this definition is

equivalent to the Euclidean one in the flat case.
∫ .

0
∇dF(dY,dY )s is a notation for the quadratic variation of Y with
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respect to the (0,2)-tensor field ∇dF . This notion is defined by considering a proper embedding (xi)16i6d into
Rd such that every bilinear form b can be written as b = bi j dxi ⊗ dx j (implicit summation). On the other hand we
prove that ∫ .

0
b(dY,dY)s :=

∫ .

0
bi j(Ys)d

〈
Y i,Y j

〉
s

does not depend on (xi)16i6d . It is well-known that for all m ∈ M ,

(∇dF)i j (m) = Di jF(m)−Γk
i j(m)DkF(m),

where Γk
i j(m) denote a ∇-Christoffel symbol at the point m. The coefficients are symmetric with respect to i, j.

Hence martingale property in the domain of a local chart is equivalent to the existence of a process Z such that
(Y,Z) solves the following BSDE

Yt = ξ +

∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
Zs dWs, 0 6 t 6 T,

with f : [0,T ]×Rd ×Rd×k →Rd defined by f (s,y,z) =
1
2

(
Γk

i j(y)z
(i,:).z( j,:)

)
16k6d

. It is an easy consequence of the

representation theorem for the Brownian martingales and the definition applied to F = xi. We consider in addition
the following assumption

(HGam) there exists two constants Ly and Lz such that for all i, j,k

∣∣∣Γk
i j(y)−Γk

i j(y
′)
∣∣∣6 2Ly

∣∣y− y′
∣∣ ,

∣∣∣Γk
i j(y)

∣∣∣6 2Lz.

For example (HGam) is in force if the domain of the chart is a compact set. It is also true if we choose an
exponential chart. Without loss of generality we can suppose that M has a global system of coordinates: all the
Christoffel symbols will be computed in this system.

Under (HGam), assumption (H) is in force: for all (y,y′,z,z′) ∈ (Rd)2 ×
(

Rd×k
)2

,

∣∣ f (t,y,z)− f (t,y′,z)
∣∣6 Ly |z|2

∣∣y− y′
∣∣ ,

and with the symmetric property of the Christoffer symbols, we have

f (t,y,z′)− f (t,y,z)=−1
2 ∑

i, j

Γ•
i j(y)

(
z(i,:).z( j,:)− (z′)(i,:).(z′)( j,:)

)
=−1

2 ∑
i, j

Γ•
i j(y)

(
z(i,:)− (z′)(i,:)

)(
z( j,:)+(z′)( j,:)

)
,

∣∣ f (t,y,z)− f (t,y,z′)
∣∣6 Lz

(
|z|+

∣∣z′
∣∣)∣∣z− z′

∣∣ .

Localization. Let us consider for all M ∈ R+ a localization ρM : Rd×k → Rd×k, and let us define a function
hM : Rd×k → R such that:

ρM(z) =
z√

1+ hM(z)
.

We define hM as a smooth map satisfying:

hM(z) =





0 if |z|6 M,( |z|
M+ 1

)2

− 1 if |z|> M+ 1.

As usual we denote by (Y M,ZM) the solution obtained by replacing f by f M . This choice of ρM will be useful in
the following computations.
Since f does not depend on time and random, assumption (Df,b) is not required here and we get the following
proposition.

PROPOSITION – 4.5 Let m > 1. If (HGam) and (BMO2,m) hold true, there exists an unique ∇-martingale in

S
m∗
(Rd) with terminal value ξ , such that E

(
〈Y,Y 〉m∗/2

T

)
< ∞. If in addition (Dxi,b) is in force, there exists a

unique martingale in S
∞(Rd) such that 〈Y,Y 〉T ∈ L∞.
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In [Dar95] Proposition 3.4., Darling shows that a convex geometry property gives uniform estimations for the
BMO norm of ZM ⋆W . We deal with this kind of assumption.

DEFINITION – 4.1 We say that a function F ∈ C
2(M ,R) (seen as a function on Rd) is doubly convex on a set

G ⊂ Rd if for all y ∈ G and z ∈ Rd ,

min{HessF(y)(z,z),∇dF(y)(z,z)} > 0,

and, for α > 0, α-strictly doubly convex on G if for all y ∈ G and z ∈ Rd ,

min{HessF(y)(z,z),∇dF(y)(z,z)} > α |z|2 .

This property means that F is convex with respect to the flat connection, and, with respect to the connection ∇.

THEOREM – 4.1 Let m > 1. Let us assume that:

(i) there exists a function Fdc ∈ C
2(M ,R), such that G = (Fdc)−1(]−∞,0]) is compact and ξ ∈ G,

(ii) Fdc is doubly convex on M , and there exists α > 0 such that Fdc is α-strictly doubly convex on G with:

(
sup

(x,y)∈G2

{
Fdc(x)−Fdc(y)

})1/2

6

√
α

2
×B

m(Ly,Lz),

(iii) (HGam) holds true.

Then there exists a unique ∇-martingale in S
∞(Rd) with terminal value ξ such that 〈Y,Y 〉T ∈ L∞.

Proof. For F ∈ C
2(M ,R), the Itô formula with F seen as a function on Rd gives for all stopping time τ:

E
(
F(ξ )−F(Y M

τ )
∣∣Fτ

)
= E

(∫ T

τ

(
1
2

k

∑
l=1

HessF(Y M
s )
(

Z
M,(:,l)
s ,Z

M,(:,l)
s

)
− dF

(
Y M

s

)
f M
(
Y M

s ,ZM
s

)
)

ds

∣∣∣∣∣Fτ

)
.

The local martingale part is a martingale if F has bounded first derivative. By using the form of f , its formulation
in the local chart and the formula between ZM and ρM(ZM), we get

E
(
F(ξ )−F(Y M

τ )
∣∣Fτ

)

=
1
2

E

(∫ T

τ

k

∑
l=1

(
hM(ZM

s )HessF(Y M
s )
(

ρM(ZM
s )(:,l),ρM(ZM

s )(:,l)
)
+∇dF

(
Y M

s

)(
ρM(ZM

s )(:,l),ρM(ZM
s )(:,l)

))
ds

∣∣∣∣∣Fτ

)
.

(4.4)

Let us show that Y M is in G almost surely. We reproduce the proof of Darling in [Dar95] to get this property. We
know with (4.4) applied to F = Fdc, integrating between τ and σ together with (ii), that for all σ > τ a.s we have

E
(

Fdc(Y M
σ )
∣∣∣Fτ

)
> Fdc(Y M

τ ) a.s.

Let us consider for all n ∈ N the following sequence of stopping times: σn = inf

{
u > τ

∣∣∣∣ Fdc(Y M
u )6

1
n

a.s

}
.

Each σn is finite almost surely if ξ ∈ G. Continuity of Y M gives for all n ∈ N, Fdc(Y M
σ n)6

1
n

a.s. So we get for all

stopping time τ:

Fdc(Y M
τ )6 E

(
Fdc(Y M

σ n)
∣∣∣Fτ

)
6

1
n

a.s.

Consequently, for all t ∈ [0,T ], P(Yt ∈ G) = 1. The α-strictly doubly convexity on G gives us
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E
(

Fdc(ξ )−Fdc(Y M
τ )
∣∣∣Fτ

)

>
α

2
E

(∫ T

τ

k

∑
l=1

(
hM(ZM

s )
∣∣∣ρM(ZM

s )(:,l)
∣∣∣
2
+
∣∣∣ρM(ZM

s )(:,l)
∣∣∣
2
)

ds

∣∣∣∣∣Fτ

)
=

α

2
E

(∫ T

τ

∣∣ZM
s

∣∣2 ds

∣∣∣∣Fτ

)
. (4.5)

Continuity of Fdc on G yields

∥∥ZM ⋆W
∥∥

BMO
6

√√√√ 2
α
×
(

sup
(x,y)∈G×G

{Fdc(x)−Fdc(y)}
)
.

Assumption (ii) ensures assumption (BMO,m). Since the terminal value is bounded (in G), Theorem 3.2 together
with Remark 3.2 gives the result. ⋄

5 APPENDIX – TECHNICAL PROOFS

Proof. [of Proposition 1.2] Let us show the BMO property for a started stopped process. Let us consider a stopping
time τ ′ such that 0 6 τ ′ 6 T a.s we have

E
(〈

τ Z ⋆W ⌋σ
〉

T
−
〈

τ Z ⋆W ⌋σ
〉

τ ′

∣∣∣Fτ ′
)
= E

((
〈τ Z ⋆W〉σ −〈τ Z ⋆W〉min(τ ′,σ)

)∣∣∣Fτ ′
)

= E
(
(〈Z ⋆W〉σ −〈Z ⋆W 〉τ ′)1(06τ ′6σ)

∣∣Fτ ′
)
.

Since τ Z ⋆W vanishes before τ and Fτ ′ ⊂ Fmax(τ ′,τ), we get:

E
(
(〈Z ⋆W〉σ −〈Z ⋆W〉τ ′)1(06τ ′6σ)

∣∣Fτ ′
)
=E
((

〈Z ⋆W〉σ −〈Z ⋆W〉max(τ ′,τ)

)
1(06τ ′6σ)

∣∣∣Fτ ′
)

=E
(

E
((

〈Z ⋆W〉σ −〈Z ⋆W〉max(τ ′,τ)

)
1(06τ ′6σ)

∣∣∣Fmax(τ,τ ′)

)∣∣∣Fτ ′
)

6esssup sup
τ ′∈T τ,σ

E(〈Z ⋆M〉σ −〈Z ⋆M〉τ ′ |Fτ ′) .

Finally we have shown that

esssup sup
06τ ′6T

E
(〈

τ Z ⋆W ⌋σ
〉

T
−
〈

τ Z ⋆W ⌋σ
〉

τ ′

∣∣∣Fτ ′
)
6 esssup sup

τ ′∈T τ,σ
E(〈Z ⋆M〉σ −〈Z ⋆M〉τ ′ |Fτ ′) ,

and the inequality is obviously an equality. ⋄

Proof. [of Proposition 2.2] We are going to use classical inequalities given by Lemma 1.1. Let us suppose existence
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of a solution X for the equation (2.3). We have for all m > 1,

‖X‖
S m 6‖X0‖Lm +

∥∥∥∥
∫ .

0
F(s,Xs)ds

∥∥∥∥
S m

+

∥∥∥∥∥
k

∑
p=1

∫ .

0
Gp(s,Xs)dW p

s

∥∥∥∥∥
S m

6‖X0‖Lm +E

(
sup

06u6T

(∫ u

0
αs |Xs|ds

)m)1/m

+C′
mE



(

k

∑
p=1

∫ T

0
|Gp(s,Xs)|2 ds

)m/2



1/m

6‖X0‖Lm +E

((∫ T

0
αs |Xs|ds

)m)1/m

+C′
mE

((∫ T

0
β 2

s |Xs|2 ds

)m/2
)1/m

.

On the one hand, according to Lemma 1.1, we have

E

((∫ T

0
αs |Xs|ds

)m)1/m

=
∥∥〈√α ⋆W,(

√
α |X |)⋆W

〉
T

∥∥
Lm

6
√

2m
∥∥√α ⋆W

∥∥
BMO

∥∥(
√

α |X |)⋆W
∥∥

H m

62m‖X‖S m

∥∥√α ⋆W
∥∥2

BMO
.

On the other hand, we get for the last term

E

((∫ T

0
β 2

s |Xs|2 ds

)m/2
)1/m

= ‖(β X)⋆W‖
H m = ‖X ⋆ (β ⋆W)‖

H m 6
√

2‖X‖S m ‖β ⋆W‖BMO .

Hence we obtain the following inequality

‖X‖S m

(
1− 2m

∥∥√α ⋆W
∥∥2

BMO
−
√

2C′
m ‖β ⋆W‖BMO

)
6 ‖X0‖Lm . (5.1)

The constant behind ‖X‖
S m is not always positive, but we can use the sliceability assumption in order to construct

piece by piece the process X , and on each piece the constant will be positive.
More precisely there exists a sequence of stopping times 0 = T0 6 T1 6 ... 6 TN = T a.s such that for all i ∈
{0, ...,N − 1}: ∥∥∥Ti

√
α ⋆W ⌋Ti+1

∥∥∥
BMO

6 ε1,
∥∥∥Ti β ⋆W ⌋Ti+1

∥∥∥
BMO

6 ε2.

The process X is equal to

Xt =
N−1

∑
i=1

X̃ i
t 1[Ti ,Ti+1[(t)

where each X̃ i is the restriction of X to the stochastic interval [Ti,Ti+1[. By convention we extend X̃ i to [0,T ] by
zero outside [Ti,Ti+1[. X̃i satisfies the following SDE:

X̃ i
t = X̃Ti

i−1
+

∫ t

Ti

F(s, X̃ i
s)ds+

k

∑
p=1

∫ t

Ti

Gp(s, X̃ i
s)d

TiW
⌋Ti+1
s , t ∈ [Ti,Ti+1[, and X̃−1 = X0.

For all i ∈ {0, ...,N − 1}, by considering above computations on each [Ti,Ti+1[, (5.1) becomes
∥∥∥X̃ i

∥∥∥
S m

(
1− 2mε2

1 − ε2

√
2C′

m

)
6

∥∥∥X̃Ti

i−1
∥∥∥

Lm
.

Denoting by Kε1,ε2 the constant

Kε1,ε2 :=
1

1− 2mε2
1 − ε2

√
2C′

m

> 0,

∥∥∥X̃ i

∥∥∥
S m

6 Ki
ε1,ε2

∥∥X0
∥∥

Lm .
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Thus we obtain

‖X‖
S m 6

N−1

∑
i=0

∥∥∥X̃ i

∥∥∥
S m

6

(
N−1

∑
i=0

Ki
ε1,ε2

)
∥∥X0

∥∥
Lm .

The result follows for Km,ε1,ε2 =
N−1

∑
i=0

Ki
ε1,ε2

. ⋄
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