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ON THE DIVERIO-TRAPANI CONJECTURE

by

Ya Deng

Abstract. — In this paper we establish effective lower bounds on the degrees of the De-
barre and Kobayashi conjectures. Then we study a more general conjecture proposed by
Diverio-Trapani on the ampleness of jet bundles of general complete intersections in com-
plex projective spaces.

Résumé (Autour de la conjecture de Diverio-Trapani). — Dans cet article, nous
établissons des bornes inférieures effectives sur les degrés liés aux conjectures de Debarre
et Kobayashi. Ensuite, nous étudions une conjecture plus générale proposée par Diverio-
Trapani sur l’amplitude des fibrés de jets des intersections complètes générales dans les
espaces projectifs complexes.

0. Introduction

A compact complex manifold X is said to be Kobayashi (Brody) hyperbolic if there
exists no non-constant holomorphic map f : C → X. As is well-known, a sufficient criteria
for Kobayashi hyperbolicity is the ampleness of the cotangent bundle. Although the com-
plex manifolds with ample cotangent bundles are expected to be reasonably abundant,
there are few concrete constructions before the work of Debarre. In [Deb05], Debarre
proved that the complete intersection of sufficiently ample general hypersurfaces in a com-
plex abelian variety, whose codimension is at least as large as its dimension, has ample
cotangent bundle. He further conjectured that this result should also hold for intersec-
tion varieties of general hypersurfaces in complex projective spaces (the so-called Debarre
conjecture). This conjecture was recently proved by Brotbek-Darondeau [BDa17] and in-
dependently by Xie [Xie16, Xie18], based on the ideas and explicit methods in [Bro16].

Theorem 0.1 (Brotbek-Darondeau, Xie). — Let X be an n-dimensional projective
manifold equipped with a very ample line bundle A . Then there exists dDeb,n ∈ N depending
only on the dimension n, such that for all d > dDeb,n, the complete intersection of c-general

hypersurfaces H1, . . . ,Hc ∈ |A d| has ample cotangent bundle, provided that n
2 6 c 6 n.

In [Xie18], Xie was able to obtain an effective lower bound dDeb,n = nn2

by working
with (much more elaborated) explicit expressions of some symmetric differential forms.
The result in [BDa17] is “almost” effective on dDeb,n, because it depends on some constant
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involved in some noetherianity argument, arising in their reduction to Nakamaye’s theorem
[Nak00] for families of zero-dimensional subschemes.

One goal of the present paper is to provide an effective estimate for such a Nakamaye’s
theorem (see Theorem 2.10). In particular, as a complement of [BDa17, Theorem 1.1], we
can improve Xie’s effective lower bound dDeb,n.

Theorem A. — In the same setting as Theorem 0.1, one can take

dDeb,n = (2n)n+3.

It is worth to mention that the techniques in [BDa17] are more intrinsic and the ideas
of their proof brought new geometric insights in the understanding of the positivity of
cotangent bundles. Later, Brotbek [Bro17] extended these techniques from the setting of
symmetric differentials to that of higher order jet differentials, so that he was able to prove
a long-standing conjecture of Kobayashi in [Kob70].

Theorem 0.2 (Brotbek). — Let X be a projective manifold of dimension n. For any
very ample line bundle A on X, there exists dKob,n ∈ N depending only on the dimension

n such that for any d > dKob,n, a general smooth hypersurface H ∈ |A d| is Kobayashi
hyperbolic.

The proof of Theorem 0.2 in [Bro17] is also “almost” effective on dKob,n because of two
noetherianity arguments: the first concerns the increasing sequences of Wronskians ideal
sheaves; the second concerns a constant arising in Nakamaye’s theorem as that of [BDa17],
which can be made effective by Theorem 2.2. Our second goal of the present paper is to
give an intrinsic interpretation of Brotbek’s Wronskians (see § 1.2), and as a byproduct,
we can render the above-mentioned first noetherianity argument effective. This in turn
provides effective lower bounds for the Kobayashi conjecture in combination with the
explicit formula of dKob,n in [Bro17].

Theorem B. — In the same setting as Theorem 0.2, one can take

dKob,n = n2n+3(n + 1).

Let us mention that in [Bro17] Brotbek obtained a much stronger result than Theo-
rem 0.2. Indeed, he proved that for the hypersurface H in Theorem 0.2, the tautological
line bundle OHk

(ak, . . . , a1) on the Demailly-Semple k-jet tower Hk of the direct manifold
(H,TH) is “almost ample” for some (a1, . . . , ak) ∈ Nk when k > n−1 = dimH. In view of
the following vanishing theorem by Diverio in [Div08], the above-mentioned lower bound
for k in [Bro17] is optimal.

Theorem 0.3 (Diverio). — Let Z ⊂ Pn be a smooth complete intersection of hypersur-
faces of any degree in Pn. Then

H0(Z,EGG
k,mT ∗

Z) = 0

for all m > 1 and 1 6 k < dim(Z)/codim(Z). Here EGG
k,mT ∗

Z denotes the Green-Griffiths
jet bundle of order k and weighted degree m.

Motivated by the above vanishing theorem, in the same vein as the Debarre conjecture,
Diverio-Trapani proposed the following generalized conjecture in [DT10].

Conjecture 0.4 (Diverio-Trapani). — Let Z ⊂ Pn be the complete intersection of c-
general hypersurfaces of sufficiently high degree. Then the invariant jet bundle Ek,mT ∗

Z is
ample provided that k > n

c − 1 and m ≫ 0.

The last aim of the present paper is to study Conjecture 0.4 using geometric methods
in [BDa17,Bro17].
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Theorem C. — Let X be an n-dimensional projective manifold equipped with a very
ample line bundle A , and let Z ⊂ X be the complete intersection of c-general hypersurfaces
H1 . . . ,Hc ∈ |A d|. Then Z is almost k-jet ample (see Definition 1.2) if k > n

c − 1, and

d > 2cnc⌈n
c
⌉+1 · ⌈nc ⌉

c⌈n
c
⌉+3. In particular, Z is Kobayashi hyperbolic.

Let us mention that we apply the results in the first part of the present paper to obtain
the effective lower degree bounds in Theorem C.

In view of the correspondence between tautological line bundles on the Demailly-Semple
jet towers and invariant jet bundles studied in [Dem97, Proposition 6.16], the following
result on Conjecture 0.4 is a consequence of Theorem C.

Corollary D. — In the same setting as Theorem C, for any k > n
c − 1, there exists a

subbundle F ⊂ Ek,mT ∗
Z for some m ≫ 0 such that

(i) F is ample.
(ii) For any regular germ of curve f : (C, 0) → (Z, z), there is a global section P ∈

H0(Z,F ⊗ A −1) so that P ([f ]k)(0) 6= 0.

In other words, one can find a subbundle F of the invariant jet bundle Ek,mT ∗
Z , which

is ample, and the Demailly-Semple locus (see [DR15, §2.1] for the definition) induced by
F is empty.

Lastly, let us mention that the techniques in [BDa17,Bro17] were extended by Brotbek
and the author to prove a logarithmic analogue of the Debarre conjecture in [BD17], and to
prove the logarithmic (orbifold) Kobayashi conjecture in [BD18]. To achieve the effective
lower degree bounds, both the articles [BD17,BD18] rely on the methods in the present
paper.

This paper is organized as follows. In § 1.1 we recall the fundamental tools of jet differ-
entials by Demailly, Green-Griffiths and Siu, which can be seen as higher order analogues
of symmetric differential forms and provide obstructions to the existence of entire curves.
§ 1.2 is devoted to the study of new techniques of Wronskians introduced by Brotbek in
his proof of the Kobayashi conjecture [Bro17]. We bring a new perspective of Brotbek’s
Wronskians, which we interpret as a certain morphism of O-modules from the jet bundles
of a line bundle to the invariant jet bundles. In view of this result one can immediately
make the first noetherianity argument in [Bro17] effective. In § 2, by means of an explicit
construction of global sections with a “negative twist”, we obtain a slightly weaker but
effective Nakamaye’s theorem for the universal families of zero-dimensional subschemes
introduced in [BDa17, Bro17]. This in turn renders the second noetherianity argument
in [Bro17] as well as that in [BDa17] effective, and in combination with the formulas for
lower degree bounds in [BDa17,Bro17], we prove Theorems A and B. The aim of § 3 is
to study Conjecture 0.4. In § 3.1 we briefly recall the essential results in [Bro17], and we
show in § 3.2 and § 3.3 how to deduce Theorem C from Brotbek’s techniques.

Acknowledgements. I would like to warmly thank my thesis supervisor Professor Jean-
Pierre Demailly for his constant encouragements and supports, and Damian Brotbek for
suggesting this problem and kindly sharing his ideas to me. I also thank Professors Steven
Lu and Erwan Rousseau for their interests and suggestions on the work. I am indebted to
Lionel Darondeau and Songyan Xie for their discussions. Lastly, I thank the anonymous
referee for very helpful suggestions to improve the presentation in this paper. This work
is supported by the ERC ALKAGE project.

1. Jet differentials and Brotbek’s Wronskians

By the work of Nadel [Nad89] and Demailly-El Goul [DEG97], the Wronskians induced
by meromorphic connections provide an abundant supply of invariant jet differentials.
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In [Bro17] Brotbek introduced an alternative approach to construct Wronskian jet differ-
entials associated to sections of a given line bundle. In § 1.2 we give an intrinsic definition
of Brotbek’s Wronskians via the jet bundles of line bundles.

1.1. Jet spaces and jet differentials. — In this subsection, we collect the main tech-
niques of jet differentials in [Dem97]. A direct manifold is a pair (X,V ) where X is a
complex manifold and V ⊂ TX is a holomorphic subbundle of the tangent bundle. Denote
by pk : JkV → X the bundle of k-jets of germs of parametrized curves in (X,V ), that is,
the set of equivalent classes of holomorphic maps f : (C, 0) → (X,x) which are tangent

to V , with the equivalence relation f ∼ g if and only if all derivatives f (j)(0) = g(j)(0)
coincide for 0 6 j 6 k, when computed in some local coordinate system of X near x.
The class f in JkV is denoted by [f ]k. The projection map pk : JkV → X is simply
[f ]k 7→ f(0). When V = TX , we simply write JkX in place of JkV . Note that JkX → X is
a local trivial fibration with fibers Cnk. Indeed, local coordinates (z1, . . . , zn) for an open
set U ⊂ X induce coordinates

(z1, . . . , zn, z
′
1, . . . , z

′
n, . . . , z

(k)
1 , . . . , z(k)n )

on p−1
k (U), and any k-jet [f ]k ∈ p−1

k (U) has coordinates

(
f1(0), . . . , fn(0), . . . , f

(k)
1 (0), . . . , f (k)

n (0)
)
.

Let Gk be the group of germs of k-jets of biholomorphisms of (C, 0), that is, the group
of germs of biholomorphic maps

t 7→ ϕ(t) = a1t+ a2t
2 + · · ·+ akt

k, a1 ∈ C∗, aj ∈ C,∀j > 2,

in which the composition law is taken modulo terms tj of degree j > k. Then Gk admits
a natural fiberwise right action on JkX defined by ϕ · [f ]k := [f ◦ ϕ]k. Note that C∗ can
be seen as a subgroup of Gk defined by (a2 = · · · = ak = 0).

In [GG80], Green-Griffiths introduced the vector bundle EGG
k,mT ∗

X → X whose fibres

are complex valued polynomials Q([f ]k) on the fibres of JkX, of weighted degree m with
respect to the C∗-action, that is, Q(λ · [f ]k) = λmQ([f ]k), for all λ ∈ C∗ and [f ]k ∈ JkX.
Let U ⊂ X be an open set with local coordinates (z1, . . . , zn). Then any local section
Q ∈ EGG

k,mT
∗
X(U) can be written as

Q =
∑

|α1|+2|α2|+···+k|αk|=m

cα(z)(d
1z)α1(d2z)α2 · · · (dkz)αk ,

where cα(z) ∈ O(U) for any α := (α1, . . . , αk) ∈ (Nn)k, such that for any holomorphic
map γ : Ω → U from an open set Ω ⊂ C, one has

Q
(
[γ]k

)
(t) =

∑

|α1|+2|α2|+···+k|αk|=m

cα
(
γ(t)

)(
γ′(t)

)α1
(
γ′′(t)

)α2 · · ·
(
γ(k)(t)

)αk ∈ O(Ω),

where [γ]k(t) : Ω → JkX↾U is the lifted holomorphic curve on JkX induced by γ.

The bundle EGG
k,• T

∗
X :=

⊕
m>0 E

GG
k,mT ∗

X is in a natural way a bundle of graded algebras

(the product is obtained simply by taking the product of polynomials). There are natural
inclusions EGG

k,• T
∗
X ⊂ EGG

k+1,•T
∗
X of algebras, hence EGG

∞,•T
∗
X :=

⋃
k>0E

GG
k,• T

∗
X is also an

algebra. It follows from [Dem97, §6] that the sheaf of holomorphic sections O(EGG
∞,•T

∗
X)

admits a canonical derivation D given by a collection of C-linear maps

D : O(EGG
k,mT ∗

X) → O(EGG
k+1,m+1T

∗
X)(1.1.1)

constructed as follows. For any germ of curve f : (C, 0) → X, and any Q ∈ O(EGG
k,mT ∗

X),

(DQ)([f ]k+1)(t) :=
d

dt
Q([f ]k)(t).
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We can also inductively defineDk := D◦Dk−1. In particular, for any holomorphic function
s ∈ O(U), Dk(s) ∈ EGG

k,k T
∗
X(U).

In this present paper, we are interested in the more geometric context introduced by
Demailly in [Dem97]: the subbundle Ek,mT ∗

X ⊂ EGG
k,mT ∗

X which consists of polynomial
differential operators Q which are invariant under arbitrary changes of parametrization,
that is, for any ϕ ∈ Gk and any [f ]k ∈ JkX, one has

Q
(
ϕ · [f ]k

)
= ϕ′(0)mQ([f ]k).

The bundle Ek,mT ∗
X is called the invariant jet bundle of order k and weighted degree m.

It is noticeable that Wronskians provide a very natural construction for invariant jet
differentials.

For any direct manifold (X,V ) with rankV = r, Demailly [Dem97] introduced a fonc-
torial construction of a sequence of direct manifolds

· · · → (PkV, Vk)
πk−→ (Pk−1, Vk−1)

πk−1
−−−→ · · ·

π2−→ (P1V, V1)
π1−→ (P0V, V0) = (X,V )(1.1.2)

so that PkV := P(Vk−1) is a Pr−1-bundle over Pk−1V for each k > 1, and we say PkV
the Demailly-Semple k-jet tower of (X,V ). In the absolute case (X,TX ), we simply write
Xk := PkV . In the case of smooth family of compact complex manifolds X → T , X rel

k
denotes to be the Demailly-Semple k-jet tower of the direct manifold (X , TX /T ), where
TX /T denotes the relative tangent bundle. It follows from [Dem97, §6] that the Demailly-
Semple jet tower has the following geometric properties.

1. Any germ of curve f : (C, 0) → X tangent to V can be lifted to f[k] : (C, 0) → PkV .

2. Denote by J reg
k V := {[f ]k | f ′(0) 6= 0} the set of regular k-jets tangent to V . Then

there exists a morphism J reg
k V → PkV , which sends [f ]k to f[k](0), whose image

is a Zariski open subset PkV
reg ⊂ PkV which can be identified with the quotient

J reg
k V/Gk. Moreover, the complement PkV

sing := PkV \ PkV
reg is a divisor in PkV .

3. For any k,m > 0 one has

(π0,k)∗OPkV (m) = Ek,mV ∗,(1.1.3)

where we write πj,k = πj+1 ◦ · · · ◦ πk : PkV → PjV for any 0 6 j 6 k, and OPkV (1)
denotes the tautological line bundle over PkV = P(Vk−1).

More generally, for a k-tuple (a1, . . . , ak) ∈ Nk, we write

OPkV (ak, . . . , a1) := OPkV (ak)⊗ π∗
k−1,kOPk−1V (ak−1)⊗ · · · ⊗ π∗

1,kOP1V (a1).

The fundamental vanishing theorem shows that the jet differentials vanishing along any
ample divisor gives rise to obstructions to the existence of entire curves.

Theorem 1.1 (Demailly, Green-Griffiths, Siu-Yeung). — Let (X,V ) be any di-
rect manifold equipped with an ample line bundle A . For any non-constant entire curve
f : C → X tangent to V , and any ω ∈ H0

(
PkV,OPkV (ak, . . . , a1) ⊗ π∗

0,kA
−1
)
with

(a1, . . . , ak) ∈ Nk, one has f[k](C) ⊂ (ω = 0).

Observe that for any non-constant entire curve f : C → X tangent to V , the image of
its lift f[k] : C → PkV is not entirely contained in PkV

sing. In view of Theorem 1.1, we
introduce the following definition.

Definition 1.2. — Let X be a projective manifold. We say that X is almost k-jet ample
if there exists some (a1, . . . , ak) ∈ Nk so that OXk

(ak, . . . , a1) is big and its augmented base

locus B+

(
OXk

(ak, . . . , a1)
)
⊂ Xsing

k . In particular, X is Kobayashi hyperbolic.

Note that almost 1-jet ampleness is equivalent to the ampleness of cotangent bundle.
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1.2. Brotbek’s Wronskians. — This subsection is devoted to the study of the Wron-
skians defined by Brotbek in [Bro17, §2.2]. Let X be an n-dimensional compact complex
manifold. Recall that for any holomorphic line bundle L on X, one can define the bundle
JkL of k-jet sections of L by JkLx = O(L)x/

(
mk+1

x · O(L)x
)
for every x ∈ X, where mx

is the maximal ideal of Ox. Pick an open set U ⊂ X with coordinates (z1, . . . , zn) so that
L↾U can be trivialized by a nowhere vanishing section eU ∈ L(U). The fiber JkLx can be
identified with the set of Taylor developments of order k

∑

|γ|6k

cγ(z − x)γ · eU ,

and the coefficients {cγ}γ∈Nn,|γ|6k define coordinates along the fibers of JkL. This in turn

gives rise to a natural local trivialization of JkL defined by

ΨU : U × CIn,k
≃
−→ JkL↾U ,

(x, cγ) 7→
∑

γ∈In,k

cγ(z − x)γ · eU ,

where In,k := {γ = (γ1, . . . , γn) ∈ Nn | |γ| 6 k}. Observe that there exists a C-linear
morphism

jkL : L → JkL,

which is not a morphism of OX -modules, defined as follows. For any s ∈ L(U), define

jkL(s)(x) :=
∑

|γ|6k

1

γ!

∂|γ|sU
∂zγ

(x)(z − x)γ · eU ,(1.2.1)

where sU ∈ O(U) so that s = sU · eU . When L = OX , we simply write jk := jk
OX

.

The jet bundle JkL will be used to interpret the canonical derivative D : O(EGG
k,mT ∗

X) →

O(EGG
k+1,m+1T

∗
X) defined in (1.1.1) in an alternative way. Let us first give a more precise

expression of D.

Lemma 1.3. — Take any open set U ⊂ X with coordinates (z1, . . . , zn). For any k > 1,
and any holomorphic function s ∈ O(U), one has

Dk(s)(z) =
∑

|α1|+2|α2|+···+k|αk|=k

ck,α(z)(d
1z)α1(d2z)α2 · · · (dkz)αk ∈ EGG

k,k T
∗
X(U)(1.2.2)

such that for each α := (α1, . . . , αk) ∈ (Nn)k, ck,α(z) ∈ O(U) is a Z-linear combination of
∂|γ|s
∂zγ (z) with |γ| = γ1 + · · · + γn 6 k.

Proof. — We will prove the lemma by induction on k. For k = 1, we simply have

D(s) = ds =
n∑

i=1

∂s

∂zi
(z)dzi ∈ T ∗

X(U),

and thus (1.2.2) remains valid for k = 1.
Now we assume that Dk(s) has the form (1.2.2). By (1.1.1), one has

Dk+1(s) =

∑

|α1|+2|α2|+···+k|αk|=k

(
k−1∑

i=1

∑

j=1,...n
αi−ej∈N

n

ck,α(z)(d
1z)α1 · · · (diz)αi−ej (di+1z)αi+1+ej · · · (dkz)αk

+

n∑

j=1

∂ck,α(z)

∂zj
(d1z)α1+ej · · · (dkz)αk +

∑

j=1,...n
αk−ej∈N

n

ck,α(z)(d
1z)α1 · · · (dkz)αk−ej(dk+1z)ej

)
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where ej denotes the vector in Nn with a 1 in the jth coordinate and 0’s elsewhere. By the

assumption, for every j = 1, . . . , n and every α,
∂ck,α(z)

∂zj
∈ O(U) is a Z-linear combination

of ∂|γ|s
∂zγ (z) with |γ| = γ1 + · · · + γn 6 k + 1. From the above expression we conclude that

(1.2.2) also holds true for Dk+1(s). The lemma follows.

It follows from (1.2.1) and Lemma 1.3 that there exists a morphism of OX-modules,
denoted by jkD : JkOX → EGG

k,k T
∗
X , so that Dk : OX → EGG

k,k T
∗
X factors through jkD,

that is, Dk = jkD ◦ jk.
Following [Bro17], given k + 1 holomorphic functions g0, . . . , gk ∈ O(U), one can asso-

ciate them to a jet differentials of order k and weighted degree k′ := k(k+1)
2 , say Wron-

skians, in the following way

WU (g0, . . . , gk) :=

∣∣∣∣∣∣∣∣∣

g0 g1 . . . gk
D(g0) D(g1) · · · D(gk)

...
...

. . .
...

Dk(g0) Dk(g1) · · · Dk(gk)

∣∣∣∣∣∣∣∣∣
∈ EGG

k,k′T
∗
X(U).(1.2.3)

It follows from [Bro17, Proposition 2.2] that Wronskians are indeed invariant jet differen-
tials. From its alternating property, WU induces a C-linear map, which we still denoted
by WU : Λk+1O(U) → Ek,k′T

∗
X(U) abusively. By the factorization property of Dk, WU

gives rise to a morphism of OU -module

WJkOU
: Λk+1Jk

OU → Ek,k′T
∗
U

so that one has

WU (g0, . . . , gk) = WJkOU

(
jk(g0) ∧ · · · ∧ jk(gk)

)
.

In other words, Brotbek’s Wronskians WU can be factorized as follows.

WU : Λk+1
O(U)

Λk+1jk
−−−−→ Λk+1

(
Jk

OU (U)
)
→
(
Λk+1Jk

OU

)
(U)

W
JkOU−−−−−→ Ek,k′T

∗
U (U).

(1.2.4)

Now we consider the Demailly-Semple k-jet tower Xk of (X,TX). For the open set
Uk := π−1

0,k(U) of Xk, the coordinate system (z1, . . . , zn) on U induces a trivialization

Uk ≃ U×Rn,k, where Rn,k is some smooth rational variety introduced in [Dem97, Theorem
9.1]. Hence

OXk
(1)↾Uk

≃ pr∗2(ORn,k
(1)),(1.2.5)

where pr2 : Uk
≃
−→ U × Rn,k → Rn,k is the composition of the isomorphism with the

projection map. By (1.1.3), we conclude that, under the above trivialization, the direct
image (π0,k)∗ induces a local trivialization of the vector bundle Ek,k′T

∗
U

ϕU : U ×H0
(
Rn,k,ORn,k

(k′)
) ≃
−→ Ek,k′T

∗
U .(1.2.6)

Write Fn,k := H0
(
Rn,k,ORn,k

(k′)
)
. Therefore, under the trivializations ϕU and ΨU , the

morphism of OU -module WJkOU
is indeed constant, i.e. there is a C-linear map νn,k :

Λk+1CIn,k → Fn,k such that one has the following diagram.

U × Λk+1CIn,k

ΨU

≃

��

1U×νn,k
// U × Fn,k

ϕU≃

��

Λk+1JkOU

W
JkOU

// Ek,k′T
∗
U

Denote by In,k ⊂ ORn,k
the base ideal of the linear system |Im(νn,k)| ⊂ |ORn,k

(k′)|, and
set wk,U to be the ideal sheaf pr∗2(In,k) on Uk.
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By [Bro17], Wronskians can also be associated to global sections of any line bundle
L. Take an open set U ⊂ X with coordinates (z1, . . . , zn) so that L↾U can be trivialized
by a nowhere vanishing section eU ∈ L(U). Consider any s0, . . . , sk ∈ H0(X,L). There
exists unique si,U ∈ O(U) so that si = si,U · eU for every i = 0, . . . , k. It was proved
in [Bro17, Proposition 2.3] that the section

WU (s0,U , . . . , sk,U) · e
k+1
U ∈ (Ek,k′T

∗
X ⊗ Lk+1)(U).(1.2.7)

is intrinsically defined, i.e. it does not depend on the choice of eU . Hence they can be
glued together into a global section, denoted to beW (s0, . . . , sk) ∈ H0(X,Ek,k′T

∗
X⊗Lk+1).

Set

ω(s0, . . . , sk) := (π0,k)
−1
∗ W (s0, . . . , sk) ∈ H0

(
Xk,OXk

(k′)⊗ π∗
0,kL

k+1
)

(1.2.8)

to be the inverse image of the Wronskian W (s0, . . . , sk) under (1.1.3).
Following [Bro17, §2.3], define

W(Xk, L) : = Span{ω(s0, . . . , sn) | s0, . . . , sn ∈ H0(X,L)}

⊂ H0
(
Xk,OXk

(k′)⊗ π∗
0,kL

k+1
)

and define the k-th Wronskian ideal sheaf of L, denoted by w(Xk, L), to be the base ideal
of W(Xk, L). It was also shown in [Bro17, §2.3] that if L is very ample, one has a chain
of inclusions

w(Xk, L) ⊂ w(Xk, L
2) ⊂ · · · ⊂ w(Xk, L

m) ⊂ · · · .

By noetherianity, this increasing sequence stabilizes after some m∞(Xk, L) ∈ N, and the
obtained asymptotic ideal sheaf is denoted by w∞(Xk, L). Let us mention that m∞(Xk, L)
concerns the first noetherianity argument in [Bro17], and in the rest of this subsec-
tion we will apply our new interpretation of Brotbek’s Wronskians in (1.2.4) to render
m∞(Xk, L) effective. The strategy is to compare the globally defined Wronskian ideal
sheaves {w(Xk, L

m)}m∈N to the intrinsic ideal sheaf wk,U .
One direction is easy to see from the very definition of w(Xk, L). By (1.2.7), for any

s0, . . . , sk ∈ H0(X,L), the Wronskian can be localized by

W (s0, . . . , sk)↾U = WU (s0,U , . . . , sk,U) · e
k+1
U ∈ (Ek,k′T

∗
X ⊗ Lk+1)(U).

We denote by ωU (s0,U , . . . , sk,U) ∈ OXk
(k′)(Uk) the corresponding element ofWU (s0,U , . . . , sk,U)

under the isomorphism (1.1.3), where Uk := π−1
0,k(U). In view of (1.2.5), one has

OXk
(k′)(Uk) ≃ H0(U,U × Fn,k), or more precisely,

H0(U,Λk+1JkOU )

Ψ−1

U≃

��

W
JkOU

// H0(U,Ek,k′T
∗
U )

ϕ−1

U≃

��

H0(U,U × Λk+1CIn,k)
1U×νn,k

// H0(U,U × Fn,k).

By (1.2.4), WU (s0,U , . . . , sk,U) = WJkOU
(jks0,U ∧ · · · ∧ jksk,U). Hence

ωU (s0,U , . . . , sk,U ) ≃ (1U × νn,k) ◦Ψ
−1
U (jks0,U ∧ · · · ∧ jksk,U).(1.2.9)

Recall that In,k ⊂ ORn,k
is the base ideal of the linear system |Im(νn,k)|, and wk,U is

defined to be the ideal sheaf pr∗2(In,k) on Uk ≃ U × Rn,k. By (1.2.9), the base ideal of
ωU(s0,U , . . . , sk,U) is contained in wk,U . As s0, . . . , sk ∈ H0(X,L) are arbitrary, this leads
to

w(Xk, L)↾Uk
⊂ wk,U .(1.2.10)

Now we further assume that the line bundle L separates k-jets everywhere, i.e. the
C-linear map

H0(X,L)
jkL−→ H0(X,JkL) → JkLx
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is surjective for any x ∈ X. Then

Λk+1H0(X,L) → Λk+1
O(U)

jk
−→ Λk+1Jk

OU (U) → Λk+1Jk
Ox ≃ Λk+1CIn,k

is also surjective for any x ∈ U . By (1.2.9) again,

Im(νn,k) = Span{ωU (s0,U , . . . , sk,U)↾{x}×Rn,k
| s0, . . . , sk ∈ H0(X,L)},

where we identify {x} × Rn,k with the fiber π−1
0,k(x). Write ιx to be the composition

Rn,k → {x} × Rn,k →֒ U × Rn,k
≃
−→ Uk →֒ Xk. This in turn implies that

ι∗xw(Xk, L) := ι−1
x w(Xk, L)⊗ι−1

x OXk

ORn,k
= In,k

It follows from wk,U := pr∗2In,k that w(Xk, L)↾Uk
= wk,U . By the inclusive relation

(1.2.10), one has

wk,U = w(Xk, L)↾Uk
= w(Xk, L

2)↾Uk
= · · · = w(Xk, L

k)↾Uk
= · · · .(1.2.11)

As is well-known, Ak separates k-jets everywhere once A is very ample. By (1.2.11), we
conclude the following result.

Theorem 1.4. — Let X be a projective manifold, and let A be a very ample line bundle
on X. Then w(Xk, A

k) = w∞(Xk, A) and m∞(Xk, A) = k.

Moreover, it follows from the relation (1.2.11) that the asymptotic Wronskian ideal sheaf
is intrinsically defined, i.e. w∞(Xk, L) does not depend on the very ample line bundle L.
This reproves [Bro17, Lemma 2.8]. It also allows us to denote by w∞(Xk) the asymptotic
Wronskian ideal sheaf.

Remark 1.5. — In a joint work with Brotbek [BD18], we generalize the alternative in-
terpretation of Wronskians by jets of sections of line bundles in this subsection to the
logarithmic settings.

1.3. Blow-up of the Wronskian ideal sheaf. — This subsection is mainly borrowed
from [Bro17]. We will state some important results without proof, and the readers who
are interested in further details are encouraged to refer to [Bro17, §2.4]. Let us first recall
the following crucial property of the Wronskian ideal sheaf in [Bro17].

Lemma 1.6 ([Bro17, Lemma 2.4]). — Let X be a projective manifold equipped with
a very ample line bundle L. Then

Supp
(
OXk

/w(Xk, L
k)
)
⊂ Xsing

k ,

where Xsing
k is the set of singular k-jets of Xk.

Based on the above lemma, as was shown in [Bro17], Brotbek introduced a fonctorial

birational morphism of the Demailly-Semple k-jet tower νk : X̂k → Xk by blowing-up
the asymptotic Wronskian ideal sheaf w∞(Xk), so that he was able to establish a strong
Zariski open property for hyperbolicity. Indeed, Brotbek even built the strong Zariski
open property for almost k-jet ampleness. We require the following results in [Bro17] to
proceed further.

Theorem 1.7 ([Bro17, Propositions 2.10, 2.11 and 2.13])
Let X be a projective manifold.

(i) For any smooth closed submanifold Y ⊂ X, the inclusion Yk ⊂ Xk induces an inclu-

sion Ŷk ⊂ X̂k. Moreover, Ŷk is the strict transform of Yk in X̂k.
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(ii) If

(∗) ∃a0, . . . , ak ∈ N s.t. ν∗kOXk
(ak, . . . , a1)⊗ OX̂k

(−a0F ) is ample,

then X is almost k-jet ample. Here F is an effective divisor on X̂k defined by
OX̂k

(−F ) = ν∗kw∞(Xk).

(iii) Let X
ρ
−→ T be a smooth and projective morphism between non-singular varieties.

We denote by X rel
k the Demailly-Semple k-jet tower of the relative directed variety

(X , TX /T ). Take νk : X̂ rel
k → X rel

k to be the blow-up of the asymptotic Wron-

skian ideal sheaf w∞(X rel
k ). Then for any t0 ∈ T writing Xt0 := ρ−1(t0), we have

ν−1
k (Xt0,k) = X̂t0,k.

(iv) Property (∗) is a Zariski open property. Precisely speaking, in the same setting as
above, if there exists t ∈ T such that Xt satisfies (∗), then there exists a non-empty
Zariski open subset T0 ⊂ T such that for any s ∈ T0, Xs satisfies (∗) as well. In
particular, Xs is almost k-jet ample for all s ∈ T0.

2. An effective Nakamaye’s theorem

As mentioned in § 0, both [BDa17] and [Bro17] applied Nakamaye’s Theorem on the
augmented base locus [Nak00] for families of zero-dimensional subschemes to provide a
geometric control on base locus. In this section we render their noetherianity arguments
effective.

We start by setting notations as in [Bro17, §3]. Consider V := H0
(
PN ,OPN (δ)

)
, which

can be identified with the space of homogeneous polynomials of degree δ in C[z0, . . . , zN ].
For any J ⊂ {0, . . . , N} we set

PJ := {[z0, . . . , zN ] ∈ PN | zj = 0 if j ∈ J}.

Given any ∆ ∈ Grk+1(V ) and [z] ∈ PN , we denote by ∆([z]) = 0 once P ([z]) = 0 for any
P ∈ ∆ ⊂ V . Define the universal family of complete intersections to be

Y := {(∆, [z]) ∈ Grk+1(V )× PN | ∆([z]) = 0}.(2.1)

For any J ⊂ {0, . . . , N}, set

YJ := Y ∩ (Grk+1(V )× PJ).(2.2)

Let us denote by p : Y → Grk+1(V ) and q : Y → PN the projection maps. The next
lemma is our starting point.

Lemma 2.1. — For any J ⊂ {0, . . . , N}, YJ → PJ is a locally trivial holomorphic
fibration with fibers isomorphic to the Grassmannian Gr

(
k+1,dim(V )−1

)
. In particular,

YJ is a smooth projective manifold.

Proof. — Any linear transformation g ∈ GLN+1(C) induces a natural action g̃ ∈ GL(V ),
hence also induces a biholomorphism ĝ of Grk+1(V ). Observe that for any [z] ∈ PN , ĝ
maps the fiber q−1([z]) to q−1([g · z]) bijectively. Since GLN+1(C) acts transitively on PN ,
the fibration q : Y → PN can thus be trivialized locally.

Take a special point [e0] := [1, 0, . . . , 0] ∈ PN . For any P =
∑

|I|=δ aIz
I ∈ V , P ([e0]) = 0

if and only if the coefficient of zδ0 in P is zero. If we denote by V0 the subspace of V spanned
by {zI | |I| = δ, zI 6= zδ0}, then q−1([e0]) = Grk+1(V0) ≃ Gr

(
k+1,dim(V )−1

)
. The lemma

is thus proved.

Observe that when k+1 > N , p : Y → Grk+1(V ) is a generically finite to one morphism.
Let us denote by L be the very ample line bundle on Grk+1(V ) which is the pull back of
O(1) on P(Λk+1V ) under the Plücker embedding Grk+1(V ) →֒ P(Λk+1V ). Then p∗L↾YJ
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is a big and nef line bundle on YJ for any J ⊂ {0, . . . , N}. Write pJ : YJ → Grk+1(V )
and qJ : YJ → PJ for the natural projections, and define

EJ := {y ∈ Y | dimy

(
p−1
J (pJ(y))

)
> 0}

G∞
J := pJ(EJ ) ⊂ Grk+1(V ).

When J = ∅ we simply write E := E∅ and G∞ := G∞
∅ . By the definition of null locus

[Laz04, Definition 10.3.4], EJ = Null(p∗JL ). It then follows from Nakamaye’s theorem
[Nak00] that

B+(p
∗
JL ) = Null(p∗JL ) = EJ .

Observe that the line bundle L ⊠ OPN (1) on Grk+1(V ) × PN is ample, and so is its
restriction to YJ . Hence by the definition of augmented base locus and noetherianity,
there exists mJ ∈ N such that

Bs
(
L

m ⊠ OPJ
(−1)↾YJ

)
= B+(p

∗
JL ) = EJ ⊂ p−1

J (G∞), ∀m > mJ .(2.3)

We emphasize that the value M := max{mJ | J ⊂ {0, . . . , N}} concerns the second
noetherianity argument in [Bro17] resulting in the loss of effective lower degree bounds
dKob,n in Theorem 0.2.

Instead of requiring (2.3), we will provide a slightly weaker base control but with an
effective estimate on M , which still remains valid in Brotbek’s proof (see [Bro17, Remark
3.13]).

Theorem 2.2. — When m > δk, for any J ⊂ {0, . . . , N}, one has

Bs
(
L

m ⊠ OPJ
(−1)↾YJ

)
⊂ p−1

J (G∞
J ).(2.4)

To prove Theorem 2.2, we construct sufficiently many global sections of L m ⊠

OPJ
(−1)↾YJ

in an explicit manner to control their base locus. Precisely speaking, for any

∆ /∈ G∞
J , by definition p−1

J (∆) is a finite set. We will show that for each m > δk there

exists an effective divisor D∆ ∈ |L m ⊠ OPJ
(−1)↾YJ

| so that D∆ ∩ p−1
J (∆) = ∅.

Let us first recall a version of projection formula in intersection theory, which is indeed
a direct consequence of [Ful98, Example 8.1.7].

Theorem 2.3 (Projection formula). — Let f : X → Y be a generically finite to one
and surjective morphism between non-singular irreducible varieties, and x (resp. y) be
cycle on X (resp. Y ) of dimension k (resp. dim(X)− k). Then

deg
(
f∗
(
f∗(y) · x

))
= deg

(
y · f∗(x)

)
,

where f∗ and f∗ are defined in the Chow group. When the scheme-theoretic inverse image
f−1(y) is of pure dimension dim(X) − k, one has f∗(y) = [f−1(y)].

Proof of Theorem 2.2. — We first deal with the case k + 1 = N , and then reduce the
general setting k + 1 > N to this case.

Claim 2.4. — When k + 1 = N , H0
(
Y ,L m ⊠ OPN (−1)↾Y

)
6= ∅ for all m > δN−1.

Proof. — Let us pick a smooth curve C in GrN (V ) of degree 1 with respect to L , given
by

∆([t0, t1]) := Span(zδ1 , z
δ
2, . . . z

δ
N−1, t0z

δ
N + t1z

δ
0),

where [t0, t1] ∈ P1. Indeed, the curve C is the line in the Plücker embedding P(ΛNV )
defined by two vectors zδ1 ∧ · · · ∧ zδN−1 ∧ zδ0 and zδ1 ∧ · · · ∧ zδN in ΛNV . Hence L · C = 1.

Consider a hyperplane D in PN given by {[z0, . . . , zN ] | z0 + zN = 0}. Since p : Y →
GrN (V ) is a generically finite to one and surjective morphism, p∗q

∗D is an effective divisor
in GrN (V ).
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Since p−1(C) has pure dimension 1, then p∗C is a 1-cycle in Y . An easy computation
shows that p∗C and q∗D intersect only at the point

Span(zδ1, z
δ
2 , . . . z

δ
N−1, z

δ
N + (−1)δ+1zδ0)× [1, 0, . . . , 0,−1] ∈ Y

with multiplicity δN−1. Hence p∗C · q∗D = δN−1. By Theorem 2.3, one has

C · p∗(q
∗D) = p∗(p

∗C · q∗D) = δN−1.

Note that the Picard group Pic
(
GrN (V )

)
≃ Z is generated by L , which in turn implies

p∗q
∗D ∈ |L δN−1

|(2.5)

by the fact that L ·C = 1. It follows from Lemma 2.1 that q∗D is a smooth hypersurface
in Y . Since Supp(q∗D) ⊂ Supp(p∗p∗q

∗D), p∗p∗q
∗D − q∗D is thus an effective divisor of

Y , and by (2.5)

p∗p∗q
∗D − q∗D ∈ |L δN−1

⊠ OPN (−1)↾Y |.(2.6)

The claim follows from the fact that L is very ample.

The base locus of |L δN−1

⊠ OPN (−1)↾Y | can be well understood.

Claim 2.5. — For any m > δN−1, the base locus

Bs
(
L

m ⊠ OPN (−1)↾Y
)
⊂ p−1(G∞).(2.7)

Proof. — For given any ∆0 /∈ G∞, p−1(∆0) is a finite set by the definition of G∞. Then
one can take a general hyperplane D ∈ |OPN (1)| such that D∩ q

(
p−1(∆0)

)
= ∅. By (2.6),

D gives rise to an effective divisor

p∗p∗q
∗D − q∗D ∈ |L δN−1

⊠ OPN (−1)↾Y |.

For any ∆ ∈ GrN (V ), if we denote by

Int(∆) := {[z] ∈ PN | ∆([z]) = 0},

then q
(
p−1(∆)

)
= Int(∆). Hence the condition D ∩ q

(
p−1(∆0)

)
= ∅ is equivalent to that

Int(∆0)∩D = ∅. On the other hand, for any ∆ ∈ Supp(p∗q
∗D), one has Int(∆)∩D 6= ∅,

and thus we conclude that ∆0 /∈ Supp(p∗q
∗D). In particular,

p−1(∆0) ∩ Supp(p∗p∗q
∗D − q∗D) = ∅.

As ∆0 is an arbitrary point outside G∞, we conclude that

Bs
(
L

δN−1

⊠ OPN (−1)↾Y
)
⊂ p−1(G∞).

Since L is very ample, we have

Bs
(
L

m ⊠ OPN (−1)↾Y
)
⊂ Bs

(
L

δN−1

⊠ OPN (−1)↾Y
)
⊂ p−1(G∞)

for any m > δN−1. The claim is thus proved.

Let us deal with the general case J ) ∅. Without loss of generality we can assume that
J = {n+ 1, . . . , N}. For any ∆0 ∈ pJ(YJ) \G

∞
J , the set p−1

J (∆0) = Int(∆0) ∩ PJ is finite.
We can also take a general hyperplane D ∈ |OPN (1)| such that Int(∆0) ∩ D ∩ PJ = ∅.
One can further choose a proper coordinate for PN such that D = (zn = 0).

By Lemma 2.1, q∗J(D∩PJ) is a smooth hypersurface in YJ . Set F := pJ
(
q−1
J (D∩PJ)

)
set-

theoretically. Then for any effective divisor H̃ ∈ |L m| on GrN (V ) such that F ⊂ Supp(H̃)

and pJ(YJ) 6⊂ Supp(H̃),

p∗J(H̃)− q∗J(D ∩ PJ) ∈ |L m ⊠ OPN (−1)↾YJ
|(2.8)

is an effective divisor of YJ . However, it may happen that for any hyperplane D̃ ∈ |OPN (1)|,

all constructed divisors of the form p∗q
∗(D̃) will always contain ∆0.
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Choose a decomposition of V = V1⊕V2 such that V1 is spanned by the vectors {zα ∈ V |
αn = · · · = αN = 0} and V2 is spanned by other zα’s. Let us denote G to be the subgroup
of the general linear group GL(V ) which is the lower triangle matrix with respect to the
decomposition of V = V1 ⊕ V2 as follows:

G :=
{
g ∈ GL(V ) | g =

[
I 0
A B

]
, B ∈ GL(V2), A ∈ Hom(V1, V2)

}
.(2.9)

The subgroup G also induces a natural group action on the Grassmannian GrN (V ), and
we have the following

Claim 2.6. — Set H := p∗(q
∗D). Then for any g ∈ G, F ⊂ g(H) and there exists a

g0 ∈ G such that ∆0 /∈ g0(H).

Proof. — For any ∆ ∈ GrN (V ), choose {s1, . . . , sN} ⊂ V which spans ∆. Let si = ui + vi
be the unique decomposition of si under V = V1 ⊕ V2. Recall that F := pJ

(
q−1
J (D ∩PJ)

)
.

Then

∆ ∈ F ⇐⇒ ∩N
i=1(ui = 0) ∩ Pn−1 6= ∅,(2.10)

where Pn−1 := {[z0, . . . , zN ] ∈ PN | zj = 0 for j > n} = D ∩ PJ , and we can identify V1

with H0
(
Pn−1,OPn−1(δ)

)
.

For any g ∈ GL(V ), g(∆) is spanned by {g(s1), . . . , g(sN )}. By the definition of G,
for any g ∈ G, we have the decomposition g(si) = ui + v′i with respect to V = V1 ⊕ V2

which keeps the V1 factors invariant. Then g(F ) = F for any g ∈ G by (2.10). The first
statement follows from the fact F ⊂ H.

Now we take {t1, . . . , tN} ⊂ V which spans ∆0. Denote ti = ui + vi to be the decom-
position of ti under V = V1 ⊕ V2. By our choice of D, Int(∆0) ∩ Pn−1 = ∅, which is
equivalent to ∩N

i=1(ui = 0) ∩ Pn−1 = ∅ by (2.10). We can then choose the proper basis
{t1, . . . , tN} spanning ∆0, so that

(i) ∩n
i=1(ui = 0) ∩ Pn−1 = ∅;

(ii) for some m > n, {u1, . . . , um} is a set of vectors in V1 which is linearly independent;
(iii) um+1 = · · · = uN = 0.

Then ∩n
i=1(ui = 0) ∩ {zn = 0} = PN−n−1 := {[z0, . . . , zN ] ∈ PN | zj = 0 for j 6 n}, and

{vm+1, . . . , vN} is a set of linearly independent vectors in V2.
Take a point ∆′ ∈ GrN (V ) spanned by





t̃1 := u1
...

t̃n := un

t̃n+1 := un+1 + zδn+1
...

t̃m := um + zδm
t̃m+1 := um+1 + zδm+1 = zδm+1
...

t̃N := uN + zδN = zδN

.

Then one can easily observe that Int(∆′) ∩ (zn = 0) = ∅, which is equivalent to that
∆′ /∈ H = p∗q

∗(D). We will find a g0 ∈ G such that g0(∆
′) = ∆0.

Indeed, since {vm+1, . . . , vN} ⊂ V2 and {u1, . . . , um} ⊂ V1 are both linearly independent,
we can find a B ∈ GL(V2) such that B(zδi ) = vi for all i > m + 1, and A ∈ Hom(V1, V2)
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satisfying that
{
A(ui) = vi for 1 6 i 6 n,

A(uj) = vj −B(zδj ) for n+ 1 6 j 6 m.

Set g0 :=

[
I 0
A B

]
which is of the type (2.9). We have

g0(∆
′) = Span{g0(t̃1), . . . , g0(t̃N )} = Span{t1, . . . , tN} = ∆0.

Recall that ∆′ /∈ H. Then ∆0 /∈ g0(H) and we finish the proof of the claim.

Since H ∈ |L δN−1

| by (2.5), we claim that g0(H) ∈ |L δN−1

|. Indeed, since the complex
general linear group GL(V ) is connected, the biholomorphism of GrN (V ) induced by
g0 ∈ GL(V ) is homotopic to the identity map, and thus H and g0(H) lie on the same
linear system. By Claim 2.6, F ⊂ g0(H) and ∆0 /∈ g0(H). By (2.8), the divisor

p∗J
(
g0(H)

)
− q∗J(D ∩ PJ) ∈ |L δN−1

⊠ OPN (−1)↾YJ
|

is effective and avoids the finite set p−1
J (∆0).

Note that ∆0 ∈ GrN (V ) is an arbitrary point in pJ(YJ) \ G∞
J . This in turn proves

Theorem 2.2 for the case k + 1 = N .

Let us show how to deal with the general cases k + 1 > N .
For any J ⊂ {0, . . . , N}, one can see PJ ⊂ PN as subspaces of Pk+1 defined by

PN := {[z0, . . . , zk+1] ∈ Pk+1 | zN+1 = · · · = zk+1 = 0},

PJ :=
{
[z0, . . . , zk+1] ∈ Pk+1 | zj = 0 if j ∈ J ∪ {N + 1, . . . , k + 1}

}
.

Set Vk := H0
(
Pk+1,OPk+1(δ)

)
, and

ỸJ := {(∆, [z]) ∈ Grk+1(Vk)× PJ | ∆([z]) = 0}.

There is a natural inclusion Grk+1(V ) ⊂ Grk+1(Vk). Define p̃J : ỸJ → Grk+1(Vk) and

q̃J : ỸJ → PJ to be the natural projections. Set

G̃∞
J := {∆ ∈ Grk+1(Vk) | p̃

−1
J (∆) is not finite set}.

Hence by the above arguments, for m > δk, we have

Bs(L m
k ⊠ OPk+1(−1)

↾ỸJ
) ⊂ p̃−1

J (G̃∞
J ),(2.11)

where Lk is the tautological line bundle on Grk+1(Vk).
Recall that Y ⊂ Grk+1(V ) × PN and YJ ⊂ Grk+1(V ) × PJ are the universal families

of complete intersections defined in (2.1) and (2.2). The inclusion ιk : Grk+1(V ) →֒
Grk+1(Vk) induces the following inclusions

YJ Grk+1(V )× PJ

ỸJ Grk+1(Vk)× PJ

ιk×1

Observe that G∞
J = G̃∞

J ∩Grk+1(V ). Note that ι∗kLk := L , which is still the tautological

line bundle on Grk+1(V ). Hence by the above arguments, for m > δk, we have

Bs(L m ⊠ OPN (−1)↾YJ
) = Bs(L m

k ⊠ OPk+1(−1)↾YJ
)

⊂ Bs(L m
k ⊠ OPk+1(−1)

↾ỸJ
) ∩ YJ

⊂ p̃−1
J (G̃∞

J ) ∩ YJ

(
by (2.11)

)

= p−1
J

(
G∞

J

)
,
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where pJ : YJ → Grk+1(V ) and qJ : YJ → PJ are the projection maps. This in turn
proves Theorem 2.2 for the general cases k + 1 > N .

Remark 2.7. — Let us mention that the proof of Theorem 2.2 is indeed constructive,
and we do not rely on the general results by Nakamaye.

Now we are able to apply Theorems 1.4 and 2.2 to prove Theorem B using the explicit
formula of dKob,n in [Bro17].

Proof of Theorem B. — In [Bro17, p. 18], Brotbek obtained the following formula

dKob,n = m∞(Xk,A ) + δ + (R + k)δ,

where R := M(k+1)
(
m∞(Xk,A ) + δ− 1+ kδ

)
+1 with M ∈ N the lower bound of m so

that (2.4) remains valid, and one can take k = n− 1, δ = n2 by [Bro17]. By Theorems 1.4
and 2.2, we can take m∞(Xk,A ) = k = n− 1, and M = δk = δn−1. Hence

dKob,n 6 m∞(Xk,A ) + δ + (R+ k)δ

= k + δ + δ
(
δk(k + 1)

(
k + δ − 1 + kδ

)
+ 1 + k

)

= n2n+1(n3 + n− 2) + n3 + n2 + n− 1

6 n2n+3(n+ 1),

and the theorem follows.

Remark 2.8. — Along Siu’s line of slanted vector fields on higher jet spaces outlined
in [Siu04], Diverio-Merker-Rousseau [DMR10] first proved the weak hyperbolicity (say
that a projective variety X is weakly hyperbolic if all entire curves lie in a proper subvariety

Y ( X) of general hypersurfaces in Pn of degree d > 2(n−1)5 . This lower bound was

improved by Demailly [Dem11] to d >

⌊
n4

3

(
n log

(
n log(24n)

))n⌋
, and the latest best known

bound d > (5n)2nn was obtained by Darondeau [Dar16]. Very recently, Demailly [Dem18]
gave a simple proof of the Kobayashi conjecture as well as an effective lower bound dKob,n =
1
5

(
e(n− 1)

)2n
for the degrees. (1)

Now we will generalize Theorem 2.2 to the cases of products of Grassmannians. Let us
fix c, k, n ∈ N with c(k+1) > n. Write Vδi := H0

(
Pn,OPn(δi)

)
and G :=

∏c
i=1 Grk+1(Vδi)

for any (δ1, . . . , δc) ∈ Nc. Set Y to be the universal family of complete intersections
defined by

Y := {(∆1, . . . ,∆c, [z]) ∈ G× Pn | ∆i([z]) = 0,∀ i = 1, . . . , c}.(2.12)

Denote by p : Y → G and q : Y → Pn the projection maps. Then p is a generically finite
to one morphism. Define a group homeomorphism

L : Zc → Pic(G)(2.13)

a = (a1, . . . , ac) 7→ OGrk+1(Vδ1
)(a1)⊠ · · ·⊠ OGrk+1(Vδc )

(ac)

which is indeed an isomorphism.
Let us introduce c-smooth curves C1, . . . , Cc on G, defined by

∆i([t0, t1]) := Span(zδ11 , zδ1c+1, . . . , z
δ1
kc+1)× Span(zδ22 , zδ2c+2, . . . , z

δ2
kc+2)× · · ·

×Span(t0z
δi
i + t1z

δi
0 , zδic+i, . . . , z

δi
kc+i)× · · · × Span(zδcc , zδc2c, . . . , z

δc
(k+1)c)

1. After the submission of the final version of the present paper, there are some new progress on the
Kobayashi conjecture by Riedl-Yang [RY18]. Based on the result in [RY18] and the previous work by
Darondeau [Dar16], Merker [Mer18] was able to slightly improve the effective bounds in Theorem B.
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for [t0, t1] ∈ P1. It is easy to verify that L (a) ·Ci = ai for each i. Consider the hyperplane
Di ∈ |OPn(1)| given by {[z0, . . . , zn] | zi + z0 = 0}. Then we have the similar result as
Claim 2.4.

Lemma 2.9. — Suppose that n = k(c + 1). For any hyperplane D ∈ |OPn(1)|, p∗q
∗D ∈

|L (b)|, where b := (b1, . . . , bc) ∈ Nc with bi :=
∏c

j=1
δk+1

j

δi
.

Proof. — It is easy to show that p∗Ci and q∗Di intersect only at one point with multiplicity
bi for each i = 1, . . . , c. By the projection formula in Theorem 2.3, one has

(p∗q
∗Di) · Ci = p∗(q

∗Di · p
∗Ci) = bi.(2.14)

Recall that L (a) · Ci = ai for any a ∈ Zc. Then p∗q
∗D ∈ |L (b)| by (2.14).

By similar arguments as Claim 2.5, L (b)⊠ OPn(−1)↾Y is effective, and its base locus

Bs
(
L (b)⊠ OPn(−1)↾Y

)
⊂ p−1(G∞),(2.15)

where G∞ is the set of points in G at which the fiber in Y is positive dimensional. We
can apply the same methods in proving Theorem 2.2 to obtain a more general result.

Theorem 2.10. — Let Y be the universal complete intersection defined by

Y :=
{
(∆1, . . . ,∆c, [z]) ∈

c∏

i=1

Grk+1(Vδi)× Pn | ∆i([z]) = 0,∀ i = 1, . . . , c
}
,

where Vδi := H0
(
Pn,OPn(δi)

)
, and (k + 1)c > n. For any J ⊂ {0, . . . , n}, define YJ :=

Y ∩
∏c

i=1Grk+1(Vδi) × PJ . Then for any a = (a1, . . . , ac) ∈ Nc with ai >
∏c

j=1
δk+1

j

δi
for

i = 1, . . . , c, the base locus

Bs
(
L (a)⊠ OPn(−1)↾YJ

)
⊂ p−1

J (G∞
J ),

where G∞
J is the set of points in

∏c
i=1Grk+1(Vδi) at which the fiber in YJ is positive

dimensional.

Remark 2.11. — Very recently, Brotbek and the author [BD17,BD18] extended the tech-
niques in [BDa17,Bro17] to the logarithmic settings using meromorphic connections, and
we proved

(i) the logarithmic analogue of the Debarre conjecture: for general hypersurfaces
H1, . . . ,Hn ∈ |OPn(d)| with d > (4n)n and D :=

∑n
i=1Hi simple normal crossing, the

logarithmic cotangent bundle ΩPn(logD) is almost ample;
(ii) a result towards the orbifold Kobayashi conjecture by Rousseau [Rou10]: for general

hypersurfaces H ∈ |OPn(d)| with d > (n + 1)n+3 · (n + 2)n+3, the Campana orbifold(
Pn, (1− 1

d)H
)
is orbifold hyperbolic.

Let us mention that we have to apply Theorem 2.10 to obtain the effective lower bounds
of degrees in [BD17,BD18].

3. On the Diverio-Trapani Conjecture

In this section, we apply the techniques in [BDa17,Bro17] to prove Theorem C. Let us
mention that § 3.1 is not self-contained, and we strongly recommend the readers who are
interested in further details to refer to the paper [Bro17].
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3.1. Families of Fermat-type Hypersurfaces. — In [Bro17], Brotbek introduced the
families of Fermat-type Hypersurfaces as a candidate for the examples satisfying a strong
Zariski open property for hyperbolicity. In this subsection, we briefly recall his construc-
tions and the essential techniques in [Bro17] which will be used in the proof of Theorem C.

Let X be an n-dimensional projective manifold endowed with a very ample line bundle
A. We fix n + 1 sections in general position τ0, . . . , τn ∈ H0(X,A). Let us fix a positive
integer r and k. For any ε, δ ∈ N, set Vδ := H0

(
Pn,OPn(δ)

)
, and Aε,δ := H0(X,Aε)⊗ Vδ.

Consider for any a :=
(
aI ∈ H0(X,Aε)

)
|I|=δ

∈ Aε,δ, the hypersurface Ha in X defined by

the zero locus of the section

σ(a) :=
∑

|I|=δ

aIτ
(r+k)I ∈ H0(X,Am)(3.1.1)

where m = ε + (r + k)δ and τ (r+k)I := (τ i00 · · · τ inn )r+k for I = (i0, . . . , in). Consider the
universal family

Hε,δ := {(a, x) ∈ Aε,δ ×X | σ(a)(x) = 0}.

There exists a Zariski open set of Asm
ε,δ ⊂ Aε,δ so that over Asm

ε,δ, Hε,δ is a smooth family.

Let us also denote by Hε,δ → Asm
ε,δ the restrict family, H rel

ε,δ,k the (relative) Demailly-Semple

k-jet tower of (Hε,δ, THε,δ/A
sm
ε,δ
), and Ĥ rel

ε,δ,k the blow-up of H rel
ε,δ,k defined in Theorem 1.7.

Let us define a finite set Σ := ∪{j1,...,jn}⊂{0,...,n}(τj1 = · · · = τjn = 0) of X, and write

X◦ := X \ Σ. Denote by X̂◦
k := (π0,k ◦ νk)

−1(X◦). We can shrink Asm
ε,δ to a Zariski open

set so that Hε,δ ⊂ Asm
ε,δ ×X◦ and, a fortiori, Ĥ rel

ε,δ,k ⊂ Asm
ε,δ × X̂◦

k .
We need to cover X by a natural stratification induced by the vanishing of the τj ’s. For

any J ⊂ {0, . . . , n}, define

XJ := {x ∈ X | τj(x) = 0 ⇔ j ∈ J},

PJ := {[z] ∈ Pn | zj = 0 if j ∈ J},

Vδ,J := H0
(
PJ ,OPJ

(δ)
)
,

X̂k,J := (π0,k ◦ νk)
−1(XJ ) and X̂◦

k,J := X̂k,J ∩ X̂◦
k .

We are now in position to recall the main results in [Bro17], which will be applied in
§ 3.2.

Theorem 3.1 (Brotbek). — Fix any r ∈ N. For each ε, δ ∈ N, there exists a rational
map

Φε,δ : Aε,δ × X̂k 99K Grk+1(Vδ)(3.1.2)

induced by Brotbek’s Wronskians. Suppose that ε > m∞(Xk, A) and δ > n(k + 1).

(i) There exists a non-empty Zariski open subset A◦
ε,δ ⊂ Asm

ε,δ so that the restriction of

Φε,δ to A◦
ε,δ × X̂◦

k is a regular morphism.

(ii) Set L to be the tautological line bundle on Grk+1(Vδ), and F to be the effective divisor

in X̂k defined by OX̂k
(−F ) := ν∗kw∞(Xk). One has

Φ∗
ε,δL = ν∗k

(
OXk

(k′)⊗ π∗
0,kA

(k+1)(ε+kδ)
)
⊗ OX̂k

(−F ).(3.1.3)

(iii) Define a rational map

Ψε,δ : Aε,δ × X̂k 99K Grk+1(Vδ)× Pn

(a, w) 7→
(
Φε,δ(a, w), [τ

r(w)]
)
,

where [τ r(w)] :=
[
τ r0
(
π0,k ◦ νk(w)

)
, . . . , τ rn

(
π0,k ◦ νk(w)

)]
. The restriction of Ψε,δ

to Ĥ rel
ε,δ,k factors through Y , where Y ⊂ Grk+1(Vδ) × Pn is the universal family of
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complete intersections defined in (2.1). In other words, for any a ∈ A◦
ε,δ, Ĥa,k ⊂ X̂◦

k

and Ψε,δ(Ĥa,k) ⊂ Y .

(iv) For any w ∈ X̂◦
k , there exists a C-linear map

ϕε,δ,w : Aε,δ → V k+1
δ(3.1.4)

such that Φε,δ is defined at (a, w) ∈ Aε,δ × X̂◦
k if and only if dim [ϕε,δ,w(a)] = k + 1.

Here [ϕε,δ,w(a)] denotes to be the subspace in Vδ spanned by (k+1)-vectors ϕε,δ,w(a).
Moreover, for any a ∈ A◦

ε,δ, Φε,δ(a, w) = [ϕε,δ,w(a)] ∈ Grk+1(Vδ).

(v) Same setting as above. For the (unique) J ⊂ {0, . . . , n} so that w ∈ X̂◦
k,J , the

composition of C-linear maps

φε,δ,w : Aε,δ
ϕε,δ,w
−−−−→ V k+1

δ

ρw
−→ V k+1

δ,J ,

is surjective. Here ρw : V k+1
δ → V k+1

δ,J is the projection map.

3.2. Families of complete intersections of Fermat-type hypersurfaces. — Let
us construct families of complete intersection varieties in X cut out by Fermat-type hy-
persurfaces defined in § 3.1. As we will see in Theorem 3.4, these examples satisfy the
strong Zariski open property (∗) for almost k-jet ampleness defined in Definition 1.2.

We fix 1 6 c 6 n − 1, r ∈ N, k > n
c − 1, and two c-tuples of positive integers ε =

(ε1, . . . , εc), δ = (δ1, . . . , δc) ∈ Nc. Consider the family Z ⊂ Aε1,δ1 × · · · × Aεc,δc × X of
complete intersection varieties in X defined by

Z := {(a1, . . . ,ac, x) ∈ Aε1,δ1 × · · · × Aεc,δc ×X | σ(a1)(x) = · · · = σ(ac)(x) = 0},
(3.2.1)

where σ(ai) is the section defined in (3.1.1). Let us denote by ρ : Z → Aε1,δ1 ×· · ·×Aεc,δc

the natural projection, and for any a := (a1, . . . ,ac), set Za := ρ−1(a). One can show that
there is a non-empty Zariski open set Asm ⊂ A := Aε1,δ1 ×· · ·×Aεc,δc so that Za is smooth
for any a ∈ Asm. In other words, for any a ∈ Asm, the c-hypersurfaces Ha1

, . . . ,Hac are
smooth and intersect transversely so that Za := Ha1

∩ . . . ∩ Hac is a smooth subvariety
in X of codimension c. Let us also denote by Z → Asm the restricted (smooth) family.

Denote by Z rel
k the relative Demailly-Semple k-jet tower of (Z , TZ /Asm

), and Ẑ rel
k its

blow-up defined in Theorem 1.7. Observe that Za,k = Ha1,k ∩ . . .∩Hac,k for any a ∈ Asm,
and by Theorem 1.7, one has

Ẑa,k ⊂ Ĥa1,k ∩ . . . ∩ Ĥac,k.(3.2.2)

Consider a rational map Φ : A × X̂k 99K Grk+1(Vδ1) × · · · × Grk+1(Vδc) by taking the
products of (3.1.2). Precisely speaking, Φ is defined by

Φ : A× X̂k 99K Grk+1(Vδ1)× · · · ×Grk+1(Vδc)

(a1, . . . ,ac, w) 7→
(
Φε1,δ1(a1, w), . . . ,Φεc,δc(ac, w)

)

Write G := Grk+1(Vδ1) × · · · × Grk+1(Vδc) for short. As a direct consequence of Theo-
rems 1.4 and 3.1, we have the following result.

Theorem 3.2. — Assume that εi > k, δi > n(k + 1) for every i = 1, . . . , c. Then

(i) the restriction of Φ to A◦
ε1,δ1

× · · · × A◦
εc,δc

× X̂◦
k is regular.

(ii) Set A◦ := A◦
ε1,δ1

× · · · × A◦
εc,δc

∩ Asm. We also denote by Ẑ rel
k → A◦ the restricted

family. Then Ẑ rel
k ⊂ A◦ × X̂◦

k .
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(iii) For any (b1, . . . , bc) ∈ Nc, one has

Φ∗
L (b1, . . . , bc) = ν∗k

(
OXk

(
c∑

i=1

bik
′)⊗ π∗

0,kA
∑c

i=1 bi(k+1)(εi+kδi)
)
⊗ OX̂k

(
− (

c∑

i=1

bi)F
)
,

(3.2.3)

where L (b1, . . . , bc) is the tautological line bundle defined in (2.13).
(iv) Define a rational map

Ψ : A× X̂k 99K Grk+1(Vδ1)× · · · ×Grk+1(Vδc)× Pn

(a, w) 7→
(
Φ(a, w), [τ r(w)]

)
,

where [τ r(w)] :=
[
τ r0
(
π0,k ◦νk(w)

)
, . . . , τ rn

(
π0,k ◦νk(w)

)]
. The restriction of Ψ to Ẑ rel

k
factors through Y , where Y ⊂ Grk+1(Vδ1) × . . . × Grk+1(Vδc) × Pn is the universal
family of complete intersections defined in (2.12). In other words, for any a ∈ A◦,

Ẑa,k ⊂ X̂◦
k and Ψ(Ẑa,k) ⊂ Y .

Proof. — We apply Theorem 1.4 to take m∞(Xk, A) = k. (i), (ii) and (iii) can be easily
derived from Theorem 3.1. To prove (iv), it is enough to show that for any a ∈ A◦,

Ψ(Ẑa,k) ⊂ Y . By (3.2.2), for any w ∈ Ẑa,k, i = 1, . . . , c and P ∈ Φεi,δi(ai, w), one has

P
(
[τ r(w)]

)
= 0.

This proves (iv) by the definition of Y .

Set YJ := Y ∩
(
G× PJ

)
⊂ G× Pn, and denote by G∞

J the set of points in G at which
the fiber in YJ is positive dimensional.

Now we are ready to prove the following lemma, which is a variant of [Bro17, Lemma
3.11].

Lemma 3.3 (Avoiding positive dimensional fibers). — Assume that εi > k, δi >

dim X̂k = (n− 1)(k + 1) + 1 for i = 1, . . . , c. Then for any J ⊂ {0, . . . , n}, there exists a
non-empty Zariski open subset AJ ⊂ A◦ such that

Φ−1(G∞
J ) ∩ (AJ × X̂◦

k,J) = ∅.

Proof. — We introduce the following analogues of YJ parametrized by affine spaces

Ỹ1,J :=
{(

α10, . . . , αck, [z]
)
∈

c∏

i=1

V k+1
δi

× PJ | ∀1 6 i 6 c, 0 6 p 6 k, αip([z]) = 0
}
,

Ỹ2,J := {
(
α10, . . . , αck, [z]

)
∈

c∏

i=1

V k+1
δi,J

× PJ | ∀1 6 i 6 c, 0 6 p 6 k, αip([z]) = 0}.

By analogy with G∞
J , we denote by V∞

1,J (resp. V∞
2,J) the set of points in

∏c
i=1 V

k+1
δi

(resp.
∏c

i=1 V
k+1
δi,J

) at which the fiber in Ỹ1,J (resp. Ỹ2,J) is positive dimensional.

Fix any w ∈ X̂◦
k,J . By Theorem 3.1.(iv), for any a = (a1, . . . ,ac) ∈ A◦ we have

Φ(a, w) =
(
[ϕε1,δ1,w(a1)], . . . , [ϕεc,δc,w(ac)]

)
,

where ϕεi,δi,w : Aεi,δi → V k+1
δi

is the linear map defined in Theorem 3.1.(iv). Let us define
a C-linear map

ϕw : A →
c∏

i=1

V k+1
δi

a 7→
(
ϕε1,δ1,w(a1), . . . , ϕεc,δc,w(ac)

)
.

Then we have

Φ−1(G∞
J ) ∩ (A◦ × {w}) = ϕ−1

w (V∞
1,J) ∩ A◦ = (ρw ◦ ϕw)

−1(V∞
2,J) ∩ A◦,
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where

ρw :

c∏

i=1

V k+1
δi

→

c∏

i=1

V k+1
δi,J

is the projection map. Since the linear map ρw ◦ ϕw is diagonal by blocks, by Theo-
rem 3.1.(v) we have

rankρw ◦ ϕw =

c∑

i=1

(k + 1) dim Vδi,J .

Therefore

dim
(
Φ−1(G∞

J ) ∩ (A◦ × {w})
)
6 dim

(
(ρw ◦ ϕw)

−1(V∞
2,J)
)

6 dim(V∞
2,J) + dimker(ρw ◦ ϕw)

6 dim(V∞
2,J) + dimA− rank(ρw ◦ ϕw)

= dim(V∞
2,J) + dimA−

c∑

i=1

(k + 1) dim Vδi,J

= dimA− codim(V∞
2,J ,

c∏

i=1

V k+1
δi,J

),

which in turn implies that

dim
(
Φ−1(G∞

J ) ∩ A◦ × X̂◦
k,J

)
6 dimA− codim(V∞

2,J ,

c∏

i=1

V k+1
δi,J

) + dim X̂k.

By a result due to Benoist [Ben11] and Brotbek-Darondeau (see [BDa17, Corollary 3.2]),
we have

codim(V∞
2,J ,

c∏

i=1

V k+1
δi,J

) > min
i=1,...,c

δi + 1.

Therefore, if

(3.2.4) dim X̂k < min
i=1,...,c

δi + 1,

Φ−1(G∞
J ) doesn’t dominate A◦ via the projection A◦ × X̂◦

k,J → A◦, and we can thus find
a non-empty Zariski open subset AJ ⊂ A◦ such that

Φ−1(G∞
J ) ∩ (AJ × X̂◦

k,J) = ∅.

3.3. Proof of Theorem C. — We are now in position to prove Theorem C. Indeed, we
establish the following more refined result than Theorem C.

Theorem 3.4. — Let X be an n-dimensional projective manifold equipped with a very
ample line bundle A. Let c be any integer satisfying 1 6 c 6 n− 1, and set k := ⌈nc ⌉ − 1.
Assume that the multi-degrees (d1, . . . , dc) ∈ (N)c satisfy the following condition:

∃δ := (δ1, . . . , δc) ∈ Nc with δi > δ0 := n(k + 1) for i = 1, . . . , c.

∃ε := (ε1, . . . , εc) ∈ Nc with εi > k for i = 1, . . . , c.

∃r >

c∑

i=1

bi(k + 1)(εi + kδi), where bi :=

∏c
j=1 δ

k+1
j

δi

s.t. di = εi + (r + k)δi for i = 1, . . . , c.

Then for general hypersurfaces H1 ∈ |Ad1 |, . . . ,Hc ∈ |Adc |, their complete intersection

(smooth) variety Z := H1 ∩ . . . ∩Hc is almost k̃-jet ample for any k̃ > k.
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Proof. — Observe that, the choice for (ε, δ) and k in the theorem fits all the requirements
in Theorem 3.2 and Lemma 3.3. In the same vein as [BDa17,Bro17], let us first prove the
nefness.

Claim 3.5. — Set Anef := ∩JAJ . For any a ∈ Anef , the line bundle

ν∗k
(
OXk

(
c∑

i=1

bik
′)⊗ π∗

0,kA
−q(ε,δ,r)

)
⊗ OX̂k

(−
c∑

i=1

biF )
↾Ẑ

a,k

on Ẑa,k is nef. Here we write q(ε, δ, r) := r −
∑c

i=1 bi(k + 1)(εi + kδi) > 0.

Proof. — To prove that a line bundle on a projective variety is nef, it suffices to show that
for any irreducible curve, its intersection with this line bundle is non-negative. For any
fixed a ∈ Anef , and any irreducible curve C ⊂ Ẑa,k, there is a unique J ⊂ {0, . . . , n} such

that C◦ := X̂◦
k,J ∩ C is a non-empty Zariski open subset of C, and thus C◦ ⊂ Ẑk,J . It

follows from Theorem 3.2.(iv) that Ψ factors through YJ when restricted to Ẑk,J . Hence
Ψ↾C◦ also factors through YJ , and by the properness of YJ , Ψ(C) ⊂ YJ . By Lemma 3.3
and the definition of Anef , we have

Φ(C◦) ∩G∞
J = ∅,

and thus
Ψ(C) 6⊂ p−1

J (G∞
J ).

By Theorem 2.10, one has

Bs
(
L (b1, . . . , bc)⊠ OPn(−1)↾YJ

)
⊂ p−1

J (G∞
J ),

which yields

Ψ(C) ·
(
L (b1, . . . , bc)⊠ OPn(−1)↾Y

)
= Ψ(C) ·

(
L (b1, . . . , bc)⊠ OPn(−1)↾YJ

)
> 0.

Write Ψa : Ẑa,k → Y the restriction of Ψ to Ẑa,k. By (3.2.3), we have

Ψ∗
a

(
L (b1, . . . , bc)⊠OPn(−1)↾Y

)
= ν∗k

(
OXk

(

c∑

i=1

bik
′)⊗π∗

0,kA
−q(ε,δ,r)

)
⊗OX̂k

(−

c∑

i=1

biF )
↾Ẑ

a,k
,

and thus

C ·
(
ν∗k
(
OXk

(

c∑

i=1

bik
′)⊗ π∗

0,kA
−q(ε,δ,r)

)
⊗ OX̂k

(−

c∑

i=1

biF )
↾Ẑ

a,k

)
> 0,

which proves the claim.

By [Dem97, Proposition 6.16], we can find an ample line bundle

ν∗k
(
OXk

(ak, . . . , a1)⊗ π∗
0,kA

a0
)
⊗ OX̂k

(−F )

on X̂k for some a0, . . . , ak ∈ N. Denote by νa,k : Ẑa,k → Za,k the blow-up of the asymptotic

Wronskian ideal sheaf w∞(Za,k) of Za,k. Write Aa := A↾Za
and Fa := F ∩ Ẑa,k. Therefore,

for any ℓ > a0, by Claim 3.5 the line bundle

ν∗
a,k

(
OZ

a,k
(ak +

c∑

i=1

ℓbik
′, ak−1, . . . , a1)⊗ π∗

0,kA
a0−ℓq(ε,δ,r)
a

)
⊗ OẐ

a,k

(
− (

c∑

i=1

ℓbi + 1)Fa

)
=

ν∗k
(
OXk

(ak +

c∑

i=1

ℓbik
′, ak−1, . . . , a1)⊗ π∗

0,kA
a0−ℓq(ε,δ,r)

)
⊗ OX̂k

(
− (

c∑

i=1

ℓbi + 1)F
)
↾Ẑ

a,k

is ample for a ∈ Anef , which verifies the condition (∗). By the Zariski open property
(∗) in Theorem 1.7.(ii), we conclude that there exists a non-empty Zariski open subset
Sample ⊂

∏c
i=1 |A

di | such that for any (H1, . . . ,Hc) ∈ Sample, their complete intersection
Z := H1 ∩ . . . ∩Hc is a reduced smooth variety of codimension c in X, and Z is almost
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k-jet ample. By [Dem97, Lemma 7.6], if a complex manifold Y is almost k-jet ample, then

it is also almost k̃-jet ample for any k̃ > k. This finishes the proof of the theorem.

Let us deduce Theorem C from Theorem 3.4.

Proof of Theorem C. — Let us keep the same notations in Theorem 3.4. We will fix
ε1 = · · · = εc > k := ⌈nc ⌉ − 1 and δ := (δ0, . . . , δ0) with δ0 = n(k + 1). Then b1 = · · · =

bc = δ
c(k+1)−1
0 . If we take

d0 := δ0
(
c(k + 1)(k + δ0 + kδ0 − 1)δ

c(k+1)−1
0 + 1 + k

)
+ k,

then any d > d0 has a decomposition

d = δ0(r + k) + ε

with k 6 ε < k + δ0, and

r > cδ
c(k+1)−1
0 (k + 1)(k + δ0 − 1 + kδ0) + 1 >

c∑

i=1

bi(k + 1)(ε + kδ0),

satisfying the conditions in Theorem 3.4. Observe that

d0 = δ0
(
c(k + 1)(k + δ0 + kδ0 − 1)δ

c(k+1)−1
0 + 1 + k

)
+ k(3.3.1)

6 δ
c(k+1)
0 c(k + 1)2(δ0 + 1)

6 2cnc⌈n
c
⌉+1 · ⌈

n

c
⌉c⌈

n
c
⌉+3

In conclusion, the complete intersection H1 ∩ . . . ∩ Hc of c-general hypersurfaces
H1, . . . ,Hc ∈ |A d| with d > 2cnc⌈n

c
⌉+1 · ⌈nc ⌉

c⌈n
c
⌉+3 is almost k̃-jet ample for any

k̃ > n
c − 1.

Let us mention that when n
2 6 c 6 n − 1, by [BDa17, Corollary 2.9], one can take

δ0 := 2n − 1, which is slightly better than that in Theorem 3.4. Now we apply the
estimate in [BDa17] to provide a slight better bound in the case n

2 6 c 6 n− 1.

Proof of Theorem A. — Note that if X is a smooth projective variety whose cotangent
bundle ΩX is ample, then for any smooth closed subvariety Y ⊂ X, ΩY is also ample.
Hence it suffice to prove the theorem for c = ⌈n2 ⌉, k = 1. By (3.3.1) and δ0 = 2n− 1, one
can take

dDeb,n = δ0
(
c(k + 1)(k + δ0 + kδ0 − 1)δ

c(k+1)−1
0 + 1 + k

)
+ k

= 4(2n − 1)2⌈
n
2
⌉+1 · ⌈

n

2
⌉+ 2(2n − 1) + 1

6 2(2n − 1)n+2 · (n+ 1) + 4n− 1

6 (2n)n+3.

3.4. Proof of Corollary D. — This subsection is devoted to prove Corollary D.

Proof of Corollary D. — Recall that the Demailly-Semple k-jet tower Zk of (Z, TZ) is a

locally trivial product as well as its blow-up νk : Ẑk → Zk along the Wronskian ideal sheaf
w∞(Zk). Indeed, by § 1.2 for any z ∈ Z there exists an open set U containing z so that
Uk := π−1

0,k(U) ≃ U ×Rn−c,k and w∞(Zk)↾Uk
≃ pr∗2In−c,k, where pr2 : U ×Rn−c,k → Rn−c,k
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is the projection map. Let us denote by µk : R̂n−c,k → Rn−c,k the blow-up of Rn−c,k along

In−c,k. Write Ûk := ν−1
k (Uk). Then

Ûk
≃

//

νk

��

U × R̂n−c,k

1×µk

��

Uk
≃

// // U ×Rn−c,k

(3.4.1)

It follows from the proof of Theorem 3.4 that, there exists a1, . . . , ak, q ∈ N such that
ν∗kOZk

(ak, . . . , a1) ⊗ OẐk
(−qF ) is ample. Write πk = π0,k ◦ νk : Ẑk → Z. One thus can

take a1, . . . , ak, q ≫ 0 so that all higher direct images

Ri(πk)∗
(
ν∗kOZk

(ak, . . . , a1)⊗ OẐk
(−qF )

)
= 0 ∀ i > 0,(3.4.2)

and L := ν∗kOZk
(ak, . . . , a1) ⊗ OẐk

(−qF ) ⊗ π∗
kA

−1 is ample for some very ample line

bundle A on Z.

Claim 3.6. — (πk)∗
(
ν∗kOZk

(mak, . . . ,ma1)⊗OẐk
(−mqF )

)
is an ample vector bundle for

each m ≫ 0.

Proof of Claim 3.6. — Denote by Em := (πk)∗(L
m). From the local trivial product struc-

ture of Ẑk as in (3.4.1), Em is locally free for each m > 0.
By (3.4.2) and the degeneration of Leray spectral sequences, one has

H i(Z,Em ⊗F) = H i(Ẑk,L
m ⊗ π∗

kF) ∀ i > 0, m > 0

for any coherent sheaf F on Z. Fix any point y ∈ Z, with the maximal ideal of OZ,y

denoted by my. As L is ample, there is a positive integer my ≫ 0 such that

H1(Z,Em ⊗my) = H1(Ẑk,L
m ⊗ π∗

kmy) = 0 ∀ m > my,

which in turn implies that Em is globally generated at y for all m > my. As Z is compact,
we can find an integer m0 ≫ 0 such that Em is globally generated when m > m0. Observe
that

Em = (πk)∗
(
ν∗kOZk

(mak, . . . ,ma1)⊗ OẐk
(−mqF )

)
⊗ A

−m

where A is a very ample line bundle on Z. Hence (πk)∗
(
ν∗kOZk

(mak, . . . ,ma1) ⊗

OẐk
(−mqF )

)
is a quotient of a direct sum of copies of the very ample line bundle

OZ(A
m). By the cohomological characterization of ample vector bundles in [Laz04, The-

orem 6.1.10], (πk)∗
(
ν∗kOZk

(mak, . . . ,ma1)⊗ OẐk
(−mqF )

)
is ample for m > m0.

By the projection formula

F := (πk)∗
(
ν∗kOZk

(ak, . . . , a1)⊗ OẐk
(−qF )

)
= (π0,k)∗

(
OZk

(ak, . . . , a1)⊗ Jq
)
,(3.4.3)

where Jq := (νk)∗OẐk
(−qF ) is the ideal sheaf of Zk with the subscheme OZk

/Jq supported

on Zsing
k . By Claim 3.6, for proper a1, . . . , ak, q ≫ 0, ν∗kOZk

(ak, . . . , a1) ⊗ OẐk
(−qF ) ⊗

π∗
kA

−1 is very ample. For any regular germ of curve f : (C, 0) → (Z, z), its k-th lift
f[k] ∈ Zreg

k . Hence there exists a global section σ ∈ H0
(
Zk,OZk

(ak, . . . , a1)⊗π∗
0,kA

−1⊗Jq
)

so that σ(f[k]) 6= 0. Let Pσ ∈ H0(Z,F ⊗ A −1) be the corresponding element of σ under
the isomorphism (3.4.3). Hence Pσ([f ]k) 6= 0. It follows from [Dem97, Proposition 6.16.i]
that F ⊂ Ek,mT

∗
Z for m := a1 + · · ·+ ak. The corollary is thus proved.
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Études Sci. 126 (2017), p. 1–34.

[Dar16] L. Darondeau – “On the logarithmic Green-Griffiths conjecture”, Int. Math. Res. Not.
IMRN (2016), no. 6, p. 1871–1923.

[Deb05] O. Debarre – “Varieties with ample cotangent bundle”, Compositio Mathematica 141
(2005), no. 6, p. 1445–1459.

[DEG97] J.-P. Demailly & J. El Goul – “Connexions méromorphes projectives partielles et
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