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On the Diverio-Trapani Conjecture

Ya Deng∗

Institut Fourier, Université Grenoble Alpes

Abstract

The aim of this work is to study the conjecture on the ampleness of Demailly-Semple bundles
raised by Diverio and Trapani, and also obtain some effective estimates related to this problem.
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1 Introduction

In recent years, an important technique in studying hyperbolicity-related problems is invariant jet
differentials Ek,mT

∗
X introduced by J.-P. Demailly, which can be seen as a generalization to higher order

of symmetric differentials, but invariant under the reparametrization. To prove hyperbolicity-type
statements for projective manifolds, one needs to construct (many) global jet differentials vanishing
on an ample divisor on the given manifold X (cf. Theorem 2.3 below). If one deal the with positivity
for jet bundles of the complete intersection of hypersurfaces in PN , as was proved in [Div08], one
cannot expect to achieve this for lower order jet differentials if the codimension of subvariety is small:

Theorem 1.1. (Diverio) Let X ⊂ PN be a smooth complete intersection of hypersurfaces of any
degree in PN . Then

H0(X,EGG
k,mT ∗

X) = 0

for all m ≥ 1 and 1 ≤ k < dim(X)/codim(X).

∗
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On the other hand, in principle, the positivity (or hyperbolicity) of a generic complete intersection
in the projective space should be increased by cutting more and more with projective hypersurfaces of
high degree. In [Deb05], Debarre verified this in the case of abelian variety, in which he proved that the
intersection of at least N

2 sufficiently ample general hypersurfaces in an N -dimensional abelian variety
has ample cotangent bundle. Motivated by this result, he conjectured that the analogous statement
holds in the projective space:

Conjecture 1.1. (Debarre) The cotangent bundle of the intersection in PN of at least N
2 general

hypersurfaces of sufficiently high degree is ample.

The first important result in this direction was obtained by Brotbek in [Bro14], where he was able
to prove the Debarre conjecture for complete intersection surfaces in P4. Later, in [Bro15] he proved
the ampleness of the cotangent bundle of the intersection of at least 3n−2

4 general hypersurfaces of
high degree in Pn. Very recently, based on the ideas and explicit methods arising in [Bro15], Brotbek
and Darondeau [BD15] and independently S.-Y. Xie [Xie15,Xie16] proved the Debarre conjecture:

Theorem 1.2. (Brotbek-Darondeau, Xie) Let X be any smooth projective variety of dimension N , and
A a very ample line bundle on X, there exists a positive number dN depending only on the dimension
N , such that for each c ≥ N

2 , the complete intersection of c general hypersurfaces in |Aδ| has ample
cotangent bundle.

Moreover, Xie was able to give an effective lower bound on hypersurface degrees dN := NN2
.

Although the work by Brotbek and Darondeau is not effective on the lower bound dN , growing from
some interpretation of the cohomological computations in [Bro15], they established an elegant geo-
metric construction, which defines a map Ψ from the projectivized relative cotangent bundle P(Ωχ/S)
to a certain family Y → G, which we called the universal Grassmannian in Section 4, to construct a
lot of global symmetric differential forms with a negative twist by pulling-back the positivity on Y .
In order to make the base locus empty, they applied the Nakamaye Theorem, which asserts that for a
big and nef line bundle L on a projective variety, the augmented base locus B+(L) coincides with the
null locus Null(L), to the tautological line bundle L on the universal Grasssmannian Y . In Section
4, we obtain an effective result (see Theorem 4.3) related to the Nakamaye Theorem they used, which
is a bit weaker but still valid in their proof. Thus based on their work we can obtain a better lower
bound (see also [Den16])

dN = 4c0(2N − 1)2c0+1 + 6N − 3,

where c0 := ⌊N+1
2 ⌋.

On the other hand, by introducing a new compactification of the set of regular jets JkT
reg
X /Gk,

Brotbek was able to fully develop the ideas in [BD15] to prove the Kobayashi conjecture [Bro16]. His
statement is thus the following:

Theorem 1.3. (Brotbek) Let X be a smooth projective variety of dimension n. For any very ample
line bundle A on X and any d ≥ dK,n, a general hypersurface in |Ad| is Kobayashi hyperbolic. Here
dK,n depends only the dimension n.

In [Bro16], the main new tool he constructed is the Wronskians on the Demailly-Semple tower,
which associates sections of the line bundle to global invariant jet differentials. As there are certain
insuperable obstructions to the positivity of the tautological line bundle on the Demailly-Semple
towers, due to the compactification of the jet bundles (ref. [Dem95]), Brotbek introduced a clever
way to blow-up the ideal sheaves defined by the Wronskians, which behaves well in families, so that
he was able to apply the openness property of ampleness for the higher order jet bundles to prove
the hyperbolicity for general hypersurfaces. In order to make the lower bound dK,n in Theorem 1.3
effective, one needs to obtain some effective estimates arising in some noetherianity arguments. As
well as the Nakamaye Theorem, there is another constant m∞(Xk, L) (see Section 2.3) which reflects
the stability of Wronskian ideal sheaf when the positivity of the line bundle L increases. In Section
2.3 we study Brotbek’s Wronskians and prove the effective finite generation for Wronskian ideal sheaf
(Theorem 2.4), and thus based on Brotbek’s result we were able to obtain an effective bound for the
Kobayasi conjecture (see also [Den16])

dK,n = nn+1(n+ 1)2n+5.
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Remark 1.1. By using Siu’s technique of slanted vector fields on higher jet spaces outlined in his
survey [Siu02], and the Algebraic Morse Inequality by Demailly and Trapani, the first effective lower
bound for the degree of the general hypersurface which is weakly hyperbolic (say that a variety X is
weakly hyperbolic if all its entire curves lie in a proper subvariety Y ( X) was given by Diverio,
Merker and Rousseau [DMR10], where they confirmed the Green-Griffiths-Lang conjecture for generic
hypersurfaces in Pn of degree d ≥ 2(n−1)5 . Later on, by means of a very elegant combination of his
holomorphic Morse inequalities and a probabilistic interpretation of higher order jets, Demailly was

able to improve the lower bound to d ≥
⌊
n4

3

(
n log

(
n log(24n)

))n⌋
[Dem10]. The latest best known

bound was d ≥ (5n)2nn by Darondeau [Dar15]. In the recent published paper [Siu15], Siu provided
more details to his strategy in [Siu02] to complete his proof of the Kobayashi conjecture, and the bound
on the degree following [Siu15] are very difficult to make explicit.

In the same vein as the Debarre conjecture, in [DT10], Simone Diverio and Stefano Trapani raised
the following generalized conjecture:

Conjecture 1.2. (Diverio-Trapani) Let X ⊂ PN be the complete intersection of c general hypersur-
faces of sufficiently high degree. Then, Ek,mT ∗

X is ample provided that k ≥ N
c − 1, and therefore X is

hyperbolic.

In this paper, based mainly on the elegant geometric methods in [BD15] and [Bro16] on the Debarre
and Kobayashi conjectures, we prove the following theorem:

Theorem A. Let X be a projective manifold of dimension n endowed with a very ample line bundle
A. Let Z ⊂ X be the complete intersection of c general hypersurfaces in |H0

(
X,OX(dA)

)
|. Then for

any positive integer k ≥ n
c − 1, Z has almost k-jet ampleness (see Definition 2.1 below) provided that

d ≥ 2c(⌈nc ⌉)
n+c+2nn+c. In particular, Z is Kobayashi hyperbolic.

Since our definition for almost 1-jet ampleness coincides with ampleness of cotangent bundle, then
our Main Theorem integrates both the Kobayashi (c = 1) and Debarre conjectures (c ≥ n

2 ), with some
(non-optimal) effective estimates.

At the expense of a slightly larger bound, based on a factorization trick due to Xie [Xie15], we are
able to prove the following stronger result:

Theorem B. Let X be a projective manifold of dimension n and A a very ample line bundle on X.
For any c-tuple d := (d1, . . . , dc) such that dp ≥ c2n2n+2c(⌈nc ⌉)

2n+2c+4 for each 1 ≤ p ≤ c, for general
hypersurfaces Hp ∈ |Adp |, their complete intersection Z := H1 ∩ . . . ∩Hc has almost k-jet ampleness
provided that k ≥ k0.

Moreover, there exists a uniform (e1, . . . , ek) ∈ Nk which only depends on n, such that OZk
(e1, . . . , ek)

is big and its augmented base locus

B+

(
OZk

(e1, . . . , ek)
)
⊂ ZSing

k

where ZSing
k is the set of points in Zk which can not be reached by the k-th lift f[k](0) of any regular

germ of curves f : (C, 0) → Z.

From the relation between tautological bundles on the Demailly-Semple towers and invariant jet
bundles, we prove the following theorem on the Diverio-Trapani conjecture:

Theorem C. Set q := Zd →
∏c

p=1 |A
dp | to be the universal family of c-complete intesections of

hypersurfaces in
∏c

p=1 |A
dp |, where dp ≥ c2n2n+2c(⌈nc ⌉)

2n+2c+4 for each 1 ≤ p ≤ c. Set U ⊂
∏c

p=1 |A
dp |

to be a Zariski open set of
∏c

p=1 |A
dp | such that when restricted to X := q−1(U), q is a smooth fibration.

Then for every j ≫ 0, there exists a subbundle Vj ⊂ Ek,jmT
∗
X /U defined on X , whose restriction to

the general fiber Z of q is an ample vector bundle. Moreover, fix any x ∈ Z, and any regular k-jet
of holomorphic curve [f ] : (C, 0) → (Z, x), then for every j ≫ 0 there exists global jet differentials
Pj ∈ H0(Z, Vj |Z ⊗ A−1) (hence they are of order k and weighted degree jm) does not vanish when
evaluated on the k-jet defined by (f ′, f ′′, . . . , f (k)).
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In other words, this theorem shows that, we can find a subbundle of the invariant jet bundle, which
is ample, and its Demailly-Semple locus defined in [DR13, Section 2.1] is empty.

This paper is organized as follows. In Section 2, we will collect some definitions and notations,
and recall some related results on the invariant jet differentials and their relations with the Demailly-
Semple tower. In particular, in Section 2.3 we study the main tool initialed by Brotbek very recently
in his proof of the Kobayashi conjecture (cf. [Bro16]), namely the Wronskians on the Demailly-Semple
towers. Using the bundle of k-jet sections of a line bundle L as the intermediate stage between global
sections of L and the Wronskians, we can obtain an “effective finite generation” of the k-th Wronskian
ideal sheaf w(Xk, L) (see Theorem 2.4 below), which is essential in the effective estimate for the lower
bound of the degree in the Main Theorems. Next, in Section 3, we provide the proofs of the Main
Theorems. The general idea is a combination of the methods arising in [BD15] and [Bro16]: we
reduce the general statement to the construction of an example with jet ampleness, and then apply
the openness property to prove the jet ampleness for general complete intersections. Such an example
arises from the complete intersections of families of hypersurfaces which are deformations of Fermat
type hypersurfaces. Using Brotbek’s Wronskians we are able to construct a (rational) map Ψ from the
Demailly-Semple towers of such complete intersections to the (more general) universal Grassmannian
Y (one need to blow-up the Wronskian ideal sheaf to resolve the indeterminacy of that rational map
Ψ), so that we can construct a lot of invariant jet differentials with a negative twist by pulling-back
the positivity on Y . To control the base locus of the jet bundle of the general complete intersection,
the image of Ψ should avoid the locus of positive dimension fibers Y → G. In Section 4, we study the
augmented base locus of the tautological line bundle on the universal Grassmannians, where we give
an explicit construction for a lot of divisors in certain linear systems to show that, their base locus
avoid the non-finite loci G∞, to obtain an “almost” Nakamaye Theorem. This paper contains some
results already appeared in [Den16]. Here our main theorems are more general and we provide more
details to make the statements and proofs self-contained, which could supercede the paper [Den16].

2 Technical Preliminaries and Lemmas

2.1 Invariant Jet Differentials

Let (X,V ) be a directed manifold, i.e. a pair where X is a complex manifold and V ⊂ TX a holomorphic
subbundle of the tangent bundle. One defines JkV → X to be the bundle of k-jets of germs of
parametrized curves in X, that is, the set of equivalent classes of holomorphic maps f : (C, 0) → (X,x)
which are tangent to V , with the equivalence relation f ∼ g if and only if all derivatives f (j)(0) = g(j)(0)
coincide for 0 ≤ j ≤ k, when computed in some local coordinate system of X near x. From now no,
if not specially mentioned, we always assume that V = TX . The projection map pk : JkTX → X is
simply taken to be [f ] 7→ f(0). If (z1, . . . , zn) are local holomorphic coordinates on an open set Ω ⊂ X,
the elements [f ] of any fiber Jk,x, x ∈ Ω, can be seen as Cn-valued maps

f = (f1, . . . , fn) : (C, 0) → Ω ⊂ Cnk,

and they are completetely determined by their Taylor expansion of order k at t = 0:

f(t) = x+ tf ′(0) +
t2

2!
f ′′(0) + . . .+

tk

k!
f (k)(0) +O(tk+1).

In these coordinates, the fiber Jk,x can thus be identified with the set of k-tuples of vectors

(ξ1, . . . , ξk) =
(
f ′(0), f ′′(0), . . . , f (k)(0)

)
∈ Cn.

Let Gk be the group of germs of k-jets of biholomorphisms of (C, 0), that is, the group of germs
of biholomorphic maps

t → ϕ(t) = a1t+ a2t
2 + · · ·+ akt

k, a1 ∈ C∗, aj ∈ C, j > 2,
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in which the composition law is taken modulo terms tj of degree j > k. Then Gk is a k-dimensional
nilpotent complex Lie group, which admits a natural fiberwise right action on JkTX . The action
consists of reparametrizing k-jets of maps f : (C, 0) → X by a biholomorphic change of parameter
ϕ : (C, 0) → (C, 0) defined by (f, ϕ) 7→ f ◦ ϕ. The corresponding C∗-action on k-jets is described in
coordinates by

λ · (f ′, f ′′, . . . , f (k)) = (λf ′, λ2f ′′, . . . , λkf (k)).

Green-Griffiths introduced the vector bundle EGG
k,mT ∗

X whose fibres are complex valued polynomials

Q(f ′, f ′′, . . . , f (k)) on the fibres of JkTX , of weighted degree m with respect to the C∗-action, i.e.,
Q(λf ′, λ2f ′′, . . . , λkf (k)) = λmQ(f ′, f ′′, . . . , f (k)), for all λ ∈ C∗ and (f ′, f ′′, . . . , f (k)) ∈ JkV . One
calls EGG

k,mT ∗
X the bundle of jet differentials of order k and weighted degree m. Let U ⊂ X be an open

set with local coordinate (z1, . . . , zn), then any local section P ∈ Γ(U,EGG
k,mT ∗

X |U ) can be written as

∑

|α1|+2|α2|+...+k|αk|=m

cα(z)(d
1z)α1(d2z)α2 · · · (dkz)αk ,

where cα(z) ∈ Γ(U,OU ) for any α := (α1, . . . , αk) ∈ (Nn)k, such that for any holomorphic curve
γ : Ω → U with Ω ⊂ C, we have

P ([γ])(t) =
∑

|α1|+2|α2|+...+k|αk|=m

cα
(
γ(t)

)(
γ′(t)

)α1
(
γ′′(t)

)α2 · · ·
(
γ(k)(t)

)αk ∈ Γ(Ω,OΩ),

where [γ] : Ω → JkTX |U is the natural lifted holomorphic curve on JkTX induced by γ.

However, we are more interested in the more geometric context introduced by J.-P. Demailly
in [Dem95]: the subbundle Ek,mV

∗ ⊂ EGG
k,mV ∗ which is a set of polynomial differential operators

Q(f , f ′′, . . . , f (k)) which are invariant under arbitrary changes of parametrization, that is, for any
ϕ ∈ Gk, we have

Q
(
(f ◦ ϕ)′, (f ◦ ϕ)′′, . . . , (f ◦ ϕ)(k)

)
= ϕ′(0)mQ(f ′, f ′′, . . . , f (k)).

The bundle Ek,mV ∗ is called the bundle of invariant jet differentials of order k and degree m. A very
natural construction for invariant jet differentials is Wronskians. In [Bro16] Brotbek introduced a type
of Wronskians induced by global sections in some linear system. We will recall briefly his constructions
in Section 2.3.

2.2 Demailly-Semple Jet Bundles

Let X be a complex manifold of dimension n. If V is a subbundle of rank r, one constructs a
tower of Demailly-Semple k-jet bundles πk−1,k : (Xk, Vk) → (Xk−1, Vk−1) that are Pr−1-bundles, with
dimXk = n + k(r − 1) and rank(Vk) = r. For this, we take (X0, V0) = (X,V ), and for every k ≥ 1,
inductively we set Xk := P (Vk−1) and

Vk := (πk−1,k)
−1
∗ OXk

(−1) ⊂ TXk
,

where OXk
(1) is the tautological line bundle on Xk = P (Vk−1), πk−1,k : Xk → Xk−1 the natural

projection and (πk−1,k)∗ = dπk−1,k : TXk
→ π∗

k−1,kTXk−1
its differential. By composing the projections

we get for all pairs of indices 0 ≤ j ≤ k natural morphisms

πj,k : Xk → Xj , (πj,k)∗ = (dπj,k)|Vk
: Vk → (πj,k)

∗Vj,

and for every k-tuple a = (a1, ..., ak) ∈ Zk we define

OXk
(a) = ⊗1≤j≤kπ

∗
j,kOXj

(aj).

We also have an inductively defined k-th lifting for germs of holomorphic curves such that f[k] :
(C, 0) → Xk is obtained as f[k](t) =

(
f[k−1](t), [f

′
[k−1](t)]

)
. Moreover, if one denote by

J reg
k V := {[f ]k ∈ JkV |f ′(0) 6= 0}
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the space of regular k-jets tangent to V , then there exists a morphism

J reg
k V → Xk

[f ] 7→ f[k](0)

whose image is an open set in Xk denote by Xreg
k , which can be identified with the quotient J reg

k /Gk

[Dem95, Theorem 6.8]. In other words, Xreg
k ⊂ Xk is the set of elements f[k](0) in Xk which can be

reached by all regular germs of curves f , and set Xsing
k := Xk \X

reg
k , which is a divisor in Xk. Thus Xk

is a relative compactification of J reg
k /Gk over X. Dealing with hyperbolicity problems, we are allowed

to have small base locus contained in Xsing
k [Dem95, Section 7].

We will need the following parametrizing theorem due to J.-P. Demailly [Dem95, Corollary 5.12]:

Theorem 2.1. Let (X,V ) be a directed variety. For any w0 ∈ Xk, there exists an open neighborhood
Uw0 of w0 and a family of germs of curves (fw)w∈Uw0

, tangent to V depending holomorphically on w
such that

(fw)[k](0) = w and (fw)
′
[k−1](0) 6= 0, ∀w ∈ Uw0 .

In particular, (fw)
′
[k−1](0) gives a local trivialization of the tautological line bundle OXk

(−1) on Uw0 .

By [Dem95, Theorem 6.8], we have the following isomorphism between Demailly-Semple jet bundles
and invariant jet differentials:

Theorem 2.2. (Direct image formula) Let (X,V ) be a directed variety. The direct image sheaf

(π0,k)∗OXk
(m) ∼= Ek,mV ∗ (2.1)

can be identified with the sheaf of holomorphic sections of Ek,mV ∗. In particular, for any line bundle
L, we have the following isomorphism induced by (π0,k)∗:

(π0,k)∗ : H
0
(
Xk,OXk

(m)⊗ π∗
0,kL

) ∼=
−→ H0(X,Ek,mV ∗ ⊗ L). (2.2)

Moreover, let a = (a1, . . . , ak) ∈ Zk and m = a1 + . . .+ ak, then we have

(π0,k)∗OXk
(a) ∼= F

a
Ek,mV ∗ (2.3)

where F
a
Ek,mV ∗ is the subbundle of polynomials Q(f ′, f ′′, . . . , f (k)) ∈ Ek,mV

∗ involving only mono-
mials (f (•))l such that

ls+1 + 2ls+2 + . . .+ (k − s)lk ≤ as+1 + . . .+ ak

for all s = 0, . . . , k − 1.

Therefore, with the notations in Theorem 2.1, for any given local invariant jet differential P ∈
Γ(U,Ek,mV ∗|U ), the inverse image under (π0,k)∗ is the section in

σP ∈ Γ
(
Uw0 ,OXk

(m)|Uw0

)

defined by

σP (w) := P (f ′
w, f

′′
w, . . . , f

(k)
w )

(
(fw)

′
[k−1](0)

)−m
. (2.4)

The general philosophy of the theory of (invariant) jet differentials is that their global sections
with values in an anti-ample divisor provide algebraic differential equations which every entire curve
must satisfy, which is an application of Ahlfors-Schwarz lemma. The following Fundamental Vanishing
Theorem shows the obstructions to the existence of entire curves:

Theorem 2.3. (Demailly, Green-Griffiths, Siu-Yeung) Let (X,V ) be a directed projective variety and
f : C → (X,V ) an entire curve tangent to V . Then for every global section P ∈ H0

(
X,Ek,mV ∗ ⊗

O(−A)
)
where A is an ample divisor of X, one has P (f ′, f ′′, . . . , f (k)) = 0. In other word, if we

denote by s the unique section in H0
(
Xk,OXk

(m) ⊗ π∗
0,k(−A)

)
corresponding to P induced by the

isomorphism (2.2), and Z(s) ⊂ Xk the base locus of this section, then f[k](C) ⊂ Z(s).
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Now we state the following definition which describes the positivity of the the invariant jet bundles:

Definition 2.1. Let X be a projective manifold. We say that X has almost k-jet ampleness if and
only if there exists a k-tuple of positive integers (a1, . . . , ak) such that OXk

(a1, . . . , ak) is big and its
augmented base locus satisfies the condition

B+

(
OXk

(a1, . . . , ak)
)
⊂ Xsing

k .

By applying Theorem 2.3, we can quickly conclude that, if X has almost k-jet ampleness, then its
Demailly-Semple locus [DR13, Section 2.1] is an empty set, and thus X is Kobayashi hyperbolic.

2.3 Brotbek’s Wronskians

In this subsection, we will study the property of the Wronskians constructed by Brotbek in [Bro16],
which associates any k+1 sections of a given line bundle L to invariant k-jet differentials of weighted
degree k′ := (k+1)k

2 , that is, sections in H0(X,Ek,k′T
∗
X ⊗ Lk+1). We prove that, the Wronskians

factorizes through a natural morphism from the bundle JkOX(L) of k-jet sections of L to the invariant
jet bundles Ek,k′T

∗
X⊗Lk+1. Moreover, we obtain an “effective finite generation” of the k-th Wronskian

ideal sheaf w(Xk, L) (see also Theorem 2.4 below).

Let X be an n-dimensional compact complex manifold. If (z1, . . . , zn) are local holomorphic
coordinates on an open set U ⊂ X, then since JkTX is a locally trivial holomorphic fiber bundle, we
have the homeomorphism

JkTX |U ∼ U × Cnk,

which is given by [f ] 7→
(
f(0), f ′(0), . . . , f (k)(0)

)
.

For any holomorphic function g ∈ O(U), and 1 ≤ j ≤ k, there exists an induced holomorphic

function d
[j]
U (g) on O(p−1

k (U)), defined by

d
[j]
U (g)

(
f ′(0), f ′′(0), . . . , f (k)(0)

)
:= (g ◦ f)(j)(0).

Moreover, we have the following lemma

Lemma 2.1. For any k ≥ 1, we have d
[k]
U (g) ∈ Γ(U,EGG

k,k T
∗
U ), and

d
[k]
U (g) =

∑

|α1|+2|α2|+...+k|αk|=k

cα(z)(d
1z)α1(d2z)α2 · · · (dkz)αk , (2.5)

such that for each α := (α1, . . . , αk) ∈ (Nn)k, cα(z) ∈ Γ(U,OU ) is a Z-linear combination of ∂|β|g
∂zβ

(z)
with |β| ≤ k.

Proof. We will prove the lemma by induction on k. For k = 1, we simply have

d
[1]
U (g) =

n∑

i=1

∂g

∂zi
(z)dzi ∈ Γ(U, T ∗

U ),

and thus the statements are true for k = 1.
Suppose that d

[k]
U (g) has the form (2.5), then we have

d
[k+1]
U (g) =

∑

|α1|+2|α2|+···+k|αk|=k

k∑

i=1

n∑

j=1

cα(z)(d
1z)α1 · · · (diz)αi−ej (di+1z)αi+1+ej · · · (dkz)αk

+
∑

|α1|+2|α2|+···+k|αk|=k

n∑

j=1

∂cα(z)

∂zj
(d1z)α1+ej · · · (dkz)αk ,

where e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) is the standard basis in Zn. If the lemma is true for k,
so is k + 1. Thus the lemma holds for any k ∈ N.
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Since the bundle
EGG

k,• T
∗
X :=

⊕

m≥0

EGG
k,mT ∗

X

is a bundle of graded algebras (the product is obtained simply by taking the product of polynomials).
There are natural inclusions EGG

k,• ⊂ EGG
k+1,• of algebras, hence

EGG
∞,•T

∗
X :=

⋃

k≥0

EGG
k,• T

∗
X

is also an (commutative) algebra. Then for any (k + 1) holomorphic functions g0, . . . , gk ∈ O(U), one

can associate them to a natural k-jet differentials of order k and weighted degree k′ := k(k+1)
2 , say

Wronskians, in the following way

WU (g0, . . . , gk) :=

∣∣∣∣∣∣∣

d
[0]
U (g0) · · · d

[0]
U (gk)

...
. . .

...

d
[k]
U (g0) · · · d

[k]
U (gk)

∣∣∣∣∣∣∣
∈ Γ(U,EGG

k,k′T
∗
U ).

If we set
WU (g0, . . . , gk) =

∑

|α1|+2|α2|+...+k|αk|=k′

bα(z)(d
1z)α1(d2z)α2 · · · (dkz)αk ,

then for each α := (α1, . . . , αk) ∈ (Nn)k with |α1|+2|α2|+ . . .+ k|αk| = k′, by Lemma 2.1 there exists
{aαβ ∈ Z}β=(β0,...,βk),|βj |≤k, such that we have

bα(z) =
∑

|βj |≤k

aαβ
∂|β0|g0(z)

∂zβ0
· · ·

∂|βk|gk(z)

∂zβk
. (2.6)

By the properties of the Wronskian, for any permutation σ ∈ Sym({0, 1, . . . , k}), we always have

WU (gσ(0), . . . , gσ(k)) = (−1)sign(σ)WU (g0, . . . , gk),

and thus aαβ = (−1)sign(σ)aασ(β). Here σ(β) := (βσ(0), . . . , βσ(k)).

On the other hand, for any holomorphic line bundle A on X, one can define the bundle JkA of
k-jet sections of A by (JkA)x = Ox(A)/

(
Mk+1

x · Ox(A)
)
for every x ∈ X, where Mx is the maximal

ideal of Ox. Then JkA has a filtration whose graded bundle is ⊕0≤p≤kS
pT ∗

X ⊗O(A). Set eU to be a
holomorphic frame of A and (z1, . . . , zn) analytic coordinates on an open subset U ⊂ X. The fiber
(JkA)x can be identified with the set of Taylor developments of order k:

∑

|α|≤k

cβ(z − x)β · eU ,

and the coefficients cβ define coordinates along the fibers of JkA. Thus one has a natural local
trivialization of JkA given by

ΨU : U × CIk → JkA|U ,

(x, cβ) 7→
∑

β∈Ik

cβ(z − x)β · eU ,

where
Ik := {β = (β1, . . . , βn) ∈ Nn||β| ≤ k}.

For any local section s = sU · eU ∈ Γ(U,A), one has a natural map (no more a OU -module morphism!)

i[k] : Γ(U,A) → Γ(U, JkA),
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which is given by

Ψ−1
U ◦ i[k](s)(x) = (x,

∂|α|sU
∂zα

(x)).

The local coordinates (z1, . . . , zn) on U also induces a natural local trivialization of the bundle of
jet differentials EGG

k,mT ∗
U → U . Indeed, as any local section of P ∈ Γ(U,EGG

k,mT ∗
X |U ) is given by

∑

|α1|+2|α2|+...+k|αk|=m

cα(z)(d
1z)α1(d2z)α2 · · · (dkz)αk ,

where cα(z) ∈ Γ(U,OU ) for any α, one has the natural local trivialization of EGG
k,mT ∗

X → X given by

ΦU : U × CIk,m → EGG
k,mT ∗

U ,

(z, cα) 7→
∑

|α1|+2|α2|+...+k|αk|=m

cα(d
1z)α1(d2z)α2 · · · (dkz)αk ,

where
Ik,m := {α = (α1, . . . , αk) ∈ (Nn)k||α1|+ 2|α2|+ . . .+ k|αk| = m}.

Now we define a multi-linear map

µ̃ :

k+1∏
CIk → CIk,k′ (2.7)

(c0,β0 , . . . , ck,βk
) 7→ (

∑

β:=(β0,...,βk)

aαβc0,β0c1,β1 · · · ck,βk
)α∈Ik,k′ , (2.8)

where aαβ ∈ Z arises from (2.6). By the property that aαβ = (−1)sign(σ)aασ(β) for any permutation
σ, the multi-linear map µ̃ is alternating, and thus there exists a unique linear map

µ : ∧k+1CIk → CIk,k′ ,

such that µ̃ = µ ◦ w. Here the map

w :

k+1∏
CIk → ∧k+1CIk

which associates to k + 1 vectors from CIk their exterior product.
By the local trivialization ΨU and ΦU , µ induces a bundle morphism

W̃U : ∧k+1(Jk
OU ) → Ek,k′T

∗
U

defined by

U × ∧k+1CIk

ΨU

��

1×µ
// U × CIk,k′

ΦU

��

∧k+1JkOU
W̃U

// EGG
k,k′T

∗
U .

Composing with i[k] : Γ(U,OU ) → Γ(U, JkOU ), we recover Brotbek’s Wronskians WU

WU : ∧k+1H0(U,OU )
i[k]
−−→ ∧k+1H0(U, Jk

OU ) → H0(U,∧k+1Jk
OU )

W̃U−−→ H0(U,EGG
k,k′T

∗
U ).

An important fact for the Wronskian is that, it is invariant under the Gk action [Bro16, Proposition
2.2]:

Lemma 2.2. With the notation as above, WU (g0, . . . , gk) ∈ Ek,k′T
∗
U , where k′ := k(k+1)

2 .
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In other words, the bundle morphism W̃U factors through the subbundle

Ek,k′T
∗
U ⊂ EGG

k,k′T
∗
U .

Now we consider the Demailly-Semple k-jet bundle of (Xk, Vk) of the direct variety (X,TX ) con-
structed in Section 2.2. Fix coordiantes (z1, . . . , zn) on U , TX |U can be trivialized with the basis
{ ∂
∂z1

, . . . , ∂
∂zn

}. Set Uk := Xk ∩ π−1
0,k(U), and under that trivialization we have

Uk = U ×Rn,k,

where Rn,k is some rational variety introduced in [Dem95, Theorem 9.1]. Moreover, the tautological
bundle

OXk
(1)|Uk

= pr∗2(ORn,k
(1)), (2.9)

where pr2 : Uk → Rn,k is the projection on the factor Rn,k. By the direct image formula (2.1)

(π0,k)∗OXk
(m) ∼= Ek,mT ∗

X ,

we conclude that, under the above trivialization, the direct image (π0,k)∗ induces a natural isomorphism
(or a local trivialization of the vector bundle Ek,mT ∗

U )

ϕU : U ×H0
(
Rn,k,ORn,k

(m)
)
→ Ek,mT ∗

U . (2.10)

Moreover, under the trivialization ΦU , the inclusion Ek,mT ∗
X ⊂ EGG

k,mT ∗
X is also a constant linear

injective map, that is, there exists an injective linear map ν : F k,m → CIk,m such that

U × F k,m

ϕU

��

1×ν
// U × CIk,m

ΦU

��

Ek,mT
∗
X |U

� � // EGG
k,mT ∗

X |U .

Here we denote F k,m := H0
(
Rn,k,ORn,k

(m)
)
.

Therefore, under the trivializations ϕU and ΨU , the factorised bundle morphism W̃U is still a
constant linear map. That is, there exists a linear map ν̃ : ∧k+1CIk → F k,k′ such that µ = ν ◦ ν̃ and
we have the following diagram:

U × ∧k+1CIk

ΨU

��

1×ν̃
// U × F k,k′

ϕU

��

1×ν
// U × CIk,m

ΦU

��

∧k+1JkOU
W̃U

// Ek,k′T
∗
U
� � // EGG

k,mT
∗
X |U .

We set
S := Image(ν̃) ⊂ H0(Rn,k,ORn,k

(k′)),

and denote by In,k ⊂ ORn,k
the base ideal of the linear system S. Denote wU to be the ideal sheaf

pr∗2(In,k) on Uk.

On the other hand, one has a natural global construction for the invariant jet differentials on
X: let L be any holomorphic line bundle on X, for any s0, . . . , sk ∈ H0(X,L), if we choose a local
trivialization of L above U , we define

WU(s0, . . . , sk) := WU (s0,U , . . . , sk,U) ∈ Γ(U,Ek,k′T
∗
U ),

and if gluing together, we have the global section [Bro16, Proposition 2.3]:

10



Proposition 2.1. For any s0, . . . , sk ∈ H0(X,L), the locally defined jet differential equations WU(s0, . . . , sk)
glue together into a global section

W (s0, . . . , sk) ∈ H0(X,Ek,k′T
∗
X ⊗ Lk+1).

The proof of the proposition follows from the fact that for any sU ∈ Γ(U,OU ), we have

WU (sUs0,U , . . . , sUsk,U) = sk+1
U WU(s0,U , . . . , sk,U).

We will denote by

ω(s0, . . . , sk) = (π0,k)
−1
∗ W (s0, . . . , sk) ∈ H0(Xk,OXk

(k′)⊗ π∗
0,kL

k+1) (2.11)

the inverse image of the Wronskian W (s0, . . . , sk) under the global isomorphism (2.2) induced by the
direct image (π0,k)∗.

Now let

W(Xk, L) := Span{ω(s0, . . . , sn)|s0, . . . , sn ∈ H0(X,L)} ⊂ H0
(
Xk,OXk

(k′)⊗ π∗
0,k(L

k+1)
)

be the associated sublinear system of H0
(
Xk,OXk

(k′)⊗ π∗
0,k(L

k+1)
)
. One defines the k-th Wronskian

ideal sheaf of L, denoted by w(Xk, L), to be the base ideal b
(
W(Xk, L)

)
of the linear system W(Xk, L).

By the definition, if A is any line bundle on X, and s ∈ H0(X,A), we have

W (s · s0, . . . , s · sk) = sk+1W (s0, . . . , sk) ∈ H0(X,Ek,k′T
∗
X ⊗ Lk+1 ⊗Ak+1).

Thus if L is very ample we have a chain of inclusions

w(Xk, L) ⊂ w(Xk, L
2) ⊂ . . . ⊂ w(Xk, L

m) ⊂ . . . .

By the Noetherianity, this increasing sequence stabilizes after some m∞(Xk, L), and we denote the
obtained asymptotic ideal by

w∞(Xk, L) := w(Xk, L
m) for any m ≥ m∞(Xk, L). (2.12)

An important property for w(Xk, L) is the following in [Bro16, Lemma 2.4]:

Lemma 2.3. If L generates k-jets at every point of X, that is, for any x ∈ X, the map

H0(X,L) → L⊗ OX,x/M
k+1
X,x = (JkL)x

is surjective, where Mx is the maximal ideal of Ox, then

Supp(OXk
/w(Xk, L)) ⊂ Xsing

k .

For any very ample line bundle L, assume that L|U can be trivialized. Now we will compare the
globally defined asymptotic Wronskian ideal sheaf w∞(Xk, L) with our locally defined wU .

When restricted to Uk := π−1
0,k(U), the global map

ω(•) : ∧k+1H0(X,OX(L)) → H0
(
Xk,OXk

(k′)⊗ π∗
0,k(L

k+1)
)

defined in (2.11) can be localized as the following

ωU : ∧k+1H0(X,OX (L))

1

��

i[k]
// ∧k+1H0(U, JkL|U )

Ψ−1
U

≈

��

// H0(U,∧k+1JkOU )

Ψ−1
U

≈

��

W̃U
// H0(U,Ek,k′T

∗
U )

ϕ−1
U

≈

��

∧k+1H0(X,OX (L))
Ψ−1

U
◦i[k]

// ∧k+1H0(U,U × CIk)
lk

// H0(U,U × ∧k+1CIk)
ν̃

// H0(U,U × F k,k′).
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where H0(U,U ×∧k+1CIk), H0(U,U ×CIk) and H0(U,U ×F k,k′) are the sets of sections of the trivial
bundles, and we also use the relation OXk

(k′)|Uk
= pr∗2(ORn,k

(k′)) in (2.9) to identify

H0(U,U × F k,k′) ∼= H0
(
Uk,OXk

(k′)|Uk

)
.

Then by the definition we have

w(Xk, L)|Uk
= b

(
{ωU (s0 ∧ . . . ∧ sk)|s0, . . . , sk ∈ H0(X,L)}

)
.

Now we choose arbitrary sections s0, . . . , sk ∈ H0
(
X,OX(L)

)
, we have

h(s0 ∧ . . . ∧ sk) := lk ◦Ψ
−1
U ◦ i[k](s0 ∧ . . . ∧ sk) ∈ Γ(U,U × ∧k+1CIk),

which is a holomorphic section of the trivial bundle U × ∧k+1CIk → U . Thus

ωU (s0 ∧ . . . ∧ sk) = ν̃ ◦ h(s0 ∧ . . . ∧ sk)

is a a holomorphic section of the trivial bundle U×F k,k′ → U , where ν̃ : ∧k+1CIk → F k,k′ is a C-linear
map.

Recall that
In,k := b(Image(ν̃)) ⊂ ORn,k

is the base ideal of the linear system Image(ν̃) ⊂ H0
(
Rn,k,ORn,k

(k′)
)
, and wU is defined to be the

ideal sheaf pr∗2(In,k) on Uk. Thus the zero scheme of ν̃ ◦ h(s0 ∧ . . . ∧ sk) is contained in wU . As
s0, . . . , sk are arbitrary, we always have

w(Xk, L)|Uk
⊂ wU . (2.13)

On the other hand, suppose that the line bundle L generates k-jets, i.e., the C-linear map

H0(X,L) → (JkL)x

is surjective for any x ∈ X. Then for any x ∈ U , any vector e ∈ ∧k+1CIk , there exists r(k+1) sections
{sji}0≤j≤k,1≤i≤r ∈ H0(X,L) such that

e =

r∑

i=1

h(s0i ∧ . . . ∧ ski)(x).

Therefore, the set of images ωU(•)(x) = F k,k′ for any x ∈ U , and thus the ideal sheaf w(Xk, L), when
restricted to each fiber x×Rn,k ⊂ Uk, is equal to In,k. That is, if we denote by

ix : Rn,k → Uk

which is induced the inclusive map x×Rn,k → U ×Rn,k, the inverse image of w(Xk, L) under ix

i∗x(w(Xk, L)) := i−1
x w(Xk, L)⊗i−1

x OUk

ORn,k

is the same as In,k. Thus we have

w(Xk, L)|Uk
= wU . (2.14)

As U is any open set on X with local coordinates (z1, . . . , zn) such that L|U can be trivialized, from
the inclusive relation (2.13) we see that

w(Xk, L) = w(Xk, L
2) = . . . = w(Xk, L

k) = . . . ,

and thus we conclude that, for any ample line bundle L which generates k-jets everywhere, the k-th
Wronskian ideal sheaf of L coincides with the asymptotic ideal sheaf

w(Xk, L) = w∞(Xk, L).

Moreover, from the local relation (2.14), we see that this asymptotic ideal sheaf does not depend on
the choice of the very ample line bundle L, which was also proved by Brotbek in [Bro16, Lemma 2.6].
We denote by w∞(Xk) the asymptotic Wronskian ideal sheaf.

In conclusion, we have the following theorem:

12



Theorem 2.4. If L generates k-jets at each point of X, then w(Xk, L) = w∞(Xk) and m∞(Xk, L) =
1. In particular, if L is known to be only very ample, we have w(Xk, L

k) = w∞(Xk) and m∞(Xk, L) =
k.

As was shown in [Bro16, Lemma 2.6], w∞(Xk) behaves well under restriction, that is, for any
directed variety (Y, VY ) with Y ⊂ X and VY ⊂ VX |Y , under the induced inclusion Yk ⊂ Xk one has

w∞(Xk)|Yk
= w∞(Yk).

2.4 Blow-ups of the Wronskian Ideal Sheaf

This subsection are mainly borrowed from [Bro16]. We will state some important results without
proof, and the readers who are interested in the details are encouraged to refer to [Bro16, Section 2.4].

From [Dem95, Theorem 6.8], OXk
(1) is only relatively big, and XSing

k is the obstruction to the

ampleness of OXk
(1). However, for the hyperbolicity problems, XSing

k is negligible since Xk is a
relative compactification of J reg

k /Gk = Xreg
k over X, and for every non-constant entire curve f on X,

its k-th lift f[k] : C → Xk can not be contained in XSing
k . Thus we want to find a good and fonctorial

compactification of Xreg
k such that the tautological line bundle is ample. Brotbek introduced a clever

way to overcome this difficulty.
For any directed manifold (X,V ), we denote by

X̂k := Blw∞(Xk)(Xk) → Xk

the blow-up of Xk along w∞(Xk), and F the effective Cartier divisor on X̂k such that

OX̂k
(−F ) = ν−1

k w∞(Xk).

Take a very ample line bundle L on X, for any m ≥ 0, and any s0, . . . , sk ∈ H0(X,Lm), there exists

ω̂(s0, . . . , sk) ∈ H0
(
X̂k, ν

∗
k

(
OXk

(k′)⊗ π∗
0,kL

m(k+1)
)
⊗ OX̂k

(−F )
)
,

such that
ν∗kω(s0, . . . , sk) = sF · ω̂(s0, . . . , sk).

Here sF ∈ H0(X̂k, F ) is the tautological section. Then by Theorem 2.4, for any ŵ ∈ X̂k and any
m ≥ k, there exists s0, . . . , sk ∈ H0(X,Lm) such that

ω̂(s0, . . . , sk)(ŵ) 6= 0.

The blow-ups is fonctorial thanks to the fact that the asymptotic Wronskian ideal sheaf behaves well
under restriction. Namely, if (Y, VY ) ⊂ (X,VX ) is a sub-directed variety, then Ŷk is the strict transform
of Yk in Xk under the blowing-up morphism νk : X̂k → Xk. This fonctorial property also holds for
families [Bro16, Proposition 2.7]:

Theorem 2.5. Let X
ρ
−→ T be a smooth and projective morphism between non-singular varieties.

We denote by X rel
k the k-th Demailly-Semple tower of the relative directed variety (X , TX /T ). Take

νk : X̂ rel
k → X rel

k to be the blow-ups of the asymptotic Wronskian ideal sheaf w∞(X rel
k ). Then for

any t0 ∈ T writing Xt0 := ρ−1(t0), we have

ν−1
k (Xt0,k) = X̂t0,k.

3 Proof of the Main Theorems

3.1 Families of Complete Intersections of Fermat-type Hypersurfaces

Let X be a projective manifold of dimension n endowed with a very ample line bundle A. We
first construct a family of complete intersection subvarieties in X cut out by certain Fermat-type
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hypersurfaces. For an integer N ≥ n, we fix N +1 sections in general position τ0, . . . , τN ∈ H0(X,A).
By “general position” we mean that the hypersurfaces {τi = 0}i=0,...,N are all smooth and irreducibles
ones, and they are simple normal crossing. For any 1 ≤ c ≤ n−1, and two c-tuples of positive integers
ǫ = (ǫ1, . . . , ǫc), δ = (δ1, . . . , δc), we construct the family X as follows: For any p = 1, . . . , c, set

Ip := {I = (i0, . . . , iN )||I| = δp} and ap :=
(
apI ∈ H0

(
X,OX(ǫpA)

))
|I|=δp

. For the positive integers r

and k fixed later according to our needs, we define the bihomogenous sections of OX

((
ǫp+(r+k)δp

)
A
)

over X by

F p(ap)(x) : x 7→
∑

|I|=δp

apI(x)τ (x)
(r+k)I ,

where ap varies in the parameter space Sp :=
⊕

I∈Ip H
0
(
X,OX (ǫpA)

)
, and τ := (τ0, . . . , τN ).

We then consider the family X ⊂ S1 × . . .×Sc ×X of complete intersection varieties in X defined
by those sections:

X := {(a1, . . . ,ac, x) ∈ S1 × . . .× Sc ×X|F 1(a1)(x) = . . . = F c(ac)(x) = 0}. (3.1)

We know that there is a non-empty Zariski open set S ⊂ S1 × . . .×Sc parametrizing smooth varieties
and we will work on X := q−1

1 (S) ∩ X , where q1 is the natural projection from S1 × . . . × Sc ×X to
S1 × . . .× Sc. Set Xk to be the k-th Demailly-Semple tower of the relative tangent bundle (X , TX/S),

and X̂k the blowing-up of the asmptotic Wronskian ideal sheaf w∞(Xk), and we would like to construct
a regular morphism from X̂k (after shrinking a bit) to a suitable generically finite to one family and
to “pull-back” the positivity from the parameter space of this family. First we begin with a technical
lemma by Brotbek [Bro16, Lemma 3.2]:

Lemma 3.1. Let U be an open subset of X on which both A and TX can be trivialized. Fix any
1 ≤ p ≤ c. For any I = (i0, . . . , iN ) ∈ Ip, there exists a C-linear map

d
[j]
I,U : H0(X, ǫpA) → Γ(U,EGG

k,k T
∗
U )

such that for any a ∈ H0(X, ǫpA), d
[j]
U (aτ (r+k)I) = τ rI

U d
[j]
I,U (a), where τU := (τ0,U , . . . , τN,U ) is the

local trivialization of τ over U .

Therefore, for any I0, . . . , Ik ∈ Ip and any aI0 , . . . , aIk ∈ H0(X, ǫpA) one can define

WU,I0,...,Ik(aI0 , . . . , aIk) :=

∣∣∣∣∣∣∣∣

d
[0]
I0,U

(aI0) · · · d
[0]
Ik,U

(aIk)
...

. . .
...

d
[k]
I0,U

(aI0) · · · d
[k]
Ik,U

(aIk)

∣∣∣∣∣∣∣∣
∈ Γ(U,EGG

k,k′T
∗
U ), (3.2)

and by Lemma 3.1 we obtain

WU (aI0τ
(r+k)I0 , . . . , aIkτ

(r+k)Ik) = τ
r(I0+...+Ik)
U WU,I0,...,Ik(aI0 , . . . , aIk).

From Proposition 2.1 one can also glue them together

Lemma 3.2. For any I0, . . . , Ik ∈ Ip and any aI0 , . . . , aIk ∈ H0(X, ǫpA), the locally defined functions
WU,I0,...,Ik(aI0 , . . . , aIk) can be glued together into a global section

WI0,...,Ik(aI0 , . . . , aIk) ∈ H0(X,Ek,k′T
∗
X ⊗A(k+1)(ǫp+kδp))

such that

W (aI0τ
(r+k)I0 , . . . , aIkτ

(r+k)Ik) = τ r(I0+...+Ik)WI0,...,Ik(aI0 , . . . , aIk). (3.3)
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We denote by

ωI0,...,Ik(aI0 , . . . , aIk) ∈ H0
(
Xk,OXk

(k′)⊗ π∗
0,kA

(k+1)(ǫp+kδp)
)

(3.4)

the inverse image of WI0,...,Ik(aI0 , . . . , aIk) under the isomorphism (2.2), then by (3.3) we have

ω(aI0τ
(r+k)I0 , . . . , aIkτ

(r+k)Ik) = (π∗
0,kτ )

r(I0+...+Ik)ωI0,...,Ik(aI0 , . . . , aIk). (3.5)

Hence for every 1 ≤ p ≤ c we can construct a rational map given by the Wronskians

Φp : Sp ×Xk 99K P (Λk+1CIp)

(a, w) 7→ ([ωI0,...,Ik(aI0 , . . . , aIk)(w)])I0,...,Ik∈Ip ,

where CIp := ⊕I∈IpC ≃ C
(N+δp

δp
)
.

Claim 3.1. Φp factors through the Plücker embedding

Pluc : Grk+1(C
Ip) →֒ P (Λk+1CIp).

Proof: For any w0 ∈ Xk, by Theorem 2.1, one can find an open neighborhood Uw0 of w0 with
Uw0 ⊂ π−1

0,k(U), where A|U can be trivialized; and a family of germs of curves (fw)w∈Uw0
depending

holomorphically on w with (fw)[k](0) = w. Then for any a = (aI)I∈Ip ∈ Sp and any 0 ≤ j ≤ k, we
denote by

d
[j]
•,w0(a, w) :=

(
d
[j]
I,U(aI)(f

′
w, f

′′
w, . . . , f

(k)
w )

)
I∈Ip

∈ CIp ,

and the local rational map

Φp
w0

: Sp × Uw0 99K Grk+1(C
Ip)

(a, w) 7→ Span
(
d
[0]
•,w0(a, w), . . . , d

[k]
•,w0(a, w)

)
. (3.6)

We will show that this definition does not depend on the choice of w0. Indeed, by Definition 3.2 one
has Φp = Pluc◦Φp

w0 , which shows that Φp factor through Pluc and we still denote by Φp : Sp×Xk 99K

Grk+1(C
Ip) by abuse of notation. �

Recall that X̂k is denoted to be the blow-up νk : X̂k → Xk of the asymptotic k-th Wronskian ideal
sheaf w∞(Xk), such that ν−1

k w∞(Xk) = OX̂k
(−F ) for some effective cartier divisor F on X̂k. First,

we have the following

Claim 3.2. ν̂k induces a rational map

Φ̂p : Sp × X̂k 99K Grk+1(C
Ip),

such that
Sp × X̂k

1×νk

��

Φ̂p

&&M
M

M

M

M

Sp ×Xk
Φp

//___ Grk+1(C
Ip)

Proof: By the definition of the asmptotic Wronskian ideal sheaf w∞(Xk), we have

ω(aI0τ
(r+k)I0 , . . . , aIkτ

(r+k)Ik) ∈ H0
(
Xk,OXk

(k′)⊗ π∗
0,kA

(k+1)
(
ǫp+(k+r)δp

)
⊗w∞(Xk)

)
.

Since (π∗
0,kτ )

r(I0+...+Ik) does not vanish along any irreducible component of the zero scheme of w∞(Xk),
by (3.5) we see that

ωI0,...,Ik(aI0 , . . . , aIk) ∈ H0
(
Xk,OXk

(k′)⊗ π∗
0,kA

(k+1)(ǫp+kδp) ⊗w∞(Xk)
)
,
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and thus there exists

ω̂I0,...,Ik(aI0 , . . . , aIk) ∈ H0
(
X̂k, ν

∗
k

(
OXk

(k′)⊗ π∗
0,kA

(k+1)(ǫp+kδp)
)
⊗ OX̂k

(−F )
)
,

such that
ν∗kωI0,...,Ik(aI0 , . . . , aIk) = sF · ω̂I0,...,Ik(aI0 , . . . , aIk).

Therefore, if we define the rational map

Φp : Sp × X̂k 99K P (Λk+1CIp)

(a, ŵ) 7→ ([ω̂I0,...,Ik(aI0 , . . . , aIk)(ŵ)])I0,...,Ik∈Ip ,

then on X̂k \ F we have Φ̂p = Φp ◦ νk, and thus Φ̂p also factors through the Plücker embedding

Pluc : Grk+1(C
Ip) →֒ P (Λk+1CIp).

�

We are going to show that νk partially resolves the indeterminacy of Φp. To clarify this, we need
to introduce some notations. For any x ∈ X, we set

Nx := #{j ∈ {0, . . . , N}
∣∣τj(x) 6= 0} and Ipx := {I ∈ Ip, |τ I(x) 6= 0}.

Since the τj ’s are in general position, and N ≥ n, we have Nx ≥ 1 for all x ∈ X. Then we define

Σ := {x ∈ X
∣∣Nx = 1} and X◦ := X \ Σ.

Observe that if N > n, then X◦ = X, and if N = n, then Σ is a finite set of points. We denote by
X̂◦

k := (π0,k ◦ νk)
−1(X◦). We have the following crucial lemma of resolution of indeterminacy due to

Brotbek [Bro16, Proposition 3.8]:

Lemma 3.3. (Brotbek) Suppose that

N ≥ n ≥ 2, k ≥ 1, ǫp ≥ m∞(Xk, A) = k and δp ≥ n(k + 1). (⋆)

Then there exists a non-empty Zariski open subset Udef,p ⊂ Sp such that the restriction Φ̂p|Udef,p×X̂◦
k

is a morphism:

Udef,p × X̂◦
k

1×νk

��

Φ̂p

''O
O

O

O

O

O

O

O

O

O

O

Udef,p ×X◦
k

Φp
//___ Grk+1(C

Ip)

In Lemma 3.3, we have applied our Theorem 2.4 to set m∞(Xk, A) = k.

3.2 Mapping to the Universal Grassmannian

Set Udef := Udef ,1 × . . . × Udef,c
⋂

S. We suppose from now on that N ≥ n ≥ 2, ǫp ≥ k ≥ 1 and that
δp ≥ n(k + 1) for any 1 ≤ p ≤ c. Then by Lemma 3.3 we get a regular morphism

Ψ : Udef × X̂◦
k → Gk+1(δ1)× . . .×Gk+1(δc)× PN

(a, ξ) 7→
(
Φ̂1(a1, ξ), . . . , Φ̂c(ac, ξ), [τ r(ξ)]

)
.

[τ r(ξ)] :=
[
τ r0
(
π0,k ◦ νk(ξ)

)
: . . . : τ rN

(
π0,k ◦ νk(ξ)

)]
, and we write Gk+1(δp) := Grk+1(C

Ip) and
G := Gk+1(δ1)× . . .Gk+1(δc) for brevity.

From now on we always assume that (k + 1)c ≥ N . Using the natural identification

CIp → H0
(
PN ,OPN (δi)

)

(aI)I∈Ip 7→
∑

I∈Ip

aIz
I ,
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we set Y to be the universal Grassmannian defined by

Y := {(∆1, . . . ,∆c, [z]) ∈ G× PN |∀1 ≤ i ≤ c,∀P ∈ ∆i : P ([z]) = 0}.

If we denote by p : Y → G the first projection map, then p is a generically finite to one (may not
surjective) morphism. Set G∞ to be the set of points in G := Gk+1(δ1) × . . .Gk+1(δc) such that the
fiber of p : Y → G is not a finite set, and we say that G∞ is the non-finite loci of G.

We need to cover X by a natural stratification induced by the vanishing of the τj’s. For any
J ⊂ {0, . . . , N} and 1 ≤ p ≤ c we define

XJ := {x ∈ X
∣∣τj(x) = 0 ⇔ j ∈ J},

I
p
J := {I ∈ Ip

∣∣Supp(I) ⊂ {0, . . . , N} \ J},

PJ := {[z] ∈ PN
∣∣zj = 0 iff j ∈ J},

X̂k,J := (π0,k ◦ νk)
−1(XJ) and X̂◦

k,J := X̂k,J ∩ X̂◦
k . Set YJ := Y ∩

(
G× PJ

)
⊂ G× PN , and G∞

J also
the set of points in G such that the fiber of the first projection map pJ : YJ → G is not a finite set.

Now set

U◦
def,p := Udef,p ∩

{
ap ∈ Sp

∣∣{F p(ap)(x) = 0} ∩ Σ = ∅
}
and U◦

def := U◦
def,1 × . . .× U◦

def ,c ∩ Udef .

Since Σ is a finite set, U◦
def ,p is a non-empty Zariski open subset of Udef,p for each p. Consider the

universal family of codimension c smooth varieties H := (U◦
def ×X) ∩ X , then

H ∩ {U◦
def × Σ} = ∅. (3.7)

We denote by H rel
k the k-th Demailly-Semple tower of the relative directed variety (H , TH /U◦

def
). If

Ĥ rel
k is obtained by the blowing-up of the asymptotic Wronskian ideal sheaf w∞(H rel

k ), then by the
arguments in Section 2.4 we have

(1× νk)
−1(H rel

k ) = Ĥ
rel
k .

Moreover for any a ∈ U◦
def , if we denote by Ha,k := H rel

k ∩ ({a}×Xk) and Ĥa,k := Ĥ rel
k ∩ ({a}× X̂k),

then νk|Ĥ
a,k

: Ĥa,k → Ha,k is indeed the blowing-up of the asymptotic Wronskian ideal sheaf w∞(Ha,k).

By (3.7), Ψ|
Ĥ rel

k
is a regular morphsim. Set

Ĥ
rel
k,J := Ĥ

rel
k ∩ (U◦

def × X̂k,J),

and we have the following

Proposition 3.1. For any J ⊂ {0, . . . , N}, when restricted to Ĥ rel
k,J the morphism Ψ factors through

YJ :
Ψ|

Ĥ rel
k,J

: Ĥ
rel
k,J → YJ ⊂ G× PJ .

Proof. Since when restricted to U◦
def × X̂◦

k,J , Ψ factors through G× PJ . Thus it suffices to prove that

Ψ|
Ĥ rel

k
factors through Y . Since Φp = Φ̂p ◦ νk, it suffices to prove that the rational map

Ψ̃ : S ×Xk 99K G× PN

(a, w) 7→
(
Φ1(a1, w), . . . ,Φc(ac, w), [τ r(w)]

)

factor through Y when restricted to H rel
k . Take any (a, w0) ∈ H rel

k outside the indeterminacy of Ψ̃,
and by Lemma 2.1 one can find a germ of curve f : (C, 0) →

(
X,x := π0,k(w0)

)
with f[k](0) = w0.

Recall that Ha,k := H rel
k ∩ ({a}×Xk) is the k-th Demailly-Semple tower of (Ha, THa

). Therefore, we
have

(
f(0), f ′(0), . . . , f (k)(0)

)
∈ JkHa.
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Take an open subset U ⊂ X containing x such that A|U can be trivialized. Since Ha is defined by
the equations





F 1(a1)(x) :=
∑

|I|=δ1
a1I(x)τ (x)

(r+k)I = 0,
...

F c(ac)(x) :=
∑

|I|=δc
acI(x)τ (x)

(r+k)I = 0,

then d
[j]
U F p(ap)(f ′, f ′′, . . . , f (k)) = 0 for any 1 ≤ p ≤ c and 0 ≤ j ≤ k. By Lemma 3.1 we have

d
[j]
U F p(ap) = τ rI

U ·
∑

|I|=δp
d
[j]
I,U (a

p
I). By the definition for Φp (3.6), we see that Ψ̃(a, w0) ∈ Y . This

completes the proof of the Proposition.

To proceed further, we need another important technical lemma in [Bro16, Lemma 3.4] as follows

Lemma 3.4. Suppose that ǫ ≥ m∞(Xk, A) = k. Fix any 1 ≤ p ≤ c. For any ŵ0 ∈ X̂k, there exists
an open neighborhood Ûŵ0 ⊂ X̂k of ŵ0 satisfying the following. For any I ∈ Ip and 0 ≤ i ≤ k there
exists a linear map

gpi,I : H
0(X,Aǫ) → O(Ûŵ0)

such that for any (ap, ŵ) ∈ Sp × Ûŵ0 , writting gpi,•(a
p, ŵ) =

(
gpi,I(a

p
I)(ŵ)

)
I∈Ip

∈ CIp one has

(i) The Plücker coordinates of Φ̂p(ap, ŵ) are all vanishing if and only if

dim Span
(
gp0,•(a

p, ŵ), . . . , gpk,•(a
p, ŵ)

)
< k + 1.

(ii) If dim Span
(
gp0,•(a

p, ŵ), . . . , gpk,•(a
p, ŵ)

)
= k + 1, then

Φ̂p(ap, ŵ) = Span
(
gp0,•(a

p, ŵ), . . . , gpk,•(a
p, ŵ)

)
∈ Grk+1(C

Ip).

(iii) Define the linear map

ϕ̂p
ŵ0

: Sp → (CIp)k+1 (3.8)

ap 7→
(
gp0,•(a

p, ŵ0), . . . , g
p
k,•(a

p, ŵ0)
)
.

Set x := π0,k ◦ νk(ŵ0) and ρpx : (CIp)k+1 → (CI
p
x)k+1 the natural projection map, then one has

rankρpx ◦ ϕ̂
p
ŵ0

= (k + 1)#Ipx.

Here I
p
x := {I ∈ Ip|τ I(x) 6= 0}.

Now we are ready to prove the following lemma, which is a variant of [Bro16, Lemma 3.9]:

Lemma 3.5. (Avoiding exceptional locus) For any J ⊂ {0, . . . , N}. If δp ≥ (n− 1)(k+1)+1 for any
p = 1, . . . , c, then there exists a non-empty Zariski open subset UJ ⊂ U◦

def such that

Φ̂−1(G∞
J ) ∩ (UJ × X̂◦

k,J) = ∅.

Here we define the map (which is a morphism by Lemma 3.3)

Φ̂ : U◦
def × X̂◦

k → Gk+1(δ1)× . . .×Gk+1(δc)

(a, ξ) 7→
(
Φ̂1(a1, ξ), . . . , Φ̂c(ac, ξ)

)
,

which is the composition π1 ◦Ψ. Here π1 : G× PN → G is the first projection.
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Proof. Fix any ŵ0 ∈ X̂◦
k , we set x := π0,k ◦ νk(ŵ0). Then there exists a unique J ⊂ {0, . . . , N} such

that x ∈ XJ , and we define the following analogues of Y parametrized by affine spaces

Ỹ := {
(
α10, . . . , α1k, . . . , αc0 . . . , αck, [z]

)
∈

c∏

p=1

(CIp)k+1 × PJ

∣∣∀1 ≤ p ≤ c, 0 ≤ j ≤ k, αpi([z]) = 0},

Ỹx := {
(
α10, . . . , α1k, . . . , αc0 . . . , αck, [z]

)
∈

c∏

p=1

(CI
p
J )k+1 × PJ

∣∣∀1 ≤ p ≤ c, 0 ≤ j ≤ k, αpi([z]) = 0},

here we use the identification CIp ∼= H0
(
PN ,OPN (δp)

)
and CI

p
J ∼= H0

(
PJ ,OPJ

(δp)
)
. By analogy with

G∞
J , we denote by V ∞

1,J (resp. V ∞
2,J) the set of points in

∏c
p=1(C

Ip)k+1 (resp.
∏c

p=1(C
I
p
J )k+1) at which

the fiber in Ỹ (resp. Ỹx) is positive dimensional.
For every 1 ≤ p ≤ c we take the linear map ϕ̂p

ŵ0
: Sp → (CIp)k+1 as in (3.8). By Lemma 3.4, for

any a ∈ U◦
def we have

Φ̂(a, ŵ0) =
(
[ϕ̂1

ŵ0
(a1)], . . . , [ϕ̂c

ŵ0
(ac)]

)
,

here [ϕ̂p
ŵ0
(ap)] := Span

(
gp0,•(a

p, ŵ0), . . . , g
p
k,•(a

p, ŵ0)
)
∈ Grk+1(C

Ip). Then we have

Φ̂−1(G∞
J ) ∩ (U◦

def × {ŵ0}) = ϕ̂−1
ŵ0

(V ∞
1,J ) ∩ U◦

def = (ρx ◦ ϕ̂ŵ0)
−1(V ∞

2,J ) ∩ U◦
def ,

where we denote by

ϕ̂ŵ0 : S1 × . . . Sc →
c∏

p=1

(CIp)k+1

a = (a1, . . . ,ac) 7→
(
ϕ̂1
ŵ0
(a1), . . . , ϕ̂c

ŵ0
(ac)

)
,

and

ρx :

c∏

p=1

(CIp)k+1 →
c∏

p=1

(CI
p
x)k+1

is the natural projection map. By the above notations we have I
p
J = I

p
x for any p = 1, . . . , c. Since the

linear map ρx ◦ ϕ̂ŵ0 is diagonal by blocks, by Lemma 3.4 we have

rankρx ◦ ϕ̂ŵ0 =

c∑

p=1

rankρpx ◦ ϕ̂
p
ŵ0

=

c∑

p=1

(k + 1)#Ipx.

Therefore

dim
(
Φ̂−1(G∞

J ) ∩ (U◦
def × {ŵ0})

)
≤ dim

(
(ρx ◦ ϕ̂ŵ0)

−1(V ∞
2,J)

)

≤ dim(V ∞
2,J) + dim ker(ρx ◦ ϕ̂ŵ0)

≤ dim(V ∞
2,J) + dim(S1 × . . .× Sc)− rank(ρx ◦ ϕ̂ŵ0)

= dim(V ∞
2,J) + dim(S1 × . . .× Sc)−

c∑

p=1

(k + 1)#Ipx.

Since

dim(V ∞
2,J) = dim(

c∏

p=1

(CI
p
J )k+1)− codim(V ∞

2,J ,
c∏

p=1

(CI
p
J )k+1)

=

c∑

p=1

(k + 1)#I
p
J − codim(V ∞

2,J ,

c∏

p=1

(CI
p
J )k+1)

=
c∑

p=1

(k + 1)#Ipx − codim(V ∞
2,J ,

c∏

p=1

(CI
p
J )k+1),
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then we have

dim
(
Φ̂−1(G∞

J ) ∩ U◦
def × {ŵ0}

)
≤ dim(S1 × . . . × Sc)− codim(V ∞

2,J ,
c∏

p=1

(CI
p
J )k+1),

which yields

dim
(
Φ̂−1(G∞

J ) ∩ U◦
def × X̂◦

k,J

)
≤ dim(S1 × . . .× Sc)− codim(V ∞

2,J ,

c∏

p=1

(CI
p
J )k+1) + dimX̂k.

By a result due to Olivier Benoist [BD15, Corollary 3.2], we have

codim(V ∞
2,J ,

c∏

p=1

(CI
p
J )k+1) ≥ min

1≤p≤c
δp + 1.

Therefore, if
dimX̂k < min

1≤p≤c
δp + 1, (♣)

Φ̂−1(G∞
J ) doesn’t dominate U◦

def via the projection U◦
def × X̂◦

k,J → U◦
def , and thus we can find a

non-empty Zariski open subset UJ ⊂ U◦
def such that

Φ̂−1(G∞
J ) ∩ (UJ × X̂◦

k,J) = ∅.

Thus if min
1≤p≤c

δp ≥ (n − 1)(k + 1) + 1, Condition ♣ is always satisfied. We finish the proof of the

lemma.

3.3 Pull-back of the Positivity

For any c-tuple of positive integers e = (e1, . . . , ec), we denote by

L(e) := OGk+1(δ1)(e1)⊠ . . .⊠ OGk+1(δc)(ec),

which is a very ample line bundle on G. Since pJ : YJ → G is a generically finite to one morphism,
by the Nakamaye Theorem (see [Laz04, Theorem 10.3.5] for smooth projective varieties, and [Bir13,
Theorem 1.3] for any projective scheme over any field), the augmented base locus B+

(
p∗JL(e)

)
for

p∗JL(e) coincides with its exceptional locus (or say null locus)

EJ := {y ∈ Y |dimy

(
p−1
J

(
pJ(y)

))
> 0},

which is contained in p−1
J (G∞

J ). Thus if ei ≫ 0 for each 1 ≤ i ≤ c, we have

EJ = Bs
(
p∗JL(e)⊗ q∗JOPJ

(−1)
)
⊂ p−1

J (G∞
J ), (3.9)

where qJ : YJ → PJ is denoted to be the second projection map. In Section 4, we obtain an effective
estimate for e such that the inclusive relation in (3.9) holds. The theorem is the following

Theorem 3.1. With the above notations, set bp :=
∏c

j=1 δ
k+1
j

δp
, then for any J ⊂ {0, . . . , N} and any

a ∈ Zc with ap ≥ bp for every 1 ≤ p ≤ c, we have

Bs
(
p∗JL(a)⊗ q∗JOPN (−1)

)
⊂ Bs

(
p∗JL(b)⊗ q∗JOPN (−1)

)
⊂ p−1

J (G∞
J ).

Since the technique in proving this theorem is of independent interest, we will leave the proof to
Section 4.

Remark 3.1. Since p−1
J (G∞

J ) may strictly contain the null locus Null(p∗L |YJ
) = EJ , Theorem 3.1

does not imply the Nakamaye Theorem used in [BD15] and [Bro16]. That is, for some J and a ∈ Nc

with aj ≥ bj for every j, the Null locus EJ may be strictly contained in p∗JL(a)⊗q∗JOPN (−1). However,
as we will see later, our proof of the Main Theorem only relies on the inclusive relation in (3.9). We
thank Brotbek for pointing this important reduction to us.
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By (3.4) we have

Ψ∗
(
L(b)⊠ OPN (−1)

)
= ν∗k

(
OXk

(

c∑

p=1

bpk
′)⊗ π∗

0,kA
−q(ǫ,δ,r)

)
⊗ OX̂k

(−
c∑

p=1

bpF ). (3.10)

Here we set q(ǫ, δ, r) := r −
∑c

p=1 bp(k + 1)(ǫp + kδp). Observe that if we take

c∑

p=1

bp(k + 1)(ǫp + kδp) < r, (♠)

then (3.10) becomes an invariant k-jet differential with a negative twist, which enables us to apply
Theorem 2.3 to constrain all the entire curves. More precisely, we have the following theorem:

Theorem 3.2. On an n-dimensional smooth projective variety X, equipped with a very ample line
bundle A. Let c be any integer satisfying 1 ≤ c ≤ n− 1. If we take k0 = ⌈nc ⌉ − 1 and N = n, then for
any degrees (d1, . . . , dc) ∈ (N)c satisfying

∃δ(
δp≥δ0:=n(k0+1)

), ∃ǫ(ǫp≥k0), ∃r >

c∑

p=1

bp(k0 + 1)(ǫp + k0δp), s.t.

dp = δp(r + k0) + ǫp (p = 1, . . . , c), (3.11)

the complete intersection H := H1 ∩ . . . Hc of general hypersurfaces H1 ∈ |Ad1 |, . . . ,Hc ∈ |Adc | has
almost k-jet ampleness.

Proof. We will prove the theorem in several steps. First observe that, the choice for (ǫ, δ, r, c,N, k) in
the Theorem fufills all the requirements in Condition ⋆, ♠ and ♣, and thus we are free to apply all
the corresponding theorems above. Based on the same vein in [BD15,Bro16], we have the following
result

Claim 3.3. Set Unef := ∩JUJ . For any a ∈ Unef , the line bundle

ν∗k
(
OXk

(

c∑

p=1

bpk
′)⊗ π∗

0,kA
−q(ǫ,δ,r)

)
⊗ OX̂k

(−
c∑

p=1

bpF )|Ĥ
a,k

is nef on Ĥa,k. Recall that we denote by q(ǫ, δ, r) := r −
∑c

p=1 bp(k0 + 1)(ǫp + k0δp) > 0.

Proof: In order to prove nefness, it suffices to show that for any irreducible curve, its intersection with
the line bundle is non-negative. For any fixed a ∈ Unef , and any irreducible curve C ⊂ Ĥa,k, one can

find the unique J ⊂ {0, . . . , N} such that X̂k,J ∩ C =: C◦ is a non-empty Zariski open subset of C,

and thus C◦ ⊂ Ĥk,J . From Proposition 3.1, Ψ factors through YJ when restricted to Ĥk,J , thus Ψ|C◦

also factors through YJ , and by the properness of YJ , Ψ|C factors through YJ as well. By Lemma 3.5
and the definition of Unef , we have

Φ̂(C◦) ∩G∞
J = ∅,

and thus
Ψ(C) 6⊂ p−1

J (G∞
J ).

From Theorem 3.1 we know that

Bs
(
p∗JL(b)⊗ q∗JOPJ

(−1)
)
⊂ p−1

J (G∞
J ),

which yields
Ψ(C) ·

(
p∗JL(b)⊗ q∗JOPJ

(−1)
)
≥ 0.

From the relation (3.10) we obtain that

C ·
(
ν∗k
(
OXk

(
c∑

p=1

bpk
′)⊗ π∗

0,kA
−q(ǫ,δ,r)

)
⊗ OX̂k

(−
c∑

p=1

bpF )
)
≥ 0,
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which proves the claim. �

By [Dem95, Proposition 6.16], we can find an ample line bundle on X̂k of the form

Ã := ν∗k
(
OXk

(a1, . . . , ak)⊗ π∗
0,kA

a0
)
⊗ OX̂k

(−F )

for some a0, . . . , ak ∈ N. Therefore, for any m > a0, the line bundle

ν∗k
(
OXk

(a1, . . . , ak−1, ak +
c∑

p=1

mbpk
′)⊗ π∗

0,kA
a0−mq(ǫ,δ,r)

)
⊗ OX̂k

(
− (

c∑

p=1

mbp + 1)F
)
|Ĥ

a,k

is ample for any a ∈ Unef , and thus there exists e0, . . . , ek ∈ N such that

ν∗kOXk
(e1, . . . , ek)⊗ OX̂k

(−e0F )|Ĥ
a,k

is ample. By the openness property of ampleness, one has a non-empty Zariski open subset Uample ⊂∏c
i=1 |A

di | such that for any (H1, . . . ,Hc) ∈ Uample, their intersection H := H1 ∩ . . . ∩Hc is a reduced
smooth variety of codimension c in X, and the restriction of the line bundle ν∗kOXk

(e1, . . . , ek) ⊗

OX̂k
(−qF )|

Ĥk
is ample (recall that Ĥk is denoted to be the blow-up of Hk along w∞(Hk)). Since the

exceptional locus of the blow-up νk : X̂k → Xk is contained in Xsing
k , then for the complete intersection

H := H1∩ . . . Hc of general hypersurfaces H1 ∈ |Ad1 |, . . . ,Hc ∈ |Adc |, the augmented base locus of the
line bundle

OHk
(e1, . . . , ek) = OXk

(e1, . . . , ek)|Hk

is contained in Xsing
k ∩ Hk, and we conclude that Hk has almost k-jet ampleness by the fact that

Xsing
k ∩Hk = H

sing
k .

Now we make some effective estimates based on Theorem 3.2. If we take

d0 := δ0
(
c(k0 + 1)(k0 + δ0 + k0δ0 − 1)δ

c(k0+1)−1
0 + k0 + 1

)
+ k0,

then any d ≥ d0 has a decomposition
d = (t+ k0)δ0 + ǫ

with k0 ≤ ǫ < δ0 + k0 and t ≥ c(k0 + 1)(k0 + δ0 + k0δ0 − 1)δ
c(k0+1)−1
0 + 1, satisfying the conditions in

Theorem 3.2. Therefore, the complete intersection H1∩ . . .∩Hc of general hypersurfaces H1, . . . ,Hc ∈
|Ad| with d ≥ d0 has almost k0-jet ampleness. By [Dem95, Lemma 7.6], if a complex manifold Y has
almost k-jet ampleness, then it will also has almost l-jet ampleness for any l ≥ k. A computation
gives a rough estimate d0 ≤ 2c(⌈nc ⌉)

n+c+2nn+c, and this completes the proof of Theorem A.

3.4 Uniform Estimates for the Lower Bounds on the Degree

In Theorem 3.2, the lower bound on the degrees is not uniform and it depends on the directions. In
this subsection, we will adopt a factorization trick due to Xie [Xie15] to overcome this difficulty, but
in the loss of slightly worse bound. First, we began with the following lemma observed by Xie:

Lemma 3.6. For all positive integers d̃0 every integer d ≥ d̃20 + d̃0 can be decomposed into

d = (d̃0 + 1)a+ (d̃0 + 2)b

where a and b are nonnegative integers.

Let X be an n-dimensional smooth projective variety, equipped with a very ample line bundle
A. Let c be any integer satisfying 1 ≤ c ≤ ⌈n2 ⌉. Set k0 = ⌈nc ⌉ − 1, δ0 := n(k0 + 1), r0 := c(k0 +

1)δ
c(k0+1)−1
0 (1 + k0 + k0δ0) + 1, and d̃0 := δ0(r0 + k0) + k0 − 1. Then any c-tuple of integers in the

form (d̃0 + 1, . . . , d̃0 + 1, d̃0 + 2, . . . , d̃0 + 2) satisfies the condition (3.11). Take Z to be any complete

intersection of c general hypersurfaces in |Ad̃0+1| or |Ad̃0+2|, and Ẑk is the variety obtained by the
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blow-up of Zk along the k-th asymptotic Wronskian ideal sheaf w∞(Zk). From Section 2.4 we see that,
the Wronskian ideal sheaf is fonctorial under restrictions and thus Ẑk = ν−1

k (Zk), where νk : X̂k → Xk

is also the blow-up of the Wronskian ideal sheaf w∞(Xk). From Theorem 3.2 and Claim 3.3 we see
that, the line bundle

ν∗k
(
OXk

(cδ
c(k0+1)−1
0 k′)⊗ π∗

0,kA
−1

)
⊗ OX̂k

(−cδ
c(k0+1)−1
0 F )|Ẑk

is nef. Take an ample line bundle on X̂k of the form

ν∗k
(
OXk

(a1, . . . , ak)⊗ π∗
0,kA

a0
)
⊗ OX̂k

(−F )

where a0, . . . , ak ∈ N. Then the line bundle

ν∗k
(
OXk

(a1, . . . , ak−1, ak + a0cδ
c(k0+1)−1
0 k′)

)
⊗ OX̂k

(
− (a0cδ

c(k0+1)−1
0 + 1)F

)
|Ẑk

is ample. Within this setting, we have

Theorem 3.3. For any c-tuple d := (d1, . . . , dc) such that dp ≥ d̃20+ d̃0 for each 1 ≤ p ≤ c, for general
hypersurfaces Hp ∈ |Adp |, their complete intersection Z := H1 ∩ . . . ∩Hc has almost k-jet ampleness
provided that k ≥ k0.

Moreover, there exists a uniform (e0, e1, . . . , ec) ∈ Nc+1 which does not depend on d, such that

ν∗k
(
OZk

(e1, . . . , ek)
)
⊗ OẐk

(
− e0FZk

)

is an ample line bundle, where where νk : Ẑk → Zk is also the blow-up of the Wronskian ideal sheaf
w∞(Zk), and FZk

is the effective cartier divisor on Ẑk such that OẐk
(−FZk

) = ν∗kw∞(Zk).

Proof. Let us denote by q : Zd →
∏c

p=1 |A
dp | the universal family of c-complete intesections of

hypersurfaces in
∏c

p=1 |A
dp |, i.e.

Zd := {(s1, . . . , sc;x) ∈
c∏

p=1

|Adp | ×X|∀p, sp ∈ |Adp | and sp(x) = 0}. (3.12)

By Lemma 3.6 we have the following decompositions

dp = (d̃0 + 1)ap + (d̃0 + 2)bp

for each 1 ≤ p ≤ c. Consider the linear system Vp ⊂ |Adp | generated by sections in Symap |Ad̃0+1| ×

Symbp |Ad̃0+2|, then for a generic choice of (s1, . . . , sc) ∈ V1 × . . . × Vc, their complete intersection
Y =

∑l
s=1 nsZ

s (may not be reduced) is a union of smooth codimension c subvarieties Z1, . . . , Z l

which are complete intersections of c general hypersurfaces in |Ad̃0+1| or |Ad̃0+2|. By the arguments
above the line bundle

ν∗k
(
OXk

(a1, . . . , ak−1, ak + a0cδ
c(k0+1)−1
0 k′)

)
⊗ OX̂k

(
− (a0cδ

c(k0+1)−1
0 + 1)F

)
|Ẑs

k

is ample for each s = 1, . . . , l, and so is for Y . Since ampleness is open in families, this also holds for
the general fiber Z of q : Zd →

∏c
p=1 |A

dp |, that is, for the complete intersection Z := H1 ∩ . . . ∩Hc

of any general hypersurfaces in
∏c

p=1 |A
dp |, the line bundle

OZk
(a1, . . . , ak−1, ak + a0cδ

c(k0+1)−1
0 k′)⊗ OẐk

(
− (a0cδ

c(k0+1)−1
0 + 1)FZk

)
=

ν∗k
(
OXk

(a1, . . . , ak−1, ak + a0cδ
c(k0+1)−1
0 k′)

)
⊗ OX̂k

(
− (a0cδ

c(k0+1)−1
0 + 1)F

)
|Ẑk

is ample. As the choice of a is independant of d, we obtain our theorem.

Roughly, we can take the lower bound to be c2n2n+2c(⌈nc ⌉)
2n+2c+4 ≥ d̃20 + d̃0, and we finish the

proof of Theorem B.
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3.5 On the Diverio-Trapani Conjecture

In this subsection we will prove Theorem C. Let X be a projective manifold of dimension n and A a
very ample line bundle on X. Recall that we denote by X̂k is the blow-up of Xk along the asymptotic
Wronskian ideal sheaf w∞(Xk), and F the effective Cartier divisor such that OX̂k

(−F ) = ν∗k
(
w∞(Xk)

)
.

From the proof of Theorem 3.3, one can find a uniform e := (e0, . . . , ec) ∈ Nc+1 such that, for the
generic fiber Z of the universal family q : Zd →

∏c
p=1 |A

dp | defined in (3.12), where dp ≥ d̃20 + d̃0 for
each 1 ≤ p ≤ c, the line bundle

ν∗kOXk
(e1, . . . , ec)⊗ OX̂k

(−e0F )|Ẑk
= ν∗kOZk

(e1, . . . , ec)⊗ OẐk
(−e0FZk

) (3.13)

is very ample. From Section 2.3 we can take an open covering {Uα} of Z such that:

a) each Uαk := π−1
0,k(Uα) is a trivial product Uα×Rn−c,k, whereRn−c,k is some smooth rational variety.

b) Set pr2 : Uα × Rn−c,k → Rn−c,k to be the projection map. There exists an ideal sheaf In−c,k on
Rn−c,k such that

w∞(Zk) = pr∗2(In−c,k).

Let us denote by µk : R̂n−c,k → Rn−c,k the blow-up of Rn−c,k along In−c,k, and E is the effective

divisor on R̂n−c,k such that
OR̂n−c,k

(−E) := µ∗
k(In−c,k).

Set Ûαk := ν−1
k (Uαk), then we have

Uα × R̂n−c,k

1×µk

��

∼=
// Ûαk

νk

��

Uα ×Rn−c,k

∼=
// Uαk.

Therefore, π0,k ◦ νk : Ẑk → Z is a local isotrivial family with fiber R̂n−c,k, and thus for any j > 0 the
direct image (π0,k ◦ νk)∗(jL) is always locally free on Z, here we denote by L := ν∗kOZk

(e1, . . . , ec)⊗
OẐk

(−e0FZk
). Since

(νk)∗(jL) = OZk
(je1, . . . , jek)⊗ Ij,

where Ij = (νk)∗OẐk
(−je0FZk

) is some ideal sheaf of Zk supported on ZSing
k , by the Direct image

formula (2.3) we have

(π0,k ◦ νk)∗(jL) ⊂ F
je
Ek,jmT ∗

Z (3.14)

where m = e1 + . . .+ ek.

Claim 3.4. There exists a positive integer j1 such that for each j ≥ j1, the direct image (π0,k ◦

νk)∗(jL) ⊂ O(F
je
Ek,jmT

∗
Z) is an ample vector bundle on Z.

Proof: Let us denote by AZ := A|Z . As L is ample, one can find an integer j0 ≫ 0 such that for each
j ≥ j0, all higher direct image sheaf Ri(π0,k ◦ νk)∗(jL) vanishes, and jL− (π0,k ◦ νk)

∗AZ is ample.
Set Vj := (π0,k ◦ νk)∗

(
jL− (π0,k ◦ νk)

∗AZ

)
which is a local free sheaf for any j ≥ 0. Consider any

coherent F on Z. Then by the degeneration of the Leray spectral sequence, for each j ≥ j0, we have

H i(Z, Vj ⊗F) = H i(Ẑk, L
j ⊗ (π0,k ◦ νk)

∗A−1
Z ⊗ (π0,k ◦ νk)

∗F) (3.15)

for any i > 0. Fix a point y ∈ Z, with maximal ideal My ⊂ OZ . Then we have the exact sequence

0 → My → OZ → OZ/My → 0.

As L is ample, there exists a positive integer j(y) ≥ j0 such that

H1(Z, Vj ⊗My) = H1
(
Ẑk, L

j ⊗ (π0,k ◦ νk)
∗A−1

Z ⊗ (π0,k ◦ νk)
∗My

)
= 0
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for j ≥ j(y), and so we see using the exact sequence above that Vj is generated by its global sections at
y. The same therefore holds in a Zariski open neighborhood of y, and by the compactness of Z we can
find a integer j1 ≥ j0 such that Vj is globally generated when j ≥ j1. Thus Vj ⊗AZ = (π0,k ◦ νk)∗(jL)
is an ample vector bundle for any j ≥ j1. �

Since the ampleness is open in families, then Claim 3.4 holds for general fibers of q : Zd →∏c
p=1 |A

dp |. Set U ⊂
∏c

p=1 |A
dp | to be a Zariski open set of

∏c
p=1 |A

dp | such that when restricted to

Y := q−1(U), q is a smooth fibration. Denote by Yk the k-th Demailly-Semple tower of (Y , TY /U ),

and νk : Ŷk → Yk the blowing-up of the asymptotic Wronskian ideal sheaf w∞(Yk) with O
Ŷk
(−FYk

) =
ν∗kw∞(Yk). Then for every j ≫ 0, we define the vector bundle Vj on Y by

Vj := (π0,k ◦ νk)∗
(
ν∗kOYk

(je1, . . . , jen)⊗ O
Ŷk
(−je0FYk

)
)
,

and its restriction to the general fiber Z of q is

(π0,k ◦ νk)∗
(
ν∗kOZk

(je1, . . . , jen)⊗ OẐk
(−je0FZk

)
)
,

which is ample by Claim 3.4. We finish the proof of the first part in Theorem C. Since L =
ν∗kOZk

(e1, . . . , ec)⊗OẐk
(−e0FZk

) is very ample on Ẑk, we can take j ≫ 0 such that jL−(π0,k◦νk)
∗A−1

Z

is still very ample, and by the relation

(νk)∗(jL) = OZk
(je1, . . . , jek)⊗ Ij,

we see that the base locus of

H0
(
Zk,OZk

(je1, . . . , jek)⊗ (π0,k)
∗A−1

Z ⊗ Ij
)

is contained in ZSing
k . We finish the proof of Theorem C.

4 Effective Estimates Related to the Nakamaye Theorem

In this section we prove Theorem 3.1. For simplicity and to make this part readable, we give a complete
proof for c = 1. The proof for the general cases is exact the same and we will show the general ideas
for that. We begin with some definitions and notations of the universal Grassmannian.

We consider V := H0
(
PN ,OPN (δ)

)
, that is, the space of homogeneous polynomials of degree δ in

C[z0, . . . , zn], and for any J ⊂ {0, . . . , N}, we set

PJ := {[z0, . . . , zN ] ∈ PN |zj = 0 if j ∈ J}.

Given any ∆ ∈ Grk+1(V) and [z] ∈ PN , we write ∆([z]) = 0 if and only if P (z) = 0 for all P ∈ ∆ ⊂ V .
We then define the universal Grassmannian to be

Y := {(∆, [z]) ∈ Grk+1(V )× PN |∆([z]) = 0}, (4.1)

and for any J ⊂ {0, . . . , N}, set

YJ := Y ∩ (Grk+1(V )× PJ). (4.2)

From now on we always assume that k + 1 ≥ N , then p : Y → Grk+1(V) is a generically finite to one
morphism. Denote q : Y → PN to be the projection on the second factor. Let L be the very ample
line bundle on Grk+1(V ) which is the pull back of O(1) under the Plücker embedding. Then p∗L |YJ

is
a big and nef line bundle on YJ for any J . For any J ⊂ {0, . . . , N} we denote by pJ : YJ → Grk+1(V ),
and qJ : YJ → PJ the projections. Similarly we set

EJ := {y ∈ Y |dimy(p
−1
J (pJ (y))) > 0}

G∞
J := pJ(EJ) ⊂ Grk+1(V ),
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then EJ = Null(p∗L |YJ
). For J = ∅ we have YJ = Y and denote by E := E∅ and G∞ := G∞

∅ .

Now we begin to prove Theorem 3.1. First of all suppose that c = 1 and k + 1 = N . Then in this
case p : Y → GrN(V) is a generically finite to one surjective morphism. We first deal with the case
J = ∅.

Let us pick a smooth curve C in GrN(V) of degree 1, given by

∆([t0, t1]) := Span(zδ1 , z
δ
2, . . . z

δ
N−1, t0z

δ
N + t1z

δ
0),

where [t0, t1] ∈ P1. Indeed, the curve C is the line in the projective space P(ΛNV ) defined by two
vectors zδ0 ∧ zδ1 ∧ · · · ∧ zδN−1 and zδ1 ∧ zδ2 ∧ · · · ∧ zδN in ΛNV , which is of degree 1 with respect to the
tautological line bundle L . That is,

L · C = 1.

Now consider the hyperplane D in PN given by {[z0, . . . , zN ]|z0 + zN = 0}. We have

Lemma 4.1. The intersection number of the curve p∗C and the divisor q∗D in Y is δN−1. Moreover,
p∗q

∗D ∼ δN−1L , where “∼” stands for linear equivalence.

Proof. An easy computation shows that p∗C and q∗D intersect only at the point

Span(zδ1 , z
δ
2, . . . z

δ
N−1, z

δ
N + (−1)δ+1zδ0)× [1, 0 . . . , 0,−1] ∈ Y

with multiplicity δN−1. The first statement follows. By the projection formula we have

p∗q
∗D · C = p∗(q

∗D · p∗C) = δN−1.

As Pic(GrN(V)) ∼= Z with the generator L , then we get p∗q
∗D ∼ δN−1L by the fact that L · C =

1.

We first observe that p∗p∗q
∗D − q∗D is an effective divisor of Y , and by Lemma 4.1 we conclude

that δN−1p∗L − q∗OPN (1) is effective. We also have a good control of the base locus as follows:

Claim 4.1. For any m ≥ δN , we always have

Bs
(
mp∗L − q∗OPN (1)

)
⊂ p−1(G∞). (4.3)

Proof: Pick any ∆0 /∈ G∞, p−1(∆0) is a finite set by the definition of G∞. Thus one can choose a
hyperplane D ∈ H0(PN ,OPN (1)) such that D ∩ q

(
p−1(∆0)

)
= ∅. From Lemma 4.1 we know that the

divisor p∗p∗q
∗D − q∗D is effective and lies in the linear system |δN−1p∗L − q∗OPN (1)| of Y .

For any ∆ ∈ GrN(V), if we denote by

Int(∆) := {[z] ∈ PN |∆([z]) = 0},

then q
(
p−1(∆)

)
= Int(∆). Hence the condition that D ∩ q

(
p−1(∆0)

)
= ∅ is equivalent to that

Int(∆0) ∩D = ∅. However, for any ∆ ∈ p∗q
∗D, we must have Int(∆) ∩D 6= ∅, therefore ∆0 /∈ p∗q

∗D.
As ∆0 was arbitrary, we conclude that

Bs
(
δN−1p∗L − q∗OPN (1)

)
⊂ p−1(G∞).

As L is very ample on GrN(V), for any m ≥ δN−1, we have

Bs(mp∗L − q∗OPN (1)) ⊂ Bs
(
δN−1p∗L − q∗OPN (1)

)
⊂ p−1(G∞).

The Claim is thus proved. �

Now we deal with the general case J ⊂ {0, . . . , N}. Without loss of generality we can assume that
J = {n + 1, . . . , N}. First recall our previous notation pJ : YJ → GrN(V), and let qJ : YJ → PJ be
the second projection. For any ∆0 /∈ G∞

J , the set p−1
J (∆0) = Int(∆0) ∩ PJ is finite. Thus one can

choose a generic hyperplane D ∈ H0(PN ,OPN (1)) such that Int(∆0) ∩D ∩ PJ = ∅. One can further
choose a proper coordinate for PN such that D = {zn = 0}.

26



Observe that Y
q
−→ PN is a local trivial fibration. Indeed, any linear transformation g ∈ GL(CN+1)

induces a natural action g̃ ∈ GL(V ), hence also a biholomorphism ĝ of GrN (V ). For any e ∈ PN , ĝ
maps the fiber q−1(e) to q−1

(
g(e)

)
bijectively. Since GLN+1(C) acts transitively on PN , the fibration

Y
q
−→ PN can then be locally trivialized. Therefore q∗J(D ∩ PJ) is a reduced divisor in YJ . Set

E := pJ
(
q−1
J (D∩PJ)

)
set-theoretically. Then for any divisor H̃ ∈ |mL | on GrN (V ) such that E ⊂ H̃

and pJ(YJ) 6⊂ H̃, p∗J(H̃)− q∗J(D ∩ PJ) is an effective divisor in |mp∗JL − q∗JOPJ
(1)|. However, it may

happen that for any hyperplane D̃ ∈ PN , all constructed divisors of the form p∗q
∗(D̃) will always

contain ∆0.

Choose a decomposition of V = V1⊕V2 such that V1 is spanned by the vectors {zα ∈ V |αn = . . . =
αN = 0} and V2 is spanned by other zα’s. Let us denote G to be the subgroup of the general linear
group GL(V ) which is the lower triangle matrix with respect to the decomposition of V = V1 ⊕ V2 as
follows:

{g ∈ GL(V )|g =

[
I 0
A B

]
, B ∈ GL(V2), A ∈ Hom(V1, V2)}. (4.4)

The subgroup G also induced a natural group action on the Grassmannian GrN (V ), and we have the
following

Lemma 4.2. Set H := p∗(q
∗D). Then for any g ∈ G, E ⊂ g(H) and there exists a g0 ∈ G such that

∆0 /∈ g0(H).

Proof. For any ∆ ∈ GrN (V ), choose {s1, . . . , sN} ⊂ V which spans ∆. Let si = ui + vi be the unique
decomposition of si under V = V1 ⊕ V2. Then by E := pJ

(
q−1
J (D ∩ PJ)

)
we see that ∆ ∈ E if and

only if ∩N
i=1{ui = 0} ∩ Pn−1 6= ∅, where Pn−1 := {[z0 : · · · : zN ] ∈ PN |zj = 0 for j ≥ n}. For any

g ∈ GL(V ), g(∆) is spanned by {g(s1), . . . , g(sN )}. By the definition of G, for any g ∈ G, we have
the decomposition g(si) = ui + v′i with respect to V = V1 ⊕ V2 which keeps the V1 factors invariant.
Thus we prove the first part of the claim.

Set {t1, . . . , tN} ⊂ V which spans ∆0 and ti = ui + vi be the unique decomposition of ti under
V = V1 ⊕ V2. Since Int(∆0) ∩ Pn−1 = ∅, we have ∩N

i=1{ui = 0} ∩ Pn−1 = ∅. We can then choose the
basis {t1, . . . , tN} spanning ∆0 properly, so that

(i)
⋂n

i=1{ui = 0} ∩ Pn−1 = ∅;

(ii) for some m ≥ n, {u1, . . . , um} is a set of vectors in V1 which is linearly independant;

(iii) um+1 = . . . = uN = 0.

Then ∩n
i=1{ui = 0} ∩ {zn = 0} = PN−n−1 := {[z0 : · · · : zN ] ∈ PN |zj = 0 for j ≤ n}, and

{vm+1, . . . , vN} is a set of linearly independant vectors in V2.
Let us denote by ∆′ ∈ GrN (V ) spanned by





ũ1 := u1
...

ũn := un

ũn+1 := un+1 + zδn+1
...

ũm := um + zδm
ũm+1 := um+1 + zδm+1 = zδm+1
...

ũN := uN + zδN = zδN

.

Then Int(∆′) ∩ {zn = 0} = ∅, which is equivalent to that ∆′ /∈ H := p∗q
∗(D). By the choice of ∆′

one can find a g0 ∈ G such that g0(∆
′) = ∆0. Indeed, by linear independances of {vm+1, . . . , vN} in
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V2 and {u1, . . . , um} in V1, we can find a B ∈ GL(V2) satisfying that B(zδi ) = vi for all i ≥ m + 1,
and A ∈ Hom(V1, V2) such that A(ui) = vi for i ≤ n and A(uj) = vj − B(zδj ) for n + 1 ≤ j ≤ m. Set

g0 :=

[
I 0
A B

]
which is the type (4.4), and by the construction of g0 we have that g0(∆

′) = ∆0. Thus

∆0 /∈ g0(H) and we finish the proof of the claim.

Since H ∈ |δN−1L |, g0(H) still lies in |δN−1L |. Indeed, since the complex general linear group
GL(V ) is connected, the automorphism map of GrN(V) induced by g0-action is homotopic to the
identity map, and thus the g0 action induces the identity on the cohomology groups. By Lemma 4.2,
E ⊂ g0(H) and ∆0 /∈ g0(H). As q∗J(D ∩ PJ) is a reduced (Cartier) divisor on YJ , the divisor

p∗J
(
g0(H)

)
− q∗J(D ∩ PJ) ∈ |δN−1p∗JL − q∗JOPJ

(1)|

is effective and avoids the finite set p−1
J (∆0).

Since ∆0 ∈ GrN (V ) is any arbitrary point not contained in G∞
J , thus the base locus of δN−1p∗JL −

q∗JOPJ
(1) is totally contained in p−1

J (G∞
J ). In conclusion we have the following theorem:

Theorem 4.1. Let Y ⊂ GrN (V ) × PN and YJ be the universal families defined in (4.1) and (4.2).
For any J ⊂ {0, . . . , N}, we have

Bs(mp∗L − q∗OPN (1)|YJ
) ⊂ p−1

J (G∞
J )

for any m ≥ δN−1.

Fix any positive integer n < N . Consider Pn as a subspace of PN defined by zn+1 = . . . =
zN = 0. Set Vn := H0(Pn,OPn(δ)), and we have a natural inclusion GrN (Vn) ⊂ GrN (V ). For any
J ⊂ {0, . . . , n}, we denote by J̃ := J ∪ {n+ 1, . . . , N}, and PJ̃ := {[z0, . . . , zN ] ∈ PN |zj = 0 if j ∈ J̃}.
Set

ỸJ := {(∆, [z]) ∈ GrN (Vn)× PJ̃ |∆([z]) = 0}.

Define p̃J : ỸJ → GrN(Vn) and q̃J : ỸJ → PJ̃ the respective projections. Set

G̃∞
J := {∆ ∈ GrN (Vn)|p̃

−1
J (∆) is not finite set}.

Let Y ⊂ GrN (V )×PN and YJ̃ be the universal families defined in (4.1) and (4.2). There is a natural
inclusion in : GrN (Vn) →֒ GrN(V), which induces the following inclusions:

ỸJ� _

��

� � // GrN (Vn)× PJ̃� _

in×1

��

YJ̃
� � // GrN (V )× PJ̃

Under the inclusion in, we have
G̃∞

J = G∞
J̃

∩GrN (Vn).

From Theorem 4.1, for m ≥ δN−1 we also have

Bs(mp∗L − q∗OPN (1)|
ỸJ

) ⊂ Bs(mp∗L − q∗OPN (1)|Y
J̃
) ∩ ỸJ

⊂ p−1
J̃

(G∞
J̃
) ∩ ỸJ

= p̃−1
J

(
G̃∞

J

)
, (4.5)

where pJ̃ : YJ̃ → GrN (V ) and qJ̃ : YJ̃ → PJ̃ are the projection maps. Since the pull back

i∗n : Pic
(
GrN(V)

) ≈
−→ Pic

(
GrN(Vn)

)

is an isomorphism between the Picard groups, and Ln := i∗nL is still the tautological line bundle on
GrN (Vn). Then

mp∗L − q∗OPN (1)|
ỸJ

= mp̃∗J(Ln)− q̃∗JOPJ
(1),
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and by (4.5) we have

Bs
(
mp̃∗J(Ln)− q̃∗JOPJ

(1)
)
⊂ p̃−1

J

(
G̃∞

J

)
. (4.6)

We are in the situation to prove Theorem 3.1 for c = 1 and general k + 1 ≥ N :

Theorem 4.2. For any k + 1 ≥ N , set Y ⊂ Grk+1(V ) × PN and YJ to be the universal families
defined in (4.1) and (4.2). For any J ⊂ {0, . . . , N}, and k + 1 ≥ N , we have

Bs(mp∗L − q∗OPN (1)|YJ
) ⊂ p−1

J (G∞
J ) (4.7)

for any m ≥ δk.

Proof. Indeed, if we consider PN as a subspace in Pk+1 defined by zN+1 = . . . = zk+1 = 0, the theorem
follows from (4.6) directly.

The above theorem can be generalized to the case of products of Grassmannians. We first set
N := c(k + 1), and denote Vi := H0

(
PN ,OPN (δi)

)
and G :=

∏c
i=1Grk+1(Vi) for simplicity. Let Y be

the generalized universal Grassmannian defined by

Y := {(∆1, . . . ,∆c, z) ∈ G× PN |∀ i,∆i([z]) = 0}.

Let p : Y → G, q : Y → PN and pi : Y → Grk+1(δi) be the canonical projections to each factor; then
p is a generically finite to one morphism. Define a group homeomorphism

L : Zc → Pic(G)

a = (a1, . . . , ac) 7→ OGrk+1(V1)(a1)⊠ . . .⊠ OGrk+1(Vc)(ac)

which is moreover an isomorphism.
We then define smooth lines {Ci}i=1,...,c in G, given by

∆i([t0, t1]) := Span(zδ11 , zδ1c+1 . . . , z
δ1
kc+1)× Span(zδ22 , zδ2c+2 . . . , z

δ2
kc+2)× . . .

×Span(t0z
δi
i + t1z

δi
0 , zδic+i, . . . , z

δi
kc+i)× . . .× Span(zδcc , zδc2c, . . . , z

δc
(k+1)c

)

for [t0, t1] ∈ P1. It is easy to verify that L(a) · Ci = ai for each i. Consider the hyperplane Di of P
n

given by {[z0, . . . , zN ]|zi + z0 = 0}. Then we have

Lemma 4.3. The intersection number of the curve p∗Ci and the divisor q∗Di in Y is bi :=
∏c

j=1 δ
k+1
j

δi
.

Moreover, p∗q
∗OPN (1) ≡ L (b), where b = (b1, . . . , bc).

Proof. It is easy to show that p∗Ci and q∗Di intersect only at one point with multiplicity bi. By the
projection formula we have

p∗q
∗Di · Ci = p∗(q

∗Di · p
∗Ci) = bi.

Since
L (a) · Ci = ai

for any a ∈ Zc. Thus
p∗q

∗Di ≡ p∗q
∗
OPN (1) ≡ L(b).

Then by similar arguments above, p∗L(b)⊗ q∗OPN (−1) is effective, and its base locus

Bs(p∗L(b)⊗ q∗OPN (−1)) ⊂ p−1(G∞), (4.8)

where G∞ is the set of points in G such that their p-fiber is not a finite set. We can then apply the
methods already used above to show that (4.8) also holds for all the strata YI of Y , and for general
k with c(k + 1) ≥ N . In conclusion, we have the following theorem
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Theorem 4.3. Let Y be the generalized universal Grassmannian defined by

Y := {(∆1, . . . ,∆c, z) ∈ Grk+1(V1)× . . .×Grk+1(Vc)× PN |∀ i,∆i([z]) = 0}

here Vi := H0
(
PN ,OPN (δi)

)
, and (k+1)c ≥ N . Then for any strata YJ := (G×PJ)∩Y , any a ∈ Zc

with ai ≥
∏c

j=1 δ
k+1
j

δi
for each i, we have

Bs
(
p∗L(a)⊗ q∗OPN (−1)|YJ

)
⊂ p−1(G∞

J ),

where G∞
J is the set of points in G :=

∏c
i=1 Grk+1(Vi) with positive dimension fibers in YJ .
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