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ON THE DIVERIO-TRAPANI CONJECTURE

Ya Deng*

Institut Fourier, Université Grenoble Alpes

Abstract

The aim of this work is to study the conjecture on the ampleness of jet bundles raised by
Diverio and Trapani, and also obtain some effective estimates related to this problem.

1 INTRODUCTION

In recent years, an important technique in studying hyperbolicity-related problems is invariant
jet differentials Ej, ,, T introduced by J.-P. Demailly, which can be seen as a generalization to
higher order of symmetric differentials, but invariant under the reparametrization. If one deal
with positivity for jet bundles of the complete intersection of hypersurfaces in PV, as was proved
in [Div08], one cannot expect to achieve this in lower order jet differentials if the codimension
of subvariety is small:

Theorem 1.1. (Diverio) Let X C PN be a smooth complete intersection of hypersurfaces of
any degree in PN. Then

H(X, B T3) = 0
for allm >1 and 1 < k < dim(X)/codim(X).

On the other hand, as a generalization of the Debarre conjecture, in [DT10], Simone Diverio
and Stefano Trapani raised the following conjecture:

Conjecture 1.1. Let X C PN be the complete intersection of ¢ general hypersurfaces of suf-
ficiently high degree. Then, Ej T is ample provided that k > % — 1, and therefore X is
hyperbolic.

In this paper, based mainly on the recent important breakthrough made in [BD15] and
[Bro16] on the Debarre and Kobayashi conjectures, we prove the following theorem:

Main Theorem 1. Let X be a projective manifold of dimension n endowed with a very am-
ple line bundle A. Let H C X be the complete intersection of ¢ gemeral hypersurfaces in
|HO (X, OX(dA))|. Then for any positive integer k > = — 1, H has almost k-jet ampleness
(see Definition 2.1 below) provided that d > 2¢([2])" e 2n™ ¢ In particular, H is Kobayashi
hyperbolic.
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Remark 1.1. Since our definition for almost 1-jet ampleness coincides with ampleness of cotan-
gent bundle, then our Main Theorem 1 integrates both the Kobayashi and Debarre conjectures,
with some (non-optimal) effective estimates.

2 TECHNICAL PRELIMINARIES AND LEMMAS

In this section, we will recall some definitions and related results.

2.1 INVARIANT JET DIFFERENTIALS

Let (X,V) be a directed manifold, i.e. a pair where X is a complex manifold and V' C Tx a
holomorphic subbundle of the tangent bundle. One defines JV — X to be the bundle of k-jets
of germs of parametrized curves in X, that is, the set of equivalence classes of holomorphic maps
f:(C,0) — (X,z) which are tangent to V, with the equivalence relation f ~ ¢ if and only if
all derivatives f0)(0) = ¢\9)(0) coincide for 0 < j < k, when computed in some local coordinate
system of X near x. From now no, if not specially mentioned, we always assume that V' = Tx.
The projection map py, : JyTx — X is simply taken to be [f] — f(0). If (z1,...,2,) are local
holomorphic coordinates on an open set  C X, the elements [f] of any fiber Jj ,,x € (2, can
be seen as C™-valued maps

f=01,.---,fa): (C,0)>QCC",

and they are completetely determined by their Taylor expansion of order k at ¢t = 0:

t2 tk
ft)=z+tf(0)+ Ef"(O) 4.+ Hf(l’f)(o) + O,
In these coordinates, the fiber Jj , can thus be identified with the set of k-tuples of vectors

(&1, &) = (F/(0), £7(0), ..., f®(0)) e C™

Let G be the group of germs of k-jets of biholomorphisms of (C,0), that is, the group of
germs of biholomorphic maps

t— o(t) = art + agt® + - - - + apt*, a1 € C*a;€C,j > 2,

in which the composition law is taken modulo terms ¢; of degree 7 > k. Then Gy is a k-
dimensional nilpotent complex Lie group, which admits a natural fiberwise right action on
JiTx. The action consists of reparametrizing k-jets of maps f : (C,0) — X by a biholomorphic
change of parameter ¢ : (C,0) — (C,0) defined by (f, ) — fop. The corresponding C*-action
on k-jets is described in coordinates by

N (Ff7 o fEy = N2 AR R,

The group Gy acts on Ji naturally. If we denote by X} the relative compactification of Jj \
{0} /Gy, over X, as was proved in [Dem95] (ref. Theorem 6.8), X}, is indeed the Demailly-Semple
tower defined in the next subsection.



Green-Griffiths introduced the vector bundle EkGS;V* whose fibres are complex valued polyno-
mials Q(f’, f”,..., f*¥)) on the fibres of J;V, of weighted degree m with respect to the C*-action,
Bce, QONFL N2 MY = XmQ( ! f L f ) for all A € C* and (f7, f7, ..., f®) e J,V.
One calls EE%V* the bundle of jet differentials of order k& and weighted degree m. However, we
are more interested in the more geometric context introduced by J.-P. Demailly: the subbundle
Ep,V* C EE%V* which is a set of polynomial differential operators Q(f, f”,... ,f(k)) which
are invariant under arbitrary changes of parametrization, that is, for any ¢ € Gy, we have

Q((fow), (fou) ....(fop)®) = O)"Q(f, 1",.... f*)).

The bundle Ej, ,,,V* is called the bundle of invariant jet differentials of order k and degree m.
A very natural construction for invariant jet differentials is Wronskians. In [Brol6] Brotbek
introduce a type of Wronskians induced by global sections in some linear system. We will recall
briefly his constructions in Section 2.3.

2.2 DEMAILLY-SEMPLE JET BUNDLES

Let X be a complex manifold of dimension n. If V is a subbundle of rank r, one constructs
a tower of “Demailly-Semple k-jet bundles” 7y 11 @ (Xi, Vi) = (Xg—1,Vi—1) that are Pr-1
bundles, with dimXy; = n+ k(r — 1) and rank(Vy) = r. For this, we take (X, Vo) = (X, V), and
for every k > 1, inductively we set Xy := P(V;_1) and

Vi o= (T 1)y 'Ox, (1) C Tx,,

where Ox;, (1) is the tautological line bundle on Xy, m r—1 : X = P(Vi—1) — Xj—1 the natural
projection and (7 p—1)« = dmpp—1 : Tx, — 7 1_1Tx, , its differential. By composing the
projections we get for all pairs of indices 0 < j < k natural morphisms

Tk, - Xk — Xj, (Wk,j)* = (dﬂ'k,j)’Vk : Vk — (Wk,j)*vj‘
and for every k-tuple a = (a1, ...,a;) € Z¥ we define
Ox, (a) = ®1<j<xm} ;0 (a)).

We have an inductively defined k-lifting for germs of holomorphic curves such that fy : (C,0) —
X}, is obtained as fy(t) = (fjp—1)(t), [f[’kil] (t)]). We will need the following parametrizing
theorem due to J.-P. Demailly (ref. Corollary 5.12 in [Dem95]):

Theorem 2.1. Let (X,V) be a directed variety. For any wy € Xy, there exists an open neigh-
borhood Uy, of wo and a family of germs of curves (fu)weu,,, tangent to V' depending holomor-
phically on w such that

(fw)w(0) =w and (fu)j_1(0) #0, Vw € Uy,

In particular, (fw)/[k—u(o) gwes a local trivialization of the tautological line bundle Ox, (—1) on
U -



By Theorem 6.8 in [Dem95], we have the following isomorphism between Demailly-Semple
jet bundles and invariant jet differentials:

Theorem 2.2. Let (X,V) be a directed variety. The direct image sheaf
(m0,1)xOx, (M) ~ Ej V™ (2.1)

can be identified with the sheaf of holomorphic sections of Ej,,V*. In particular, for any line
bundle L, we have the following isomorphism induced by (mo )« :

(70, )

H®(Xp, 0x, (m) @ m L) H(X, B, V*® L). (2.2)

Therefore, with the notations in Theorem 2.1, for any given local jet differential P €
Ej;mV*(U), the image under the isomorphism (2.1) is the section op € Ox, (m)(m 1 (U) N Uy,)
defined by

op(w) = P(fl fi ooy SO ((Fu)y(0)) ™ (2.3)

We denote by X,l;eg C X}, the set of elements f[k}(()) in X} which can be reached by all regular
germs of curves f, and Xzing =X\ X5

The general philosophy of the theory of (invariant) jet differentials is that their global sec-
tions with values in an anti-ample divisor provide algebraic differential equations which every
entire curve must satisfy, which is an application of Ahlfors-Schwarz lemma. The following
Fundamental Vanishing Theorem shows the obstructions to the existence of entire curves:

Theorem 2.3. (Demailly, Green-Griffiths, Siu-Yeung) Let (X,V') be a directed projective va-
riety and f : C — (X,V) an entire curve tangent to V. Then for every global section P &€
H(X, Ejy V* @ O(—A)) where A is an ample divisor of X, one has P(f, f",... fE)y=0. In
other word, if we denote by s the unique section in H° (Xk, Ox, (m) ® Wék,k(_A)) corresponding
to P induced by the isomorphism (2.2), and Z(s) C Xy the base locus of this section, then
Jw(C) € Z(s).

Now we state the following definition which describes the positivity of the the invariant jet
bundles:

Definition 2.1. Let X be a projective manifold. We say that X has almost k-jet ampleness if
and only if there exists a c-tuple of positive integers (a1, ..., ay) such that Ox, (a1,...,ax) is big
and its augmented base locus satisfies the condition

By (Ox,(a1,...,ax)) C Xzing.

By applying the Fundamental Vanishing Theorem 2.3, we can quickly conclude that, if X
has almost k-jet ampleness, then its Demailly-Semple locus (ref. [DR13] for the definition) is an
empty set, and thus X is Kobayashi hyperbolic.



2.3 BROTBEK’S WRONSKIANS OPERATOR

Let X be an n-dimensional compact complex manifold. If (z1,...,z2,) are local holomorphic
coordinates on an open set {2 C X, then since Ji is a locally trivial holomorphic fiber bundle,
we have the homeomorphism

Jilo ~ Q x C,

which is given by [f] — (£(0), f'(0),..., f*)(0)).
For any holomorphic function g € O(Q2), and 1 < j < k, there exists an induced holomorphic

function dg (9) on O(p;, (), defined by

a3 (9)(£/(0), £(0)...... FP(0)) = (g0 )9 (0),
and we will construct the Wronskian of any (k + 1) holomorphic functions gy, ..., gr € O(f2) by
ag(a0) - dg(gr)
a5 go) o dg(an)

An important fact for the Wronskian is that, it is invariant under the Gy action (ref. Proposition

2.2 in [Brol6]):
Lemma 2.1. With the notation as above, Wa(go, - .., gr) € EwT% (), where k' := @

Thus one has a natural construction for the invariant jet differentials: let L be any holo-
morphic line bundle on X, for any so,...,s; € H*(X, L), if we choose a local trivialization of L
above (), we define

WQ(SQ, ey Sk) = WQ(SO,Q, cey Sk"Q) € Ehk/T)*((Q),
and if gluing together, we have the global section (ref. Proposition 2.3 [Brol6]):

Theorem 2.4. For any sq,...,s, € HY(X,L), the locally defined jet differential equations
Wa(so, ..., sk) glue together into a global section

W (so,...,sr) € H'(X, B pT% @ LF).

We will denote by w(so, . .., sx) € H*(Xy, Ox, (k)@ , L*1) the inverse image of W (s, . . . , s)
under the isomorphism (2.2).
Now let

W(Xg, L) := Span{w(so, . . ., 5n)|50,-..,8, € H(X,L)} C HO(Xk, Ox, (k) ® ngk(LkH))

be the associated sublinear system of H° (X, OXk(k(k;l)) @7y (L¥1)). One defines w(Xy, L)
to be the base ideal of the linear system W (X, L).
By the definition, if A is any line bundle on X, and s € H(X, L), we have

W(s-80,...,8 s) =" W(so,...,s5) € H (X, Ep Tk @ LFtT @ AR,



Thus if L is very ample we have
w(Xg, L) C (X, L*) C ... Cro(X, L™) C....

Then the Noetherian property shows that this increasing sequence stabilizes for some ro( Xy, L™ (Xk’L)),
and the asymptotic ideal sheaf is denoted by o (Xg, L). An important property for w (X, L)
is the following (ref. Lemma 2.4 in [Brol6]):

Lemma 2.2. If L generates k-jets at every point of X, that is, for any x € X,
HY(X,L) = L & Ox »/m’}

18 surjective, then .
Supp(OXk /m(Xk’ L)) - szg'

In order to obtain the effectivity in the hyperbolicity-problems, we need to determine the
constant me(Xg, L). In [Denl6], we obtained

Theorem 2.5. If L generates k-jets at each point of X, then moo(Xy, L) = 1. In particular, if
L is known to be only very ample, we have moo(Xy, L) = k.

As was proved in [Brol6], w.. (X, L) does not depend on the very ample line bundle L
and is called the asymptotic Wronskian ideal sheaf, denoted by .o (Xy). As was also shown in
Lemma 2.6 of [Brol6], m.(X}%) behaves well under restriction, that is, for any directed variety
(Y, Vy) with Y € X and V3 C Vx|y, under the induced inclusion Yy C X} one has

Woo (Xk)[vy = Woo(Y).

2.4 BLOW-UPS OF THE WRONSKIAN IDEAL SHEAF

This subsection are mainly borrowed from [Brol6]. We will state some important results without
proof, and the readers who are interested in the details are encouraged to refer Section 2.4
of [Brol6].

Since the asymptotic Wronskian ideal sheaf w.(X}y) is an obstruction to the positivity of
Ox, (1), we would like to blow up this sheaf.

For any directed manifold (X, V'), we denote by

X =Bl (x) (X5) = X
the blow-up of X} along . (X%), and F' the effective Cartier divisor on X, such that
Og (—F) = v oo (Xp).

Take a very ample line bundle L on X, for any m > 0, and any sq,...,s, € H(X,L™), there
exists

&(s0, ..., s1) € HO (Xk Vi (Ox, () @ w5, L") @ OXk(—F)>,



such that

Viw (80, ...y Sk) = Sp - @(S0,. .., Sk).
Here sp € H O(Xk,F) is the tautological section. Then by Theorem 2.5, for any @ € Xj and
any m > k, there exists sg,...,s; € H°(X, L™) such that

(,:J(So, Ce ,Sk)(ﬁ)) 7é 0.

The blow-ups is fonctorial thanks to the fact that the asymptotic Wronskian ideal sheaf behaves
well under restriction. Namely, if (Y,Vy) C (X,Vx) is a sub-directed variety, then Y} is the
strict transform of Y, in X} under the blowing-up morphism vy : Xk — X}. This fonctorial
property also holds for families (ref. Proposition 2.7 in [Brol6]):

Theorem 2.6. Let 2 2 T be a smooth and projective morphism between non-singular varieties.
We denote by 3&”,;‘31 the k-th Demailly-Semple tower of the relative directed variety (2", Tq 7).

Take vy, : fkrel — %krel to be the blow-ups of the asymptotic Wronskian ideal sheaf moo(%krel).
Then for any to € T writing Xy, := p~'(to), we have

Vlgl(Xto,k) - Xto,k"

3 PROOF OF THE MAIN THEOREM

3.1 FAMILIES OF COMPLETE INTERSECTIONS OF FERMAT-TYPE HYPERSURFACES

Let X be a projective manifold of dimension n endowed with a very ample line bundle A. We
first construct a family of complete intersection subvarieties in X cut out by certain Fermat-type
hypersurfaces. For an integer N > n, we fix N + 1 sections in general position 7,...,7n €
H°(X,A). By “general position” we mean that the hypersurfaces {r; = 0}i—o,...n are all
smooth and irreducibles ones, and they are simple normal crossing. For any 1 < ¢ < n — 1,
and two c-tuples of positive integers € = (€1,...,€.),0 = (d1,...,0.), we construct the family

X as follows: For any p = 1,...,¢, set I? := {I = (ig,...,in)||I| = 0p} and aP := (a’; €

HO (X7 (’)X(epA))) =5, For the positive integers r and k fixed later according to our needs, we
=9

define the bihomogenous section of Ox ((ep + (r+ k)ép)A> over X by
Fr@a’)(z) sz Y af(z)r(x) 7,
[11=0bp

where aP varies in the parameter space S, := @ H° (X, OX(epA)).
We then consider the family X C 57 x ... x S, x X of complete intersection varieties in X
defined by those sections:

X={(al,...,a%2) €5 x...x S, x X|F'(al)(z) = ... = F°(a%)(z) = 0} (3.1)

We know that there is a non-empty Zariski open set S C S; X ... X S. parametrizing smooth
varieties and we will work on X := qfl(S) NA, where ¢; is the natural projection from Sy X ... x



Se X X to S1 X ... x S.. Set X to be the k-th Demailly-Semple tower of the relative tangent
bundle (X, Ty,s), and X} the blowing-up of the asmptotic Wronskian ideal sheaf (&%), and

we would like to construct a regular morphism from Xj (after shrinking a bit) to a suitable
generically finite-to-one family and to “pull-back” the positivity from the parameter space of
this family. First we begin with a technique lemma:

Lemma 3.1. Let Q be an open subset of X on which A can be trivialized. Take I = (ig,...,iN) €
P with any 1 <p <k, for any 0 < j <k, there exists a C-linear map

dYy - HO(X, A%) = O(p; 1(9))

such that for any a € H°(X, A°), dg] (ar(r+RTy = T{zld[[j,]g(a)-

Therefore, for any Io,...,I; € IP and any ay,,...,ar, € HO(X, A°) one can define

0 0
d[lo],ﬂ(afo) d[I,j,Q(aIk)
Wat,,...1.(a1y, - - - s ag,,) = : : € 0(p,'(Q)), (3.2)
k k
didolar) -+ dio(ar,)
and by Lemma 3.1 we obtain
WQ(G[OT(TJFIC)IO, .. ,aIkT(Hkﬂk) = T{Z(I°+"'+I’“)WQ,107,..,[,€(afo, cesar).

From Proposition 2.4 we deduce the following

Lemma 3.2. For any Iy,..., I € P and any agy,...,as, € HO(X, A9), the locally defined
functions Wo 1,1, (a1, ... ,ar,) can be glued together into a global section

WIO,---,Ik (CL[O, . ,a[k) S HO(X, Ek7k/T;( (%) A(k+1)(e+k6p))

such that
W(aIOT(TJrk)IO, .. ,aIkT(Hk)Ik) = TT(I°+“'+I’“)W[07MJ,€(alo, Soo,arp).
We denote by
k(k+1 .
Wio,..., Iy, (afoa s ’alk) € HO (Xk’ OXk(%) ® WS,kA(kJrl)( +k6)) (3-3)
the inverse image of Wy, 1 (ay,,...,ar,) under the isomorphism (2.2).

Now for every 1 < p < ¢ we construct a rational map given by the Wronskians
P8, x X --» P(AFHICT)
(a7 w) = ([wfm---Jk (afm s 7afk)(w)])107---71k€]1p7

Ntop)

where C¥ := @7cpC ~ (C( °p



Claim: ®? factors through the Pliicker embedding

Pluc : Griy1(CY) < P(AFFICY).

Proof: for any 1 < p < ¢ and any wg € X, by Theorem 2.1, one can find an open neighborhood
Uy, of wo with Uy, C 7 ,i(U), where Ay can be trivialized; and a family of germs of curves
(fw)wev,,, depending holomorphically on w with ( fuw)p)(0) = w. Then for any a = (ar)rerr € Sp
and any 0 < j < k, we denote by

Ay (a,w) = (A7 (@) (Ll fi o S)) gy € C
and the local rational map
Db Sy X Uy, -+ Gri41 (CY)
(a,w) Spam(al[.o,}wO (a,w),... ,d[.]f]wo (a,w)).

We will show that this definition does not depend on the choice of wg. Indeed, by Definition
3.2 one has ®” = Pluc o ®%,,, which shows that ®? factor through Pluc and we still denote by
PP : S, x Xy --+ Grp11(C") by abuse of notation. [

Recall that X 1 is denoted to be the blow-up v}, : Xk — X}, of the asymptotic k-th Wronskian
ideal sheaf .. (X}), such that v 'twe(Xy) = Oy, (—F) for some effective cartier divisor F' on

X},. Then under certain conditions v, partially resolves the indeterminacy of ®P. To clarify this,
we need to introduce some notations. For any x € X, we set

Ny :=#{j €{0,... ,N}|7j(x) # 0} and I}, := {I € I", |71 (x) # 0}.
Since the 7;’s are in general position, and N > n, we have N, > 1 for all x € X. Then we define
Y:={r e X|N, =1} and X°:= X\ ¥.

Observe that if N > n, then X° = X, and if NV = n, then X is a finite set of points. We denote
by X; := (moxovg) 1 (X°). We have the following crucial lemma of resolution of indeterminacy
due to Brotbek (ref. Proposition 3.8 in [Brol6]):

Lemma 3.3. Suppose that
N>n>2 k>1, € >mu(Xy, A) =k andd, >n(k+1). (%)

Then there exists a non-empty Zariski open subset Ugerp, C Sp such that the rational map
PP ’Udef,px X, —* GrkH(Cﬂp) can be resolved into a regular morphism:

Udef,p X X;;
]lxukl or

P JiE2
Udef,p X X]? - = Grk-{-l((c )

In Lemma 3.3, we use the result in Theorem 2.5 that me(Xg, A) = k.



3.2 MAPPING TO THE UNIVERSAL GRASSMANNIAN

Set Udef = Udet,1 X ... Udet,c[1S. We suppose from now on that N >n > 2, ¢, > k > 1 and
that 6, > n(k + 1) for any 1 < p < c. Then by Lemma 3.3 we get a regular morphism
U Upes X Xp = Gpp1(61) X ... X Gpgq(8,) x PN
(a,6) — (@'(a'),..., 8" 8), [ (€)]).
Here [77(§)] := [7§ (mok 0 ve(E)) ... s TR (mo,e 0 vk(€))], and we write Gyy1(0p) := Gry41(C)
and G := Gg11(01) X ... Ggy1(0.) for brevity.
From now on we always assume that (k+ 1)c > N. Set % be the universal Grassmannian

defined by
W ={(A1,...,A.[2]) e GxPNYP e Ay,...,A.: P([z]) =0}

If we denote by py : # — G the first projection map, p; is a generically finite-to-one (may not
surjective) morphism. Set G*° to be the set of points in G := Gy11(01) X ... Ggy1(d.) such that
the fiber of p; :  — G is not a finite set.
We need to cover X by a natural stratification induced by the vanishing of the 7;’s. For any

J C{0,...,N} and 1 < p < ¢ we define

X; ={reX|rx)=0sjeJ},

15 = {I €?|Supp(I) C {0,...,N}\ J},

Py ={[] ePN|z; =0if j € J},
Xk%] = (770,14: OVk)il(XJ) and X;J = Xk,JﬂX;;. Set %7 .= %N (G X PJ) C G x ]P’N, and G;o
also the set of points in G such that the fiber of the first projection map py : %5 — G is not a

finite set.
Now set

USet.p = Udet,p N {aP € Sp\w eIP, {FP(aP)(z) =0} NY =0} and Uy := USepq X - X Ugeg o

Since X is a finite set, Uj; p i a non-empty Zariski open subset of Uger . Consider the universal
family of codimension ¢ smooth varieties 5 := (U, x X) N X, then

AN {US, x S) = 0. (3.4)

We denote by %’jfel the k-th Demailly-Semple tower of the relative directed variety (.72, T /Uéfef)'

If ,%%Crel is obtained by the blow-ups of the asymptotic Wronskian ideal sheaf moo(,%’jcrel), then
by the arguments in Section 2.4 we have

(]1 % Vk)—l(%rel) _ jﬁcrel.

Moreover for any a € US,, if we denote by Ha j := s4°'N ({a} x X;) and Hy j, := ,%%Crelﬂ ({a} x
Xk), then vy |4 L ]-Ala,/zC — H, 1, is indeed the blow-ups of the Wronskian ideal sheaf 1w, (Ha ).
By (3.4), ¥| ra is a regular morphsim. Set

Tk

G = A5 0 (Uger % Xia),

and we have the following
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Theorem 3.1. For any J C {0,...,N}, when restricted to %’jf’f} the morphism W factors
through % :
U| e+ S Py.
’jﬁg,} %7J—>@JCGX J

Proof. Since when restricted to UJ.; X Xg 7> ¥ factors through G x IP;. Thus it suffices to prove
that W| ;.. factors through #. By Lemma 3.3, it suffices to prove that the rational map
Yk

U Ups X X, -—» G x PV (3.5)
(a,w) (q)l(al, w), ..., 0¢a% w), [Tr(w)]) (3.6)

factor through % when restricted to 5!, Take any (a,wp) € S outside the indeterminacy
of ¥, and by Lemma 2.1 one can find a germ of curve f : (C,0) — (X,:c = 7T07k(w0)) with
fik(0) = wo, and an open subset U C X containing = such that Al can be trivialized. Recall
that H,j := 47 N ({a} x Xj), and it is the k-th Demailly-Semple tower of H,. Therefore, we

have (f£(0), £/(0),..., f®)(0)) € JyHa.
Since H, is defined by the equations

Fl(al)(2) == 3| 5, ap(z)7 ()R =0,

Fe(a%)(z) := 32|11z, af(@)m(2) R =0,

then dg}Fp(ap)(f',f”,...,f(k)) =0forany 1 < p<cand 0 < j < k. By Lemma 3.1 we
have dg}FP(ap) =7l >i1l=s, d[I{]U(aI;), and by the definition for W(a,w) we conclude that

U(a,wp) € #. U
To proceed further, we need an important technique lemma in [Brol6] as follows

Lemma 3.4. Suppose that € > moo(Xg, A) = k. For any p = 1,...,¢ and any Wy € Xy,
there exists an open neighborhood Uy, C Xy of Wo satisfying the following. For any I € TP and
0 <1 < k there exists a linear map

gl HO(X, A) = O(Ug,)

such that for any (aP, ) € S, x Uy, , writting g l(aP, ) = (97 ;(a})(w)) € C" one has

Ielp

(1) The Pliicker coordinates of ép(ap,w) are all vanishing if and only if

dim Span(gg ,(a?,1),...,g; ,(a%,0)) <k + 1.

(2) If dim Span(gﬁ.(ap,w), . ,gi’.(ap,w)) =k +1, then

(i)p(ap’ ’lb) = Span(gg,.(apa ’lb), s ’gi,.(apa ’(b)) € Grk-f—l((c]lp)‘
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(3) For any fired wy, and every 1 < p < ¢, we define the linear map
Pyt Sp = (CT)M
a? = (gl(a”,10), ..., g; (a7 10)).

Set x := mo . o vg(ig) and ph : (C¥)FHL — (CE)k+1 the natural projection map, then one
has

rankph o G = (k + 1)#IL.
Here It .= {I € I?|7!(z) # 0}.
Now we are ready to prove the following crucial lemma:

Lemma 3.5. (Avoiding exceptional locus) For any J C {0,...,N}, suppose that c(k + 1) >
N>n>2.1If6,> (n—1)(k+1)+1 for any p=1,...,c, then there exists a non-empty Zariski
open subset Uy C Ugy such that

“HGT)N (U x X ) = 0.
Here we define the map

b Use x Xy — Giy1(01) % - XGk+1(5c)
(a,&) = (2(@@%¢)....,9%%9)),

which is the composition m o W. Here 11 : G x PV — G is the first projection.

Proof. Fix any wg € X,‘;, we set x := 7o, 0 Vg (wWp). Then there exists a unique J C {0,..., N}
such that z € X;, and we define the following analogues of % parametrized by affine spaces

g::{(aloa-"aalka"'aaco Oéck, EH(CHP k+1X]P)J‘\V/1<p<CO<]<kO[pZ([ ]):0},
p=1

By i= {10y -y QL e oy Qe -y Ay [2 eH@I VX PsIVL < p < e,0 < j < k,ap([2]) = 0},
p=1

here we use the identification C ~ H°(PY, Opn (5,)) and Cly ~ HO (Ps, Op,(6p)). By analogy
with G5°, we denote by ij (resp V55) the set of points in [} _ L(CFYFHL (resp. H;Zl(Cﬂg)k“)

at which the fiber in % (resp. z, ;) 1s positive dimensional.
By Lemma 3.4 for every 1 < p < ¢ there exists the linear map

P+ Sy = (C)4!

such that for any a € U3, we have

12



here [§}; (aP)] := Span(gg ,(a?,10), .- -, gj, ,(a?,100)) € Griy1(C"). Then we have

THGP) N (Uges x {tbo}) = @wo(vl 7) N Uget = (pz © Purg) ™~ 1(V20,3) N Ugets

where we denote by

Sbufo 3S H (C]Ip k+1
p:
a:(al,. (gb ,...,(,Z)fﬁo(ac)),
and
(& (&
P
pr s JL€) = [T @)
p=1 p=1
is the natural projection map. By the above notations we have ]Ip =15 for any p = 1,...,c.

Since the linear map p, o ¢y, is diagonal by blocks, by Lemma 3. 4 we have

C

rankp, o Gy, = Z rankpf o @ = Z(kj + 1)#IP.

p=1 p=1
Therefore
dim(®71(GF) N (Udes x {w0})) < dim((pz 0 Pa) ' (V539))
< dim(V57) + dim ker(pz o Pug,)
< dim(V57) +dim(S1 x ... x S¢) — rank(pz o P, )
= dim(Vyy) + dim(Sy x ... x So) = > _(k+ 1#I.
p=1
Since
dim(V5) = dim(JJ(C™)*1) — codim(V5s, JT(C™)F+1)
p=1 p=1
= Y (k+ D#I — codim(Vy5, [[ (€)1
p=1 p=1
= D (k+ DFE — codim(V55, J](CH)F),
p=1 p=1

then we have

dlm( YGP)NUgy x {tp}) < dim(Sy x ... x S,) — codim(V57, H(Cﬂg)kJrl),
p=1
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which yields

(&
dim(®71(GF) NUgy x X7 ;) < dim(S1 x ... x S.) — codim(VsS, [T(C)H!) + dim X,
p=1
By a result due to Olivier Benoist (ref. Corollary 3.2 in [BD15]), we have
C
P
codim(Vs5, [T(C™)**") = min §; + 1.

1<
p=1 =I=¢

Therefore, if
dim Xy, < i d; + 1, (&)

@*I(GSO) doesn’t dominate Uj,; via the projection Ug, X X; 7 = Uje, and thus we can find a
non-empty Zariski open subset Uy C Ug,; such that

&G N (Uy x X3 ;) = 0.

Thus if 1r<r1121 d; > (n—1)(k+1) + 1, Condition & is satisfied. O
<j<e

3.3 PULL-BACK OF THE POSITIVITY

For any c-tuple of positive integers e = (eq,...,e.), we denote by

E(e) = OGk+1(51)(61) X...X OGk+1(5c)(eC)’

which is a very ample line bundle on G. Since p;y : %7 — G is a generically finite-to-one
morphism, by the Nakamaye Theorem (ref. Theorem 10.3.5 in [Laz04]), the augmented base
locus for p%L(e) coincides with its Null locus

Ey = {y € #|dimy (5} (bs(»)) ) > O},
which is contained in p}l(G?]o). Thus if e; > 0 for all 1 <7 < ¢, we have
Ej = Bs(pjL(e) ® ¢;0p,(-1)) € p; (GF), (3.7)
where g7 : #; — P is the second projection map. In [Denl6], we can get an effective estimate

for e such that the inclusive relation in (3.7) holds. Our theorem is the following:

c_, ghtt
Theorem 3.2. With the notations as above, if we set b; = %, then for any J C
{0,..., N} we have

Bs(pL(b) ® ¢50p, (~1)) C p; (GF). (3.8)
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By (3.3) we have

U*(L(b) K Opn (—1)) = v} (Ox, Zbk ® A1) Oy ZbF (3.9)
=1

Here we set q(€,0,r) :=r —Y ;_, bi(k+1)(¢; + kd;). Observe that if we take

Zc: bz(/{? + 1)(61' + /{?5@) <r, (‘)

i=1

then the above bundle becomes an invariant k-jet differential with a negative twist, which enable
us to apply Fundamental Vanishing Theorem to rule all the entire curves. More precisely, we
have the following theorem:

Theorem 3.3. On an n-dimensional smooth projective variety X, equipped with a very ample
line bundle A. Let c be any integer satisfying 1 < c <n—1. If we take ko = [%] —1 and N = n,
then for any degrees (dy,...,d.) € (N)¢ satisfying

F€(e,5h)> I > D bilko + 1)(e; + koby), 5.t
=1
dp:ép(r"i_ko)"i_ep (p:17"'7c)7

36(6p260::n(k0+1)) ’

the complete intersection H := Hy N ... H. of general hypersurfaces Hy € |A%|,... H. € |A%|
has almost k-jet ampleness.

Proof. We will prove the theorem in several steps. First observe that, the choice for (€, d,r, ¢, N, k)
in the Theorem fufills the requirements in Condition % # and &, and thus we are free to apply
all the theorems above. Now we want to prove the following
Claim: Set Uyer := Ny Uy. For any a € U, the line bundle

C C
v (OXk (Z bik') ® ﬂ_akA*Q(e,&T)) ® OXk(_ Z biF)‘f{a,k
i=1 i=1

is nef on H, . Recall that we denote by q(e,d,7) == r — S5 bi(ko + 1)(€; + kodi) > 0

Proof: In order to prove nefness, it suffices to show that for any irreducible curve, its intersection
with the line bundle is non-negative. For any fixed a € U ., and any irreducible curve C' C H, aks
one can find the unique J C {0,..., N} such that XkJ N C =: C° is a non-empty Zariski open
subset of C', and thus C° C ,%;ic J- Since ¥ factors through % when restricted to %%C 7, Ulce also

factors through %7, and by the properness of #;, ¥|x factors through % as well. By Lemma
3.5 and the definition of U,.f, we have

U (C)NGP = 0.
From Theorem 3.2 we know that

Bs(p*JE(b) ® qf}OPJ(—l)) - pEI(GSO),
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which yields
U(C) - (p5L(b) ® q50p,(~1)) = 0.

From the relation (3.9) we obtain that
C- (vl OXkZbk: @ MR ATUEON) © O ZbF)

which proves the claim. |
By Proposition 6.16 in [Dem95], we can find an ample line bundle on X* of the form

A= V]: (Oxk (al, R ,ak) & 7'('67]?14@0) & OXk(_F)

for some ay,...,ar € N. Therefore, for any m > ag, the line bundle
V,:(Oxk(al,.. , Qf— 1,ak—|—Zmbkz ® mH AT mq(e‘”) ®(9 Zmb +1)F
i=1
is ample for any a € Upe, and thus there exists ey, ..., e;,q € N such that

vOx (e, ... e) ® Og (—=aF)lg |

is ample. By the openness property of ampleness, one has a non-empty Zariski open subset
Uample C [174 |A%| such that for any (Hi,...,H,) € Uample, their intersection H := Hy N ... N
H. is a reduced smooth variety of codimension ¢ in X, and the restriction of the line bundle
v Ox,(e1, ... ex) ® Og, (—qF)|g, is ample (recall that Hj, is denoted to be the blow-up of Hj,

smg

along 1w (Hy)). Since the exceptional locus of the blow-up v : Xk — X, is contained in X
then for the complete intersection H := HyN... H, of general hypersurfaces Hy € [A%],. H 6
| A%|, the augmented base locus of the line bundle

On,(e1,...,ex) = Ox,(e1,...,ex)|u,

is contained in XZing NHj, and we conclude that Hy has almost k-jet ampleness by the fact that
sing o sing
X, "NHy=H,_ ™. O

Now we make some effective estimates based on Theorem 3.3. If we take dy := g (c(ko +
1) (ko + 60 + kodo — 1)d; clko+1)-1 ko + 1) + ko, then any d > dy has a decomposition

d:(t+k30)60+6

with kg < e < dg+ko and t > c(ko+ 1) (ko + 0o + kodo — 1)5c(k0+1) + 1, satisfying the conditions
in Theorem 3.3. Therefore, the complete intersection Hy N ... N H. of general hypersurfaces
Hy,...,H. € |A% with d > dy has almost kg-jet ampleness. By Lemma 7.6 in [Dem95], if a
complex manifold Y has k-jet ampleness, then it will also has I-jet ampleness for any [ > k. A
computation gives a rough estimate dy < 2¢([2])"F2n"¢ and this concludes the proof of our
Main Theorem 1.
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