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Abstract Model-Driven Engineering (MDE) recognized
software models as first class objects with their own rela-
tionships and operations, up to constitute full structured
model spaces. We focus on inclusion capacities through
the concepts of submodel and submetamodel which con-
tribute a lot to the structuring effort. Submodels and

submetamodels underly many MDE practices which re-
quire their precise characterization for plain control. A
typical application is model management as offered by
model repositories. On the basis of results on submodel
inclusion we stated in a preceding paper, we concentrate
on the special form of submodels which are submeta-
models and their specific role in model space structur-
ing. Pointing out that relating submodels and submeta-
models is two way, their respective inclusion hierarchies
will be systematically characterized and symmetricaly
compared under the logical relationships of metamodel
membership and model well-formedness. As a major re-
sult, it will be shown that submodel well-formedness
w.r.t submetamodels closely relates to submodel invari-
ance (a property which guarantees transitive structure
preservation) applied at both levels. The uniform for-
malization offers algebraic grounding to better compre-
hension and control of model spaces which underly MDE
activities. At a much more practical level, reusable tech-
nology which takes advantage of established results will
be offered.

Key words Submodel – Submetamodel – Model Space
– Set-Theoretic Formalization – Model Repository

1 Introduction

Model-Driven Engineering (MDE) recognized software
models as first class objects with their own relationships
and operations, up to constitute full structured model
spaces [30]. As always when it comes to structuring is-
sues, inclusion capacities are central. Applied to software
models, this calls for precisely studying the concept of
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submodel and its properties. A major property is transi-
tivity to offer locality and modularity qualities to model
spaces and their processing, and finally efficiency.

Submodels are omnipresent in MDE practices. Com-
position methodologies [15, 17] make use of submodels
as components in system design. View and aspect ori-
ented modeling [5,27,37,44,45,58] offer ways to capture
multiple dimensions of systems through the isolation of
submodel concerns. Template and pattern guided mod-
eling approaches [14, 31, 32, 56] aim at defining reusable
model pieces through parameterization. More generally,
submodels are at the heart of model management as of-
fered by model libraries and model repositories.

Model libraries [6,8,17,44] have the ambition to cap-
italize “off she shelf” modeling components, possibly
coming from preceding methodologies, and then their
reuse as constitutive parts of projects. Model reposito-
ries [12, 20, 42, 43] have the additional tasks to support
much more practical engineering activities such as in-
cremental model construction (or editing) [2, 16], ver-
sioning [54] and collaborative design [51]. They must
deal with not only full models but also with unspeci-
fied ones, that is to say models which are not necessary
well formed w.r.t to their metamodel. Typical examples
are models with dangling edges (see samples in Figure
4) [40, 54]. Such “degenerated” models may come from
model parts due to preceding methodologies and activ-
ities, from primitive operations that they currently use
such as model differencing and intersection or more sim-
ply from the need of registering any intermediate and
incomplete modeling effort.

Therefore, in most situations, model spaces are made
up of artifacts ranging from full entire models to unspeci-
fied pieces. This requires the homogeneous formalization
of all these model forms to enable their comparison for
consistent structuring of spaces and controlling related
processing. For this, we have stated in [12] a formalism
for their uniform definition and then their characteriza-
tion through inclusion properties. As a major result, the
concept of invariant submodel which guarantees transi-
tive model structure preservation was isolated. Applied
to model repositories, as a typical motivating applica-
tion1, this facilitates population and classification tasks
and then rich content based retrieval with the organiza-
tion of results through inclusion graph synthesis.

In the foregoing, model space structuring exclusively
relies on the internal inclusion properties between their
member models. In other words, when referring to (meta)
model levels of MDE, obtained structuring qualities are
only due to comparing models by themselves at their
only level. They make no or little reference to the meta
level otherwise than they come from a common meta-
model of origin which determines the model space to
be structured and it is the desired outcome. Here we
concentrate on the special form of submodels which are

1
http://www.cristal.univ-lille.fr/caramel/submodel

submetamodels and their specific role to determine and
structure model spaces. The more metamodels are deter-
minant in MDE to define model spaces, the more sub-
metamodels are prominent to structure them.

Basically, submetamodels do facilitate (meta) model
comprehension through metamodel partitioning such as
the division of the UML standard specification itself in
specialized forms of diagrams [1]. In the same vein, tem-
plate and pattern guided modeling methodologies ap-
plied at the meta level [14,21] aim at contributing to this
structuring effort through the possibility of abstracting
recurring submetamodels. Metamodel guided view or as-
pect oriented modeling approaches, and more generally
model projection techniques [4,11,47], make use of sub-
metamodels in order to specify their concerns for cir-
cumscribing specific parts of models they are interested
in.

In the field of model repositories, kept as a typical
motivating situation, submetamodels are able to enrich
model management operations by offering guiding fa-
cilities. First of all, as full submodels, they must be
treated equally in population, classification and retrieval
facilities applied at their proper level. Secondly, due to
their specific role for determining and structuring model
spaces, they offer capacities to organize collections of
registered (sub) models and facilitate their retrieval.

From this, the problem of also considering submeta-
models for model space structuring appears to be twofold:

– Following the very idea of MDE that metamodels are
models, how far (sub) metamodels can be defined
the same way (sub) models are, to take benefit of
submodel structuring properties at their own level?

– Assuming the preceding, how far submetamodel struc-
turing at the meta level can be related to submodel
structuring at the model level and reciprocally, due to
model level interdependency? This particularly refers
to the question of (sub) model well-formedness w.r.t
pointed (sub) metamodels.

The formalism stated in [12] offers keys to address
these issues and it is the subject of this paper. In Sec-
tion 2, after a reminder on the formalism and its major
properties which will be exploited, the problem will be
formally motivated. In Section 3 it will be shown how
(sub) metamodels are defined the same way (sub) models
are and how (sub) models are related to (sub) metamod-
els. In particular the original concept of “proper meta-
model” of a model will be introduced to bridge submodel
and submetamodel inclusion properties.

Then, pointing out that the problem of relating sub-
models and submetamodels is two-way, it will be sys-
tematically and symmetrically examined under the two
following logical relationships: (sub) metamodel mem-
bership of (sub) models in Section 4 and (sub) model
well-formedness w.r.t (sub) metamodels in Section 5. As
a motivation, two major symmetrical results will be:
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– Property 9 : well formed models w.r.t a metamodel
M are also well formed w.r.t any enclosing meta-
model whose M is an invariant submetamodel and
transitively, thanks to invariance submodel transitiv-
ity as stated [12] here applied at the meta level.

– Property 15 : submodel invariance preserves well-
formedness.

Consequences on model space structuring and processing
effectiveness thanks to the transitivity of these proper-
ties will be shown.

After that, in Section 6, application to model repos-
itories and reusable technology within the Eclipse mod-
eling environment which make use of the results will be
presented. Quantified time benefits on a repository of
about 3000 models are shown. Finally, in Section 7, re-
lated works and MDE issues which may profit from the
stated results will be examined before concluding on per-
spectives.

2 From submodels to submetamodels

In [12] models are defined as sets of model elements plus
the dependency constraints that they assert over these
elements, reflecting their structure. Asserted constraints
are represented by a partial ordering relationship local
to the model. The formalism reveals powerful enough to
define models, submodels or any model fragment, being
well formed or not, in order to compare them through
model inclusion, as required by many MDE practices
synthesized in the paper.

It was noted that handling all these modeling ar-
tifacts in an homogenous manner makes difficult their
representation using graphs. This is mainly due to the
problem of representing malformed models which do not
respect their metamodeling constraints, such as cardinal-
ities or containment hierarchy ones, as previously iden-
tified in [40, 54]. For example, models with “dangling
edges” [51] (exemplified in Figure 4) are problematic.
They may come from model differencing (an operation
currently used in model versioning [2, 54], collaborative
design [51] and more generally model management [43])
or more simply from any intermediate and incomplete
design effort.

Thanks to the formalism, nested concepts of closed,
covariant and invariant submodels were isolated and
precisely characterized. They allow to gradually obtain
structure preserving submodel transitivity. Transitivity
is important because it guarantees qualities such as lo-
cality and modularity of model spaces and their process-
ing by MDE operations which manipulate submodels.
Then, following the very idea of MDE that metamodels,
meta-metamodels and so on are models, concepts may
apply at the meta level as stated in Section 3.1 in order
to take benefit of their structuring properties. Before
that, let us recall the formalism and its main properties
which will be exploited.

2.1 From subsets of model elements to submodels: a
reminder

Let ModelElements the set of all model elements of a
modeling space, a model is defined as followed:

Definition Model (Def. 1 of [12])
A model m is a couple (m̃,vm) such as:

– m̃ ⊆ModelElements is the set of model elements of
m

– vm: m̃ × m̃ is a partial ordering relationship, local
to m̃, which translates the dependency constraints
asserted by m on its model elements. The standard
notation of graph of a relation, here applied to vm,
defined as Gr(vm) = {(x, y) ∈ m̃×m̃ | x vm y} may
be equivalently used.

Thanks to MDE technology, a modeling space can
easily be determined by its metamodel which states the
set of model elements (ModelElements) and possible
dependency constraints which can apply upon these el-
ements.

Example
Take metamodel of Figure 1 inspired by the one used
in [12]2. This metamodel stands for models constituted
of classes put in packages. Classes may have attributes
and operations (possibly with parameters) and be linked
through binary associations. ModelElements contains
all instances of the metaconstructs Package, Class, At-
tribute, Operation, Parameter, Association.
For any model m = (m̃,vm) with m̃ ⊆ModelElements,
possible dependency constraints are:3

– A class C is put in a package P : C vm P
– A class C owns an attribute att or an operation op:

att vm C, op vm C
– An operation op has a parameter p: p vm op
– An association asso relates to an ending class C:

asso vm C

Figure 2 shows a model hhs issued from this meta-
model for modeling “home heating systems”. Follow-
ing the formalism, its formal modeling is (graphically
schematized in Figure 3):

hhs = (h̃hs,vhhs):

– h̃hs ={HHS, Boiler, temperature, on, off, pipes, Ra-
diator, position, up, down, link, aBoiler, controls,
Regulator, expectedT, regulate, sensitives, Sensor, am-
bientT, connect, aRegulator, notify}

2 For sake of continuity, examples of the present paper will
be directly inspired from those of [12].

3 vm being an order, it is reflective so that we systemati-
cally have: ∀x ∈ m̃, x vm x. For sake of simplicity we will not
list these reflective dependencies. In graph representation this
corresponds to “Hasse Diagram” simplification which ignores
them but also systematic transitive links. It will be used in
figures.
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– vhhs:

– Boiler vhhs HHS
– Radiator vhhs HHS
– Regulator vhhs HHS
– Sensor vhhs HHS
– temperature vhhs Boiler
– on vhhs Boiler
– off vhhs Boiler
– pipes vhhs Boiler
– pipes vhhs Radiator
– position vhhs Radiator
– up vhhs Radiator
– down vhhs Radiator
– aBoiler vhhs link
– link vhhs Radiator
– controls vhhs Radiator
– controls vhhs Regulator
– expectedT vhhs Regulator
– regulate vhhs Regulator
– sensitives vhhs Regulator
– sensitives vhhs Sensor
– ambientT vhhs Sensor
– connect vhhs Sensor
– aRegulator vhhs connect
– notify vhhs Sensor

Package

Class

Attribute

Operation

Parameter

*

*

*

*

owningPackage 1

owningClass
1

1

owningOp 1

Association

first second

Fig. 1 Class metamodel

Then, for a model, say m, to be a submodel of an-
other one, say m′, it must at least satisfy the following
inclusion conditions on its constituents:

– model elements of m are in m′: m̃ ⊆ m̃′

– constraints asserted by m on its model elements are
also asserted by m′: ∀x, y ∈ m̃, x vm y ⇒ x vm′ y,
or equivalently: Gr(vm) ⊆ Gr(vm′).

This concept of submodel is transitive thanks to primary
set inclusion transitivity applied to both sets of model el-
ements and constraints. But it does not guaranty model
structure preservation, indeed:

1. Elements of a model whose other ones depend due to
its constraints may not be elements of the submodel.

HHS

on()
off()

temperature
Boiler

up()
down()
link(aBoiler)

position
Radiator

*

regulate()
expectedT

Regulator

pipes

*

controls

connect(aRegulator)
notify()

ambientT
Sensor

*sensitives

hhs

Fig. 2 Model hhs of home heating systems

HHS

Boiler

temperature on off

Radiator

position up down link

aBoiler

pipes

Regulator

expectedT regulate

controls

Sensor

ambientT connect notify

aRegulator

sensitives

⊑hhs

Fig. 3 Representation of hhs (Figure 2) in the formalism

2. Even if these elements are present in the submodel,
related structuring constraints asserted by the model
may be lacking in the submodel.

Examples
See Figure 4. Model m1 is:

– m̃1 = {HHS,Boiler, pipes}
– Gr(vm1) = {(Boiler,HHS),

(pipes,Boiler)}.

m1 is a submodel of hhs:

– m̃1 ⊆ h̃hs
– Gr(vm1) ⊆ Gr(vhhs)

Though, m1 does not preserve the model structure of the
surrounding model hhs if only because it does not con-
tain model element Radiator whose its model element
pipes, shared with this model, depends (Point 1).

Model m2 is:
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– m̃2 = {HHS,Boiler, pipes,Radiator}
– Gr(vm2) = {(Boiler,HHS), (Radiator,HHS),

(pipes,Boiler)}.
Here, model element Radiator is present. But this model
does not assert the dependency constraint between pipes
and Radiator, as specified by hhs (Point 2). No more
than m1, included model m2 of hhs preserves the mod-
eling structure of this surrounding model. Note that, fol-
lowing simple set inclusion, m1 is transitively a submodel
of hhs through m2, though it is not structure preserving.

HHS

 pipes 
 

Boiler

HHS

 pipes 
 

Boiler

 
 
Radiator

*

*

1

1

m1

m2

Fig. 4 Model parts of model hhs of Figure 2

To prevent Point 1, the concept of closed subset of
model elements of a model was identified:

Definition Closed subset of a model (Def. 2 of [12])
Let m = (m̃,vm) a model, s ⊆ModelElements a set of
model elements, we will say that s is closed in m iff:

– s ⊆ m̃
– s is transitively closed under the vm relationship:

closurevm(s) = s,
where closurevm

(s) = {x ∈ m̃ | ∃y ∈ s, y v∗m x},
that is the set of model elements of m whose ele-
ments of s transitively depend, with respect to the
dependency constraints asserted by m.

Application to models leads to the following defi-
nitions of closed submodel (only retaining their sets of
model elements dimension) and covariant submodel (also
considering the inclusion of their structuring constraints).

Definition Closed submodel (Def. 3 of [12])
A model m = (m̃,vm) is said to be a closed submodel

of a model m′ = (m̃′,vm′) iff the set of model elements
of m (m̃) is closed in m′.

Definition Covariant submodel (Def. 4 and 5 of [12])
A model m = (m̃,vm) is said to be a covariant submodel

of a model m′ = (m̃′,vm′) iff:

– m̃ is closed in m′

– dependency constraints asserted by m are covariant
with the m′ ones, that is: ∀x, y ∈ m̃, x vm y ⇒
x vm′ y, or equivalently: Gr(vm) ⊆ Gr(vm′).

By definition, covariant submodels are closed ones.
But these concepts are not transitive because closure is
not. Though, it was shown that they constitute a step to-
wards structure preserving submodel transitivity thanks
to the property of “bound closure” (Property 1 of [12]):
the closure in a surrounding model m of subsets of model
elements of a closed submodel of m are bound by this
submodel. Far beyond its theoretical interest, this prop-
erty guaranties locality of submodel operation when only
considering their sets of model elements.

Though it is not sufficient to ensure structure pre-
serving submodel transitivity because structuring con-
straints asserted by models on their elements must be
taken into account, as shown above. Then the identifi-
cation of the invariant submodel concept:

Definition Invariant submodel (Def. 6 and 7 of [12])
A model m = (m̃,vm) is an invariant submodel of a

model m′ = (m̃′,vm′) iff:

– m̃ is closed in m′

– dependency constraints asserted by m are invariant
with the m′ ones, that is:
∀x, y ∈ m̃, x vm y ⇔ x vm′ y
or equivalently: Gr(vm′)/m̃ = Gr(vm)
with Gr(vm′)/m̃ = {(x, y) ∈ m̃× m̃ | x vm′ y}.

Invariant submodels are covariant, so closed ones (Prop-
erty 2 of [12]). Though obvious at this stage of the char-
acterization, it is worth noting that this is required for
constraint invariance to have a chance to apply (see sec-
ond condition in the preceding definition). Indeed, all
elements of the surrounding model m′ in the definition
whose elements of the candidate submodel m depend un-
der vm′ must be present in this submodel for them to be
able to participate to its proper structuring constraints.
For example, model m1 of Figure 4 has no chance to be
invariant in hhs because model element Radiator, whose
association pipes depends under vhhs, is lacking.

But this time, as a major result, structure preserving
submodel transitivity is obtained:

Property Invariance transitivity (Prop. 3 of [12])

Let three models m = (m̃,vm),m′ = (m̃′,vm′) and

m′′ = (m̃′′,vm′′), m is an invariant submodel of m′ and
m′ is an invariant submodel of m′′ ⇒ m is an invariant
submodel of m′′.

Example
See Figure 5. Model m3 is:

– m̃3 = {HHS,Boiler, on, off, pipes,Radiator, link,
aBoiler}.
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– Gr(vm3) = {(Boiler,HHS), (on,Boiler),
(off,Boiler), (Radiator,HHS), (link,Radiator),
(aBoiler, link), (pipes,Boiler), (pipes,Radiator).

m3 is an invariant submodel of hhs. It is an example of
a submodel which concentrates on class operations and
is unaware of class attributes detailed implementation.
Model m4 is:

– m̃4 = {HHS,Boiler, pipes,Radiator}.
– Gr(vm4) = {(Boiler,HHS), (Radiator,HHS),

(pipes,Boiler), (pipes,Radiator).

m4 is an invariant submodel of m3, much more unaware
of any class constituents. We let you verify that m4 is
also an invariant submodel of hhs, firing the submodel
invariance transitivity property.

HHS

 
pipeson()

off()

 
Boiler

* link(aBoiler)
 
Radiator

1

HHS

 
pipes 

 
Boiler

*  
 
Radiator

1

m3

m4

Fig. 5 Transitively invariant submodels of “home heating
systems” model (Fig. 2)

2.2 From submodels to submetamodels: motivating the
issue

It is essential to insist that preceding concepts of closed,
covariant and invariant submodels with their properties
apply to models and model fragments being well formed
or not w.r.t their reference metamodel. It is the power
of the formalism to embrace all these kinds of model in
a uniform way to control concerned MDE practices, as
motivated.

To be convinced, take major concept of invariant
submodel and its transitivity property. Figure 5 showed
transitively invariant submodels of the surrounding model
hhs of Figure 2 which appear to be well formed. In com-
parison, reconsider submodels of Figure 4 which appear
to be not. Neither they are invariant in hhs4. From this

4 Remind that they were introduced as submodels which do
not preserve structure to motivate the problem. Backwardly,
due to the formalism, structure preserving submodels were
formulated as invariant ones.

comparison, it might be intuitively thought that the in-
variance of submodels of Figure 5 is directly due to their
well-formedness contrary to submodels of Figure 4. But
it is not so. See Figure 6 which takes up not well formed
model m1 and m2 of Figure 4:

– On the left, though m1 and m2 are not well formed,
we let you verify that m1 is an invariant submodel
of m2 which is itself invariant in new and not well
formed (even more not invariant) submodel m2′ of
hhs and, as expected, invariance transitivity applies:
m1 is invariant in m2′.

– Right side of the figure shows the mixing of well
formed and not well formed models under the sub-
model invariance property. Models m0 and m0′ ap-
pear to be well formed contrary to m2′ (as seen above).
m0 is invariant in m0′ which is itself invariant in m2′

and indeed m0 is invariant in m2′ which is not well
formed w.r.t to the originated metamodel MM of
Figure 1, neither it is an invariant submodel of hhs.

HHS

 pipes 
 

Boiler

HHS

 pipes 
 

Boiler

 
 
Radiator

*

*

1

1

HHS

 

pipes 
 

Boiler

 
 
Radiator

*1

HHS

 

 
 
Radiator

 
 
Regulator

controls

 
 
Regulator

controls

HHS

 
 
 
Radiator

invariant invariant

invariant

*

1

invariant invariant

m2

m0

m0'

m2'

m1

invariant

Fig. 6 Submodel invariance vs. well-formedness

As a conclusion, it is important to understand that
stated concepts and properties apply to models by them-
selves with no or little reference to the originated meta-
model other than the assumption that they belong to the
modeling space that it determines. Relaxing the link to
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the meta level allows to extend the range of (sub) mod-
els under study to well formed as well as not well formed
ones and state general model inclusion properties which
apply to them all.

Now is the problem: what about relative position of
submodels in relation to submetamodels? Thanks to the
preceding formalism, this problem can be studied un-
der the following major issues. As far as model well-
formedness is questioned, this calls for the formaliza-
tion of the relationship between models and their meta-
model. Following the very idea of MDE that metamod-
els are models, it must be possible to define them the
same way models were by the stated formalism. As a
consequence, they may inherit stated submodel proper-
ties at their own level. So that submetamodels may be
considered and then the additional issue of (sub) model
well-formedness w.r.t submetamodels. All this will be
studied in the following, leading to a uniform formal-
ization of submodels, submetamodels and their relation
through inclusion properties. To help in this task, the
original concept of proper metamodel of a model will be
isolated. It makes the bridge between submodel and sub-
metamodel properties.

3 A uniform definition of (sub) models and
(sub) metamodels with their relation

3.1 (sub) metamodels are (sub) models

The very idea of MDE is that metamodels, meta meta-
models and so on are models. Following this, the preced-
ing formalism applies to them all considering that:

1. ModelElements is here the set of all model elements
at any level so including model elements, metamodel
elements, meta-metamodel elements and so on...

2. Each model element is linked to another one, one
level above, which is the “metaconstruct” that it in-
stantiates.

Point 2 can be specified by a function named meta de-
fined as follows:

Definition 1
meta : ModelElements→ModelElements
x 7→ X such as X is the metaconstruct that x instanti-
ates or conversely x is an instance of X.

Function meta is total (no model element exists without
its metaconstruct) and single valued (a model element
has a single metaconstruct). Its iteration over sets of
model elements allows to consider:

– ∀s ⊆ ModelElements, meta(s) is the set of meta-
constructs that elements of s instantiate

– its specific application to models: let a model m =
(m̃,vm), meta(m̃) is the set of metaconstructs that
m instantiates.

Example
Figure 7 shows a metamodel MM for models consist-
ing of classes (with attributes and parameterized opera-
tions) belonging to packages, mainly the way OOP does.
Though simple, this metamodel will be sufficient to be
used as a running example throughout the presentation
of the formalism and theoretical results.

Package

Class

Attribute

Operation

Parameter

*

*

*

*

owningPackage 1

owningClass
1

1

owningOp 1

Fig. 7 Metamodel MM

Class

Attribute

Operation

Package

Parameter

⊑MM

Fig. 8 MM metaconstructs and their structural dependen-
cies

Modeling MM using the formalism is (Figure 8):

– M̃M =
{Attribute, Parameter,Operation,Class, Package}

– vMM : M̃M × M̃M

– Attribute vMM Class
– Parameter vMM Operation
– Operation vMM Class
– Class vMM Package

Figure 9 shows model samples issued from this meta-
model using UML graphical convention on the left and
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temperature
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temperature: Attribute 

 
temperature

Boiler

Boilertemperature: Attribute 

HHS

Package HHS

m0

m1

m2

m3

temperatureBoilerHHS

HHS

m4

HHS

 

Radiator

Radiator

m5

temperatureBoilerHHS

Radiator

temperature

Boiler temperature

 
temperature

Boiler

 
temperature

Boiler

temperatureBoiler

HHS

 

Radiator

 
temperature

Boiler

Fig. 9 Model samples

their “Hasse Graph” like representation on the right.
New elements of ModelElements to be considered are
temperature, Boiler, Radiator, HHS with the follow-
ing specification of function meta:

– meta(temperature) = Attribute
– meta(Boiler) = meta(Radiator) = Class
– meta(HHS) = Package.

Then details of the model samples:

– m0

– m̃0 = {temperature}
– vm0: ∅
– meta(m̃0) = {Attribute}

– m1

– m̃1 = {Boiler, temperature}
– vm1: ∅
– meta(m̃1) = {Class,Attribute}

– m2

– m̃2 = {Boiler, temperature}
– vm2

• temperature vm2 Boiler

– meta(m̃2) = {Class,Attribute}
– m3

– m̃3 = {HHS,Boiler, temperature}

– vm3

• temperature vm3 Boiler

– meta(m̃3) = {Package, Class,Attribute}
– m4

– m̃4 = {HHS,Boiler,Radiator, temperature}
– vm4

• temperature vm4 Boiler
• Radiator vm4 HHS

– meta(m̃4) = {Package, Class,Attribute}
– m5

– m̃5 = {HHS,Boiler,Radiator, temperature}
– vm5

• temperature vm5 Boiler
• Boiler vm5 HHS
• Radiator vm5 HHS

– meta(m̃5) = {Package, Class,Attribute}

As an intuitive introduction to the issues, observe
that:

– w.r.t function meta, sets of metaconstructs of model
elements of these samples are included in model ele-
ments of MM .

– dependency constraints asserted by these samples on
their model elements conform to the ones asserted by
metamodel MM on their metaconstructs. It will be
said that these models are ”member of” the meta-
model (Section 4).

– only m5 applies all the constraints asserted by MM
on its metaconstructs and, as so, appears to be well
formed w.r.t this metamodel. Other model samples
do not. For example m3 and m4 do not put Class
Boiler in a Package (possibly HHS) as specified by
metamodel MM . This concept of (sub) model well-
formedness w.r.t (sub) metamodels will be formally
stated and deeply studied in Section 5.

3.2 From metaconstructs of a model to the concept of
proper metamodel

The instantiation function meta applied to model el-
ements of a model, say m, allows to consider the set of
metaconstructs, meta(m̃), that it instantiates. On top
of this, also considering dependency constraints on these
metaconstructs that a model induces from its own ones
leads to the concept of “proper metamodel of a model”.
The concept is essential because it allows sufficient rep-
resentation of models at the meta level when necessary.
We will see all along the paper, that it is the basis of well
characterization of metamodel membership (Section 4)
and model well-formedness (Section 5), due to respec-
tive inclusion (meta) model properties. After defining
the concept, its application to submodels will be exam-
ined.
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Proper metamodel of a model
The proper metamodel of a model m is the specific meta-
model which consists of the metaconstructs of m’s model
elements plus the dependency constraints on these meta-
constructs induced by m’s ones at the meta level. More
formally:

Definition 2 The proper metamodel of a model m is the

metamodel m̂ = ( ˜̂m,vm̂) (also noted pmm(m)) with :

– ˜̂m = meta(m̃), the set of metaconstructs that m in-
stantiates

– vm̂: ˜̂m × ˜̂m, the dependency constraints on these
metaconstructs that m specially respects:
X,Y ∈ m̂,X vm̂ Y
⇔ ∃x, y ∈ m̃,meta(x) = X,meta(y) = Y, x vm y.

Example See Figure 10 which reminds model samples
of Figure 9 and shows their corresponding proper meta-
model on the right:

– m̂0 = ({Attribute}, ∅)
– m̂1 = ({Attribute, Class}, ∅)
– m̂2 = ({Attribute, Class}, {(Attribute, Class)})
– m̂3 = ({Attribute, Class, Package},
{(Attribute, Class)})

– m̂4 = m̂5 = ({Attribute, Class, Package},
{(Attribute, Class), (Class, Package)})

Observe that models m4 and m5 have the same proper
metamodel. But, contrary to m4, m5 appears to be well
formed w.r.t it and the originated metamodel MM of
Figure 8, as already mentioned at the end of the pre-
ceding section. This intuitively motivates the issue of
well-formedness checking through the concept of proper
metamodel which will be studied later (Section 5).

Proper metamodel of submodels
Now consider submodels of a model. What about the
inclusion properties of their respective proper metamod-
els? Following property ensures that proper metamodels
of submodels of a model are submetamodels of its proper
one (Figure 115).

Property 1
Let two models m and sm, sm is a submodel of m ⇒
the proper metamodel of sm (ŝm) is a submodel of the
proper metamodel of m (m̂).

Proof
ŝm is a submodel of m̂ iff:

1. ˜̂sm ⊆ ˜̂m
2. Gr(vŝm) ⊆ Gr(vm̂)

5 As far as possible, a figure will be associated to each
property in order to pictorially schematize its content. Bold
double arrows (which evoke implication) will be used to rep-
resent deduced relationships.

Proof of 1

s̃m ⊆ m̃⇒ meta(s̃m) ⊆ meta(m̃) with meta(s̃m) = ˜̂sm
and meta(m̃) = ˜̂m.

ut

Proof of 2

That is: ∀X,Y ∈ ˜̂sm, X vŝm Y ⇒ X vm̂ Y . Indeed:

– X,Y ∈ ˜̂sm = meta(s̃m), X vŝm Y ⇒
∃x, y ∈ s̃m,X = meta(x), Y = meta(y), x vsm y
by definition of ŝm being the proper metamodel of
sm

– x, y ∈ s̃m ⊆ m̃ and Gr(vsm) ⊆ Gr(vm) being given
(sm is a submodel of m) : x vsm y ⇒ x vm y

– so that x, y ∈ m̃ and x vm y ⇒ meta(x) = X vm̂

meta(y) = Y by definition of m̂ being the proper
metamodel of m.

ut

We let you verify the property on submodel samples
of Figure 10. Of course this inclusion property applies
to closed, covariant and invariant submodels. Though,
it is important to observe that no more than simple in-
clusion of proper metamodels of submodels (as estab-
lished by preceding Property 1) can be guaranteed what-
ever their possible richer inclusion qualities. Remind that
these qualities are nested ones and depend at least on
the submodel, say sm, to be closed in the model, say m.
But we do not have: sm closed in m ⇒ ŝm closed in m̂.
See Figure 10, a counterexample is m2 compared to m4
(Package is lacking):

– m2 is closed (more, it is invariant) in m4, indeed:

– m̃2 = {temperature,Boiler}
– Gr(vm4) = {(temperature,Boiler),

(Radiator,HHS)}
– closurevm4(m̃2) = {temperature,Boiler} = m̃2

– but m̂2 is not closed in m̂4:

–
˜̂
m2 = meta(m̃2) = {Attribute, Class}

– Gr(vm̂4) = {(Attribute, Class), (Class, Package)}

– closurevm̂4
(
˜̂
m2) = {Attribute, Class, Package}

6= ˜̂
m2.

Indeed, there is no reason that particular submodels
are closed in a model at the model level to conclude
that their respective proper metamodels are at the meta
level in the general case. As explained above, this applies
a fortiori to covariant and invariant submodels which are
basically closed ones. Take preceding examples:

– m̂0 to m̂2 are not closed in originated metamodel
MM (Package is lacking in all of three, Class is

also lacking in m̂0)

– m̂3 is closed but only covariant in MM (Class is not
depending on Package).

– m̂4 = m̂5 are invariant in MM .
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Fig. 10 Proper metamodels

 sm

pmm(m)

META LEVEL MODEL LEVEL

pmm(sm)

submetamodel

 m 

submodel

Fig. 11 Inclusion of proper metamodel of submodels (Prop-
erty 1).

4 Metamodel membership

Comparing submodels to submetamodels leads to the
following question: how far (sub) models can be con-
sidered to conform to (sub) metamodels? Following the
definition that a (meta) model is the association of a set
of model elements plus the structuring constraints that
it asserts over them, the question is twofold:

– how far the metaconstructs instantiated by a (sub)
model compare to (sub) metamodel ones?

– how far the structuring constraints asserted by a (sub)
model on its model elements respect (sub) metamodel
corresponding ones?

The concept of “metamodel membership” defined be-
low allows to identify (sub) models which necessarily
conform to (sub) metamodels. They have all the model
elements and assert all the constraints over these ele-
ments. Though, as a preamble of Section 5, we will see
that, as far as (sub) model well-formedness conformance
to (sub) metamodels is also searched, “metamodel mem-
bership” is necessary but not sufficient.

Before that, let us concentrate on this primary con-
cept of “metamodel membership” and state its own use-
ful properties relative to positioning qualities of (sub)
models in comparison to (sub) metamodels. After defin-
ing the concept, its formalization using the core concept
of “proper metamodel” will be established (Section 4.1).
Then its application to submetamodels (Section 4.2) and
submodels (Section 4.3) will be examined.
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4.1 Definition

Definition 3 Let two models M and m, we will say that
“m is a member model of M” or that “M is a metamodel
of m” iff

– meta(m̃) ⊆ M̃
– ∀x, y ∈ m̃, x vm y ⇒ meta(x) vM meta(y).

First item means that all model elements of m are
instances of the metaconstructs of metamodel M (which
could have more). Second item means that constraints
asserted by m on its model elements necessarily conform
to metamodeling constraints asserted by M on its meta-
constructs. In other words, m does not “invent” con-
straints on its model elements other than those asserted
by M6.

Example
Take model samples of Fig. 9 and the metamodel MM
of Fig. 8. All model samples are member of MM but
with the following specificities:

– all their model elements are instances of metacon-
structs of MM , but not all the metaconstructs of
MM are necessarily instantiated:

– none of the models instantiates Operation
– m0 has no Class, m0,m1 and m2 have no Package.

– all their asserted constraints conform to metamodel-
ing ones of MM on instantiated metaconstructs. But
they do not necessarily respect all of them:

– either because they have no concerned model el-
ement, for example:

• constraints on Operation are irrelevant in all
samples

• constraints on Class are irrelevant in m0

– or because instances of metaconstructs are there
but do not respect the corresponding constraints.
For example in m3 and m4 Class Boiler is not
put in a package, possibly HHS.

Last item is showing that a model may be a member
of a metamodel without satisfying all of its metamod-
eling constraints, following the second condition of the
definition. It will be the difference between metamodel
membership and metamodel well-formedness as studied
later (Section 5). Take model m5 as an intuitive exam-
ple of the issue. It has the same model elements as m4

6 More theoretically, in that case function meta must be
monotonic when applied to model elements of m with the
structure that this model asserts. A monotonic function is a
special case of the more general concept of (homo)morphism
of set theory when used in the field of order (and also graph)
theory. In the general case (set theory) morphisms are struc-
ture preserving functions between structured sets. Within
the field of order theory, structuring is ordering. It is the
case here, comparing structured sets (m̃,vm) and (M̃,vM )
under the meta function where vm and vM are ordering
relationships.

but, contrary to this model, it does satisfy all the model-
ing constraints imposed by metamodel MM and, as so,
appears to be well formed w.r.t this metamodel.

Model membership and the concept of proper metamodel

By construction, a model, say m, is member of its proper
metamodel. Simply compare Definition 2 and Definition
3 applied to proper metamodel m̂ of m :

– meta(m̃) = ˜̂m (Definition 2) ⇒ meta(m̃) ⊆ ˜̂m (Def-
inition 3)

– second condition of Definition 2 (∀x, y ∈ m̃, x vm

y ⇔ meta(x) vm̂ meta(y)) implies second condition
of Definition 3 applied to metamodel m̂.

Now consider any metamodel, typically an overall
reference metamodel of a MDE project, and the question
of model membership in this metamodel. An essential
characteristic of the concept of proper metamodel is that
it makes equivalent metamodel membership of models,
across the metamodeling stack, to metamodel inclusion
of their proper metamodel within the only meta level. It
is established by following Property 2, schematized by
Figure 12.

m

M

member

META LEVEL MODEL LEVEL

pmm(m)

submetamodel

Fig. 12 Metamodel membership and proper metamodel in-
clusion equivalency.

Property 2
Let two models m and M , m is member of M ⇔ the
proper metamodel of m (m̂) is a submodel of M .

Proof of the necessary side:
m is a member model of M ⇒ m̂ is a submodel of M .

m̂ is a submodel of M iff:

1. ˜̂m ⊆ M̃ , indeed:

– ˜̂m = meta(m̃) by definition of proper metamodel
m̂ of m

– with meta(m̃) ⊆ M̃ , m being a member of M
(Definition 3).

2. ∀X,Y ∈ ˜̂m, X vm̂ Y ⇒ X vM Y , indeed:
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– X,Y ∈ ˜̂m, X vm̂ Y ⇒
∃x, y ∈ m̃,meta(x) = X,meta(y) = Y, x vm y,
by definition of proper metamodel m̂ of m

– but m is member of M by hypothesis so that:

– X = meta(x), Y = meta(y) ∈ ˜̂m = meta(m̃) ⊆
M̃ ⇒ X,Y ∈ M̃

– with x vm y ⇒ meta(x) = X vM meta(y) =
Y .

ut

Proof of the sufficient side:
m̂ is a submodel of M ⇒ m is a member model of M .

m is member of M iff:

1. meta(m̃) ⊆ M̃ , indeed:

– ˜̂m ⊆ M̃ , m̂ being a submodel of M

– with ˜̂m = meta(m̃) by definition of proper meta-
model m̂ of m.

2. ∀x, y ∈ m̃, x vm y ⇒ meta(x) vM meta(y), indeed:

– x, y ∈ m̃, x vm y ⇒ meta(x),meta(y) ∈ ˜̂m,
meta(x) vm̂ meta(y) by definition of m̂ being
the proper metamodel of m

– but m̂ is a submodel of M by hypothesis so that:

– meta(x),meta(y) ∈ ˜̂m ⊆ M̃ ⇒
meta(x),meta(y) ∈ M̃

– with meta(x) vm̂ meta(y) ⇒ meta(x) vM

meta(y).
ut

4.2 Submetamodel membership

Now consider submetamodels, say SM , of a meta-
model M whose a model, say m, is member. Following
Property 3 basically states that m is also member of the
overall metamodel M (Figure 13).

m

M

member

META LEVEL MODEL LEVEL

SM

submetamodel

member

Fig. 13 Model membership of submetamodels (Property 3)

Property 3
Let three models M , SM and m, m is member of SM
and SM is a submodel of M ⇒ m is member of M .

Proof
Trivial:

– m is member of SM ⇔ m̂ is a submodel of SM
(Property 2)

– SM being given as a submetamodel of M , m̂ is itself
a submetamodel of M

– and then: m̂ is a submetamodel of M ⇒m is member
of M (Property 2).

ut

Though obvious, this property leads to important
consequences when one considers the poset7 of submeta-
models of M whose model m is member, partially or-
dered through submodel inclusion. By definition this poset
has a greatest element which is metamodel M itself. But,
more interestingly, it also gets a smallest element which
is precisely the proper metamodel of m. This is estab-
lished by following Property 4 and Figure 14 schematizes
the resulting membership hierarchy of m.

mM

META LEVEL MODEL LEVEL

pmm(m)

member

submetamodels

member

Fig. 14 Membership hierarchy.

Property 4
Let a metamodel M and a model m, m is member of
M ⇒ the proper metamodel of m (m̂) is the “smallest”
(i.e. unique minimal) submetamodel of M whose m is
member.

Proof
Suppose there exists a submetamodel of M , say SM
(S̃M ⊆ M̃,Gr(vSM ) ⊆ Gr(vM )), which is ”smaller”
than submetamodel m̂ of M but m is member of SM .
SM may be smaller than m̂ either because :

1. S̃M ( ˜̂m
but, by hypothesis, m is member of SM so that (Def-

inition 3) meta(m̃) ⊆ S̃M , with meta(m̃) = ˜̂m by
definition of m̂ = pmm(m). Then the contradiction:

S̃M ( ˜̂m = meta(m̃) ⊆ S̃M .

2. S̃M ⊆ ˜̂m but Gr(vSM ) ( Gr(vm̂)

Suppose ∃X,Y ∈ S̃M , X vm̂ Y but not X vSM Y

7 A poset is a set of things equipped with a partial order,
here (meta) models arranged by submodel inclusion partial
ordering. Depending on the partial order properties, a poset
may have bound elements : “greatest” one(s) and/or “small-
est” one(s).
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– X,Y ∈ S̃M ⊆ ˜̂m and X vm̂ Y ⇒ ∃x, y ∈ m̃ |
meta(x) = X,meta(y) = Y, x vm y by definition
of m̂ = pmm(m)

– by hypothesis, m being member of SM : x vm

y ⇒ meta(x) vSM meta(y)
– but meta(x) = X and meta(y) = Y , so the con-

tradiction.
ut

An intuitive explanation of the phenomenon is that, when
considering an overall metamodel and member models
of this metamodel, proper metamodels of these mod-
els have the characteristic that they are circumscribing
(”simplifying”) the metamodel to constitutive submeta-
models which directly concern them, while respecting
(sub) metamodel membership.

4.3 Submetamodel membership of submodels

Complementary to the preceding section which dealt
with submetamodel membership of models, examine now
the question of submetamodel membership of submod-
els. Conjunction of Property 1 (on the inclusion of proper
metamodels of submodels) with Property 2 (on the equiv-
alency between metamodel membership of a model and
metamodel inclusion of its proper metamodel) automati-
cally gives that when a model is member of a metamodel,
so are all of its submodels. It is stated by following Prop-
erty 5, see Figure 15.

m

sm

submodel

M member

member

META LEVEL MODEL LEVEL

Fig. 15 Submodel membership (Property 5)

Property 5
Let three models m, sm and M . Model m is member of
M and sm is a submodel of m ⇒ sm is member of M .

Proof
Trivial:

– m is member of M ⇔ m̂ is a submetamodel of M
(Property 2)

– sm is a submodel of m ⇒ ŝm is a submetamodel of
m̂ (Property 1) so that ŝm is a submodel of M

– and then ŝm is a submetamodel of M ⇔ sm is mem-
ber of M (Property 2, once more).

ut

In line with Property 4 which leads to the structure
of the membership hierarchy of a model (shown in Figure
14) application to submodels, say sm, of a model, say m,
member of a metamodel, say M , leads to the following
observations, synthesized in Figure 16.

 sm 

(B)

mM

META LEVEL MODEL LEVEL

pmm(m)

member

 member 

submodel

pmm(sm)

(A)

(C)

Fig. 16 Submodel membership hierarchy.
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Fig. 17 sm member of SM , outside the sphere of pmm(m).

Being a submodel of m which is by construction mem-
ber of its proper metamodel pmm(m) (Section 4.1), sm
is member of this metamodel (Property 5). As so, it is
also member of any submetamodel of pmm(m) which en-
close its own proper metamodel (pmm(sm)) thanks to
Properties 3 and 4, and pmm(sm) is the smallest one.
Schematically it is the application of Figure 14 to model
sm as a member of metamodel pmm(m) (zone A in Fig-
ure 16).

Being member of pmm(m), sm is transitively mem-
ber of all submetamodels of M which are in the mem-
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bership hierarchy of m thanks to Property 3 (zone B
in the figure). Indeed sm being member of pmm(sm)
(by construction) which is a submetamodel of pmm(m)
(Property 1), sm is member of pmm(m) thanks to Prop-
erty 3. Transitively, pmm(sm) is a submetamodel of all
super-metamodels of pmm(m), so that same Property 3
applies to them all, and particularly to those which are
in the membership hierarchy of m. Note that metamod-
els of zone A are submetamodels of pmm(m) and then
of all metamodels of zone B.

Finally, as a submodel of m which is member of
M , sm is member of M (Property 5) and of all sub-
metamodels of M which enclose its proper metamodel
pmm(sm) thanks to Properties 3 and 4 (Figure 14 ap-
plied to sm once more). Note that this includes preceding
ones (zones A and B) but not exclusively. Indeed, there
may exist submetamodels of M whose sm is a member
which are not in these zones (zone C ). An example is
given in Figure 17, in reference with overall metamodel
MM of Figure 8. Model m is member of MM , sm is
a submodel of m and take submetamodel SM of MM .
sm is member of SM (SM encloses pmm(sm)) which
is neither a submetamodel of pmm(m) nor it encloses it
(m is not a member of SM). As an intuitive conclusion,
smaller is the model, bigger is its membership hierarchy.

5 Model well-formedness w.r.t a metamodel

Preceding section allowed to consider member (sub) mod-
els of (sub) metamodels, being well formed or not. It
is worth noting that when comparing (sub) models by
themselves “metamodeling constraints are only neces-
sary ones”, as pointed out in [12] (p. 874), and preced-
ing statements on “metamodel membership” (Section 4)
were sufficient for that.

But when also questioning well-formedness confor-
mance of (sub) models w.r.t (sub) metamodels, meta-
modeling constraints must also be sufficiently verified.
After identifying and defining the concept of model well-
formedness w.r.t a metamodel (Section 5.1), its relation
to submetamodels and the core concept of proper meta-
model will be stated in Section 5.2. Then questions rela-
tive to (sub) metamodel well-formedness of (sub) models
will be examined in Sections 5.3 and 5.4.

5.1 Definition

For a model m = (m̃,vm) member of a metamodel M =

(M̃,vM ) to be well formed w.r.t to it, it must:

1. contain all the necessary model elements imposed by
the constraints of M

2. assert all the constraints imposed by M on its model
elements.

About Condition 1

It means that if a model element of m instantiates a
metaconstruct of M , say X, all the metaconstructs whose
X transitively depends under vM must be instantiated
in m. In other words the set of metaconstructs instan-
tiated by m̃, that is meta(m̃), must be closed in M :
closurevM

(meta(m̃)) = meta(m̃). This condition is nec-
essary to give a member model of a metamodel the chance
to instantiate the metamodeling constraints imposed by
this metamodel (Condition 2).

Example
See model samples of Fig. 9 which are member models
of metamodel MM of Fig. 8:

– m0 does not satisfy the condition, indeed:
m̃0 = {temperature},meta(m̃0) = {Attribute}
but closurevMM

(meta(m̃0))
= {Attribute, Class, Package}
6= meta(m̃0)

– idem for m1 and m2 which have the same set of
model elements:
meta(m̃1) = meta(m̃2) = {Attribute, Class}
but closurevMM

({Attribute, Class})
= {Attribute, Class, Package} 6= {Attribute, Class}

– m3, m4 and m5, which have the same image under
meta, do:
– m̃3 = {temperature,Boiler,HHS},

meta(m̃3) = {Attribute, Class, Package}
– m̃4 = m̃5

= {temperature,Boiler,Radiator,HHS},
meta(m̃4) = meta(m̃5)
= {Attribute, Class, Package}

– closurevMM
({Attribute, Class, Package})

= {Attribute, Class, Package}.

One can see that, despite the fact that these three latter
models satisfy the condition, only m5 appears to be well
formed (in m3 and m4, Boiler is not put in a package).
This will be checked by Condition 2.

About Condition 2

It means that for any model element of m, say x, if M
imposes that its metaconstruct X = meta(x) depends on
another one, say Y , m must instantiate this constraint.
That is to say x must depend on another model element
of m, say y, instance of Y . At this point, it is impor-
tant to see that Y must necessarily be in meta(m̃). It
is ensured by Condition 1, as explained above in its ra-
tionale. Condition 2 only adds the requirement that m
must have a model element instance of Y (such as y)
which instantiates the constraint.



16 Bernard Carré, Gilles Vanwormhoudt, Olivier Caron

Example
Consider model samples of Figure 9 which satisfy Con-
dition 1, that is to say m3, m4 and m5. As expected,
Condition 2 allows to only retain m5 as well formed. In-
deed m3 and m4 do not assert that class Boiler is put
in a package (possibly HHS).

Then the definition of a well formed member model
of a metamodel:

Definition 4
A model m = (m̃,vm) member of a metamodel M =

(M̃,vM ) is well formed w.r.t it iff:

– closurevM
(meta(m̃)) = meta(m̃)

– ∀x ∈ m̃,∀Y ∈ M̃,meta(x) vM Y ⇒ ∃ y ∈ m̃ |
meta(y) = Y, x vm y.

5.2 Model well-formedness and the concept of proper
metamodel

The concept of proper metamodel of a model was in-
troduced (Section 3.2) as a sufficiently identifying char-
acteristic of (sub) models at the meta level when their
relation to (sub) metamodels are under question. This
was exploited in Section 4 about the question of (sub)
metamodel membership of (sub) models. It was shown
(Property 2) that membership of models is equivalent to
metamodel inclusion of their proper metamodel. Appli-
cation to submodels and submetamodels was then de-
rived.

Let us do the same analysis for the present problem
of (sub) model well formedness w.r.t (sub) metamodels.
As a major result, it will be shown (major Property 8)
that well formedness of a model, say m, w.r.t a meta-
model, say M , is equivalent to well formedness of m w.r.t
its proper metamodel plus the invariance of this proper
metamodel in M .

For that, examine the situation progressively. This
will lead to state intermediate useful properties. We saw
in Section 4.1 that, by construction, a model is member
of its proper metamodel. Though, it is important to note
that it is not necessarily well formed w.r.t it. Compare
model samples of Figure 10 to their respective proper
metamodel:

– models m0 to m3 and m5 are well formed w.r.t their
proper metamodel

– but m4 is not and it is a counterexample: class Boiler
is not put in a package (possibly HHS). This meta
constraint was retained by the proper metamodel of
m4 due to another part of this model, namely class
Radiator being in package HHS.

Now consider any metamodel, such as MM of Fig. 8
and the question of well-formedness of member models,
such as preceding samples (Figure 10), by comparing
their proper metamodel to MM :

– m0 is not well formed w.r.t MM (attribute temperature
must be owned by a class which must be owned by
a package) and m̂0 is only included in MM but not
closed: Class and Package are lacking.

– m1 is not well formed (attribute temperature must
be owned by a class, possibly Boiler, which must be
owned by a package which is lacking) and m̂1 is only
included in MM but not closed: Package is lacking.

– m2 is not well formed (class Boiler must be owned by

a package which is lacking) and m̂2 is only included
in MM but not closed: Package is lacking.

– m3 is not well formed (class Boiler must be owned by

a package, possibly HHS). This time m̂3 is closed in
MM but only covariant, not invariant, in MM : con-
straint (Class, Package) is lacking (see Figure 18).

– m4 and m5 have the same proper metamodel which is
an invariant submodel of MM (see Figure 18) but m5
is well formed w.r.t this metamodel contrary to m4
(class Boiler must be owned by a package, possibly
HHS).

AttributeClassPackage

Attribute

ClassPackage

Operation

MM

m4 and m5 proper metamodel

invariant

AttributeClassPackage

m3 proper metamodel

only covariant (not invariant)

Parameter

Fig. 18 Proper metamodels of models m3,m4,m5 com-
pared to MM metamodel

From these examples, we can observe that model
well-formedness w.r.t a metamodel is closely related to
submodel invariance of their proper metamodel in this
metamodel at the meta level. It is established by fol-
lowing Property 6. Model m5 is well formed w.r.t meta-
model MM and indeed its proper metamodel is an in-
variant submodel of MM . Proper metamodels of models
m0 to m3 are not invariant in MM and indeed these
models are not well formed w.r.t MM . Model m4 is
off the scope of the property and it will be examined
afterwards. Intuitively it exemplifies that submodel in-
variance of proper metamodels in a metamodel (within
the meta level) is necessary but, of course, not sufficient
to guaranty model well-formedness at the model level.

Property 6 Let M a metamodel of a model m, m is well
formed w.r.t M ⇒ m̂ is an invariant submodel of M .

Proof m̂ is an invariant submodel of M iff:
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1. closurevM
( ˜̂m) = ˜̂m

2. ∀X,Y ∈ ˜̂m | X,Y ∈ M̃,X vm̂ Y ⇔ X vM Y

Proof of 1

– ˜̂m = meta(m̃) by definition of m̂ being the proper
metamodel of m so that:
closurevM

( ˜̂m) = closurevM
(meta(m̃))

– but closurevM
(meta(m̃)) = meta(m̃) by definition

of m being a well formed member model of M .
ut

Proof of 2
X vm̂ Y ⇒ X vM Y is stated by definition of m̂ being
the proper metamodel of m. It remains to prove that:

∀X,Y ∈ ˜̂m | X,Y ∈ M̃,X vM Y ⇒ X vm̂ Y .
By definition of m̂ being the proper metamodel of m

which is member of M , ˜̂m ⊆ M̃ so that X,Y ∈ ˜̂m ⇒
X,Y ∈ M̃ . Now suppose ∃X,Y ∈ ˜̂m ⊆ M̃,X vM Y
and not X vm̂ Y .

– X ∈ ˜̂m⇒ ∃x ∈ m̃ | meta(x) = X
– m being well formed w.r.t M , x ∈ m̃ and meta(x) =

X vM Y ⇒ ∃ y ∈ m̃ | meta(y) = Y, x vm y
– by definition of m̂ being the proper metamodel of m:

x vm y ⇒ meta(x) = X vm̂ meta(y) = Y , then the
contradiction.

ut

Property 6 is important because it gives the basis to
establish the relationship between model well-formedness
w.r.t a metamodel and proper metamodel relative posi-
tioning. Though, it is worth noting that invariant inclu-
sion of the proper metamodel of a model in a metamodel
is not sufficient to guaranty its well formedness w.r.t this
metamodel. A counterexample is m4: its proper meta-
model is invariant in MM but m4 is not well formed
w.r.t MM . Then the question: Compared to m5 which
shares the same proper metamodel as m4, what is miss-
ing to m4 to be well formed w.r.t MM? Intuitive an-
swer is the well-formedness or not of models w.r.t to
their proper metamodel: contrary to m5, m4 is not well
formed w.r.t their common proper metamodel. And it is
indeed the missing condition as established by the fol-
lowing property.

Property 7 Let M a metamodel, m a model, m is a
well formed member model of m̂ and m̂ is an invariant
submodel of M ⇒ m is a well formed member model of
M .

Proof
Thanks to Property 2, m being a member model of m̂
and m̂ being a submodel of M , m is member of M . It
remains to show that it is also well formed w.r.t M , that
is:

1. meta(m̃) is closed in M

2. ∀x ∈ m̃,∀Y ∈ M̃
meta(x) vM Y ⇒ ∃ y ∈ m̃ | meta(y) = Y, x vm y.

Proof of 1
This directly comes from the invariance of m̂ in M which

ensures that the set of model elements of m̂ ( ˜̂m) is closed

in M . Knowing that ˜̂m = meta(m̃) by definition of m̂
gives the result.

ut
Proof of 2
By contradiction suppose ∃x ∈ m̃, Y ∈ M̃ such as
meta(x) vM Y but @ y ∈ m̃ | meta(y) = Y, x vm y.

– x ∈ m̃, meta(x) ∈ meta(m̃) = ˜̂m by definition of m̂

– m̂ being a submodel of M , ˜̂m ⊆ M̃ then meta(x) ∈
M̃

– meta(x) ∈ M̃,meta(x) vM Y (by supposition) ⇒
Y ∈ closurevM

( ˜̂m)
– m̂ being given as an invariant submodel of M :

– closurevM
( ˜̂m) = ˜̂m so that Y ∈ ˜̂m

– meta(x), Y ∈ ˜̂m ⊆ M̃ :
meta(x) vM Y ⇒ meta(x) vm̂ Y

– but m is also given as well formed w.r.t m̂ so that

x ∈ m̃, Y ∈ ˜̂m,meta(x) vm̂ Y
⇒ ∃ y ∈ m̃ | meta(y) = Y, x vm y
then the contradiction.

ut
Moreover, equivalency can be stated between model

well formedness w.r.t a metamodel and model well formed-
ness w.r.t to their proper metamodel plus submodel in-
variance of these proper metamodels in the metamodel.
This is stated below by announced major Property 8
which completes the preceding one (Figure 19).

m

M

well formed

META LEVEL MODEL LEVEL

pmm(m)

invariant submodel

well formed

Fig. 19 metamodel well-formedness = pmm well-
formedness + pmm invariance (Property 8)

Property 8 Let M a metamodel, m a model, m is a
well formed member model of m̂ and m̂ is an invariant
submodel of M ⇔ m is a well formed member model of
M .

Proof
Necessary side is Property 7. Let us prove the sufficient
side. m being a well formed member model of M , m̂ is
an invariant submodel of M thanks to Property 6. It
remains to show that m is well formed w.r.t m̂, that is:
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1. meta(m̃) is closed in m̂ : This is trivial since, by

definition of m̂, meta(m̃) = ˜̂m.

2. ∀x ∈ m̃,∀Y ∈ ˜̂m, meta(x) vm̂ Y ⇒ ∃ y ∈ m̃ |
meta(y) = Y, x vm y :

– x ∈ m̃⇒ meta(x) ∈ ˜̂m (by definition of m̂).

– meta(x), Y ∈ ˜̂m and m̂ being a submodel of M
(as seen above thanks to Property 6) :

meta(x), Y ∈ M̃ and meta(x) vm̂ Y
⇒ meta(x) vM Y .

– but m is well formed w.r.t M so that: x ∈ m̃, Y ∈
M̃,meta(x) vM Y
⇒ ∃ y ∈ m̃ | meta(y) = Y, x vm y
then the result.

ut

Examples
Let us verify the property on the preceding model sam-
ples:

– Model m5 is well formed w.r.t MM and indeed it is
well formed w.r.t m̂5 which is invariant in MM

– Model m4 is not well formed w.r.t m̂4 = m̂5 and
indeed m4 is not well formed w.r.t MM .

– Models m0 to m3 are well formed w.r.t their proper
metamodel but these metamodels are not invariant
submodels of MM and indeed these models are not
well formed w.r.t MM .

As a conclusion, Property 8 is essential because it al-
ternatively defines model well-formedness w.r.t a meta-
model only by way of the simple, though essential, core
concept of proper metamodel of a model. Far beyond the
theoretical result, it is particularly effective at a practi-
cal level to simplify well-formedness checking w.r.t an
overall reference metamodel, say M , because:

– In the checking, it allows to replace overall meta-
model M by the proper metamodel of the candi-
date model which is the smallest submetamodel of
M whose it is a member, so minimizing the opera-
tion.

– Testing the invariance of a submetamodel can be
done only once and for all for the benefit of all models
which share the same proper metamodel.

Such a factorization is effective compared to checking the
well-formedness of candidate models taken in isolation
with reference to the whole metamodel each time8.

5.3 Model well-formedness w.r.t submetamodels

In the preceding, model well-formedness w.r.t a meta-
model was defined and characterized thanks to the con-
cept of proper metamodel. It was shown (Property 8)

8 See quantitatitave evaluation of the results in Section 6.3.

that well-formedness w.r.t a metamodel is directly re-
lated to submodel invariance of proper metamodels in
this metamodel.

Now what about model well-formedness w.r.t sub-
metamodels, that is:

– How far well formed models w.r.t submetamodels of
a metamodel can be guaranteed to be well formed
w.r.t this metamodel?

– Conversely, considering well formed member models
of a metamodel, w.r.t which submetamodels they can
be also guaranteed to be well formed?

Consider well formed models w.r.t to submetamod-
els. It is interesting to point out that, thanks to submodel
invariance transitivity (Property 3 of [12]) applied at the
meta level, well formed models of invariant submetamod-
els of a metamodel are guaranteed to be well formed in
this metamodel and recursively. It is stated by following
Property 9 (see Figure 20).

m

M

well formed

META LEVEL MODEL LEVEL

SM

invariant

well formed

Fig. 20 Model well-formedness due to invariant submeta-
models (Property 9)

Property 9 Let M and SM two metamodels, m a well
formed member model of SM , SM is an invariant sub-
metamodel of M ⇒ m is a well formed member model
of M .

Proof
Thanks to Property 8, m being well formed w.r.t SM , it
is well formed w.r.t m̂ and m̂ is an invariant submodel of
SM . But SM is invariant in M so that m̂ is itself invari-
ant in M thanks to invariance transitivity (Property 3
of [12]). Then apply Property 8 again: m is well formed
w.r.t m̂ and m̂ is an invariant submodel of M ⇒ m is
well formed w.r.t M .

ut

Let us insist on the fact that submetamodel invari-
ance of SM in M is necessary for the property to apply.
Otherwise, well formed member model m of SM cannot
be guaranteed to be well formed in M . As a counterex-
ample, see metamodel in Figure 21 which is a submeta-
model of initial metamodel MM (Figure 8). This sub-
metamodel is only covariant but not invariant in MM
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(classes are not constrained to be put in a package). Sam-
ple model m3 of Figure 10 is well formed w.r.t this sub-
metamodel but, indeed, it is not well formed w.r.t MM .
We let you verify that m3 is well formed w.r.t its proper
metamodel which is invariant in the submetamodel but
not in MM .

Class

Attribute

Operation

owningClass

owningClass

Package

Fig. 21 Not invariant submetamodel of MM (Fig. 8)

Conversely, take well formed models of a metamodel.
What about their well-formedness w.r.t submetamod-
els of this metamodel? Following Property 10 ensures
that such models are also well formed w.r.t any sub-
metamodel whose they are simply member.

mM

META LEVEL MODEL LEVEL

SM

submetamodel
member
⇒

 well formed 

well formed

Fig. 22 Well-formedness w.r.t submetamodels (Prop. 10)

Property 10 Let M a metamodel, SM a submetamodel
of M , m a well formed member model of M :
m is member of SM ⇒ m is well formed w.r.t SM .

Proof
m is well formed w.r.t SM iff (Property 8):

1. m is well formed w.r.t to m̂: this is true because m is
well formed w.r.t metamodel M whose it is a mem-
ber.

2. m̂ is an invariant submodel of SM , indeed:
– Thanks to Property 8, m being well formed w.r.t

M , m̂ is an invariant submodel of M .
– m being member of SM , m̂ is a submodel of SM

(Property 2).
– m̂ being a submodel of SM which is a submodel

of M and m̂ being invariant in M ⇒ m̂ is an

invariant submodel of SM . This is due in fact to a
much more general property of submodels stated
below (Property 11, sketched in Figure 23), here
applied at the meta level to metamodels m̂, SM
and M .

ut

m''

m'

 m 

submodel

submodel invariant ⟹

m''

m'

 m 

submodel

invariant invariant

Fig. 23 Sketch of Property 11

Property 11 Let three models m,m′ and m′′ such as m
is a submodel of m′ and m′ is a submodel of m′′, m is an
invariant submodel of m′′ ⇒ m is an invariant submodel
of m′.

Proof
m is an invariant submodel of m′ iff:

1. m̃ is closed in m′: closurevm′ (m̃) = m̃.
2. Gr(vm) = Gr(vm′)/m̃.

Proof of 1
m being a submodel of m′, m̃ ⊆ closurevm′ (m̃) is obvi-
ous. Let us prove that closurevm′ (m̃) ⊆ m̃.

– m′ being a submodel of m′′:
closurevm′ (m̃) ⊆ closurevm′′ (m̃).

– but m being an invariant submodel of m′′:
closurevm′′ (m̃) = m̃.

ut

Proof of 2

(a) Gr(vm) ⊆ Gr(vm′)/m̃, indeed:
– m is a submodel of m′: Gr(vm) ⊆ Gr(vm′) with

m̃ ⊆ m̃′ so that Gr(vm)/m̃ ⊆ Gr(vm′)/m̃
– but Gr(vm)/m̃ = Gr(vm)

(b) Gr(vm′)/m̃ ⊆ Gr(vm), indeed:
– Gr(vm′) ⊆ Gr(vm′′), m′ being a submodel of

m′′

– Gr(vm′)/m̃ ⊆ Gr(vm′′)/m̃, m being a submodel

of m′ which is a submodel of m′′ (m̃ ⊆ m̃′ ⊆ m̃′′)
– but m is an invariant submodel of m′′ so that

Gr(vm′′)/m̃ = Gr(vm), then the result.
ut
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It is worth noting that Property 10 applies to any
submetamodel of a metamodel whose m is member with
no other condition than simple inclusion in this meta-
model. Of course this applies, a fortiori, to submeta-
models which are closed, covariant or invariant in the
metamodel.

Examples
Take model m of Figure 24 which is well formed w.r.t to
metamodel MM of Figure 8. Then consider alternative
submetamodels of MM of Figures 25 and 26 to check
the property.

HHS

 
 
Boiler

m

HHS Boiler

Graph representation

Package Class

pmm(m)

Fig. 24 Model sample (Property 11)

First, consider submetamodels of MM whose m is
even not member such as SM0 or SM0′ of Figure 25.
Model m is getting no chance to be well formed w.r.t
them, indeed:

– metaconstruct Package of model element HHS of m
is lacking in SM0 so that meta(m̃), which is closed
in MM , has no chance to be closed in SM0.

– in submetamodel SM0′ the metaconstruct is present,
this time. So that metaconstructs of m are closed in
SM0′. But this submetamodel does not specify the
constraint that classes must be contained into pack-
ages. Though, m asserts this constraint between its
class Boiler and package HHS. So that m, which as-
serts a constraint not specified by metamodel SM0′

is not member of it.

Now take submetamodels whose m is member and
verify that it is well formed w.r.t them, whatever their
inclusion qualities. See Figure 26:

– submetamodel SM1 is only included but not closed
in MM since metaconstruct Operation whose
Parameter metaconstruct depends is lacking. Model
m, which is unaware of operations and their param-
eter constituents, is member of this submetamodel
and indeed remains well formed w.r.t it.

– in submetamodel SM2 metaconstruct Operation is
now present so that SM2 is covariant in MM : all
model elements of MM whose model elements of

Class

Attribute

Operation

Parameter

SM0

ClassPackage

SM0'

Fig. 25 m not member so not well formed w.r.t SM0, SM0′

SM2 depend in MM are present in SM2 (S̃M2 is
closed in MM) and asserted constraints of SM2 are
in MM . But SM2 is not invariant in MM . It does
not specify that Operation depends on the metacon-
struct Class. Here again model m remains a well
formed member model of this only covariant sub-
metamodel.

– finally SM3, which adds the dependency between
Operation and Class, is an invariant submetamodel
of MM whose m is member and well formed again.

ClassPackage Parameter

SM3

Operation

ClassPackage Parameter

SM2

Operation

ClassPackage Parameter

SM1

Fig. 26 Not closed (SM1), covariant (SM2) and invariant
(SM3) submetamodels whose m is member, so well formed.

As a conclusion, let us synthesize all this in the struc-
ture of the submetamodel hierarchy of a metamodel, say
M , whose a model, say m, is well formed (see Figure
27). Property 10 retains all the submetamodels of M
whose m is a member, that is its membership submeta-
model hierarchy (Figure 14). This includes in particular
its proper metamodel and it is consistent with Property
8 : m being well formed w.r.t M , it is well formed w.r.t
its proper metamodel. Proper metamodel of m has also
the specific features that it is the ”smallest” of these sub-
metamodels and it is invariant in M (Property 8 again).
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Recursively, this applies to submetamodels of the hier-
archy so that proper metamodel of m is also invariant
in all of them (but remind that themselves are not nec-
essarily invariant in M , see discussion about Property
10).

mM

META LEVEL MODEL LEVEL

pmm(m)

well formed

submetamodels

invariant

member
⇒

 well formed 

Fig. 27 Well-formedness submetamodel hierarchy structure

5.4 Submodel well-formedness w.r.t (sub) metamodels

In preceding Section 5.3 model well-formedness w.r.t
submetamodels of a reference metamodel was studied. It
was shown that model well-formedness w.r.t (sub) meta-
models closely relates to submodel invariance and tran-
sitivity applied at the meta level by way of proper meta-
models. The structure of the submetamodel hierarchy of
a metamodel whose a model is well formed was charac-
terized thanks to established properties (see Figure 27
for a synthetic view of the results).

Present section is studying the symmetrical question
of well-formedness of submodels of a well formed model
w.r.t a metamodel (and its submetamodels). According
to the proximity between the concepts of model well-
formedness and submodel invariance, intuition is that
invariant submodels of a well formed model w.r.t a meta-
model are also well formed. It is indeed the case and it
will be stated by major Property 15 of the section. Let
us establish the result progressively.

From submodel invariance to submodel well-formedness
w.r.t proper metamodels

Knowing that invariance of proper metamodels in a meta-
model is a condition for model well-formedness (Prop-
erty 8), what about the invariance of proper metamod-
els of invariant submodels? Remind that invariance of
submodels in a model does not automatically give the
invariance of their proper metamodel in the proper meta-
model of the model in the general case (see discussion
about Property 1). But when the model is well formed
w.r.t its proper metamodel this interestingly occurs, as
established by following Property 12 (see Figure 28).

 m 

 sm  

invariant

pmm(m) well formed

META LEVEL MODEL LEVEL

pmm(sm)

invariant

Fig. 28 Sketch of Property 12

Property 12 Let sm an invariant submodel of a model
m, m is well formed w.r.t its proper metamodel (m̂)
⇒ the proper metamodel of sm (ŝm) is an invariant
submodel of the proper metamodel of m (m̂).

Proof
The proper metamodel of sm (ŝm) is an invariant sub-
model of the proper metamodel of m (m̂) iff:

1. The set of model elements of ŝm ( ˜̂sm) is closed in m̂,

that is to say: closurevm̂
( ˜̂sm) = ˜̂sm.

2. Gr(vm̂)/ ˜̂sm = Gr(vŝm).

Proof of 1
sm being a submodel of m, ŝm is a submodel of m̂ (Prop-

erty 1) so that ˜̂sm ⊆ closurevm̂
( ˜̂sm) is obvious. It re-

mains to show that: closurevm̂
( ˜̂sm) ⊆ ˜̂sm.

By contradiction, suppose:

∃X ∈ closurevm̂
( ˜̂sm), X /∈ ˜̂sm

– X ∈ closurevm̂
( ˜̂sm)⇒ X ∈ ˜̂m

– X ∈ ˜̂m⇒ ∃ x ∈ m̃ | X = meta(x) by definition of m̂

– X ∈ closurevm̂
( ˜̂sm)⇒ ∃Y ∈ ˜̂sm | Y vm̂ X

– Y ∈ ˜̂sm ⇒ ∃ y ∈ s̃m | Y = meta(y) by definition of
ŝm

– y ∈ s̃m⇒ y ∈ m̃, sm being a submodel of m

– y ∈ m̃⇒ meta(y) = Y ∈ ˜̂m by definition of m̂
– x, y ∈ m̃ and Y vm̂ X ⇒ y vm x, m being well

formed w.r.t m̂
– y ∈ s̃m and y vm x⇒ x ∈ closurevm

(s̃m)
– but sm is invariant in m so that closurevm(s̃m) =

s̃m and then x ∈ s̃m
– so the contradiction: x ∈ s̃m ⇒ meta(x) = X ∈ ˜̂sm

(by definition of ŝm).
ut

Proof of 2

2.1 Gr(vŝm) ⊆ Gr(vm̂)/ ˜̂sm.
Indeed, sm being a submodel of m, ŝm is a submodel
of m̂ (Property 1) so that Gr(vŝm) ⊆ Gr(vm̂) with˜̂sm ⊆ ˜̂m. Then Gr(vŝm)/ ˜̂sm ⊆ Gr(vm̂)/ ˜̂sm. But

Gr(vŝm)/ ˜̂sm = Gr(vŝm), then the result.

2.2 Gr(vm̂)/ ˜̂sm ⊆ Gr(vŝm) which is equivalent to show

that: ∀X,Y ∈ ˜̂sm,X vm̂ Y ⇒ X vŝm Y .
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By contradiction, suppose ∃X,Y ∈ ˜̂sm | X vm̂ Y
but not X vŝm Y

– X,Y ∈ ˜̂sm ⇒ ∃x, y ∈ s̃m | X = meta(x), Y =
meta(y)

– sm being a submodel of m, s̃m ⊆ m̃ so that
x, y ∈ m̃

– sm being a submodel of m, ŝm is a submodel

of m̂ (Property 1) so that ˜̂sm ⊆ ˜̂m and then

X,Y ∈ ˜̂m
– x, y ∈ m̃,X = meta(x), Y = meta(y) ∈ ˜̂m,X vm̂

Y ⇒ x vm y, m being well formed w.r.t m̂
– sm being an invariant submodel of m and x, y ∈

s̃m, x vm y ⇒ x vsm y
– but, by definition of ŝm, x, y ∈ s̃m, x vsm y
⇒ meta(x) = X vŝm meta(y) = Y

then the contradiction.
ut

Examples See some samples in Figure 10:

– m2 is an invariant submodel of m3 which is well
formed w.r.t its proper metamodel and indeed m̂2
is invariant in m̂3

– m̂2 is not invariant in m̂4 and indeed m2 is invariant
in m4 but m4 is not well formed w.r.t m̂4

– m̂2 is not invariant in m̂5 and indeed m5 is well
formed w.r.t m̂5 but m2 is not invariant in m5.

More, it appears that under the same conditions sub-
models are necessarily well formed w.r.t their proper
metamodel (Figure 29).

 m 

 sm  

invariant

pmm(m) well formed

META LEVEL MODEL LEVEL

pmm(sm)

invariant

well formed

Fig. 29 Sketch of Property 13

Before establishing the property, take the following
examples:

– m2 is indeed well formed w.r.t its proper metamodel
– m4 is not well formed w.r.t its proper metamodel

(m̂4), indeed it is not invariant in m5 which is well

formed w.r.t m̂5 (= m̂4).

Property 13 Let sm an invariant submodel of a model
m, m is well formed w.r.t its proper metamodel (m̂) ⇒
sm is well formed w.r.t its proper metamodel (ŝm).

Proof
sm is well formed w.r.t ŝm iff:

1. meta(s̃m) is closed in ŝm. This is trivial since, by

definition of ŝm, meta(s̃m) = ˜̂sm.

2. ∀x ∈ s̃m, ∀Y ∈ ˜̂sm
meta(x) vŝm Y ⇒ ∃ y ∈ s̃m | meta(y) = Y, x vsm

y.
Indeed:

– sm being a submodel of m, ŝm is a submodel

of m̂ (Property 1) so that ˜̂sm ⊆ ˜̂m and then:

meta(x), Y ∈ ˜̂sm⇒ meta(x), Y ∈ ˜̂m.
– Thanks to Property 12 (conditions being the same),

ŝm is an invariant submodel of m̂ so that:
meta(x), Y ∈ ˜̂m,meta(x) vŝm Y
⇒ meta(x) vm̂ Y

– x ∈ s̃m ⊆ m̃ (sm is a submodel of m) ⇒ x ∈ m̃

– x ∈ m̃, Y ∈ ˜̂m,meta(x) vm̂ Y
⇒ ∃ y ∈ m̃ | meta(y) = Y, x vm y
m being given as well formed w.r.t m̂

– x ∈ s̃m, y ∈ m̃, x vm y ⇒ y ∈ closurevm
(s̃m)

– But sm is an invariant submodel of m so that:

– closurevm(s̃m) = s̃m and then y ∈ s̃m
– x, y ∈ s̃m, x vm y ⇒ x vsm y.

This ends the proof.
ut

Finally, an immediate consequence is that such sub-
models of a model are also guaranteed to be well formed
w.r.t the proper metamodel of this overall model, mainly
thanks to major Property 8 (see Figure 30).

 m 

 sm  

invariant

pmm(m) well formed

META LEVEL MODEL LEVEL

well formed

Fig. 30 Sketch of Property 14

Property 14 Let sm an invariant submodel of a model
m, m is well formed w.r.t its proper metamodel (m̂) ⇒
sm is well formed w.r.t the proper metamodel of m (m̂).

Proof
Due to Property 8, for sm to be well formed w.r.t m̂, its
proper metamodel (ŝm) must be an invariant submodel
of m̂ and sm must be well formed w.r.t it. Both features
are verified thanks respectively to previously established
Properties 12 and 13 which share the same conditions.

ut

As an intermediate conclusion, Figure 31 synthesizes
the results.
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 m 

sm 

invariant

META LEVEL MODEL LEVEL

pmm(m) well formed

pmm(sm)

well formed 
Prop. 14

invariant
Prop.12

well formed
Prop. 13

Fig. 31 Invariant submodels and their well-formedness

From submodel invariance to submodel well-formedness
w.r.t a reference metamodel

Now consider any metamodel, say an overall metamodel
of a project, and a well formed member model of this
metamodel. Preceding properties allow to obtain major
Property 15, as initially announced: invariant submod-
els of the model are themselves well formed w.r.t this
metamodel.

Property 15 Let m a well formed model of a metamodel
M , sm is an invariant submodel of m ⇒ sm is well
formed w.r.t M .

Proof

– Thanks to Property 8, m being well formed w.r.t M ,
its proper metamodel m̂ is an invariant submodel of
M and m is well formed w.r.t m̂.

– sm being an invariant submodel of m which is well
formed w.r.t m̂, it is well formed w.r.t m̂, thanks to
Property 14.

– sm being well formed w.r.t m̂ which is an invariant
submodel of M , sm is well formed w.r.t M thanks to
Property 9.

ut

By way of invariance transitivity applied at the meta
level, another proof is the following which shows the con-
sistency of the results, as sketched in Figure 32:

– Thanks to Property 8, m being well formed w.r.t
M , its proper metamodel m̂ is an invariant submeta-
model of M and m is well formed w.r.t m̂.

– sm being an invariant submodel of m which is well
formed w.r.t m̂, the proper metamodel of sm (ŝm) is
an invariant submodel of m̂ (Property 12) and sm is
well formed w.r.t ŝm (Property 13).

– ŝm being an invariant submodel of m̂ and m̂ being
an invariant submodel of M , ŝm is an invariant sub-
model of M , thanks to invariance transitivity.

– sm being well formed w.r.t ŝm which is invariant in
M , sm is well formed w.r.t M thanks to Property 8.

 m 

sm 

invariant

M

well formed

META LEVEL MODEL LEVEL

pmm(m) well formed
Prop. 8

invariant
Prop. 8

pmm(sm)

well formed 
Prop. 14

invariant
Prop.12

well formed
Prop. 13

well formed
Prop.15

(Props. 14 + 8
or

Props. 13 + 12 + 8)

Fig. 32 Invariant submodels and their well-formedness

Finally, thanks once more to invariance transitivity
at the model level this time, well-formedness applies re-
cursively to enclosed invariant submodels as stated by
the following corollary of Property 15.

Property 16 (Corollary of Property 15) Let m a well
formed member model of a metamodel M , sm an invari-
ant submodel of m and ssm a submodel of sm, ssm is
an invariant submodel of sm⇒ ssm is well formed w.r.t
M .

Proof

– Thanks to invariance transitivity: ssm being invari-
ant in sm which is invariant in m⇒ ssm is invariant
in m

– Thanks to preceding Property 15: ssm being invari-
ant in m which is a well formed member model of
M ⇒ ssm is well formed w.r.t M .

ut

This corollary appears to be evident at a theoretical
level. But, far beyond this consideration, it is very ef-
fective at a practical engineering level when transitivity
applies:

– Modularity: consider a modeling space determined
by a metamodel M and m a well formed member
model of M . Assuming the invariance of some of its
submodels, say sm, was verified once and for all, only
testing the invariance in sm of any of its proper sub-
models is consequently sufficient to check their well-
formedness (without referring neither to m nor to the
general metamodel M).
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– This applies notably when modeling in the large and
the need for partitioning projects into smaller man-
ageable ones. Verifying the well-formedness of a sub-
project model once and for all allows to reduce check-
ing for the well-formedness of any of its model parts
to only testing its invariance in this subproject model.

– As far as computing efficiency is concerned, it is promi-
nent. Indeed, checking submodel invariance (which
only relies on set inclusion tests, what’s more, cir-
cumscribed locally only to the subproject model un-
der consideration) is more efficient than checking full
well-formedness w.r.t the overall metamodel9.

 sm 

(B)

mM

META LEVEL MODEL LEVEL

pmm(m)  well formed 

invariant

pmm(sm)

(A)

(C)

well formed

invariant

invariant

invariant

Fig. 33 Submetamodel well-formedness hierarchy

As a conclusion, in line with the characterization of
the submetamodel membership hierarchy of submodels
(Figure 16), a synopsis of the structure of the submeta-
model well-formedness hierarchy of invariant submodels
(say sm) of a well formed model (say m) w.r.t a reference
metamodel (say M) is depicted in Figure 33.

sm being an invariant submodel of m, it is well formed
w.r.t its proper metamodel pmm(m) (Property 14). Then,
as a member of any submetamodel of pmm(m) which en-
close its proper metamodel (Properties 3 and 4), sm is
also well formed w.r.t them (Property 10). pmm(sm) is
the smallest one and is invariant in them all (zone A in
the figure). Schematically, it is the application of Figure
27 to model sm relatively to metamodel pmm(m).

Under the conditions, the proper metamodel of sm is
invariant in pmm(m) (Property 12) and transitively in
any submetamodel of M (including M itself) in which
pmm(m) is invariant (zone B). So that sm being well
formed w.r.t pmm(sm) (Property 13), it is also well
formed w.r.t these submetamodels (Property 8). Meta-
models of zone A are submodels of pmm(m) and then
of metamodels of zone B. But remind (discussion about

9 See quantitatitave evaluation of the results in Section 6.3.

Property 10) that they are not necessarily invariant in
pmm(m). A fortiori, there is no reason for them to be
invariant in metamodels of zone B. To be convinced,
see Figure 34: sm is well formed w.r.t submetamodel
SMA of pmm(m) (in which pmm(sm) is invariant),
sm is well formed w.r.t submetamodel SMB of M in
which pmm(m) is invariant. Though SMA is not invari-
ant in SMB (the dependency between Operation and
Class metaconstructs constrained by SMB is lacking in
SMA).

HHS

on()
off()

 
Boiler

m

META LEVEL MODEL LEVEL

MM
(fig. 1)

invariant

invariant

well formed

invariant

pmm(sm)

ClassPackage

submetamodel

invariant

OperationClassPackage Parameter

SMB

OperationClassPackage

SMA

submetamodel
(not necessarily invariant)

submetamodel
(not invariant)

well formed

well formed

HHS
sm

 
 
Boiler

OperationClass

pmm(m)

Package

well formed

well formed

well formed

Fig. 34 Submetamodels of zone A of Fig. 33 compared to
those of zone B.

Finally, as an invariant submodel of m which is well
formed w.r.t M , sm is well formed w.r.t M (Property
15) and schema of Figure 27 applies once more, this
time at the global level of M : sm is well formed w.r.t
all submetamodels of M which enclose its proper meta-
model. pmm(sm) is the smallest one and is invariant in
all of them. Note that this includes preceding ones (zones
A and B) but not exclusively. Indeed, sm may be well
formed w.r.t submetamodels of M which are not in A
or B (zone C ). An example is given in Figure 35 in ref-
erence with overall metamodel MM of Figure 8. Model
m is well formed w.r.t MM , sm is invariant in m and
take submetamodel SM of MM . sm is well formed w.r.t
SM (pmm(sm) is invariant in SM) which is neither a
submetamodel of pmm(m) nor encloses it: m is not not
well formed w.r.t SM (even more it is not member of
SM).
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Fig. 35 sm well formed w.r.t SM outside the sphere of
pmm(m)

6 Application and technology

This section presents an application of the previous re-
sults to provide reusable technology in EMF. It is fol-
lowed by the description of a model search tool that
profits from the offered facilities.

6.1 Sub (meta) model engine

In [12], we presented an extensible submodel engine that
operates on EMF models at the model level, being well
formed or not. This engine provides a set of core func-
tionalities to determine submodel relationships, ranging
from simple inclusion of element sets to invariant sub-
models. In the following, we will not present this engine
again but the interested reader can find a detailed de-
scription of its extensible plugin-based architecture and
typical scenarios and tools in the afore reference. Here,
we will focus on the specific functionalities and capaci-
ties which deal with meta level constructs and relation-
ships considered in the present paper: (sub) metamodels,
proper metamodel, membership and well-formedness.

Concerning the representation capacities, the engine
enables representing EMF metamodels in addition to
models using the same unified formalism, that is as a
set of model elements and a partial order derived from
their dependency constraints. The engine also ensures
consistency of the typing relationships (under function
meta) between models and metamodels represented this
way. At the operational level, thanks to the unified rep-
resentation, all submodel functionalities provided by the
initial engine for models are also available for metamod-
els, so that they can be compared under the same sub-
model inclusion qualities models were.

The engine offers customization capacities for adapt-
ing the representation scheme of EMF models (being
meta or not) in the unified formalism. This is done through
plugin-based extensions of the engine whose architecture

is shown in Figure 36. The chosen representation can be
more or less rich depending on the complexity of models
or the need to concentrate on some specific parts while
omitting others. In case studies, we use the customiza-
tion capacities when applying the formalism to Ecore
and UML metamodels.

Operations are offered to :

– determine if a model is a member of a metamodel;
– determine if a model is a well formed model of a

metamodel;
– compute the proper metamodel of a model;

They complete those dedicated to submodels in the
basic engine. Functionalities at the model and meta-
model levels are fully compatible with each other so that
they can be combined to apply all the properties defined
in the paper. Thanks to transitivity, these functionalities
can be iterated efficiently to build powerful functionali-
ties dealing with hierarchies of models and metamodels
as studied in Sections 4.3 and 5.4.

All these functionalities are available as a service of-
fered by the engine to other plugins so that they can be
easily integrated and reused into modeling tools which
are compliant with the Eclipse architecture and its EMF
framework. Kinds of applications or tools that can profit
from this service are for example transformation engine,
rich content-driven model querying and completion, sub-
model recommendation engines and engines for auto-
matic classification of models in large-scale repositories.
In the next section 6.2, we present an application of the
previous technology to improve the task of searching sub-
models and enclosing models in repositories.

6.2 Application to model searching

On top of the previous engine, we have built a tool for
searching EMF models stored in CDO repositories. The
tool performs content-based model search through inclu-
sion properties and adopts query by example approach.
The latter means that queries are provided as models
or model fragments10. Given a query, the tool is able to
retrieve models from the repository that are either in-
cluded by this model or contain it. Figure 37 presents a
snapshot of the tool integrated in Eclipse for searching
models. The upper view shows the content of an edited
model where the user may select some elements to con-
stitute its query. The lower view shows the result, that
is the set of models satisfying the query. In addition,
to present ranked resulting models, the view visualizes
their inclusion relationship as shown in the figure. This
graphical representation allows to visualize the network
of resulting models in order to quickly focus on the most

10 Thanks to the formalism, query model can be full well
formed models but also unspecified model fragments such as
simple sets of model ingredients or partial models resulting
from incremental or intermediate design.
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Fig. 36 Engine Architecture

interesting ones regarding the query (most specific sub-
models and least general enclosing ones).

Thanks to the facilities offered by this technology, our
tool provides several kinds of model search which are not
generally supported by other model search engines. They
are summarized in Table 1. Each search in this table is
presented as a function which takes one or two input
parameters corresponding to a query model or a query
metamodel and returns a set of models or metamodels
from the repository for result. Table 1 also gives a formal
definition of each function and a summary of its purpose.

The basic model searches offered by the tool corre-
sponds to Ssup and Ssub functions in Table 1. These two
searches are dedicated to model searching at one model
level. They are exclusively based on submodel inclusion
properties. The first one consists in searching models in
the repositories that include a given query model. It is
the search illustrated in Figure 37. Presented results in
left part of the figure are models that include the model
part selected by the user. The second model search is
the symmetric of the first one. Given a model, it al-
lows to search models in the repository that constitute
its parts. Such searching may be interesting to verify
that candidate parts to be registered are not already in
the repository. In both cases, the search is performed
by inclusion comparison between the query model and
candidate models stored in the repository. Regarding
these two kinds of searches, it is worthwhile to note that
thanks to our formalism, their capacities are also pro-
vided at the meta level so that it is possible to search
metamodels using metamodel fragments as queries.

In addition to preceding searches, the tool also sup-
ports two other ones relating to the modeling and meta-
modeling levels. In Table 1, Smeta and Swfm functions
represent these searches. The first enables searching meta-
models for which the query model is well formed. This
kind of search can be useful for determining the com-

patibility of models (used as query) with respect to some
metamodel existing in the repository (or some compliant
tools) or for organizing them according to their com-
patibility with some metamodels. As indicated by the
formal definition, this search relies on invariance prop-
erty of the proper metamodel of the query to verify its
well-formedness w.r.t. metamodels. Second model search
works symmetrically, offering metamodel-based search.
It allows searching models in the repository which are
well formed with respect to a given query (sub)-metamodel.
Such capacities are helpful in practice. For instance, con-
sider the search of class models in a repository containing
UML models of any kinds as offered by this search.

Last couple of model searches in Table 1 aims to com-
bine the capacities of model searches based on inclusion
at both modeling and metamodeling level. They corre-
spond to Ssup meta and Ssup proper functions in Table 1.
First function accepts an input query model and an in-
put metamodel as parameters. It allows to search models
that include a query model while respecting the struc-
ture of a given metamodel. Such kind of search can be
helpful to find models in the repository that can com-
plete the contents of an edited model but without com-
promising its well-formedness. Second function retrieves
models containing the query model and having compat-
ible proper metamodels regarding inclusion. The latter
search can be of interest for finding models which are
richer than the query one while preserving some meta-
model compatibility.

At the end of the search process, the tool orders re-
sulting models or metamodels. This ordering relies on
inclusion properties that may exist between these mod-
els. Results satisfying the query model are consequently
organized in a net of relationships and exhibit character-
istic ones such as the simplest or the richest submodel
as illustrated previously through Figure 37.
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Fig. 37 Model searching in Eclipse

Search function Formal definition Purpose

Ssup Ssup(q) = {m | q inv in m} Search models m that includes
query model q in invariant way

Ssub Ssub(q) = {m | m inv in q} Search models m that are invari-
antly included in query model q

Smeta Smeta(q) = {M | q̂ inv in M ∧ q wfm % q̂ } Search metamodels M whom
query model q is well formed

Swfm Swfm(Q) = {m | m̂ inv in Q ∧m wfm % m̂} Search models m that are well
formed w.r.t. metamodel Q

Ssup meta Ssup meta(q,M) = {m | q inv in m ∧ m̂ inv in M ∧m wfm % m̂} Search models m containing query
model q and being well formed
with respect to M

Ssup proper Ssup proper(q) = {m | q inv inm ∧ q̂ inv in m̂ ∧m wfm % m̂} Search model m containing query
model q and well formed with re-
spect to proper metamodel of q

Table 1 Kinds of model search provided by our tool

Implementation uses an inverted-index structure to
filter candidate models as they can be numerous in a
large repository. This inverted-index is filled from the
content of stored models, metamodels including proper
ones11. It is composed of three hashtables following the
structure of models based on our formalism. There is

11 Concerning proper metamodels, they are stored and in-
dexed at the same time than their related model. An ad-
ditional bi-directional mapping table is also maintained be-
tween model and their proper metamodel for accelerating
checking required by several searches

one hashtable for indexing elements of models and two
hashtables for indexing their constraints. Figure 38 shows
the two kinds of hashtable. In the hashtable dedicated to
model elements, each hash key corresponds to a compact
representation of a model element based on its name and
metatype while the associated value is a list of location
(URI) corresponding to models in the CDO repository
that contains the element. From this hashtable, it is easy
and fast to find stored models that include a set of ele-
ments contained in a query model by intersection. The
two hashtables dedicated to constraints are both struc-
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Fig. 38 Hashtables forming the inverted-index used for
model searching

tured the same way. In these hashtables, keys are com-
pact representation of model elements as explained be-
fore but structure of the associated values differs. In that
case, values in the list are couple containing a location
of a model in the repository plus a number. The latter
is equal to the number of times the element identified
by the key appears at the left position in all constraints
(right position for the second hashtable) of the corre-
sponding model. Purpose of memorizing the number of
constraints for an element is to quickly detect models
that can not be candidate for invariant inclusion due
to a too weak number of constraints on that element.
For illustrating the principle, assume a query model Q
where one of its element e1 depends on two others ele-
ments (e2, e4) and the hashtable of Figure 38. Because
model M1 in the repository has element e1 but not all
constraints on e1, it can not be included and so can be ig-
nored. On the contrary model M3 satisfies the condition.
In the search process, the purpose of the inverted-index
is to quickly detect models in the repository that must
be retained or ignored on the basis of their content be-
fore going further in the process. Then, after this filtering
step, selected models are retrieved from the repository
and compared with the query model regarding inclusion
or well-formedness relationships depending on cases. For
the comparisons, the tool exploits some results exhibited
in previous section.

6.3 Quantitative evaluation

Search functions of the preceding section make inten-
sive use of invariance and well-formedness tests with the
concept of proper metamodel (see Table 1). This section
performs time analysis on the execution of these tests.
Properties of this paper are applied and enhance running
time12. A quantification of time benefits is showed.

For this evaluation, we use models of our GenMy-
Model industrial partner 13. GenMyModel is a web col-
laborative modelling tool which supports the edition of
either standard models such as UML (class, sequence,
activity and use case diagrams) and BPMN (Business
Process Management and Notation diagrams) or propri-
etary models such as flowchart and database diagrams.
It also supports the collaborative edition of metamodels
(EMF Ecore diagrams). GenMyModel counts more than
150 000 community users distributed in 140 countries.

The evaluation process involves the following steps.
First one is the selection of models (UML models, BPMN
models and Ecore metamodels) which own more than 20
model elements. Second step consists in the evaluation
of metamodel membership and well-formedness checking
for each of these models.

A B C D E F

Kind Nb. of Avg. Metamodel Size Size
of model size of of

model m of m̃ M M̃ vM

Class 1791 174

UML 1622 2214
UseCase 500 116
Sequence 397 98
Activity 336 80

BPMN 29 132 BPMN2 831 1074

Ecore 16 70 ECORE 164 146

Table 2 Kinds of evaluated models

Table 2 shows the different kinds of the 3069 models
that were selected. Most of them are UML models. Col-
umn C gives the average number of model elements for
each kind of model, columns E and F give metamodel
size (number of constructs and constraints).

Table 3 shows evaluation results. For the well-formedness
test, two methods are applied. The first one checks if
model m is well formed w.r.t its whole metamodel M
while the second one directly applies Property 8: check-
ing if its proper metamodel m̂ is invariant in M and m
is well formed w.r.t m̂.

Column B of Table 3 gives the number of models
which pass the tests. All models are members of their
corresponding metamodel while some models are not
well formed. For each model kind, Column C (resp. Col-
umn D) gives the average time (in milliseconds) required

12 on Intel I7, 2.10 GHz × 4 core.
13 http://www.genmymodel.com
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A B C D E

Meth. 1 Meth. 2
Model Nb. of Avg. Avg. gain
Kind member time time (%)

(wfm) wfm(ms) wfm(ms)

Class 1791 67.15 28.70 57.26
(1714)

UseCase 500 37.57 9.08 75.83
(432)

Sequence 397 8.10 3.64 54.99
(77)

Activity 336 31.69 7.57 76.11
(322)

BPMN 29 16.10 8.10 49.68
(24)

Ecore 16 4.25 3.38 20.59
(16)

All 3069(2585) 50.00 19.62 60.76

Table 3 Membership and well-formedness tests

for the well-formedness test following method 1 (resp.
method 2). Column E gives the percent of time benefit
of method 2 over method 1. Last row of the table sum-
marizes this study by giving results for all models of any
kind. It appears that method 2 is near 61 percent faster
than method 1.

A B C D E F G

Model Nb Avg. Avg. Avg. time of
Kind of size size m̂ m̂ m wfm

m of of inv wrt˜̂m vm̂ M m̂

Class 1791 103 137 0.16 0.68 27.86

UseCase 500 97 129 0.11 0.82 8.15

Sequence 397 108 145 0.06 1.36 2.22

Activity 336 96 122 0.09 0.58 6.91

BPMN 29 91 109 0.03 0.34 7.72

Ecore 16 63 70 0.06 0.06 3.25

Table 4 Focus on method 2

Table 4 focuses on method 2. Column E gives run-
ning time for building of the proper metamodel and Col-
umn F gives running time for checking invariance be-
tween m̂ and M . These two operations have low running
time costs in accordance with their linear complexity14.
Column G gives the running time for the well-formedness
test of m w.r.t. m̂ and it clearly appears that it is the
most time-consuming part. This explains why method 2
offers significative time benefit compared to method 1
(Table 3). It is due to the reduced size of the involved

14 More precisely O(em + cm) and O(cm̂ × cM ), with ex =
number of model elements of x, cx = number of constraints
of x.

metamodel (proper one vs. whole metamodel)15. It is
particularly true for large metamodels (see difference of
gain betweeen the large UML metamodel and the sim-
pler Ecore metamodel). The benefit is confirmed when
considering metamodel partition into smaller submeta-
models thanks to Property 9 (such as partitioning of
UML in diagrams of Class, UseCase, Sequence . . . ).

A major conclusion of this experimental study is that
the invariance test offers low running time cost in com-
parison to well-formedness checking, as expected. As a
consequence, all stated properties which exploit invari-
ance to establish the well-formedness are much more ef-
ficient. In particular, this confirms the importance of
Property 15 as a major result: once you know that a
model m (of, say, an overall project) is well formed w.r.t.
a reference metamodel M , you can check that any sub-
model sm of m (corresponding to a sub-project) is well
formed w.r.t. M with the only low-time consuming test
that sm is invariant in m. As already said in the preced-
ing sections, this is particularily prominent when model-
ing in the large with the need to partition (meta)models
into smaller manageable ones.

7 Related works

Although submodels and submetamodels underlie many
MDE practices, these notions have not been widely stud-
ied by themselves otherwise than through specific appli-
cations. This often leads to loose definitions or implicit
meaning which are prone to misunderstanding and make
difficult the systematic control of methods and tools
which manipulate them [12, 49]. Furthermore, much of
existing works on submodels and submetamodels only
address one dimension of their duality, submodels com-
pared to a reference metamodel or alternatively models
compared to submetamodels, but rarely the two: sub-
models compared to submetamodels. Finally, submodels
and submetamodels are not so often defined the same
way as it is the case here, allowing to apply same sub-
model concepts and properties whatever the level for
the benefit of their symmetrical and homogeneous treat-
ment. See [12] for an extended synthesis of related works
on the submodel dimension.

In [29], an algorithm to systematically decompose a
model into a submodel lattice with reference to a meta-
model is proposed. The major objective is the accepta-
tion by tools which treat models conforming to a specific
metamodel of submodels also. It is a major breakthrough
in model comprehension by tools through submodels.
But, conversely, they do not consider the problem of
metamodel decomposition into submetamodels and sub-
sequent decomposition of models. There is a good rea-
son for this. Envisaged tools are those tightly wired to a
reference metamodel which, somehow, defines them. It

15 More precisely O(e2m × cM ) for method 1 compared to
O(e2m × cm̂) for method 2.
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would be interesting to generalize the approach by also
considering the systematic decomposition of a reference
metamodel. Consequent decomposition of its member
models into submodels could then be treated by tools
based on a metamodel but also dealing with its sub-
metamodels.

Fragmenta [3] is a formalization of fragmented mod-
els. Its goal is to enable the construction of model frag-
ments that can be processed in isolation and composed
to make bigger fragments. In Fragmenta, a model is a
collection of fragments organized hierarchically by means
of clusters which are fragment containers. Model frag-
ments group related elements with their links. Elements
of a fragment may reference elements from other frag-
ments of the same model through proxies according to
fragmentation strategies specified in the metamodel. Such
strategies allow to express the decomposition or exten-
sion of a particular kind of element in a fragment using
those of other fragments. Composition of model frag-
ments is based on the union of their elements and the
merge of their proxies. Fragmenta also defines the typ-
ing between models and metamodels at the level of frag-
ments. The typing of a model relies on the typing of all
elements and links included in its fragments with those of
corresponding fragments in the metamodel plus the com-
pliance to fragmentation strategies. Fragmenta formal-
ization lies on typed graphs and category theory. Mod-
els and their included clusters and fragments are defined
as three layered graphs and several morphisms between
them. Composition is based on the colimit construc-
tion of category theory. Model typing builds up on typ-
ing morphisms between constituents of layered graphs
representing the model and metamodel. So, Fragmenta
also covers both modeling and metamodeling level but
makes some distinction between models and metamod-
els in the formalization contrarily to the present work.
One key difference between both works comes from the
fact that Fragmenta is a design approach aiming to sup-
port the modularization of models by metamodel-defined
fragmentation. In Fragmenta, inclusion relationships be-
tween units (fragments, clusters, models) are established
at design time in conformance with their corresponding
metamodel. This mainly contrasts with our grounding
which aims to relate (sub)models and (sub)metamodels
only on the basis of their inclusion properties, regardless
of their origin.

The present work is also related to model extraction
which is an operation producing a submodel of an overall
input model. This operation underlies many MDE prac-
tices such as view or aspect-oriented modeling, model
comprehension [35,38] model management and more gen-
erally structuring of large projects [12,43,46]. In existing
works, there are many variations on the mechanism used
for determining submodel elements. It ranges from sim-
ple mechanism such as the enumeration of submodel ele-
ments to more sophisticated ones such as logical expres-
sion over models [28] or dedicated modeling language

[10]. Depending on the work, the nature of produced
submodels also varies. It is not always mandatory that
produced submodels conform to the metamodel of the in-
put model [26]. Some works have investigated submodel
production due to metamodel decomposition and prun-
ing [4,47,50] or submetamodel selection [11] so that they
directly compare with the present contribution. In these
works, produced submodels are related to corresponding
submetamodels through conformance but their respec-
tive inclusion properties are not considered to structure
and relate them. As so, it is only a particular case of the
general question of the relation between submodels and
submetamodels studied here. Moreover, propositions in
existing works often depend on particular technological
choices, such as the UML standard, or specific modeling
environments. The present formalism and its properties
could contribute to generalize and better characterize
the technics by overcoming technological specificities.

Model compatibility is another topic which is re-
lated to the present work. This topic is concerned with
model substitutability in operations and tools and calls
for the comparison of models with a hierarchy of re-
lated metamodels. In the works on Model Typing and
SubTyping [23,52], strategies for model substitutability
through metamodel inclusion is stated. Substitutability
is defined by a matching relationship between two meta-
models which is based on the inclusion of their elements.
According to this matching relationship, a metamodel is
stated as a supertype of another when all its elements is
included in the latter. Typical operations that use model
typing are model transformations [19, 48, 57]. They use
metamodels to type and filter input models and sub-
metamodels for genericity in their processing. Model in-
heritance presented in [36] is also a work that addresses
model compatibility for tools through inheritance be-
tween model types. Several forms of inheritance relying
on inclusion of model type intension (metamodel and its
constraints) and model type extension (model instances)
are proposed to provide various level of model compati-
bility.

Regarding these works, some proximity exists with
ours. We also consider metamodel inclusion for charac-
terizing model membership and well-formedness which
are forms of model compatibility. The main aspect that
differs in our work is due to submodels. In our case, sub-
models can also be related to metamodels and submeta-
models to state their membership and well-formedness.
In terms of model compatibility, capacities on submod-
els offered in our work allow to determine model com-
patibility for submodels as well partial compatibility of
models regarding its submodels. To our knowledge, no
existing work deals precisely with similar partial com-
patibility except [23]. In this work, partial compatibility
for models is ensured through partial subtyping between
metamodels.

Another field where our work is of interest is model
searching in repositories as illustrated in Section 6. In ex-
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isting works, two main categories of model search exist:
text-based model search and content-based model one.
In the first category, models are indexed and queried as
documents containing text or keywords extracted from
their elements. For this kind of search, the model struc-
ture and information contained in the metamodel are
not taking into account when performing indexing and
searching. On the contrary, the second category of work
indexes and queries models using their structural con-
tent. Existing works in this category mainly differ on the
way they represent model content to index and query.
Moogle [42] is a search engine that constructs indexes
and performs model searching using types and attributes
of model elements in addition to their names. Some works
like [13, 33, 53] rely on logical expressions for that pur-
pose. Finally, there are works [9, 24] which adopt query
by example search and graph representation for indexing
and searching models. In these works, queries are pro-
vided as models or model fragments. Resulting models
are retrieved using graph-matching techniques between
queries and models.

Present work compares to content-based searching
with two main specificities. First, existing works con-
sider neither the uniform search of models and metamod-
els nor the search of unspecified fragments as permitted
by our formalism. Indeed, they generally assume that
the searched models and query model fragments are all
well formed with respect to their metamodel. A second
difference is related to inclusion properties. In general,
existing works only test inclusion between the querying
model and the stored ones. By comparison, the present
work considers a larger range of inclusion modalities. As
presented in Section 6, resulting properties are exploited
to support the search of submodels included in a query
model, the ordering of the results and improve efficiency
thanks to transitivity. To our knowledge, there are no
existing works that rely on inclusion properties to pro-
vide similar capacities. Beyond that comparison, it is
interesting to observe that no work considers the search
of models with respect to a metamodel space although
such capacities are helpful in practice.

Through the proper metamodel notion, our work is
related to metamodel induction also studied elsewhere.
[25] relies on metamodel induction to address the issue
of model instances in repositories with unknown or lost
metamodel, notably due to metamodel evolution. The
authors adapt algorithms from the field of grammar in-
ference in order to cope with the issue. Metamodel in-
duction is also exploited in [41] for supporting the design
of metamodel by experts who have the knowledge of do-
main concepts but not necessarily the technical skills re-
quired by MDE platforms. They propose an interactive
approach where experts sketch some model fragments
via graphical editors and a metamodel is induced iter-
atively from these fragments. At the end, the resulting
metamodel is compiled for MDE platforms like EMF or
MetaDepth [39]. The “promotion” operator described

in [55] is also dedicated to metamodel induction. This
operation consists in mapping a model into a new meta-
model that in turn is used to build models that conform
to it. In the present work, the purpose of metamodel in-
duction is quite different. Its intent is the characteriza-
tion of submodels at the metalevel and the comparison of
induced submetamodels with other metamodels. We did
not find works that provide similar form of metamodel
induction. At a more general level, submetamodel induc-
tion is related to the symmetrical operation of model
projection resulting in submodels due to the selection of
metamodels. We are currently studying how these opera-
tions compare and combine with model extraction stud-
ied in [12] whatever the model level.

8 Conclusion

The concept of sub (meta) model is central in MDE,
by offering structuring qualities to model spaces and re-
lated operations. Concerned practices are numerous and
involve (but not exhaustively) : composition methodolo-
gies and model reuse, decomposition for (meta) model
comprehension, practical engineering activities such as
model editing, versioning and sharing and more gener-
ally model management as offered by repositories.

In the present paper we concentrate on the special
form of submodels which are submetamodels with their
specific role for model space structuring. Retaining the
formalism of [12] offers homogeneous solutions to the two
main following issues:

– Submetamodels being defined the same way submod-
els are, stated submodel inclusion properties proved
powerful enough to structure model spaces at their
own meta level.

– Assuming the preceding, it was demonstrated that
submetamodel structuring at the meta level relates
to submodel structuring at the model level and re-
ciprocally due to modeling level interdependency.

After pointing out that the problem is two-way be-
tween submodels and submetamodels, it was systemati-
cally and symmetrically examined under the logical rela-
tionships of model membership and model well-formedness
which relate them. This was facilitated by the isolation
of the original concept of proper metamodel of a model
which makes the bridge between submodel and submeta-
model properties. The uniform formalization offers alge-
braic grounding to characterize model spaces for better
comprehension and control of related practices.

We particularly study its application to model spaces
as supported by repositories. Submetamodels bring qual-
ities for organizing repositories through partitioning and
facilitating metamodel guided operations. We are study-
ing systematic arrangement of repositories thanks to the
comparison of submodel and submetamodel hierarchies
established in the paper. As far as querying is concerned,
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it was shown how this work contributes to content-based
model searching. Functionalities for model searching rel-
ative to submetamodels were also presented. They were
eased by indexing submodels by submetamodels using
proper metamodels as characteristic keys identifying mod-
els at the meta level. Finally, experiment on a big base
of models showed quantified benefits of the stated prop-
erties.

Another area where submodels and submetamodels
are determinant is substitutability in model operations
and tools. As said in the related works, this concerns
model (sub) typing which is a major issue of MDE.
This calls for comparison of models with hierarchies of
metamodels, viewed as hierarchies of model types. The
present formalism and its results on submodel and sub-
metamodel hierarchies may contribute to this need. We
ourselves use this formalism to formalize the application
of templates to model hierarchies with the idea that tem-
plate formal parameters determine a “model type” which
governs substitutability of candidate models [56].

More generally, the study aimed at better characteri-
zation of model spaces and related practices as identified
in [22,30]. The growing needs for the management of big
model spaces in repositories, moreover populated with
larger and larger models, cause problems of scalability
in model management [7,18,34]. All of this calls for sys-
tematic investigation of the concept of model part and
its related notion of submodel to address the complex-
ity. We hope that the present paper could help in better
comprehension and control of related phenomena.
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6. M. Barbero and J. Bézivin. Structured Libraries of Mod-
els. In Proceedings of 1st International Workshop on
Towers of Models (TOWERS’07), 2007.
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34 Bernard Carré, Gilles Vanwormhoudt, Olivier Caron
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