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Optimal filtration for the approximation of boundary

controls for the one-dimensional wave equation

Pierre Lissy ∗ Ionel Rovenţa†

June 28, 2016

Abstract

We consider a finite-differences semi-discrete scheme for the approximation of boundary

controls for the one-dimensional wave equation. The high frequency numerical spurious oscil-

lations lead to a loss of the uniform (with respect to the mesh-size) controllability property of

the semi-discrete model in the natural setting. We prove that, by filtering the high frequen-

cies of the initial data in an optimal range, we restore the uniform controllability property.

Moreover, we obtain a relation between the range of filtration and the minimal time of control

needed to ensure the uniform controllability, recovering in many cases the usual minimal time

to control the (continuous) wave equation.

Keywords: wave equation, control approximation, moment problem, biorthogonal fami-

lies.

Mathematical subject codes: 93B05, 30E05, 65M06.

1 Introduction

This paper is concerned with the problem of the null boundary controllability (which is equivalent

to the exact boundary controllability) for a a finite-differences semi-discrete scheme of the one-

dimensional wave equation on the time interval (0, 1). It is well-known that for the wave equation,

given T ≥ 2 and (u0, u1) ∈ L2((0, 1),C) × H−1((0, 1),C) there exists a control function v ∈
C0([0, T ],C) such that the solution of the wave equation

u′′(t, x)− uxx(t, x) = 0 t ∈ (0, T ), x ∈ (0, 1),

u(t, 0) = 0 t ∈ (0, T ),

u(t, 1) = v(t) t ∈ (0, T ),

u(0, x) = u0(x), u′(0, x) = u1(x) x ∈ (0, 1),

(1.1)

satisfies

u(T, x) = u′(T, x) = 0 (x ∈ (0, 1)).

∗CEREMADE, Université Paris-Dauphine, Paris, France. E-mail: lissy@ceremade.dauphine.fr.
†Department of Mathematics, University of Craiova, 200585, Romania. E-mail: ionelroventa@yahoo.com.
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Let N ∈ N∗ and h = 1
N+1 . For T > 0, we consider the following semi-discrete space approxima-

tion of the wave equation by the explicit finite-differences method:
u′′j (t)− uj+1(t)−2uj(t)+uj−1(t)

h2 = 0 1 ≤ j ≤ N, t > 0,

u0(t) = 0 t ∈ (0, T ),

uN+1(t) = vh(t) t ∈ (0, T ),

uj(0) = u0
j , u′j(0) = u1

j 1 ≤ j ≤ N.

(1.2)

Given T ≥ 2, h > 0 and ((u0
j , u

1
j ))1≤j≤N ∈ C2N , we study the existence of a control function

vh ∈ C0([0, T ]) such that the solution of the equation (1.2) verifies

uj(T ) = u′j(T ) = 0 (j = 1, 2, ..., N).

More precisely, our aim is to study the existence of a uniformly bounded sequence of controls

(vh)h>0 with respect to the mesh size h, by using the moment method. Remind that the dis-

cretization of the wave equation (with finite-differences schemes but also finite-element schemes)

is known for a long time (see notably [8] and [9]) to lead to high-frequency spurious solutions gen-

erated by the discretization process that make the discrete controls diverge when the mesh-size

goes to zero. Basically, this difficulty can be overcame by two strategies:

• A Tychonoff regularization of the HUM cost functional, that we would not discuss here (see

notably [9] and the survey [19]).

• An appropriate filtering technique to eliminate the short wave length components of the

solutions of the discrete system, i.e. the large frequencies (of order |n| = N) of the discretized

problem.

Let us explain into more details different filtering techniques used in the literature. In [11] (see

also [3, Section 2.4]), the author proved a uniform observability result by eliminating short wave

length components of the whole solution for large enough times (depending on the filtration). Here

the approach we chose is the one of [13], where we directly cut frequencies of the initial condition.

This approach is very different because even if the initial condition is filtered, the control will

excite all frequencies, and then the study of the uniform controllability is much more intricate

from a theoretical point of view. However, the authors believe that this approach is more natural

and convenient from a practical point of view. In [13] it was proved that if the initial data are

given by (
u0
j

u1
j

)
1≤j≤N

=
∑

1≤|n|≤M

a0
hnΦnh,

with M =
√
N , then there exists a sequence of bounded controls (vh)h>0 for (1.2) provided that

the initial condition verifies some conditions on its Fourier coefficients and that the time is large

enough (but no quantitative estimate of this minimal time is given).

In the present paper, we drastically improve the results of [13] by filtering in an optimal way

the initial condition: here M can be chosen to be any Nα with α ∈ (0, 1), or even M = δN with

δ ∈ (0, 1). Moreover, we obtain a precise estimate on the minimal time needed that turns out

to be optimal as soon as we filter enough frequencies (notably, if M =
√
N as in [13], we obtain

the almost sharp condition T > 2), and contrary to the result of [13], we can choose any initial

condition in L2(0, 1). Moreover, the controls can be chosen to be continuous (and not only L2)
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in the present work. We emphasize that beyond the theoretical interest of our result, it is likely

that it is of interest to try to allow filtrations which contain as many modes as possible, in order

to improve the precision of the approximation.

For more general uniform controllability results, by using filtered spaces, with different schemes

or non-uniform meshes and covering some higher-dimensional situations, the interested reader is

referred to [2, 4, 5, 6, 16, 19]. Let us also mention that our approach is based on a discrete approach

but there also exists a continuous approach, see notably [3] and the references therein.

Before stating our main theorem, we introduce some notations. In all what follows, an initial

condition (u0, u1) ∈ L2((0, 1),C)×H−1((0, 1),C) will be decomposed as

(u0, u1) =
∑
n∈Z∗

anΦn(x), (1.3)

with (an/n)n∈Z∗ ∈ l2(Z∗,C), where by definition

Φn(x) :=

(
1
inπ sin(nπx)

− sin(nπx)

)
,

which correspond to the eigenfunctions of the elliptic problem associated to the homogeneous

version of (1.1). We will also consider the following filtered version of the initial condition (u0, u1)

given by

(u0
M , u

1
M ) =

∑
|n|6M,n6=0

anΦn(x), (1.4)

where M ∈ N∗ (M will depend on the mesh size h in what follows).

In general, for the semi-discrete equation (1.2), we will consider the following discretization of

the initial condition (u0, u1) given by

U0
h =

∑
|n|6M,n6=0

anΦ̃nh(x), (1.5)

with M 6 N , where

Φ̃nh =

(
1
inπϕ

n
h

−ϕnh

)
(1 ≤ |n| ≤ N),

and

(ϕnh)1≤|n|≤N =


sin(nπh)

sin(2nπh)

· · ·
sin(nπhN)

 ∈ CN .

It is clear that if M → ∞ as N → ∞, then U0
h → (u0, u1). Let us emphasize that the Φ̃nh does

not correspond to the eigenvalues of the elliptic problem associated to the homogeneous version

of (1.2) (for detailed explanations, see [13, Page 758] and Section 2.1).
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Our main result is the following.

Theorem 1.1. Let (u0, u1) ∈ L2((0, 1),C)×H−1((0, 1),C) some initial condition that we decom-

pose as in (1.3). Let f : N∗ → N∗ be an increasing function (which corresponds to the filtering

function of the modes) verifying f(N) 6 N for every n ∈ N∗ and f(N) → ∞ as N → ∞. We

denote by

Γ(f) := lim sup
N→∞

f(N)

N
∈ [0, 1]. (1.6)

In addition, we assume that Γ(f) < 1 and we consider the filtered initial condition given by (1.4),

with M = f(N), and its discretized version given by (1.5). Then, for any T > 2

1−sin(πΓ(f)
2 )

, there

exists a control vh ∈ C0([0, T ],C) bringing the solution of (1.2) (with initial condition U0
h) to (0,0)

such that the sequence (vh)h>0 is bounded in C0([0, T ],C).

For example, if f(N) = δN with δ ∈ (0, 1) then Γ(f) = δ and the minimal time that ensures

the uniform controllability is 2

1−sin(πδ2 )
. Moreover, if f(N) = o(N) (this is notably the case if

f(N) = Nα with α ∈ (0, 1)), then Γ(f) = 0, and in this case, we obtain the uniform controllability

for any time T > 2, which is the minimal time needed to control the corresponding continuous

system (1.1). Note that this result is sharp, because it is well-known that one cannot choose

Γ(f) = 1, in this case the controls might explode exponentially when h goes to 0 (see [13]).

On the other hand, our main result establish the area where we lose the minimal time of control

(from the continuous case). This precise area is located in the range where the gap between

the eigenvalues of the discrete problem becomes smaller than the gap between the corresponding

eigenvalues of the continuous problem. In this range it appears spurious high frequency oscillations

which gives bad approximations of the controls that can be observed numerically (see [19]).

Let us remind that as soon as the sequence (vh)h>0 is bounded, one can extract a subsequence

converging weakly to some v ∈ L∞(0, T ) that will be a control for the continuous problem (1.1)

(it can be easily deduced by using the same computations as in [13, Theorem 4.3]).

The paper is organized as follows. In Section 1, we present some known results concerning the

question of the numerical control of the 1−D wave equations and we present the precise scope of

the paper. In Section 2, we give the proof of Theorem 1.1. More precisely, In Section 2.1, we begin

with recalling some spectral properties of the semi-discretized problem and we set our moment

problem. In Section 2.2, we give some crucial estimations on a product involving the eigenvalues

associated to the discretized problem. In Section 2.3, we exhibit an adequate multiplier and give

some estimations on it. Finally, in Section 2.4, we end our reasoning by constructing our controls

and proving the properties of uniform controllability as stated in Theorem 1.1. In Section 3 we

mention some final remarks and open results.

2 Proof of Theorem 1.1

2.1 Spectral properties and the moment problem

In this section we recall some well known facts about the spectral properties of our problem.
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Let us consider the corresponding homogeneous adjoint problem:


w′′j (t)− wj+1(t)−2wj(t)+wj−1(t)

h2 = 0 1 ≤ j ≤ N, t > 0,

w0(t) = 0 t ∈ (0, T ),

wN+1(t) = 0 t ∈ (0, T ),

wj(0) = w0
j , w′j = w1

j 1 ≤ j ≤ N.

(2.1)

We define the matrix Ah ∈MN×N (R) as follows:

Ah = 1
h2



2 −1 0 0 . . . 0 0

−1 2 −1 0 . . . 0 0

0 −1 2 −1 . . . 0 0
...

...
. . .

. . .
. . .

...
...

0 0 . . . −1 2 −1 0

0 0 . . . 0 −1 2 −1

0 0 . . . 0 0 −1 2


.

The adjoint problem (2.1) can be rewritten in a matricial form as follows:{
W ′′(t) +AhW (t) = 0 t > 0,

W (0) = W 0, W ′(0) = W 1,
(2.2)

where W (t) = (w1(t), ..., wN (t))
T ∈ CN and the initial data is

(
W 0

W 1

)
=

(
(w0

j )1≤j≤N
(w1

j )1≤j≤N

)
∈

C2N .

Now, if we set Z(t) =

(
W (t)

W ′(t)

)
and Z0 =

(
W 0

W 1

)
, then (2.2) has the following equivalent

vectorial form {
Z ′(t) +AhZ(t) = 0

Z(0) = Z0,

where the operator Ah is given by Ah =

(
0 −IN
Ah 0

)
and IN is the identity matrix of size N .

The eigenvalues of Ah are given by the family (i λn)1≤|n|≤N , where

λn =
2

h
sin

(
nπh

2

)
, 1 ≤ |n| ≤ N, (2.3)

and the corresponding eigenvectors are

Φnh =

(
1
iλn

ϕnh
−ϕnh

)
(1 ≤ |n| ≤ N),

where

(ϕnh)1≤|n|≤N =


sin(nπh)

sin(2nπh)

· · ·
sin(nπhN)

 ∈ C2N
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are the eigenvectors of Ah.

Note that (Φnh)1≤|n|≤N forms an orthonormal basis in C2N .

The next result gives a sufficient and necessary condition for the null-controllability of (1.2). Its

proof follows immediately multiplying (1.2) by the solution of (2.2) and integrating by parts in

time (for more details, see [13, Proposition 3.4]).

Lemma 2.1. Given T > 0, system (1.2) is null-controllable at time T if, and only if, for any

initial data U0 = (u0
j , u

1
j )1≤j≤N ∈ C2N , there exists vh ∈ C0([0, T ],C) which verifies∫ T

0

vh(t)
wN (t)

h
dt = h

∑
1≤j≤N

(u0
jw

1
j − u1

jw
0
j )

((
(w0

j , w
1
j )1≤j≤N

)
∈ C2N

)
,

where W is the solution of (2.2).

We are now able to transform our controllability problem into a moment problem (see [13,

Proposition 3.5]).

Proposition 2.1. Given T > 0, system (1.2) is null-controllable at time T if, and only if, for

any initial data (u0
j , u

1
j )1≤j≤N =

∑
1≤|n|≤N anΦnh there exists vh ∈ C0([0, T ],C) which verifies∫ T

0

vh(t) e−iλnt dt =
(−1)nh

sin(nπh)
an (1 ≤ |n| ≤ N) . (2.4)

Let us now give a precise description of the next steps.

Our aim is to construct and evaluate an explicit biorthogonal sequence to the family (eiλnt)1≤|n|≤N
in L2

(
−T2 ,

T
2

)
. We shall do that in several steps (which will be done in the next two sections):

1. We construct an entire function Pm, with the property that Pm(λn) = δmn.

2. We give an estimate of the product Pm on the real axis.

3. We construct a smart multiplier Mm with rapid decay on the real axis such that PmMm is

bounded on the real axis and Mm(λn) = δmn.

4. The Fourier transform of the entire function ψm(z) := Pm(z)Mm(z) gives the element θm of

a biorthogonal sequence to the family (eiλnt)1≤|n|≤N in L2
(
−T2 ,

T
2

)
. Moreover, an estimate

for the L∞-norm of θm is also obtained thanks to an estimate on the L1-norm of ψm.

Once we have a biorthogonal sequence (θm)1≤|m|≤N to the family (eiλnt)1≤|n|≤N in L2
(
−T2 ,

T
2

)
we can construct a control thanks to the following formula (see [13, Page 759]):

vh(t) =
∑

1≤|n|≤N

(−1)n+1h

sin(nπh)
e−iλn

T
2 an(h)θn

(
t− T

2

)
,

where an(h) is related to an by the following relations (see [13, Page 758]):

an(h) :=

{
0, |n| > f(N),
1
2

(
λn
nπ + 1

)
an + 1

2

(
λn
nπ − 1

)
a−n, |n| 6 f(N).

(2.5)
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The method considered for the construction of a biorthogonal family was first introduced in [17]

and in the context of boundary controllability problems in [7]. The main difficulties in our analysis

is to obtain optimal estimates for the behavior of the Weierstrass product on the real axis and

also to construct an adequate multiplier. This two difficulties will be treated in the next two

subsections.

2.2 The product estimates

In this section we define a Weierstrass product Pm, with the property that Pm(λn) = δmn and we

obtain an optimal estimate of the product Pm on the real axis. In the sequel, C > 0 denotes an

absolute constant which may vary from line to line.

For every 1 ≤ |m| ≤ N , we define the function

Pm(z) =
∏

1≤|n|≤N
n 6=m

(
z

λn
− 1

) ∏
1≤|n|≤N
n6=m

λn
λm − λn

:= P 1
m(z)Sm (z ∈ C), (2.6)

where

P 1
m(z) =

∏
1≤|n|≤N
n 6=m

(
z

λn
− 1

)
,

Sm =
∏

1≤|n|≤N
n 6=m

λn
λm − λn

.

Let us remind that the value of λn is given in (2.3). We start our estimates with the following

technical result concerning the second term of the product Pm.

Lemma 2.2. For every 1 ≤ |m| ≤ N , we have that

|Sm| = cos2 mπh

2
. (2.7)

Proof of Lemma 2.2. From the symmetry of the sequence (λn)1≤|n|≤N (i.e. λ−n = −λn), it is

sufficient to consider only the case 1 ≤ m ≤ N . We remark that

Sm =
∏

1≤|n|≤N
n 6=m

∣∣∣∣ λn
λn − λm

∣∣∣∣ =
1

2

∏
1≤n≤N
n 6=m

∣∣∣∣ λ2
n

λ2
n − λ2

m

∣∣∣∣ =
1

2

∏
1≤n≤N
n6=m

sin2
(
nπh

2

)∣∣∣sin( (m−n)πh
2

)
sin
(

(m+n)πh
2

)∣∣∣ . (2.8)

We study this last product by splitting it into two parts. We have that

∏
1≤n≤N
n 6=m

sin
(
nπh

2

)∣∣∣sin( (n−m)πh
2

)∣∣∣ =

N∏
k=m+1

sin

(
kπh

2

)
N−m∏
k=1

sin

(
kπh

2

) =

N∏
k=m+1

sin

(
kπh

2

)
N∏

k=m+1

cos

(
kπh

2

) ,
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and also

∏
1≤n≤N
n6=m

sin
(
nπh

2

)
sin
(

(n+m)πh
2

) = 2 cos

(
mπh

2

) m∏
k=1

sin

(
kπh

2

)
m+N∏
k=N+1

sin

(
kπh

2

) = 2 cos2

(
mπh

2

) m∏
k=1

sin

(
kπh

2

)
m∏
k=1

cos

(
kπh

2

) .

From the last two relations together with (2.8) we obtain that

Sm = cos2

(
mπh

2

) N∏
k=1

sin

(
kπh

2

)
N∏
k=1

cos

(
kπh

2

) = cos2

(
mπh

2

)
,

and the proof is complete.

In the next Lemma, we give an intermediate estimate that will be useful to estimate P 1
m.

Lemma 2.3. We have that

P (x) :=
∏

1≤n≤N
n6=nx

∣∣x2 − λ2
n

∣∣
λ2
n

≤ C

cos2 vπh
2

(
|x| < 2

h

)
, (2.9)

N∏
n=1

x2 − λ2
n

λ2
n

= 1

(
|x| = 2

h

)
, (2.10)

N∏
n=1

x2 − λ2
n

λ2
n

≤ 2

h
ln

(
xh

2
+

√
x2h2

4
− 1

) (
|x| > 2

h

)
, (2.11)

where v ∈
[
0, 1

h

)
is defined such that x = 2

h sin vπh
2 .

Proof of Lemma 2.3. We remark that∣∣P 1
m(x)

∣∣ =
|λm|
|x− λm|

∏
1≤n≤N

∣∣x2 − λ2
n

∣∣
λ2
n

. (2.12)

In what follows, for any 0 ≤ x < 2
h , we consider

nx = argmin1≤n≤N−1 {|x− λn|} . (2.13)

If |x| = 2
h then

N∏
n=1

x2 − λ2
n

λ2
n

=

N∏
n=1

cos2
(
nπh

2

)
sin2

(
nπh

2

) = 1,

and (2.10) holds.
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If |x| > 2
h , let r2 = x2h2

4 − 1. We have that

∏
1≤n≤N

x2 − λ2
n

λ2
n

=

N∏
n=1

(
cos2

(
nπh

2

)
+ r2

sin2
(
nπh

2

) )
=

N∏
n=1

cos2
(
nπh

2

)
sin2

(
nπh

2

) N∏
n=1

(
1 +

r2

cos2
(
nπh

2

))

=

N∏
n=1

(
1 +

r2

cos2
(
nπh

2

)) ≤ exp(I),

where

I :=

∫ N+1

0

ln

(
1 +

r2

cos2
(
tπh
2

)) dt

In the following, we are going to compute exactly the value of the integral I. If we consider the

change of variable given by u = tan
(
tπh
2

)
, we infer that

I =
2

πh

∫ ∞
0

ln
(
1 + r2(1 + u2)

)
1 + u2

du =
2

πh
F (1),

where

F (α) =

∫ ∞
0

ln
(
1 + r2(1 + αu2)

)
1 + u2

du.

It is easy to prove that F is of class C1 and its derivative F ′ is given by

F ′(α) =

∫ ∞
0

u2r2

(1 + u2)(1 + r2(1 + αu2))
du =

r2

αr2 − r2 − 1

∫ ∞
0

1

1 + u2
− 1 + r2

1 + r2 + αu2r2
du

=
r2

αr2 − r2 − 1

arctanu− 1 + r2

αr2

1√
1+r2

αr2

arctan

 u√
1+r2

αr2

∣∣∣∣∣∣
∞

0

=
r2

αr2 − r2 − 1

π

2

(
1−

√
1 + r2

αr2

)
.

Hence, we obtain that there exists some constant C > 0 such that

F (α) = π ln(
√
αr2 +

√
1 + r2) + C.

Since F (0) = π
2 ln(1 + r2) we deduce that C = 0. Thus, we have that

I =
2

πh
F (1) =

2

h
ln(r +

√
1 + r2) =

2

h
ln

(
xh

2
+

√
x2h2

4
− 1

)
,

and inequality (2.11) holds.
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Our next aim is to prove (2.9). Since x 7→ P (x) is an even function we study only the case x ≥ 0.

If 0 ≤ x < 2
h , let x = 2

h sin vπh
2 , where v ∈

[
0, 1

h

)
. We also consider

[v] = argmin1≤n≤N−1 {|v − n|} and {v} = v − [v].

We remark that |{v}| ≤ 1
2 . From (2.13) we deduce that [v] = nx. We have that

P (x) =

nx−1∏
n=1

(
sin2 vπh

2

sin2 nπh
2

− 1

)
N∏

n=nx+1

(
1−

sin2 vπh
2

sin2 nπh
2

)

=

nx−1∏
n=1

cos(nπh)− cos(vπh)

2 sin2 nπh
2

N∏
n=nx+1

cos(vπh)− cos(nπh)

2 sin2 nπh
2

=

nx−1∏
n=1

sin ([v]+{v}−n)πh
2 sin ([v]+{v}+n)πh

2

sin2 nπh
2

N∏
n=nx+1

sin (n−[v]−{v})πh
2 sin ([v]+{v}+n)πh

2

sin2 nπh
2

.

We deduce that

P (x) =

[v]−1∏
k=1

sin
(k + {v})πh

2

2[v]−1∏
k=[v]+1

sin
(k + {v})πh

2

×
N−[v]∏
k=1

sin
(k − {v})πh

2

N+[v]∏
k=2[v]+1

sin
(k + {v})πh

2

∏
1≤k≤N
k 6=[v]

1

sin2 kπh
2

.

=

N∏
k=1

k 6=[v], 2[v]

sin
(k + {v})πh

2

N+[v]∏
k=N+1
k 6=2[v]

sin
(2N + 2− k − {v})πh

2

N−[v]∏
k=1

sin
(k − {v})πh

2

∏
1≤k≤N
k 6=[v]

1

sin2 kπh
2

.

Hence, we have that

P (x) =

N∏
k=1

k 6=[v], 2[v]

sin
(k + {v})πh

2

N+1∏
k=1

k 6=N−[v]+1, 2N+2−2[v]

sin
(k − {v})πh

2

∏
1≤k≤N
k 6=[v]

1

sin2 kπh
2

=
sin2 [v]πh

2 cos {v}πh2

sin vπh
2 sin (v+[v])πh

2 cos vπh2

N∏
k=1

sin (k+{v})πh
2 sin (k−{v})πh

2

sin2 kπh
2

.

(2.14)

From the concavity of the functions f1(x) = ln(sinx), x ∈ (0, π), the following inequality holds:

sin(x+ y) sin(x− y) ≤ sin2(x)
(

0 ≤ y < x <
π

2

)
. (2.15)

By using (2.14) and (2.15) we deduce that there exists C > 0 such that

P (x) ≤
sin [v]πh

2

2 sin (v+[v])πh
4 cos (v+[v])πh

4 cos vπh2

≤ C

cos2 vπh
2

. (2.16)
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If [v] = N , in a similar way we have that

P (x) ≤ C

cos2 vπh
2

. (2.17)

From (2.16) and (2.17) we deduce that (2.9) holds and the proof is complete.

Now we have all the ingredients needed to estimate the behavior of Pm on the real axis.

Proposition 2.2. There exists a constant C > 0 such that for any 1 ≤ |m| ≤ N we have that

|Pm(x)| ≤
{
C

(
|x| < 2

h

)
C exp (ϕ(x))

(
|x| ≥ 2

h

)
,

(2.18)

where

ϕ(x) =
2

h
ln

(
xh

2
+

√
x2h2

4
− 1

)
.

Proof of Proposition 2.2. If |x| ≥ 2
h , from (2.7) and (2.12) we obtain that

|SmP 1
m(x)| ≤ cos2 mπh

2

λ|m|

|x| − λ|m|

∏
1≤n≤N

x2 − λ2
n

λ2
n

≤ C
2
h sin |m|πh2 cos2 mπh

2

x− 2
h sin |m|πh2

∏
1≤n≤N

x2 − λ2
n

λ2
n

≤
sin |m|πh2 cos2 mπh

2

1− sin |m|πh2

∏
1≤n≤N

x2 − λ2
n

λ2
n

.

From the above inequality, (2.10) and (2.11) we obtain that

|Pm(x)| ≤ C exp (ϕ(x))

(
|x| ≥ 2

h

)
.

If |x| < 2
h , from (2.12) and the fact that

x+λnx
λnx

≤ λnx+1+λnx
λnx

≤ C we have that

∣∣P 1
m(x)

∣∣ =
|λm|
|x− λm|

∣∣x2 − λ2
nx

∣∣
λ2
nx

∏
1≤n≤N
n6=nx

∣∣x2 − λ2
n

∣∣
λ2
n

≤ C
λ|m|∣∣|x| − λ|m|∣∣ |x− λnx |λnx

P (x). (2.19)

Let v ∈
[
0, 1

h

)
such that x = 2

h sin vπh
2 . From (2.13) we deduce that [v] = nx. From (2.9) and

(2.19) we have that ∣∣P 1
m(x)

∣∣ ≤ C

cos2 vπh
2

λ|m|

λnx

|x− λnx |∣∣|x| − λ|m|∣∣ . (2.20)

If |m| = nx from (2.7) and (2.20) we obtain that

|Pm(x)| ≤ C (|m| = nx).
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If |m| 6= nx from (2.7) , (2.20) and taking to account that |x− λnx | ≤ λnx+1 − λnx we have that

|Pm(x)| ≤ C
cos2 mπh

2

cos2 vπh
2

λ|m|

λnx

|x− λnx |∣∣|x| − λ|m|∣∣ ≤ C (N + 1−m)2

(N + 1− v)2

|m|
nx

sin πh
4 cos (2nx+1)πh

4

sin |v−m|πh4 cos (v+m)πh
4

≤ C (N + 1−m)2

(N + 1− v)2

|m|
nx

2N + 1− 2nx
|v −m|(2N + 2− v −m)

.

By taking into account the different cases for m and nx = [v] we deduce that

|Pm(x)| ≤ C (|m| 6= nx),

and the proof is complete.

The last result of this section gives a rough estimate on the whole complex plane for P 1
m that

will be useful in our Paley-Wiener strategy.

Lemma 2.4. For z ∈ C, one has for some constant C(h) depending on h,

|P 1
m(z)| 6 (1 + C(h)|z|)

2
h . (2.21)

Proof of Lemma 2.4. We have

|P 1
m(z)| 6

N∏
k 6=0,k=−N

(
1 +

|z|
|λn|

)
6

N∏
k 6=0,k=−N

(
1 +
|z|
λ1

)
6

(
1 +
|z|
λ1

)2N

.

2.3 Construction of the multiplier

In this section we introduce a smart multiplier Mm with rapid decay on the real axis such that the

product PmMm is bounded on the real axis and Mm(λn) = δmn. The Fourier transform of such a

product gives the element θm of a biorthogonal sequence. We are able to obtain an estimate for

the L∞-norm of θm.

To get our multiplier, we consider the following construction. Let us remind that 2/h = 2(N+1) ∈
N. We follow step by step the construction given in [10, Pages 19-20] (see also [12]) in order to

obtain a multiplier with compact support, and we use the estimates given there that we extend a

little bit (be careful that here we work on the interval [−b, b]). For every b > 0 we set

Hb :=
1[−b,b]

2b
.

We remark that ∫
R
Hb =

∫ b

−b
Hb = 1.

We introduce some parameter η ∈ (0, 1) will be destined to be sufficiently small. We denote by

a :=
h(1− η)

2 + h
,

12



so that
2/h+1∑
n=1

a+ η = 1.

We then introduce b0 = b1 = η
2 and b2 = . . . = b2/h+2 = a and we consider the product

u := Hb0 ∗ . . . ∗Hb 2
h

+2
,

where ∗ represents the convolution product. Let us emphasize that the sequence (bk)k∈[|0,2/h+2|]
is decreasing as soon as h is small enough. One has the following result:

Lemma 2.5. u is of class C2/h+1 and is compactly supported in [−1, 1]. Moreover, one has

u(2/h+1) ∈W 1,∞(R), and the following estimates hold:∫ 1

−1

u = ||u||1 = 1,

||u(2)||1 6
4

η2
(2.22)

and

||u2/h+2||1 6
4

η2

(
2 + h

h(1− η)

) 2
h

. (2.23)

The proof of Lemma 2.5 is straightforward using the formulas given in [10, Page 20] that one

can easily generalize until the u(2/h+1)-th derivative by remarking that the generalized derivative

u(2/h+2) exists and is piecewise continuous.

From now on, we denote by T− := T (1− δ), where δ ∈ (0, 1) is some sufficiently small constant.

We now denote by

Mm(z) :=

∫ 1

−1

u(t)e−i
T−
2 (z−λm)tdt. (2.24)

One has the following properties on Mm.

Lemma 2.6. One has

Mm(λm) = 1 (2.25)

and for every x ∈ R,

|Mm(x)| 6 1. (2.26)

Moreover, for every x ∈ R,

|Mm(x)| 6 16

(ηT−|x− λm|)2 , (2.27)

|Mm(x)| 6 16

(ηT−|x− λm|)2

(
2 + h

h(1− η)|x− λm|T−

) 2
h

. (2.28)
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Relation (2.25) is clear from the definition of Mm given in (2.5). Estimate (2.26) can be easily

deduced by using (2.22) and performing 2 integrations by parts, whereas (2.28) is easily deduced

by using (2.23) and performing 2/h + 2 integrations by parts (which is possible thanks to the

regularity of u).

Now, we consider the function

ψm(z) := Pm(z)Mm(z), z ∈ C. (2.29)

The main proposition of this section is the following.

Proposition 2.3. The function ψm is of exponential type T/2. Moreover, if T > 2

1−sin(πΓ(f)
2 )

(where Γ(f) is defined in (1.6)), then ψm ∈ L1(R) ∩ L2(R) and we have

||ψm||L1(R) 6 C(T,Γ(f)), (2.30)

for some constant C(T,Γ(f)) depending on T and Γ(f).

Proof of Proposition 2.3.

It is easy to verify that ψm is of exponential type T/2 thanks to (2.29), (2.24) and (2.21) (one

can absorb the polynomial term appearing in (2.21) by the exponential term appearing in (2.24)

by losing a little bit on the exponential, that is why we need to consider some T− < T ).

Now, in order to obtain (2.30), we need to perform careful estimations.

1. If |x| 6 λm − 1, then using (2.29), (2.18) and (2.27) one has for T > 2 and δ small enough

(independently on h)

|ψm(x)| 6 C

η2|x− λm|2
. (2.31)

2. If |x| ∈ [λm − 1, λm + 1], then using (2.29), (2.18) and (2.27) one has

|ψm(x)| 6 C. (2.32)

3. If |x| ∈ [λm+1, 2
h ], then using (2.29),(2.18) and (2.27) one has for T > 2 and δ small enough

(independently on h)

|ψm(x)| 6 C

η2|x− λm|2
. (2.33)

4. If |x| > 2
h ,then using (2.29), (2.18) (which implies that |Pm(x)| 6 C(|x|h)

2
h ) and (2.28), one

has for T > 2 and δ small enough (independently on h)

|ψm(x)| 6 C
η2

1
(|x−λm|)2 (|x|h)

2
h

(
2+h

h(1−η)|x−λm|T−

) 2
h

6 C
η2

1
(|x−λm|)2

(
2+h

(1−η)T−

) 2
h
(

|x|
|x−λm|

) 2
h

.
(2.34)
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We recall that 2/h > λm. Hence, we deduce that if |x| > 2/h we have

|x|
|x− λn|

6
2/h

2/h− λm
6

1

1− hλm/2
. (2.35)

Let ε > 0. We observe that

hλm
2

= sin

(
mπh

2

)
= sin

(
mπ

2(N + 1)

)
6 sin

(
f(N)π

2N

)
.

Hence, for N large enough (i.e. h small enough) we obtain thanks to the previous estimate

together with the definition of Γ(f) given in (1.6) and (2.35) that

|x|
|x− λn|

6
1

1− sin
(
πΓ(f)

2

)
− ε

.

Using the previous estimate together with (2.34) and choosing N large enough so that we also

have h 6 ε, we deduce that

|ψm(x)| 6 C

η2

 2 + ε

(1− sin
(
πΓ(f)

2

)
− ε)T−

 2
h (

1

|x− λm|

)2

. (2.36)

Combining (2.31), (2.32), (2.33) and (2.36), we deduce easily that ψm ∈ L1(R) ∩ L2(R) and

||ψm||L1(R) 6 C(1− 1
λm

) + C
η2 + C

∫ 2
h

λm+1

(
1

|x−λm|

)2

dx

+ C
η2

(
2+ε

(1−sin(πΓ(f)
2 )−ε)T−

) 2
h ∫∞

2/h

(
1

|x−λm|

)2

dx

6 C
η2 + C

∫∞
λm+1

(
1

|x−λm|

)2

dx+ C
η2

(
2+ε

(1−sin(πΓ(f)
2 )−ε)T−

) 2
h

1
2/h−λm

6 C
η2 + C

η2
h

2(1−sin(πΓ(f)
2 )−ε)

(
2+ε

(1−sin(πΓ(f)
2 )−ε)T−

) 2
h

.

Hence, for every T > 2

1−sin(πΓ(f)
2 )

, by choosing δ, ε, η small enough (depending on Γ(f) and T

but independent of h), we deduce that ||ψm||L1(R) is bounded independently of h and λm and we

deduce (2.30).

2.4 Construction and estimation of the discretized control

Proof of Theorem 1.1. We denote by θn the inverse Fourier transform of ψn. By Proposition

2.3, ψn ∈ L2(R) and ψn is of exponential type T/2, hence, applying the version of the Paley-

Wiener Theorem given in [15, Theorem 19.3, Page 370], θn is of compact support [−T/2, T/2] and

θn ∈ L2(−T/2, T/2). Moreover, since ψn ∈ L1(R) we now that θn ∈ C0([0, T ],R) and using (2.30)

one has

||θn||∞ 6 C. (2.37)
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Now, we define our control as follows:

vh(t) =
∑

1≤|n|≤N

(−1)n+1h

sin(nπh)
e−iλn

T
2 an(h)θn

(
t− T

2

)
,

where an(h) was defined in (2.5). It is clear that vh is supported in [0, T ] since the θn are supported

on [−T/2, T/2]. Thanks to (2.5), (2.6), (2.25) and (2.29), one easily verifies that (2.4) is verified

and then the control vh is such that the corresponding solution of (1.2) verifies

uj(T ) = u′j(T ) = 0 (j = 1, 2, ..., N).

Let us emphasize that our control is continuous as a finite sum of continuous functions. We

remark that
h

sin(nπh)
6

1

2n

and thanks to (2.5) one has

|an(h)| 6 2(|an|+ |a−n|),

hence, using the two previous estimates together with (2.37) and applying the Cauchy-Schwartz

we obtain

||vh||∞ 6 C(T,Γ(f))

 ∑
1≤|n|≤N

1

n2

 1
2
 ∑

1≤|n|≤N

a2
n

 1
2

6 C(T,Γ(f))||an||2 6 C(T,Γ(f))||(u0, u1)||2,

which ends the proof of Theorem 1.1.

3 Conclusions and open problems

In this section we briefly present some conclusions, remarks and open problems.

Our result says that, if the initial data are given by(
u0
j

u1
j

)
1≤j≤N

=
∑

1≤|n|≤M

a0
hnΦnh,

with M less than δN with δ ∈ (0, 1), then there exists a sequence of bounded controls (vh)h>0 for

(1.2). By filtering in an optimal way the initial condition we are able to compute the minimal time

needed to control. If we filter out enough frequencies we obtain that the minimal time of control

is optimal. As expected, the optimal range of filtration is localized in the area where the gap

between the eigenvalues of the discrete model becomes very small. More precisely, we obtain the

same time of control (minimal time of control) as in the continuous case, in the range where the

gap between the eigenvalues of the discrete problem has a similar behaviour as the gap between

the eigenvalues for the continuous problem. Beyond this range, the gap is altered by the numerical

discretization and we lose the optimal time of control.

An interesting (and maybe difficult) open question that remains unclear after this work is the

following: for a given range of filtration given by n 6 f(N), can we determine precisely the
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minimal time that ensures the uniform controllability? If we compare with the results given in

[3, Section 2.4], it is likely that one cannot do better than T > 2/ cos(Γ(f)π/2), which is sharp in

the context where we filter the whole solution, but we have no intuition if it would be possible to

recover this minimal time in our context.

Another question arising is to prove that vh converges strongly to v, and if it is the case, to give

an estimation of the speed of convergence.

Of course, one can ask if it is possible to apply the same strategy for other one-dimensional

problems, notably the beam equations or equations involving fractional Laplace operators.

The last proposed open problem is given by the study of a similar strategy as in [1], where

a finite difference semi-discrete scheme for the approximation of the boundary controls of a 1-

D equation modeling the transversal vibrations of a hinged beam has been considered. Due

to the high frequency numerical spurious oscillations, the uniform (with respect to the mesh-

size) controllability property of the semi-discrete model fails in the natural setting. Hence, the

convergence of the approximate boundary controls corresponding to initial data in the finite energy

space cannot be guaranteed. In [1] it was proved that, by adding a vanishing numerical viscosity,

the uniform controllability property and the convergence of the scheme is ensured. The discrete

wave equation perturbed by a vanishing viscosity term has been studied in [14], and by choosing

the parameter of viscosity ε to be exactly equal to h, the uniform controllability properties was

restored. It remains as an open problem if it is enough to choose a smaller parameter of the form

ε = hα, with α ∈ (1, 2) in order to restore the uniform controllability properties (it has been

proved in [18] that the controls explode if ε = h2). The numerical experiments from [14] confirm

this fact, and based on our present result, a more difficult theoretical study might be successfully

done.

Acknowledgement. The first author has been partially supported by the project IFSMACS

funded by the french Agence Nationale de la Recherche, 2015-2019 (Reference: ANR-15-CE40-

0010). The second author has been supported by Romanian National Authority for Scientific

Research CNCS - UEFISCDI research project PN-II-RU-TE-2014-4-1109. The authors are grateful

to Sorin Micu for several interesting suggestions and comments.

References
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