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The paper proposes a method to analyze forced vibrations in nonlinear systems. The procedure combines Rauscher's method and Pierre-Shaw nonlinear modes. Results from an analysis of the forced vibrations of a shallow arch are presented as an example
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undergong forced vibrations. Assume that the vibrations are not damped. The vector function R q q i m ( ,... , )

1 describes nonlinear terms that contain the generalized coordinates raised to second, third, and other powers. It is assumed that the natural frequencies w i do not satisfy the internal-resonance condition.

Assume that the excitation frequency W is close to the natural frequency w l . Since there is no internal resonance, we can assume that the amplitude of the generalized coordinate q l is much higher than all the other generalized coordinates in the neighborhood of the principal resonance. For the purpose of vibration analysis, we will use an iterative procedure. At the first iteration, we set q l ¹ 0 and q m = 0, m =1, m, m ¹ l. Then an oscillator with one degree of freedom follows from system (1): && ~( ) cos( ) q q R q h t l l l l l l

+ + = w 2 W , (2) 
where ~( ) ( ,... , , , ,... , ) R q R q l l l l = 0 0 0 0 . Following Rauscher's method, we represent the solution of system (2) as cos ( ) Wt r q q q l l l

= = + + + a a a 0 1 2 2 K . ( 3 
)
The idea of combining nonlinear normal modes and Rauscher's method is as follows. Substituting (3) into system (1), we obtain a so-called pseudoautonomous dynamic system [START_REF] Avramov | Snap-through truss as an absorber of forced oscillations[END_REF][START_REF] Vakakis | Normal Modes and Localization in Nonlinear Systems[END_REF]. Then nonlinear normal modes are analyzed in the pseudoautonomous dynamic system [START_REF] Shaw | Normal modes for nonlinear vibratory systems[END_REF]. Using nonlinear normal modes, we reduce the system of m equations (1) to one equation analyzed approximately.

Let us now obtain the solution of Eq. ( 2) in the form (3). To this end, we apply the harmonic balance method to system (2). The solution is represented as
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)
Restricting the analysis to three Fourier harmonics, we substitute solution (4) into (2) and balance the harmonics. Doing so gives a system of four nonlinear algebraic equations for ( , , , , )

W A A A A 0 1 2 3 . Its general form is F W n n ( , , , , ) , , A A A A 0 1 2 3 0 14 = = . (5) 
The objective of the analysis is to plot the amplitude-frequency characteristic at the principal resonance W » w l . This is why the value of A 1 is incremented, and the system of the nonlinear algebraic equations ( 5) is solved for each value of A 1 . As a result, we obtain parameters ( , , , )

W A A A 0 2 3 .
Then, the values of W, , A A 0 2 , and A 3 are used to determine the coefficients of series (3): a 0 , a 1 , a 2 , ….

Let us outline a procedure of determining these coefficients. To this end, we represent the solution of Eq. (4) as
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Next, series (3) is substituted into (6) and the coefficients of like powers of q l are equated. As a result, we obtain a cubic equation for a 0 :
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The parameters a 1 , a 2 , and a 3 are defined by a a a
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Equation ( 3) is substituted into the nonautonomous dynamic system (2) to obtain a pseudoautonomous dynamic system: && ( ,... , ) ( ), , q q R q q h q q i m i i i i m i l l
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For the purpose of further analysis, we change variables:

q q t i i i = + 0, ( ) h , (10) 
where q i m i 0 1 , ( , ) = are the coordinates of the fixed point of dynamic system (9) that are determined from a system of m nonlinear algebraic equations:
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The dynamic system (9) takes the following form for the variables h h 1 , ,
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where F i ( ,... h 1 , h m ) are nonlinear functions.

The matrix

L = = = || || , , a ij j m i m 1 1 is represented as L = - UAU 1 , ( 13 
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where U is a matrix consisting of the eigenvectors of the matrix L;

A m = diag ( , , ) n n 1 2 2

K

. We introduce new variables:
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Then the dynamic system (12) takes the form

&& ( , , ) , , x n x x x i i i i m L i m + + = = 2 1 0 1 K , ( 15 
)
where L i ( ,... x 1 , x m ), i m = 1, , is the nonlinear part of the dynamic system.

To analyze the dynamic system (15), we will use Pierre-Shaw nonlinear normal modes [START_REF] Shaw | Normal modes for nonlinear vibratory systems[END_REF]. Then, all the generalized coordinates x i and velocities v i i = & x are expressed in terms of one coordinate x l and velocity v l :
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where
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,K are unknown coefficients to be determined.

Let us differentiate Eq. ( 16) with respect to time and use Eq. [START_REF] Nayfeh | Nonlinear Oscillations[END_REF]. Doing so gives the following system of partial differential equations:
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Following [START_REF] Bespalova | Vibrations of polygonal plates with various boundary conditions[END_REF], we substitute Eqs. ( 16) into ( 17) and collect the coefficients of like terms x l j l j v 1 2 , j 1 0 1 2 = , , ,... , j 2 0 1 2 = , , ,K . As a result, we obtain a system of linear algebraic equations for F F
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, ,K . Solving this system yields functions [START_REF] Rauscher | Steady oscillations of system with nonlinear and unsymmetrical elasticity[END_REF]. Using Eq. ( 14), we write functions ( 16) for the variables h h 1 , ,
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where
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, ,K are known parameters.

We substitute Eq. ( 18) into [START_REF] Avramov | Snap-through truss as an absorber of forced oscillations[END_REF] and the resulting functions into the equation l of system [START_REF] Gulyaev | Applied Problems in the Theory of Nonlinear Vibrations of Mechanical Systems[END_REF]. Doing so gives a dynamic system with one degree of freedom, which can be represented in the form (2). To solve this equation, we use the harmonic-balance method. The solution is presented in the form (4). Then, we obtain a system of four nonlinear algebraic equations for W, , A A 0 2 , and A 3 . In the general case, this system can be represented in the form [START_REF] Yu | Dynamic analysis of a two-mass system with essentially nonlinear vibration damping[END_REF]. Let us now generalize the iterative procedure outlined above. At the first iteration, one equation ( 2) is solved and the contribution of the coordinates q q q q q l l m 1 2

-+ is neglected. At the second iteration, the nonlinear vibration mode (18) is used to take into account the contribution of all the coordinates to the dynamics of the system. The third, fourth, etc. iterations are set up similarly. If the values of W, , A A 0 2 , and A 3 obtained in two successive iterations are close, the iterative process is terminated. Then new value of A 1 is specified and a new point of the amplitude-frequency characteristic starts to be calculated.

2. Nonlinear Vibrations of a Shallow Arch. The above method can be used to analyze the nonlinear vibrations of a shallow arch (Fig. 1). The nonlinear dynamics of the arch is described by a system of integro-partial differential equations [START_REF] Hsu | Stability of shallow arches against snap-through under timewise step loads[END_REF]:
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where A and I are the cross-sectional area and moment of inertia; y x t ( , )is the current deflection of the arch; E and r are Young's modulus and density of the material; y x 0 ( )is the initial deflection of the arch; d( / ) x L n is the delta-function; n is an arbitrary number; and F t cos( ) W is a concentrated force. We introduce the following dimensionless variables and parameters:

x x L * = , y y r * = , t t EI Al * = r 4
, y ry

0 0 = * , d d * * , x n L x L n f FL EIr - ae è ç ö ø ÷ = - ae è ç ö ø ÷ = 1 3 , ( 20 
)
where r is the cross-sectional radius of inertia.

Omittng the asterisks in [START_REF] Shaw | Modal analysis-based reduced-order models for nonlinear structures-an invariant manifolds approach[END_REF], we represent the dynamic system [START_REF] Shaw | Normal modes for nonlinear vibratory systems[END_REF] in the form 
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The initial deflection of the arch can be represented as

y x x 0 1 2 2 = + l p l p sin( ) sin( ). (22) 
Then the vibrations of the arch can be described by
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)
Next we set n = 2, substitute Eqs. ( 22) and ( 23) into [START_REF] Vakakis | Normal Modes and Localization in Nonlinear Systems[END_REF], and apply the Bubnov-Galerkin method. Doing so gives the following dynamic system:
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Now we introduce normal coordinates ( , )

x x 1 2 of the linear part of system (24), which are determined from the linear relations q q r r x x ] / .
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The dynamic system (24) takes the following form for the variables ( , )
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Let us analyze forced vibrations at the principal resonance. In this case, the excitation frequency W is close to p 1 . We set x 2 0 = at the first iteration. Then we obtain the following dynamic system:
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The solution of this equation can be represented in the form (4). Applying the harmonic-balance method, we arrive at a system of nonlinear algebraic equations, which can be written in the form (5). If system (5) has been solved numerically, the solution of Eq. ( 27) could be represented in the form (3). This solution is substituted into (26). As a result, we obtain a pseudoautonomous dynamic system:
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Let us change variables as in [START_REF] Avramov | Snap-through truss as an absorber of forced oscillations[END_REF]. For (28), we have

x x t i i i = + 0, ( ) h , i = 1, 2. (29) 
Then the parameters x 0 1 , and x 0 2 , can be found from a system of nonlinear algebraic equations in the form [START_REF] Avramov | Nonlinear equations of flexural-flexural-torsional oscillations of rotating beams with arbitrary cross-section[END_REF]. System (28) can be represented for the variables ( , ) h h
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, ,K are omitted for brevity.

We rearrange the linear part of system (30) for the normal coordinates using the equation
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The frequencies n 1 and n 2 are found as the roots of the biquadratic equation n n
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The invariant manifolds are represented for the variables ( , , , ) h h
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The motion in a nonlinear normal mode is described by a nonlinear ordinary differential equation:
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The parameters of system (36) are omitted for brevity. The periodic motions of system (36) are represented in the form (4). Then the parameters ( , , , )
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3. Numerical Vibration Analysis. Let us numerically analyze the forced vibrations of the shallow arch [START_REF] Shaw | Normal modes for nonlinear vibratory systems[END_REF]. We will use the following parameters of the system: l 1 5

= , l 2 =0.8, f =0.05. Let the vibrations occur with a moderate amplitudes about the equilibrium state q q 1 2 0 = = . Snap-through buckling is not considered here. The natural frequencies of linear vibrations Conclusions. The paper proposes an iterative procedure to analyze the forced vibrations of discrete nonlinear systems. This method combines Rauscher's method and nonlinear normal modes. Rauscher's method reduces a nonautonomous dynamic system to an iterative process of finding the normal mode in a pseudoautonomous system.

Nonlinear normal modes are an efficient approach to the analysis of dynamic systems with a great number of degrees of freedom [START_REF] Avramov | Nonlinear equations of flexural-flexural-torsional oscillations of rotating beams with arbitrary cross-section[END_REF][START_REF] Shaw | Modal analysis-based reduced-order models for nonlinear structures-an invariant manifolds approach[END_REF]. Nonlinear normal modes can be applied to a dynamic system of high dimension resulting from finite-element discretization of an elastic medium. 
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about the static equilibrium position are p 1 = 2 .

 12 9067 and p 2 = 5.1158. The procedure presented in Sec. 2 is used to analyze forced vibrations. The amplitude-frequency characteristic of forced vibrations (the modulus of the first Fourier harmonic | | A 1 versus the excitation frequency W 1 ) is shown in Fig. 2. The dashed line represents the skeletal curve, while the solid line the curve of forced vibrations. The right branch of the amplitude-frequency characteristic (relative to the skeletal curve) is determined by the parameter A 1 0 > , and the left branch by A 1 0 < . The surface of the nonlinear normal mode for A 1 = -1.2 is shown in Fig. 3 as an example.
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