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Abstract. A multicarrier signal can be seen as a Gabor family whose
coefficients are the symbols to be transmitted and whose generators are
the time-frequency shifted pulse shapes to be used. In this article, we
consider the case where the signaling density is increased such that inter-
pulse interference is unavoidable.
Such an interference is minimized when the Gabor family used is a tight
frame. We show that, in this case, interference can be approximated as
an additive Gaussian noise. This allows us to compute theoretical and
simulated bit-error-probability for a non-coded system using a quadra-
ture phase-shift keying constellation. Such a characterization is then used
in order to predict the convergence of a coded system using low-density
parity check codes. We also study the robustness of such a system to
errors on the received bits in an interference cancellation context.

Key words: multicarrier modulations, faster-than-Nyquist signaling,
linear system, optimal pulse-shapes, Gabor frames, interference analy-
sis, interference cancellation, low-density parity check codes.

1 Introduction

In most of current communication systems, the linear part allows for perfect
symbol reconstruction: the synthesis and analysis families used in the trans-
mitter and the receiver form biorthogonal frames (also known as Riesz bases).
In a single-carrier bandlimited scenario, this requires the Nyquist criterion to
be respected [7]. In other words, the transmission rate must be lower than the
bilateral bandwidth of the transmitted signal.

With an increasing need of spectral efficiency driven by overcrowded fre-
quency bands, the main strategy relies on an increase of constellation size while
keeping a constant transmission power, bandwidth and symbol rate (below the
Nyquist limit). This choice induces a decrease of the distance between symbols,
and the transmitted signal becomes more sensitive to noise, thus increasing bit-
error-probability [5].

A more unusual way to improve spectral efficiency is to increase the symbol
rate until the Nyquist criterion is overridden, leading to unavoidable inter-pulse
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interference (IPI). This idea has been proposed by J. Mazo under the denomi-
nation “faster-than-Nyquist” (FTN) [6]. He showed that an increase up to ap-
proximately 25% of the Nyquist symbol rate keeps the minimal distance between
symbols unchanged. As a consequence, considering the work of G.D. Forney on
the optimal detection in presence of inter-symbol interference, one can preserve
an acceptable bit-error-probability at the price of a greater computational com-
plexity at the receiver side [5] (e.g.: maximum likelihood approaches...).

FTN transmission techniques can be extended to multicarrier modulations [9].
In this case, denoting F0 the inter-carrier spacing and T0 the multicarrier symbol
duration, it can be shown that if ρ = 1/(F0T0) > 1 then the synthesis and anal-
ysis families, respectively used for transmission and reception, can no longer be
biorthogonal but can still form overcomplete frames [3]. This leads to IPI both in
time and/or frequency. Numerous studies focus on the realization of coded mul-
ticarrier FTN systems using, in particular, series or parallel concatenations [10]
as well as turboequalization techniques [4]. Studies of these latter systems over
additive white Gaussian noise (AWGN) channels show great performance, con-
firming their relevance, even if their intrinsic complexity makes their design and
performance comparison particularly demanding in terms of simulation time.

In this article, we study a linear multicarrier system operating with over-
complete Gabor frames (i.e.: a generalization of an FTN system), as it plays a
fundamental role in practical systems, including decision feedback and iterative
structures (e.g.: turboequalizers). Our work includes guidelines for the design
of such systems over an additive white Gaussian noise (AWGN) channel, only
based on the linear part of the system. First of all, we focus on the determina-
tion of the expression of the bit-error-probability of our linear system provided
that tight frames are used, as prescribed in [11] in order to maximize the signal
to interference plus noise ratio (SINR). Secondly, we investigate the behavior
of interference cancellation receivers in this context. Finally, we show how the
bit-error-probability closed-form expression of the linear system can be used to
guide the design of more complex structures (including iterative receivers such
as turboequalizers).

This article is constructed as follows. Part 2 details the input-output relations
of the system in presence of noise, based on the frame theory. This theoretical
framework allows for the determination of the SINR and the theoretical bit-
error-probability, based on the assumption of normality of the interference. Part
3 first aims for the study of the statistical properties of the interference in an
empirical way, as to confirm the relevance of its Gaussian approximation. We
then present bit-error-rate (BER) simulations aiming at the verification of our
theoretical results, and an example of how our closed-form expression of the
error probability can predict the performance of a coded system is presented
through the simulation of a non-linear system using low-density parity check
(LDPC) codes. The last simulation scenario analyzes the relevance of interference
cancellation techniques in this communication context. Finally, conclusions and
insights are presented in section 4.
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2 System model

2.1 Input-output relationship in presence of white Gausssian noise

Let us denote c = {cm,n}(m,n)∈Λ ∈ `2(Λ) with Λ ⊂ Z2, a sequence of zero-
mean, independent and identically distributed coefficients. Its variance is σ2

c .
The multicarrier signal is then written as:

s(t) =
∑

(m,n)∈Λ

cm,ngm,n(t), t ∈ R (1)

with g = {gm,n}(m,n)∈Λ a Gabor family, with parameters F0, T0 > 0 and whose
elements are given by the generator filter (also known as prototype) g(t) ∈ L2(R)
such as:

gm,n(t) = g(t− nT0)ej2πmF0t. (2)

As a result, the information carried by c is regularly spread in the time-frequency
plane (fig. 1) with a minimum distance F0 in frequency and T0 in time.

t

f

T0

F0

Fig. 1. Representation of a transmitted signal in the time-frequency plane. Here,
the generator filter g and the parameters of the lattice allow for a separation in the
frequency domain, but not in the time domain.

In a real case scenario, we usually have Λ = {0, . . . ,M − 1}× {0, . . . ,K − 1}
where M,K are strictly positive integers representing respectively the number
of subcarriers and the number of multicarrier symbols to be transmitted. Such
a restriction to a finite signaling set induces the convergence of the sum in (1).
Nevertheless it can still contain a large amount of terms, so it is important to
make it stable. Denoting Hg = Vect(g) the closure of the linear span of the
family g1, the stability of (1) is guaranteed when g is a Bessel sequence, which
means that we can find an upper bound Bg > 0 such as:∑

(m,n)∈Λ

| 〈gm,n, x〉 |2 ≤ Bg ‖x‖2 , ∀x ∈ Hg (3)

1 The closure of a normed vector space E contains all the elements of E, together with
its limit elements. For example, the closure of the set of the rational numbers is the
set of the real numbers.
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where 〈·, ·〉 and ‖·‖ are the usual inner product and norm defined ∀x, y ∈ L2(R)
by

〈x, y〉 =

∫ +∞

−∞
x∗(t)y(t) dt, ‖x‖ =

√
〈x, x〉 (4)

respectively, with x∗ the complex conjugate of x. In order to retrieve the data c
from the knowledge of s(t), it is furthermore necessary (and sufficient) for g to
be a linearly independent family. Hence g is a Riesz basis of Hg, in other words
a family for which we can find 0 < Ag ≤ Bg such that:

Ag ‖x‖2 ≤
∑

(m,n)∈Λ

| 〈gm,n, x〉 |2 ≤ Bg ‖x‖2 , ∀x ∈ Hg. (5)

In this case, the density ρ of g is necessarily lower than or equal to one: ρ =
1/(F0T0) ≤ 1. On the contrary, in order to increase the spectral efficiency of
the system (for a fixed number of bits per symbol), this article focuses on the
case where ρ > 1. Thus, this increase in spectral efficiency is counterbalanced by
an induced interference. In a linear receiver, this interference can be considered
as an noise leading to an increased error probability. Indeed, when ρ > 1, g is
necessarily a linearly dependent Gabor family, but it may be an overcomplete
frame of L2(R), i.e. a family for which (5) is valid not only for x ∈ Hg, but for
every x ∈ L2(R). In this case, (1) is always stable and Hg = L2(R). However, g
cannot be a basis of L2(R).

A linear receiver is considered as a first stage of a more complete FTN system
(necessarily non-linear in order to yield acceptable performance). In this context,
the estimated symbols ĉ = {ĉp,q}(p,q)∈Λ are given by

ĉp,q = 〈ǧp,q, r〉 , ∀(p, q) ∈ Λ (6)

where ǧ = {ǧm,n}(m,n)∈Λ is a reception family, r(t) = s(t)+n(t) is the signal seen
by the receiver and n(t) is a zero-mean white complex circular noise independent
from the symbols, and whose bilateral power spectral density is γn(f) = 2N0 for
f ∈ R : E(n(t)) = 0 and E(n∗(t)n(t′)) = 2N0δ(t− t′), with E(·) the expectation
operator.

2.2 Interference and noise analysis

By rewriting (6), we can clearly identify the interference and noise terms:

ĉp,q = cp,q 〈ǧp,q, gp,q〉︸ ︷︷ ︸
c̃p,q :useful signal

+
∑

(m,n)∈Λ\{(p,q)}

cm,n 〈ǧp,q, gm,n〉︸ ︷︷ ︸
ip,q :interference

+ 〈ǧp,q, n〉︸ ︷︷ ︸
np,q :noise

. (7)

We already showed in [11] that the SINR is maximized when ǧ and g are dual
canonical (Ag = 1/Aǧ and Bg = 1/Bǧ) tight (Ag = Bg and ǧ = g/Ag) frames.
This leads to the following expressions:
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Es =
1

2
σ2
c ‖g‖

2
=
σ2
cAg
2ρ

, (8)

σ2
i = E(|ip,q|2) = (ρ− 1)σ2

c , (9)

σ2
n = E(|np,q|2) = 2

ρ

Ag
N0 (10)

with Es the per-symbol energy, σ2
i the variance of the interference and σ2

n the
variance of the filtered noise. The SINR is then written as

SINR =
1

ρ− 1 + N0

Es

. (11)

We can see that the interference term ip,q is a random variable independent from
the noise and corresponding to the sum of a large number of random variables
c̃m,n which are zero-mean, independent, following the same type of law but with
different variances σ2

c̃m,n
:

c̃m,n = cm,n 〈ǧp,q, gm,n〉 and σ2
c̃m,n

= σ2
c | 〈ǧ, gm−p,n−q〉 |2. (12)

All the conditions for applying the central limit theorem are thus not fulfilled
but, as shown by our simulations in part 3.1, the Gaussian approximation is
accurate for the sake of error-probability estimation. That is why in the following,
we will assume the interference ip,q to be a normal zero-mean random variable
independent from the noise. This is analogous to a case where the symbols would
have been transmitted through an AWGN channel characterized by a signal-to-
noise ratio given by (11). It is interesting to note that the noise term np,q is
zero-mean and Gaussian, but not necessarily white.

2.3 Theoretical error probability

We now restrict our analysis to the case where the symbols c are taken from a
quadrature phase-shift keying (QPSK) constellation. In that case, given the fact
that both the noise and the interference are considered Gaussian, the bit error
probability for a transmission through an AWGN channel is given by

Pe = Q
(√

SINR
)

= Q

(√
1

(ρ− 1) + N0

2Eb

)
(13)

where Q(·) is the complementary cumulative distribution function of a standard
normal distribution and Eb = Es/2 the per-bit energy.

3 Simulations

3.1 Empirical study of the interference term

In this part, we discuss the relevance of the Gaussian approximation of the in-
terference. To this extent, we measure 3.6 × 106 realizations of the interference
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ip,q term by performing a transmission of M = 64 subcarriers over K = 50000
multicarrier symbols for different values of ρ, using a QPSK constellation and
tight frames. The variance of the obtained samples is then normalized thus giv-
ing standardized versions of ip,q depending on ρ, whose empirical probability
density functions and cumulative distribution functions (CDF) are comparable.
The behavior described here has been observed to be similar with both the real
and the imaginary part of ip,q, and for various prototypes forming tight frames.

Considering a transmission over a noise-free perfect channel (SINR = 1/(ρ−
1)), zero-mean, independent and identically distributed bits, and denoting
Fi,ρ(x) the complementary CDF (CCDF) of the interference given a density
of ρ, we can express the bit-error-probability as

Pe(ρ) = 1− Fi,ρ
(√

SINR
)

= 1− Fi,ρ
(√

1

ρ− 1

)
. (14)

In order to assess the Gaussian approximation, we compare the values of the

functions Pe(ρ) and Q
(√

1
ρ−1

)
for various ρ on figure 2. Even though the in-

terference cannot be characterized by a Gaussian distribution, we can see that
the relative approximation error is negligible, except for ρ close to one, in this
context of error probability estimation. Our simulations furthermore revealed
that the Gaussian approximation then constitutes an upper bound for the bit-
error-probability. This result ensures that the Gaussian approximation can be
safely used for multicarrier FTN communication system design and engineering,
provided that tight frames are used.

3.2 Linear system performance

The simulations presented in this part consist in the transmission of K = 5000
multicarrier symbols over M = 128 subcarriers with a QPSK constellation. They
were run for various prototypes. The prototypes maximizing the time-frequency
localization (TFL) and minimizing the out-of-band energy (OBE) [8] form tight
frames, as shown in [11] thanks to the Wexler–Raz theorem [3, theorem 9.3.4]. It
is as well the case for the square-root-raised-cosine (SRRC) with roll-off factor
α = ρ − 1 and the T0-width rectangular (RECTT0

) prototypes. When such a
prototype is used both in transmission and reception, it is sufficient to set its
norm to 1/

√
ρ in order to obtain dual canonical tight frames with Ag = 1.

Although the rectangular prototype of width ρT0 and T0 are able to form dual
frames, they are not canonical dual. In addition, the pair of frames produced is
non-tight so that using it in transmission and reception does not lead to a pair
of canonical dual tight frames.

Figure 3 exhibits the perfect prediction of the SINR by (11) when the pro-
totypes used in transmission and reception form a dual canonical tight pair of
frames. In addition, figure 4 confirms the accuracy of the expression of the bit-
error-probability (13) and the relevance of the Gaussian approximation of the
interference, although we can see its limits for strong Eb/N0 (≥ 14 dB) and ρ
close to 1 (ρ = 16/15).
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Fig. 2. Comparison of the real CCDF of the interference varying on ρ and its Gaussian
approximation.

In terms of performance, for this kind of non-coded multicarrier FTN system,
figure 4 shows that the bit-error-rate (BER) rapidly rises with the density. We
can also see on figure 5 that a lower-bound of the BER appears when the power of
the noise becomes negligible compared to the one of the interference. In addition,
and in accordance with the expression of the SINR, the performance gets worse
if the frames used are not tight nor canonical dual. Theses results confirm the
needs to develop non-linear detectors allowing for a more efficient IPI mitigation.

3.3 Use in a coded system with iterative decoding

BER curves of systems using efficient coding schemes such as turbocodes or
LDPC are characterized by a so-called “convergence threshold” [2] which is the
Eb/N0 value from which the coded system achieves better performance than the
uncoded one. Given an AWGN channel, it is also possible to characterize the
coded system with a curve presenting the BER at the output of the decoder
(denoted as “output BER” - BERout) varying with the BER at the input of the
decoder (denoted as “input BER” - BERin) as in figure 6. On this kind of curve,
the convergence threshold is found at a given input BER. As a consequence, and
thanks to the expression of the error probability (13), it is possible to determine
the optimal density ρ allowing the coded system to converge given an arbitrary
value of Eb/N0.

As an example, figure 6 shows that a coded system using the LDPC code of
rate 1/2 specified in the DVB-S2 specification [1] has its convergence threshold
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for an input BER of approximately 0.15. On figure 7, we can see that when used
with a multicarrier FTN system using tight frames, the coded system converges
as expected when the input BER goes below 0.15, at Eb/N0 = 2 dB.
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g = ǧ : OBE
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Fig. 3. SINR as a function of Es/N0, with ρ = 16/15.
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Fig. 4. BER as a function of ρ, with Eb/N0 = 20 dB.
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Fig. 5. BER as a function of Eb/N0, with ρ = 16/15.
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Fig. 6. Output BER as a function of the input BER for a rate=1/2 LDPC system. In
this configuration, the convergence threshold is at an input BER of 0.15.

3.4 Performance with interference cancellation

From the expression of the bit error probability (13) it is obvious that the FTN
linear system shows worse performance compared to the orthogonal case. Be-
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sides, from the expression of the received signal (7), one can notice that the
performance of the orthogonal system can be retrieved by removing the interfer-
ence induced by the FTN system, allowing for an improvement of the spectral
efficiency of the transmission while keeping the same BER.

Such an interference cancellation (IC) is usually performed by estimating the
received symbols, then computing the interference term from these estimations
and substract it to the received signal. Given that this estimation might not be
perfect, it is interesting to assess the behavior of this system in presence of errors
on the estimated symbols. To fulfill that purpose, we implemented the pseudo-
genie receiver depicted by figure 8. The difference with a “true genie” receiver is
that its knowledge of the transmitted symbols is corrupted by a binary symmetric
channel inducing an error probability Pe,genie on the bits used to compute the
interference term.

Figure 9 presents the performance of this system, simulated by the trans-
mission of K = 5000 multicarrier symbols over M = 32 subcarriers using a
TFL prototype and a QPSK constellation. We can see that it is quite robust to
the presence of errors on the bits used to compute and cancel the interference,
which gives an insight on how non-linear receivers using interference cancella-
tion (such as decision feedback or turboequalization) could efficiently prevent
inter-carrier interference. Although not presented here, we ran simulations with
other prototypes yielding tight frames, and obtained similar results.
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B
E

R

Uncoded system (theoretical)

Coded system

Fig. 7. BER as a function of Eb/N0 using a rate 1/2 LDPC code, ρ = 4/3 and a TFL
prototype for 10 iterations of the decoder.
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Fig. 8. Synoptic of the pseudo-genie IC receiver.
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Fig. 9. BER as a function of Eb/N0, with a pseudo-genie receiver, ρ = 4/3, a TFL
prototype and Pe,genie ∈ {10−1, 10−2, 10−3}.

4 Conclusion

Through this article, we specified a linear multicarrier system based on the use
of overcomplete Gabor frames, allowing an increase in signaling density in the
time and/or the frequency domain and leading to a bidimensional FTN system.
Consequently, an increase of the spectral efficiency beyond (bi)-orthogonal sys-
tems (for a given constellation size) yields interference between pulse-shapes.
Such interference can be mitigated by the use of tight frames within the context
of a linear system. Furthermore, we showed that interference cancellation based
on noisy estimates of the transmitted symbols (pseudo-genie receiver) can lead
to the same BER as orthogonal systems, but at a higher bitrate.

The results presented in this article allow the ability to relatively compare the
performance of FTN multicarrier systems based on the parameters of their linear
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part (e.g.: time-frequency lattice density, transmission/reception filters...). Sec-
ondly, we showed how the knowledge of this performance can help the design of
more complex receiver structures (e.g.: LDPC/turbodecoders, turboequalizers)
by predicting their behavior.

Future work may consist in the analysis and efficient implementations of
various multicarrier non-linear systems based on tight frames, and transmissions
over more complex channels.
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