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Abstract 
 

Since the theory of chaos was introduced in 

cryptography, the use of chaotic dynamical systems 

to secure communications has been widely 

investigated, particularly to generate chaotic 

pseudorandom numbers as cipher-keys. The 

emergent property of the ultra-weak 

multidimensional coupling of p one-dimensional 

dynamical systems lead to randomness preserving 

chaotic properties of continuous models in 

numerical simulations. This paper focuses on such 

families called multiparameter chaotic pseudo 

random number generators (M-p CPRNG) and 

proposes algorithm approach to test the robustness 

of time series generated by M-p CPRNG. First, a 

single one-dimensional chaotic map to construct a 

regular chaotic subsampling is considered. 

Parameters on which depends the map are 

estimated using only the sequences generated by 

this map to cipher a message. A previous study [1] 

using the Extended Kalman Filter (EKF) has shown 

that a necessary minimum shift value 

corresponding to a particular subsampling of a 

chaotic cubic map is obtained from which it is not 

possible to estimate the parameters. In this paper, 

new cipher breaking methods are considered for 

the same purpose: assessing the security of the time 

series. These methods are investigated in the same 

way than EKF one and compared to the results 

provided by EKF. The EKF was first improved by 

introducing a modified Gram-Schmidt method and 

the nonlinear least squares method was also tested. 

The one-dimensional cubic map was again 

considered and a new parameter leading to EKF 

oscillations is especially studied. 

 

1. Introduction 
 

Pseudorandom or chaotic numbers are used in 

many areas of contemporary technology such as 

modern communication systems and engineering 

applications. Significant researches have been made 

using chaotic dynamical systems in order to benefit 

of the high sensitivity of chaos to initial conditions. 

Efficient Chaotic Pseudo Random Number 

Generators (CPRNG) have been recently 

introduced. The emergent property [2] of the ultra-

weak multidimensional coupling of p one-

dimensional dynamical systems is used and chaotic 

properties of continuous models in numerical 

simulations are preserved. Noteworthy CPRNG 

families based on the sampling and mixing of 

chaotic sequences have been proposed in [3, 4]. 

This method is very efficient in numerical 

calculations using floating point numbers. 

Moreover, only additions and multiplications are 

considered in a computation process and no 

division is required. 

In [5, 6], these CPRNG families are improved 

using a double threshold chaotic sampling instead a 

single one. The performances of such families 

called multiparameter chaotic pseudo random 

number generators (M-p CPRNG) are increased, 

especially to compute very long time series. Both 

the high number of parameters and the high 

sensitivity of their values allow to choose these 

parameters as cipher-keys. Their applications can 

be, for example, generation of Gaussian noise, 

computation of hash functions or chaotic 

cryptography. 

Our paper focuses on the field of chaotic 

cryptography which has been widely investigated in 

an effort to improve the security of transmissions. 

An approach is proposed to test the robustness of 

time series generated by the M-p CPRNG process 

defined in [6] and used to cipher a message. First, a 

particular case of M-p CPRNG using a single one-

dimensional chaotic map to construct a regular 

chaotic subsampling is considered. The idea is to 

estimate the chaotic map parameters using only the 

sequences generated by this map to cipher a 

message and to reconstruct the sequences to 

decipher the message. In [1], such a study has been 

carried out to test the robustness of an enhanced 

chaos shift keying (CSK) system based on the 

estimation of chaotic map parameters using the 

Extended Kalman Filter (EKF). Instead of using the 

sequences generated by the chaotic map directly, a 

subsampling of sequence terms is extracted so that 

no transmission of consecutive terms occurs. A 
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large number of simulations has been performed 

using three different chaotic attractors of a cubic 

map corresponding to three parameter sets. Various 

regular subsampling were considered. It is obtained 

a necessary condition, different in each case, 

expressed by a different threshold value, related to 

the subsampling chosen, from which it is not 

possible to estimate the parameters. Consequently, 

the chaotic sequences used to cipher a message 

cannot be reconstructed and the message cannot be 

deciphered. This study has shown that by placing 

themselves under the conditions that lead to the 

divergence of EKF, the security of a transmitted 

message is guaranteed. The threshold value should 

be part of the secret key with the corresponding 

initial condition and parameter. Moreover, as 

various initial condition, parameter and shift sets 

lead to the divergence of EKF, the secret key can 

be changed very often. 

Regarding the study of M-p CPRNG families, 

these results are of a great interest. However, the 

behavior of EKF was also studied by taking into 

account different values of the measurement and 

state noises and the results obtained have shown 

that sometimes the EKF algorithm cannot converge 

nor diverge. In these cases, the iteration maximum 

number is reached and the estimation error on the 

parameters is greater than the required precision. 

In [7], new cipher breaking methods are 

considered for the same purpose: assessing the 

security of the time series. On one hand, the EKF 

was first improved by introducing a modified 

Gram-Schmidt method (MKEF). Then, the 

nonlinear least squares method (NLS) was also 

tested. Both methods are investigated in the same 

way than EKF one and compared to the results 

provided by EKF. The chaotic cubic map is 

considered again. The EKF behavior according to 

the mesurement and state noise values is studied 

again. Especially, a new parameter leading to EKF 

oscillations is considered. 

In this paper, a chaotic subsampling process is 

introduced which is an efficient tool for the 

emergence of randomness from chaos. The EKF, 

MEKF and NLS estimation methods used to assess 

regular subsampling are detailed. For the three 

methods, many simulations have been performed to 

study the behavior of time series generated by the 

regular subsampling obtained from the chaotic 

cubic map. A synthesis of a part of results obtained 

by estimating four parameters of chaotic attractors 

is presented. 

This paper is organized as follows. Section 2 

and 3 focus on the chaotic subsampling process and 

a regular one which is assessed in the next sections. 

The estimation methods are explained in both 

section 4 (EKF and MEKF) and 5 (NLS) . 

Simulations and results are presented in section 6 

followed by the conclusion section. 

2. Subsampling of chaotic map 
 

Chaos theory studies the behavior of 

dynamical systems that are highly sensitive to 

initial conditions, an effect which is popularly 

referred to as the butterfly effect. Small differences 

in initial conditions (such as those due to round-off 

errors in numerical computation) yield widely 

diverging outcomes for chaotic systems, rendering 

long-term prediction impossible in general. This 

happens even though these systems are 

deterministic, meaning that their future behavior is 

fully determined by their initial conditions, with no 

random elements involved. In other words, the 

deterministic nature of these systems does not make 

them predictable.  

The first example of such chaotic continuous 

system in the dissipative case was pointed out by 

the meteorologist E. Lorenz in 1963 [8]. 

 

2.1. Chaotic maps 
 

In order to study numerically the properties of 

the Lorenz attractor, M. Hénon introduced in 1976 

a simplified model of the Poincaré map of this 

attractor [9]. The Lorenz attractor being embedded 

in dimension 3, the corresponding Poincaré map is 

a mapping from the plane 2 into itself. Hence the 

Hénon mapping is also defined in dimension 2 and 

is associated to the dynamical system 

1 2

1

2

1

1 ( )n n n

n n

x y x

y x





   


  , (1) 

with 1 1 4.  and 2 0 3. , which has been 

extensively studied since near four decades. 

More simple dynamical systems in dimension 

one, on the interval  1,1    into itself 

1n nx f ( x )  
, (2) 

corresponding to the logistic map 

21a af L ( x ) x   , (3) 

or the symmetric tent map  

1f T ( x ) x     , (4) 

have also been fully explored in the hope of 

generating random numbers easily [10]. The very 

simple implementation in computer program of 

chaotic dynamical systems led some authors to use 

it as a base of cryptosystem [11, 12]. 

More generally, the coupling of p 1-

dimensional maps like logistic or symmetric tent 
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map from p  into p  is very often used and takes 

the form 

   1n n nX F X A f ( X )    , (5) 

where  

1( )

( )

( )

n

n

p

n

f x

f X

f x

 
 
 
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 





, 

1

n

n

p

n

x

X

x

 
 
 
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 
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

, (6) 

and A   
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with 
j p

i , i i , j

j 1, j i

= 1- 


 

  on the diagonal (the matrix A  

is always a stochastic matrix iff the coupling 

constants verify 0i , j   for every i and j). 

It is noteworthy that these families of very 

weakly coupled maps are more powerful than the 

usual formulas used to generate chaotic sequences, 

mainly because only additions and multiplications 

are used in the computation process, no division 

being required. Moreover, the computations are 

done using floating point or double precision 

numbers, allowing the use of the powerful Floating 

Point Unit (FPU) of the modern microprocessors. 

In addition, a large part of the computations can be 

parallelized taking advantage of the multicore 

microprocessors which appear on the market of 

laptop computers.  

Moreover, a determining property of such 

coupled map is the high number of parameters used 

( ( 1)p p  for p coupled equations) which allows to 

choose it as cipher-keys, when used in chaos-based 

cryptographic algorithms, due to the high 

sensitivity to the parameters values [13].  

 

2.2. Chaotic subsampling 
 

However, chaotic numbers are not 

pseudorandom numbers because the plot of the 

couples of any component  l

n

l

n xx 1, 
 of iterated 

points 
nX  and 

1nX 
 in the corresponding phase 

plane reveals the map f used as one-dimensional 

dynamical systems to generate them from (5). 

Nevertheless, we have recently introduced a family 

of enhanced Chaotic Pseudo Random Number 

Generators (CPRNG) in order to compute faster 

long series of pseudorandom numbers with desktop 

computer [6]. This family is based on an ultra weak 

coupling which preserves the chaotic properties of 

chaotic mappings when computed with finite 

precision numbers and, which is improved using 

chaotic undersampling, in order to conceal the 

chaotic genuine function. 

We briefly describe here, how works this 

process of undersampling. The pivotal idea of this 

mechanism used in order to hide f in the phase 

space  l l

n n 1x , x 
 is to sample chaotically the 

sequence   ,,,,,, 1210

l

n

l

n

lll xxxxx 
 generated by 

the l-th component lx , selecting l

nx  every time the 

value m

nx  of the m-th component mx  is strictly 

greater (or smaller) than a threshold  0,1T , with 

l  m, for 1  l, m  p. 

This means that the extraction of the 

subsequence  
(0) (1) (2) ( ) ( 1)

, , , , , ,
q q

l l l l l

n n n n nx x x x x


   

denoted here   ,,,,,, 1210 qq xxxxx  of the 

original one, in the following way: given 
1 , ,l m p l m    

 
( )

( 1)

( ) ( 1)

1

,
q

l m

q n q q r
r

n

x x with n Min r n x T






 


    

 (7) 

The sequence   ,,,,,, 1210 qq xxxxx  is then 

the sequence of chaotic pseudorandom numbers. 

The above mathematical formula can be best 

understood in algorithmic way. The pseudo-code 

for computing iterates of (7) corresponding to N 

iterates of (5) is: 

 1 2 p 1 p

0 0 0 0 0X x , x , , x , x seed   

n 0; q 0   

do { while n < N 

  do { while  m

nx T  

          compute  1 2 p 1 p

n n n nx , x , , x , x ; n + +} 

  compute  1 2 p 1 p

n n n nx , x , , x , x ; 

       then 
 q

l

q nn( q ) n ; x x ;  n + +; q + +} 

This chaotic sampling is possible, due to the 

independence of each component of the iterated 

points 
nX versus the others [5]. 

The chaotic subsampling is not the only one 

subsampling method which can be used for this 

aim. Geometric subsampling for a new class of 

mapping has been recently published [14]. 

 

3. Regular subsampling 
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Before assessing chaotic undersampling which 

is a tough task, we assess the regular subsampling 

process by testing several methods of parameter 

estimation.  Throughout the following sections, the 

chaotic maps considered are represented by a 

nonlinear deterministic model with function f 

defined on p q   by k  , 
1k kU  f (U , )    

where q  is the parameter vector to be 

determined. Initial condition vector 
0U  is also 

unknown. 

To avoid the transmission of consecutive 

terms, we retain a state trajectory every   states. 

This integer value   is called a shift. This means 

that a subsampled sequence 
( )( )k kU 

 where 

 k k    is extracted from ( )k kU 
. Accordingly, 

the chaotic model is now represented in (8) by the 

function g and expressed by successive 

compositions of f, k   

( 1) ( , ) ... ( , )k k kU  g U f f f U   



     


. (8) 

As in a chosen plaintext attack is considered, 

the system and its encryption algorithm are known 

and any plaintext can be ciphered, especially, a 

sequence of 0 or a sequence of 1. The sequences 

therefore taken into account in our study to 

determine the map parameters are of the form 

0 2 3 4 5 6 ...U U U U U U U     
 corresponding to real 

numbers at non successive times. These real 

numbers define the measurement vectors called 
p

kZ  , 0 1k m   , m  just to use the EKF 

usual notations. Assuming that m measurements are 

used for the parameter estimation process, the 

chaotic sequence at non successive times k is 

0 1 2 1 1 1... ...k k k mZ Z Z Z Z Z Z  
. Moreover, we suppose 

that a symmetric secret key is used and the chaotic 

map is known but not the initial conditions nor the 

parameters nor the shift value, which will be part of 

the secret key. 

The cubic map model f on 2 2   into 2  we 

use in our study is defined, for all integer k, by 

1
1 3 2 3

1 ( ( ) ) ( ( ) )
k k

k k k k k

u v

v u u v v







    

 (9) 

where ( , )U u v and 1 2( , )    . Here f is linear in 

  but in the problem with shift, g is nonlinear in 

 . Because of the relationship between the two 

components of vector U, this map can also be 

expressed as the following one-dimensional map 

   1 3 2 3

1 1 1( ) ( )k k k k kv v v v v        . (10) 

 

4. EKF and MEKF estimation methods 
 

Time series generated by a regular 

subsampling are assessed by considering a 

parameter estimation approach. Both Kalman filter 

and nonlinear least squares methods are used to 

estimate chaotic map parameters in (9). First, 

Kalman filter approach is detailed. Because of the 

nonlinearity on map (8), the appropriate Extended 

Kalman Filter (EKF) is considered whose the 

general scheme to estimate the state nX   of a 

dynamical system is recalled. Its principle is similar 

as that of the discrete linear Kalman filter. By 

considering the state function : n ng    and the 

measurement function : p ph   , the chaotic 

dynamical system evolution at time k  is 

described by both state and measurement nonlinear 

equations 

1 1( )

( )
k k k

k k k

X g X W

Z h X V
  

  

 (11) 

where vectors nW   and pV   are state and 

measurement noises assumed to be zero-mean 

additive, white, Gaussian (ZMAWG), uncorrelated 

noises with covariance matrices ( )nQ M   and 

( )pR M   respectively. This means 

, , [ ] 0 , [ ]
j

T

i i i iji j  IE W   IE WW Q     

, , [ ] 0 , [ ]
j

T

i i i iji j  IE V   IE VV R     

where 
ij  is the Kronecker symbol. 

The state initial value 
0X  is a Gaussian 

variable with covariance matrix 
0P . 

Under these assumptions and by considering a 

linear state function, the linear Kalman filter 

estimator minimizes uncertainty and ensures zero 

mean error. It is optimal and the best unbiased 

estimator of the state-parameter 
kX  at time k  

based on the minimization of the expected value of 

the distance between the state exact value and its 

estimated value ˆ
kX . It is expressed by 

0:
ˆ

k k kX IE X Z   
 

and the estimation error covariance matrix on ˆ
kX  is 

0:
ˆ ˆ( )( )T

k k k k k kP IE X X X X Z   
 

 . 

In the nonlinear case (11), differentiable 

functions g and h are linearized using a Taylor 

expansion of order 1 where J and H are the 

Jacobian matrices of partial derivatives respectively 

of g and h with respect to X, defined at time k by  

, 1, ,i j n    

1

,

ˆ

( )

k

i

k i j j

X X

g
J

X






, (12) 
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1, , , 1, ,i p j n     

1

,

ˆ

( )

k

i

k i j j

X X

h
H

X






. (13) 

In our purpose, the estimation of both state and 

parameters requires to use the state augmentation 

technique by constructing a state vector  p qX   

embedding the map vector U and the parameter 

vector L . The state-parameter vector obtained at 

non successive times k , k , is 

k
k

k

U
X 




 
   

. (14) 

The so-called Joint EKF formulation is 

therefore expressed by the following equation (15) 

*

( -1) ( -1) ( -1)

*

( -1) ( -1) ( -1) ( -1)

( , ) ,

( ) ,

,

k k k k

k k k k k

k k k

U g U W k 

id W W k 

Z HX V k  

   

    

  

     

        


   







 

where : p q p qg     and : p q ph     are 

continuously differentiable chaotic map and 

measurement function respectively. Accordingly, 
p qW  , pV  , ( )p qQ M   , ( )pR M  . 

The two first equations refer to state equations, 

one from the chaotic map g and the other using 

identity function id, expressing that parameters 

remain constant. The third equation is the 

measurement equation linking the state-parameter 

vector X  to the measurement vector Z  where the 

Jacobian matrix 
, ( )p p qH M    also called the 

measurement sensitivity matrix is  

1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . . . .

0 0 . . 1 . 0 0

H

 
 
 
 
 
 
 

 (16) 

which is a constant matrix. 

The first step of the EKF is the linearization of 

the first state equation (15) at time k  using (8) 

and knowing estimations of both state-parameter 

vector and error covariance matrix at time ( 1)k   . 

Then, the usual prediction-correction technique is 

used. The a priori state-parameter ˆ
kX 


 at time k  

is predicted from (15) using the 
( 1)

ˆ
kX  

 value. The 

corresponding prediction error covariance matrix 

kP


 at time k  is also predicted from the following 

equation (17) 

( 1) ( 1) ( 1) ( 1)
ˆ ˆ ˆ( ) ( )T

k k k k k k kP J X P J X Q

             . 

At time k , the Jacobian matrix at point 

( 1)
ˆ

kX  
, 

( 1)
ˆ( ) ( )k k p qJ X M     , is the block matrix 

, ( 1) , ( 1)

( 1)

, ( 1) , ( 1)

ˆ ˆ( ) ( )
ˆ( ) .

ˆ ˆ( ) ( )

g k k g k k

k k

id k k id k k

J U J
J X

J U J

     

  

     

 
  
  

 (18) 

Matrix 
, ( 1)

ˆ( ) ( )g k k pJ U M      is defined by 

, ( 1) ,

( 1)

ˆ( )
i

k
g k k i j j

k

u
J U

u


  

 





. 

Matrix 
, ( 1) ,

ˆ( ) ( )g k k p qJ M      is defined by 

, ( 1) ,

( 1)

ˆ( )
i

k
g k k i j j

k

u
J 

  

 


 



 . 

( 1)

, ( 1)

( 1) ˆ

( )ˆ( )

k

i

k
id k k i

k U U

id
J U

u
 


  

  

 




 

and 

( 1)

, ( 1)

( 1) ˆ

( )ˆ( )

k

i

k
id k k j

k

id
J

 


  

  

 
 



. 

Consequently, matrix (18) is expressed by the 

following matrix  

, ( 1) , ( 1)
( 1)

,

ˆ ˆ( ) ( )ˆ( ) g k k g k k
k k

q p q

J U J
J X

O I
     

  

 
  
 

 . (19) 

The a posteriori state-parameter estimation is 

expressed as a linear combination of the a priori 

estimation ˆ
kX 


 and a weighted discrepancy, called 

innovation, between the current measurement 
kZ  

and its prediction ˆ ˆ( )k kh X HX 

   

ˆ ˆ ˆ( )k k k k kX X K Z HX 

       .  (20) 

The innovation ˆ( )k kZ HX 

   is the specific 

contribution of a new measurement at time k , 

independent of all the previous ones from time 0 up 

to time ( 1)k   . 

The Kalman gain 
kK 

 is such that the a 

posteriori state-parameter estimation error is 

minimized. The optimal gain is  

1( )T T

k k k kK P H HP H R  

     . (21) 

The estimation error covariance matrix ˆ
kP 

 is 

given by 
ˆ ( ) .k k kP I K H P

     (22) 

For more details about Kalman filter see [15]. 

One of its interests is that it provides real-time 

utilization. 

The calculation of the Kalman gain in (21) 

requires inverting of the matrix T

k kA HP H R

   . 

In the case of ill-conditioned matrix, round-off 

numerical errors can arise and lead to the 

divergence of the EKF algorithm. To avoid this 

problem, a factorization is applied to matrix A 

using a modified Gram-Schmidt process where A is 

expressed as the product of an orthogonal matrix 
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and an upper triangular matrix [15]. The Modified 

Extended Kalman Filter (MEKF) method is 

therefore obtained. 

 

5. Nonlinear least squares (NLS) 
 

Another approach consists in using nonlinear 

least square-based method. Let us define the 

residual function S of q  into m  twice 

continuously differentiable where its k
th

 component 
ks  is expressed as (23) 

    
1/2

2

2
1

.
p

k j j

k k k k

j

s Z U z u 



 
      

 
  

The NLS problem consists in determining the 

parameters that minimize the criterion C of q into 

 , i.e. find L  such that 

       
1

2

0

1 1
min

2 2q

m
T k

IR
k

C S S s





      (24) 

where 

    
1 1

22

2
0 0 1

1 1

2 2

pm m
j j

k k k k

k k j

C Z U z u
 

 

  

      
. (25) 

After making an affine approximation of function S 

and assuming that the Jacobian matrix  J   of  S 

at point   is full rank, the solution of the estimated 

parameters ̂  to the NLS is 

     
1

ˆ T
J J S



      
 

 (26) 

where  0, 1k m   ,  1,j q   , 

 
 

,

k

jk j

s
J

 
 


 . (27) 

Among the methods based on nonlinear least 

squares, an iterative method for finding the 

minimum of the cost function C is the Gauss-

Newton method. The solution 
1k  at time k+1 in 

the descent direction 
1kd 
 is obtained by solving the 

linear system 

       1

T T

k k k k kJ J d J S       (28) 

where 
1k k k kd    and 

k  is the descent step 

provided by a line-search algorithm. This method 

has similar properties than Newton method; in 

particular, the convergence is quadratic but requires 

an initial parameter estimation 
0  chosen near the 

exact solution of the parameters. Here again, ill-

conditioned matrix    
T

k kJ J  , which is 

approximately the Hessian matrix  kH  of the 

cost function C, can occur. Indeed, this matrix may 

be not symmetric positive definite. In this case, a 

standard method to get a symmetric positive 

definite matrix is to define    1k kH H I     

where   is a real number and I is the identity 

matrix. The method therefore obtained is called the 

Lebenberg-Marquardt method.  

 

6. Simulations and results 
 

All the simulations were done using the cubic 

map defined in (9). In this case, the state-parameter 

vector 
kX  at non successive times k , k , is 

1

2

k

kk
k

k

u

vU
X

 
  

        
  

. 

The state-parameter function 4 4:f    is 

defined by 

1 3 2 3

1

2

( ( ) ) ( ( ) )
( )

k

k k k k
k

v

u u v v
f X

 
     
 

 
  

 

and the Jacobian matrix of f is obtained from (19) 

( 1)
ˆ( )k kJ X    

1 2 2 2 3 3

0 1 0 0

(1 3( ) ) (1 3( ) ) ( ) ( )

0 0 1 0

0 0 0 1

k k k k k ku v u u v v

 
      
 
  
 

. 

The measurement function 4 2:h    is 

1 0 0 0
( )

0 1 0 0k kh X X
 

  
 

 

and the Jacobian matrix of h is 

1 0 0 0

0 1 0 0
H

 
  
 

. 

In [1], results presented are obtained from 

simulations using the EKF (see Sec. 4) to estimate 

the cubic map parameters. Our own Matlab 

program (version 7.9 0.529 (R2009b)) was 

developed. Three parameters 2  were first 

chosen to be estimated for which the exact values 

are (2.2, 0.91)e   , (2.2, 0.95)e    and 

( 2.,1.7)e    according to the Lyapunov exponent 

values.  

The initial condition vectors 
0U  are taken in 

the basin of the corresponding chaotic attractor, i.e. 

the initial condition sets which allow to generate 

the sequences converging towards the attractor. 

Regarding the EKF, only a very small measurement 

noise was first considered, i.e. no state noise, 
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corresponding to the accuracy of the real sequence 

terms in Matlab 1610 . The diagonal coefficients of 

the covariance matrix R, representative of the 

variances, were therefore taken to be 1610 . The 

state-parameter estimation error initial covariance 

matrix 0P  was always initialized with the identity 

matrix. Finally, to be sure that the sequence terms 

correspond to the chaotic regime, the transient 

regime was skipped. The measurements were 

therefore considered from the 1000
th

 sequence 

term. The parameter estimation precision required 

was 1010 . 

Many simulations were done scanning the 

basin of these attractors and searching the shift 

value from which the EKF algorithm diverged. 

Similar results are obtained for the three 

parameters. For each parameter and for each initial 

condition set, a necessary minimum value of the 

shift was found from which it is not possible to 

estimate the parameters. This appears to result from 

numerical considerations where accumulation and 

propagation of round-off errors in the calculations 

increase with the shift and become so large that the 

EKF diverge.  

The Nonlinear Least Square (NLS) algorithm 

(Sec. 5) was also implemented using the predefined 

Matlab function Lsqnonlin because this function is 

very robust and efficient. It is based on a trust 

region method and the algorithm automatically 

switches to the Lebenberg-Marquardt method in 

case of ill-conditioned Hessian matrix. 

Table I, II and III present a part of compared 

results obtained in the same conditions with both 

EKF and NLS methods for the three parameters 

tested (2.2,-0.91) , (2.2,-0.95) , (-2.,1.7) and 

various initial condition sets. In all cases, the 

precision required on the estimated parameters 

remains 1010 . As in [1] and [7], the necessary 

minimum shift 
min  and the iteration number N are 

shown.  

TABLE I.  NECESSARY MINIMUM SHIFT FOR PARAMETER  

(2.2, 0.91)  AND VARIOUS INITIAL CONDITION SETS, 

16

210R I , 1010   

EKF NLS 

0U  
min  N  0U  

min  N  

(-0.5,-0.9) 13 161 (-0.5,-0.9) 9 4 

(-0.7,-0.3) 11 16 (-0.7,-0.3) 4 4 

(-0.3,-0.9) 13 14 (-0.3,-0.9) 11 15 

(-0.9,+0.1) 15 15 (-0.9,+0.1) 7 5 

(-0.3,+0.3) 22 27 (-0.3,+0.3) 7 6 

(-0.1,+0.9) 9 11 (-0.1,+0.9) 8 6 

(+0.3,-0.9) 11 41 (+0.3,-0.9) 6 3 

(+0.3,-0.1) 22 12 (+0.3,-0.1) 5 5 

(+0.5,+0.7) 12 136 (+0.5,+0.7) 8 4 

(+0.7,+0.7) 44 24 (+0.7,+0.7) 3 4 

In [1], the evolution of the EKF estimation 

parameter error for the three parameters, for the 

initial condition set chosen and for the 

corresponding necessary minimum shift obtained is 

shown. Now to illustrate the comparative results 

obtained with EKF and NLS, Figs. 1 and 2 show 

the estimation parameter error for (2.2, 0.95)e    

and Figs. 3 and 4 show the estimation parameter 

error for ( 2.,1.7)e   . 

 

TABLE II.  NECESSARY MINIMUM SHIFT FOR 

PARAMETER (2.2, 0.95)  AND VARIOUS INITIAL 

CONDITION SETS, 16

210R I , 1010   

EKF NLS 

0U  
min  N  0U  

min  N  

(-0.9,-0.5) 7 8 (-0.9,-0.5) 7 5 

(-0.5,-0.7) 10 14 (-0.5,-0.7) 7 16 

(-0.1,-0.3) 12 77 (-0.1,-0.3) 7 5 

(-0.7,+0.9) 3 368 (-0.7,+0.9) 12 9 

(-0.5,+0.3) 6 78 (-0.5,+0.3) 4 4 

(-0.5,+0.9) 9 910 (-0.5,+0.9) 7 5 

(+0.3,-0.9) 12 6 (+0.3,-0.9) 8 11 

(+0.7,-0.1) 5 47 (+0.7,-0.1) 10 4 

(+0.1,+0.3) 12 9 (+0.1,+0.3) 6 6 

(+0.7,+0.7) 10 5 (+0.7,+0.7) 6 8 

 

 

 

Figure 1.  Error on the EKF parameter 
estimation (2.2, 0.95) . 
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Figure 2.  Error on the NLS parameter 
estimation (2.2, 0.95)  

 

 

 

Figure 3.  Error on the EKF parameter 
estimation ( 2.,1.7) . 

 

Figure 4.  Error on the NLS parameter 

estimation ( 2.,1.7) . 

 

TABLE III.  NECESSARY MINIMUM SHIFT FOR 

PARAMETER ( 2.,1.7)  AND VARIOUS INITIAL CONDITION 

SETS, 16

210R I , 1010   

EKF NLS 

0U  
min  N  0U  

min  N  

(-0.1,-0.5) 7 6 (-0.1,-0.5) 8 8 

(-0.3,-0.7) 5 11 (-0.3,-0.7) 5 8 

(-0.9,+0.5) 10 15 (-0.9,+0.5) 8 9 

(-0.3,+0.9) 4 68 (-0.3,+0.9) 12 11 

(+0.9,-0.5) 11 74 (+0.9,-0.5) 7 6 

(+0.5,+0.9) 7 530 (+0.5,+0.9) 10 11 

(+0.3,+0.7) 9 6 (+0.3,+0.7) 8 16 

(+0.7,+0.5) 5 2000 (+0.7,-0.5) 7 5 

(+0.1,+0.1) 8 18 (+0.1,+0.1) 8 4 

(+0.9,+0.3) 4 32 (+0.9,+0.3) 9 7 

Simulations also show that sometimes the 

maximum iteration number authorized, i.e. iteration 

number 2000, was reached as seen in Table III. 

This means that the EKF algorithm neither 

converged nor diverged. Even by increasing this 

maximum value up to 10000, the convergence or 

the divergence of EKF cannot be obtained.  

The EKF behavior was also studied by 

increasing the measurement and process noises. In 

many cases tested and for the three parameters, we 

obtained that the necessary minimum shift also 

increased. These results showed that the higher the 

noise, the better the EKF works.  

As in [1], Table IV shows a new part of the 

results obtained for parameter (2.2,-0.91) . 

TABLE IV. NECESSARY MINIMUM SHIFT FOR 

PARAMETERS (2.2, 0.91)  AND VARIOUS INITIAL 

CONDITION SETS, 1010   

2
3
I0R

 1 , 4
6
I0Q

 1  2
3
I0R

 1 , 4
3

I0Q
 1  

0U  
min  N  0U  

min  N  

(-0.9,-0.9) 33 83 (-0.9,-0.9) 37 26 

(-0.5,-0.3) 18 2000 (-0.5,-0.3) 17 41 

(-0.5,+0.1) 40 48 (-0.5,+0.1) 44 38 

(-0.5,+0.7) 22 2000 (-0.5,+0.7) 26 32 

(-0.1,+0.7) 15 146 (-0.1,+0.7) 15 27 

(+0.3,-0.7) 28 64 (+0.3,-0.7) 34 24 

(+0.5,-0.1) 43 44 (+0.5,-0.1) 41 46 

(+0.5,+0.5) 30 72 (+0.5,+0.5) 38 2000 

(+0.7,+0.5) 14 165 (+0.7,+0.5) 16 48 

(+0.9,+0.9) 33 88 (+0.9,+0.9) 37 33 
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First, the diagonal coefficients of the 

measurement and state covariance matrices are 

10-3 and 10-6  respectively. Then, their values are 

both 10-3. In most cases, the necessary minimum 

shift is larger in the second case than the first one. 

Conversely, the iteration number is smaller. By 

increasing noises, the EKF is therefore more 

efficient because the minimum shift value reached 

is larger for a smaller time computing. 

Figs. 5 and 6 illustrate this conclusion for 

parameter (2.2,-0.95)  and initial conditions 

(-0.9,-0.9)  whose corresponding results are given 

in [1], Table II. By increasing the state noise, the 

necessary minimum shift value increases from 15 

to 19 whereas the iteration number decreases from 

151 to 28.  

 

 

Figure 5.  Error on the EKF parameter 

estimation (2.2, 0.95)  for 3

210R I  and 

6

410Q I . 

 

Figure 6.  Error on the EKF parameter 

estimation (2.2,-0.95)  for 3

210R I  and 

3

410Q I . 

As said before, we also observed in some 

simulations the EKF oscillations showing that the 

filter neither converges nor diverges.  

This phenomenon has been confirmed by the 

study of another cubic map chaotic parameter 

which exact value is L
e

= (-2.55,0.24) . As for the 

three others parameters, we systematically scanned 

the basin of this attractor and gradually increased 

the shift value. For all the initial conditions, i.e. 100 

different cases, the maximum iteration number was 

reached, even if the iteration number is 10000, and 

it is impossible to make EKF diverge as for the 

other previous parameters. 

TABLE V. NECESSARY MINIMUM SHIFT FOR 

PARAMETER ( 2.55,0.24)  AND VARIOUS INITIAL 

CONDITION SETS, 16

210R Q I  , 1010   

MEKF NLS 

0U  
min  N  0U  

min  N  

(-0.9,-0.9) 22 246 (-0.9,-0.9) 9 7 

(-0.7,-0.9) 17 46 (-0.7,-0.9) 5 6 

(-0.5,-0.3) 17 907 (-0.5,-0.3) 7 6 

(-0.3,-0.1) 17 916 (-0.3,-0.1) 8 6 

(-0.1,-0.9) 15 381 (-0.1,-0.9) 7 6 

(-0.9,0.9) 20 1019 (-0.9,0.9) 9 7 

(-0.7,0.9) 18 928 (-0.7,0.9) 7 6 

(-0.5,0.9) 17 93 (-0.5,0.9) 7 5 

(-0.3,0.3) 16 107 (-0.3,0.3) 8 7 

(-0.1,0.9) 19 514 (-0.1,0.9) 8 8 

(0.1,-0.3) 18 895 (0.1,-0.3) 7 6 

(0.3,-0.9) 19 32 (0.3,-0.9) 9 8 

(0.5,-0.7) 18 53 (0.5,-0.7) 9 7 

(0.7,-0.1) 16 8 (0.7,-0.1) 9 6 

(0.9,-0.1) 19 146 (0.9,-0.1) 7 7 

(0.1,0.7) 18 95 (0.1,0.7) 7 6 

(0.3,0.3) 16 587 (0.3,0.3) 7 7 

(0.5,0.3) 15 103 (0.5,0.3) 7 6 

(0.7,0.5) 18 680 (0.7,0.5) 7 6 

(0.9,0.7) 18 904 (0.9,0.7) 7 7 

 

In [7], we focused on the study of this 

particular parameter in the aim to avoid the 

oscillations of the EKF filter and to obtain the 

divergence of the method used. The EKF Matlab 

program already developed has been adapted to use 

the Gram Schmidt modified method. The Modified 

Extended Kalman Filter (MEKF) was therefore 

obtained. 



Published in International Journal of Chaotic Computing (IJCC) Volume 1, Issue 1, June 2012, pp. 3-13 

DOI: 10.20533/ijcc.2046.3359.2012.0001                                                                                                          personal file 
______________________________________________________________________________________________________________________________________________________ 

10 

 

Compared to the results obtained with EKF, the 

MEKF method improves the results in 60% of 

initial conditions. This means that MEKF diverges 

for a specific shift value, different for each initial 

condition, which is the threshold from which the 

parameter cannot be estimated. In other cases, the 

maximum iteration number is reached again.  

Comparisons between MEKF and NLS 

simulations have also been done. The NLS method 

leads to the divergence of the algorithm for all 

initial conditions of the basin of the attractor and a 

necessary minimum shift is obtained, different in 

each case. 

Table V shows a part of the results obtained for 

the parameter (-2.55,0.24)  respectively using 

MEKF and NLS methods. Five initial condition 

sets are selected in four domains of  
2

1,1 . For 

each initial condition, the corresponding necessary 

minimum shift 
min obtained and the iteration 

number N are given. 

As seen in Table V, the parameter can be 

estimated until the minimum shift value and not 

beyond. For instance, for initial condition 

(-0.9, -0.9) , MEKF and NLS don’t estimated the 

parameter from 22min   for MEKF and 9min   for 

NLS. These minimum shift values are therefore 

necessary conditions corresponding to the method 

used. In all simulations, results show that higher 

minimum shift values are obtained with MEKF 

rather than NLS but the iteration number required 

by MEKF, and consequently, the time computing, 

are greater than that of NLS.  

Regarding the EKF oscillations, this problem 

has been solved in more than half of the cases by 

using MEKF. But the NLS method is more efficient 

because it provides a necessary minimum shift for 

all the simulations done whereas MEKF does not 

work as shown in Table VI. 

TABLE VI. NECESSARY MINIMUM SHIFT FOR 

PARAMETER AND VARIOUS INITIAL CONDITION SETS, 
16

210R I , 1010   

MEKF NLS 

0U  
min  N  0U  

min  N  

(-0.9,-0.7) 22 2000 (-0.9,-0.7) 7 7 

(-0.5,-0.5) 18 2000 (-0.5,-0.5) 8 8 

(-0.5,0.3) 18 2000 (-0.5,0.3) 7 8 

(-0.3,0.5) 13 2000 (-0.3,0.5) 7 8 

(0.7,-0.5) 14 2000 (0.7,-0.5) 10 6 

(0.5,-0.1) 16 2000 (0.5,-0.1) 11 13 

(0.5,0.5) 20 2000 (0.5,0.5) 8 8 

(0.9,0.5) 12 2000 (0.9,0.5) 9 9 

Table VI shows some cases where the 

maximum iteration number is reached and the EKF 

filter still oscillates despite the use of MEKF. On 

the contrary, the NLS algorithm works until a 

necessary minimum shift, D
min

, from which it is 

not possible to estimate the map parameters.  

The security of the time series used to estimate 

the chaotic map parameter is therefore guaranteed 

by taking the highest value of the necessary 

minimum shift obtained among all the simulations 

performed, i.e. 100 cases corresponding to 100 

initial conditions of the basin of the considered 

attractor. Additional safety factor can also be 

applied to the value chosen. 

 

7. Conclusion 
 

These simulations have shown that both 

MEKF and NLS behavior depends on regular 

subsamplings of chaotic sequence terms 

considered. The two algorithms diverge for a 

particular subsampling corresponding to a 

necessary minimum shift, different for each 

parameter and each initial condition, from which it 

is not possible to estimate the parameter. The 

divergence of MEKF and NLS can be explained by 

round-off errors in the calculations, their 

accumulation and their propagation as the shift 

value is increased. Consequently, the estimated 

parameter precision decreases and finally, the 

algorithms diverge.  

Moreover, this study carried out to test a single 

one-dimensional chaotic map to generate regular 

subsamplings shows that this particular case of M-p 

CPRNG is efficient in cryptography applications to 

choose cipher-keys. The security of a transmitted 

message is guaranteed by the shift value which 

must be chosen greater than the necessary 

minimum shift obtained. This shift value should be 

part of the secret key with the corresponding initial 

condition and parameter. Moreover, various initial 

condition, parameter and shift sets lead to the 

divergence of MEKF and NLS so that the secret 

key can be changed very often. Consequently, by 

using a such appropriate secret key and by 

changing it regularly, the cipher-key is immune 

against attack using the MEKF and NLS. 

Finally, this study provides areas for future 

investigation on M-p CPRNG families. 
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