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Abstract Fully implicit time-space discretizations ap-

plied to the two-phase Darcy flow problem lead to the

systems of nonlinear equations, which are traditionally

solved by some variant of Newton’s method. The effi-

ciency of the resulting algorithms heavily depends on

the choice of the primary unknowns since Newton’s

method is not invariant with respect to a nonlinear

change of variable. In this regard the role of capillary

pressure/saturation relation is paramount because the

choice of primary unknowns is restricted by its shape.

We propose an elegant mathematical framework for two-

phase flow in heterogeneous porous media resulting in

a family of formulations, which apply to general mono-

tone capillary pressure/saturation relations and handle

the saturation jumps at rocktype interfaces. The pre-

sented approach is applied to the hybrid dimensional

model of two phase water-gas Darcy flow in fractured

porous media for which the fractures are modeled as in-

Address(es) of author(s) should be given

terfaces of co-dimension one. The problem is discretized

using an extension of Vertex Approximate Gradient

scheme. As for the phase pressure formulation, the dis-

crete model requires only two unknowns by degree of

freedom.

Nomenclature

Continuous problem

Ω Matrix domain.

(Γi)i∈I The set of individual fractures.

Γ The fracture network.

m, f The subscripts associated to the quantities

defined on the matrix domain, and on the

fracture network respectively.

φm, φf Porosity.

df Fracture width.

Λm Matrix permeability tensor.

Λf Fracture tangential permeability tensor.

kαr,m, k
α
r,f Relative permeability of the phase α.

qαm Matrix Darcy velocity of the phase α.

qαf Fracture tangential Darcy velocity of the

phase α integrated other the fracture width.

ρα Density of the phase α.

µα Viscosity of the phase α.

sα Saturation of the phase α.

uα Pressure of the phase α.

p Capillary pressure p = ug − uw.

g, w The superscripts g for gas and w for water.

Sgm, S
g
f Inverse of the capillary pressure graph.

(Ωj)j∈Jm The set of rocktypes within the matrix do-

main.

(Υj)j∈Jf The set of rocktypes within with the frac-

ture network.(
Sgm,j

)
j∈Jm

The set of inverse capillary pressure graphs

associated with matrix rocktypes.(
Sgf,j

)
j∈Jf

The set of inverse capillary pressure graphs

associated with fracture network rocktypes.

g Gravity vector given by g = g∇z.
VAG discretization

M The set of polyhedral cells of the mesh.

F ,FΓ ,FK The set of polygonal faces, its subset of

faces lying on the fracture network and the

subset of faces lying on the boundary of

the cell K ∈M.

V,Vσ The set of mesh nodes and its subset of

nodes lying on the boundary of the face σ.

Vext,Vint The subsets of “external” and “internal”

nodes of the mesh.

ΞK The set of degrees of freedom associated

with the boundary of the cell K ∈M.
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φK Porous volume associated to the cell K ∈
M

φK,ν The portion of porous volume subtracted

from the cell K ∈ M and distributed to

the degree of freedom ν ∈ ΞK \ Vext.
φσ Porous volume associated to the face σ ∈

F
φσ,s The portion of porous volume subtracted

from the fracture face σ ∈ FΓ and dis-

tributed to the node s ∈ Vσ \ Vext.
jK , jσ Rocktype associated with the cell K ∈M

and the fracture face σ ∈ FΓ respectively.

Fα,nK,ν Discrete flux of the phase α connecting the

cell K and the degree of freedom ν ∈ ΞK
at time step n.

Fα,nσ,s Discrete flux of the phase α connecting the

fracture face σ and the node s ∈ Vσ at time

step n.

XD Vector space of degrees of freedom.

X0
D The subspaceXD with homogeneous Dirich-

let boundary conditions.

Parametrization of capillary pressure graphs

χν The subset of rocktypes intersecting at the

degree of freedom ν.

Pχ The capillary pressure function associated

with the subset of rocktypes χ.

Sgχ,j The gas saturation function associated with

the subset of rocktypes χ and the rocktype

j ∈ χ.

1 Introduction

We consider a hybrid dimensional model of two-phase

gas-water Darcy flow in fractured porous media. This

type of models, introduced in [2], [4] for single phase

Darcy flows and in [17], [16], [13], [5] for two-phase

Darcy flows, treats fractures as interfaces of co-dimension

1. We will also assume that the pressure of the phases

is continuous at the interfaces between the fractures

and the matrix domain, which corresponds physically to

pervious fractures for which the ratio of the transversal

permeability of the fracture to the width of the fracture

is large compared with the ratio of the permeability of

the matrix to the size of the domain. Note that it does

not cover the case of fractures acting as barriers for

which the pressure is discontinuous at the matrix frac-

ture interfaces and which are considered in [12], [14],

[15], [3], [20] , [18], [1], [6] for single phase flows, and [7]

for two phase flows.

In the framework of two-phase Darcy flows in frac-

tured porous media, highly contrasted capillary pres-

sure curves are expected in particular between the ma-

trix and the fractures. Hence, it is crucial to take into

account in the model formulation the saturation jumps

at the matrix fracture interfaces. In order to do so, as

it has been stressed out in [8], the capillary pressure

curves have to be extended into the monotone graphs

(see e.g. Figures 2).

In several recent works [11], [5], the Vertex Approx-

imate Gradient (VAG) discretization, employing phase

pressures formulation, was applied to model two-phase

Darcy flows in heterogeneous porous media. In the con-

text of vertex-centered schemes the phase pressures for-

mulation allows to capture the saturation jump condi-

tion at the interface between different rocktypes with-

out introducing any additional unknowns at these inter-

faces. It is, however, limited to strictly increasing capil-

lary pressure curves and lacks robustness compared to

pressure-saturation formulations. In this article we ex-

tend the scheme introduced in [5] to the case of general

increasing capillary pressure curves.

Let Ω be a bounded domain of Rd, d = 2, 3 assumed

to be polyhedral for d = 3 and polygonal for d = 2. To

fix ideas the dimension will be fixed to d = 3 when it

needs to be specified, for instance in the naming of the

geometrical objects or for the space discretization in

the next section. The adaptations to the case d = 2 are

straightforward. Let Γ =
⋃
i∈I Γ i denotes the network

of fractures Γi ⊂ Ω, i ∈ I, such that each Γi is a planar

polygonal simply connected open domain included in

some plane of Rd (see Figure 1).

Fig. 1: Example of a 2D domain Ω with 3 intersecting frac-
tures Γi, i = 1, 2, 3.

In the matrix domain Ω (resp. in the fracture net-

work Γ ), we denote by φm(x) (resp. φf (x)) the poros-

ity and by Λm(x) (resp. Λf (x)) the permeability (resp.

tangential permeability) tensor. The thickness of the

fractures is denoted by df (x) for x ∈ Γ . For each phase

α = w, g (where w stands for “water” and g for “gas”)

we denote by kαr,m(s,x) (resp. kαr,f (s,x)), the phase rel-

ative permeabilities and by Sgm(p,x) (resp. Sgf (p,x)) the

possibly set-valued inverses of the monotone graph ex-
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tension of the capillary pressure curves. For α = w, g,

we will also denote by ρα the phase densities and by µα

the phase viscosities which for the sake of clarity are

assumed constant.

We denote by uα the pressure of phase α = w, g

and by sgm (resp. sgf ) the saturation of gas phase in the

matrix (resp. the fracture network) domain. We define

the water saturations by

swm = 1− sgm and swf = 1− sgf .

The Darcy flux of phase α = w, g in the matrix domain

is defined by

qαm = −
kαr,m(sαm,x)

µα
Λm(∇uα − ραg),

where g = g∇z stands for the gravity vector. The flow

in matrix domain is described by the mass balance

equation

φm∂ts
α
m + div(qαm) = 0, (1)

and the macroscopic capillary pressure law

sgm ∈ Sgm(ug − uw,x). (2)

On each fracture Γi, i ∈ I, we denote formally by γi
the trace operator, by ∇τi the tangential gradient and

by divτi the tangential divergence. In addition, for all

i ∈ I, we can define the two sides ± of the fracture Γi in

Ω \Γ and the corresponding unit normal vectors n±i at

Γi outward to the sides ±. Let qα,±m ·n±i formally denote

the two normal traces of matrix fluxes at both sides of

the fracture Γi. The Darcy flux of phase α = w, g in the

fracture Γi integrated over the width of the fracture is

defined by

qαf,i = −df
kαr,f (sαf ,x)

µα
Λf (∇τiγiuα − ραgτi),

with gτi = g− (g ·n+
i )n+

i . The flow in each fracture Γi
is described by

dfφf∂ts
α
f + divτi(q

α
f,i)− qα,+m ·n+

i − qα,−m ·n−i = 0. (3)

and

sgf ∈ S
g
f (γiu

g − γiuw,x). (4)

The hybrid dimensional two-phase flow model looks for

sgm, sgf , and (uα)α=g,w satisfying (1)-(4). In addition to

(1)-(4) we prescribe a no-flux boundary conditions at

the tips of the immersed fractures, that is to say on ∂Γ \
∂Ω, and the mass conservation and pressure continuity

conditions at the fracture intersections. We refer to [5]

for more details on those conditions. Finally, one should

provide some appropriate initial and boundary data.

Remark that for a fixed x ∈ Ω (resp. x ∈ Γ ) the

functions Sgm and Sgf are, generally speaking, set-valued,

this is the case e.g. when the capillary pressure is ne-

glected. Indeed, in such situation the gas saturation

takes any value in [0, 1] as long as ug − uw = 0. In

addition, Sgm and Sgf depend on the space variable x

and we will assume that Sgm(·,x) is piecewise constant

and is defined with respect to a set of so-called rock-

types. Let us denote by H the multi-valued Heavisied

function defined by

H(ξ) =


0, ξ < 0,

[0, 1] , ξ = 0,

1, ξ > 0.

The following assumptions hold on Sgm and Sgf :

(A1) Ω can be decomposed into a set of disjoint connected

open polyhedral sets (Ωj)j∈Jm with
⋃
j∈Jm Ωj = Ω,

such that Sgm(p,x) = Sgm,j(p,x) for a.e. x ∈ Ωj
and all p ∈ R. Similarly, we suppose that there ex-

ists a family of disjoint connected polygonal open

sets (Υj)j∈Jf such that
⋃
j∈Jf Υj = Γ and such that

Sgf (p,x) = Sgf,j(p) for a.e. x ∈ Υj and all p ∈ R.

(A2) We assume that for all l = m, f and j ∈ Jl there ex-

ist a non decreasing continuous piecewise C1 func-

tion al,j from R to R, a positive integer rl,j and(
pkl,j

)
k∈{1,...,rl,j}

∈ Rrl,j ,
(
bkl,j

)
k∈{1,...,rl,j}

∈ (R+)
rl,j

such that

Sgl,j(p) = al,j(p) +

rl,j∑
k=1

bl,j,kH(p− pl,j,k)

for all p ∈ R. We also assume that Sgl,j(p) ⊂ [0, 1]

Remark that the assumption A2 allow in particular for

negative capillary pressure.

The matrix and fracture relative permeabilities are

piecewise constant w.r.t. x on the same partitions of the

matrix and fracture network domains as the capillary

pressure curves. In the following, we will denote the

mobilities (ratio of the phase relative permeability to

the phase viscosity) by kαm,j(s) in the matrix for each

rocktype j ∈ Jm and by kαf,j(s) in the fracture network

for each rocktype j ∈ Jf .

In order to illustrate the difficulty of dealing with

both heterogeneous and multi-valued saturation curves

Sgm and Sgf , let us admit for the moment that Sgm are Sgf
do not depend on x and that Sgm(p), Sgf (p) are single-

valued continuous increasing functions satisfying for l =

m, f

Sgl (p ≤ pent,l) = 0 and lim
p→+∞

Sgl (p) = 1
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with pent,l ∈ R, l = m, f been an entry pressure. The

figure 2a exhibits a typical form of multi-valued capil-

lary pressure curves corresponding to Sgm(p) are Sgf (p).

When the system (1) - (4) is solved numerically it is

desirable to reduce the number of unknowns by elimi-

nating the algebraic equations (2) and (4), in particular

one may expect to have as many as two unknowns by

degree of freedom. Note that as long as the functions

Sgl , l = m, f , are single valued (which is the case when

the capillary pressure graphs do not have “horizontal”

parts) it is possible to express sgm and sgf in terms of ug

and uw. In other words (uw, ug) is an admissible couple

of primary unknowns. The other admissible couple is

(uw, sgf ) since ug and sgm can be expressed as

ug = uw + (Sgf )−1(sgf ) and sgm = Sgm ◦ (Sgf )−1(sgf ).

In contrast, unless pent,m is less or equal to pent,f , it

is not possible to describe any possible values of ug

and sgf at the matrix/fracture interface using the pair

(ug, sgm). However this formulation still can be applied

“away” from Γ .

Let us remark that both (uw, ug) and (uw, sgf ) for-

mulations lead, after a space-time discretization of (1)

and (3), to the equivalent systems of nonlinear alge-

braic equations. Nevertheless, in practice, the perfor-

mance of numerical algorithm would heavily depend on

the choice of primary variables. In particular it is well

known that the use of the formulation based on ug and

uw has to be avoided when modeling imbibition in very

dry soil. This is explained by the fact that applying the

Newton-Raphson method (or some other linearization

scheme) for solving nonlinear problems resulting from

both formulation breaks the equivalence between non-

linear problems resulting from different formulation.

Next, let’s assume that the capillary pressure is ne-

glected in the fracture network domain (see Figure 2b).

In that case both Sgf and its inverse are set-valued,

which in particular implies that neither (uw, sgf ) nor

(uw, ug) can be used as a pair of primary variables for

the whole range of values of saturation and capillary

pressure. Instead one may switch, as capillary pres-

sure grows, from (uw, sgf ) to (uw, ug), and even possibly

from (uw, ug) to (uw, sgm) for ug − uw ≥ pent,m. Note

that if the capillary pressure in the fracture domain is

very small, but not strictly zero one cannot expect the

numerical scheme based on (uw, sgf ) formulation to be

computationally efficient.

Finally, let us remark that there is no reason to

restrict the choice of primary variables to the set of

natural variables, that is to say, to uw, ug, sgm and sgf .

Consider the functions

P and (Sgl )l=m,f (5)

(a) Sgm and Sgf are single-valued

(b) Sgm is single-valued, Sgf is set-valued

Fig. 2: Typical form of capillary pressure curves in matrix
and fracture domains.

defined on an open convex set I ⊂ R such that P(I) =

R and such that for τ ∈ I

Sgl (τ) ∈ Sgl (P(τ)) for all l = m, f (6)

Then the couple (uw, τ) is an admissible couple of pri-

mary unknowns with

ug = uw + P(τ) and sgl = Sgl (τ), l = m, f.

The map τ 7→ (P(τ),Sgl (τ)), l = m, f , can be seen as

the parametrization of the curve Sgl . The parametriza-

tion (5) is not uniquely defined by (6) even under some

additional regularity assumptions (see Proposition 1)

and hence one can try to choose the functions P(τ) and

Sgl (τ), l = m, f , in order to improve the convergence of

the nonlinear solver.

The remaining of this article is organized as follows.

In the next section we briefly recall the VAG scheme in-

troduced in [5] using ug and uw as primary unknowns.

Then we detail the parametrization approach presented

above and provide the extension of the VAG discretiza-

tion accounting for general monotone capillary pres-

sure graphs related to multiple rocktypes, and finally
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we present numerical experiments, which aims to com-

pare the classical pressure-saturation formulations with

more advanced parametrizations following the above

ideas.

2 Vertex Approximate Gradient (VAG)

Discretization

In this section we will recall the numerical scheme pre-

sented in [5], while assuming that Sgm(·,x) and Sgf (·,x)

are single valued. More precisely, in addition to (A2) we

will assume the following

(A2a)
(
Sgm,j

)
j∈Jm

and
(
Sgf,j

)
j∈Jf

are non decreasing con-

tinuous piecewise C1 functions from R to [0, 1].

The VAG discretization of hybrid dimensional two-

phase Darcy flows introduced in [5] considers gener-

alised polyhedral meshes of Ω in the spirit of [10]. Let

us briefly recall some notation related to the space dis-

cretization. We will denote by M be the set of disjoint

open polyhedral cells, by F the set of faces and by V
the set of nodes of the mesh. For each cell K ∈ M we

denote by FK ⊂ F the set of its faces and by VK the

set of its nodes. Similarity, we will denote by Vσ the set

of nodes of σ ∈ F .

The mesh is supposed to be conforming w.r.t. the

fracture network Γ in the sense that for all i ∈ I there

exist the subsets FΓiof F such that Γ i =
⋃
σ∈FΓi

σ. We

will denote by FΓ the set of fracture faces
⋃
i∈I FΓi . The

space discretization is also assumed to be compatible

with the sets (Ωj)j∈Jm and (Υj)j∈Jf , that is to say, for

all K ∈ M there exists jK ∈ Jm such that K ⊂ ΩjK
and for all σ ∈ FΓ there exists jσ ∈ Jf such that σ ⊂
Υjσ . In other words, jK is the rocktype of cell K and jσ
is the rocktype of the fracture face σ. This geometrical

discretization of Ω and Γ is denoted in the following

by D. The VAG discretization proposed in [5] is based

upon the following vector space of degrees of freedom:

XD = {vK , vs, vσ ∈ R,K ∈M, s ∈ V, σ ∈ FΓ },

and its subspace with homogeneous Dirichlet boundary

conditions on ∂Ω:

X0
D = {v ∈ XD | vs = 0 for s ∈ Vext},

where Vext = V ∩ ∂Ω denotes the set of boundary ver-

tices, and Vint = V \ ∂Ω denotes the set of interior ver-

tices. The degrees of freedom are exhibited in Figure 3

for a given cell K with one fracture face σ in bold.

The VAG scheme is a control volume scheme in the

sense that it results, for each interior degree of freedom

and each phase, in a mass balance equation. The two

main ingredients are therefore the conservative fluxes

and the control volumes. The VAG matrix and fracture

fluxes are exhibited in Figure 3. For u ∈ XD, the matrix

fluxes FK,ν(u) connect the cell K ∈ M to the degrees

of freedom located at the boundary of K, namely ν ∈
ΞK = VK ∪ (FK ∩ FΓ ). The fracture fluxes Fσ,s(u)

connect each fracture face σ ∈ FΓ to its nodes s ∈ Vσ.

Note also that the expression of the matrix (resp. the

fracture) fluxes is local to the cell (resp. fracture face)

and let us refer to [5] for a more detailed presentation.

Fig. 3: For a cell K and a fracture face σ (in bold), examples
of VAG degrees of freedom uK , us, uσ, us′ and VAG fluxes
FK,σ, FK,s, FK,s′ , Fσ,s.

The construction of the control volumes is done by

distributing porous volume associated with the cells

K ∈ M and fracture faces σ ∈ FΓ among the degrees

of freedom located on their respective boundaries. For

each K ∈ M we define a set of non-negative volume

fractions (αK,ν)ν∈ΞK∩Vint satisfying
∑
ν∈ΞK

αK,ν ≤ 1,

and we set

φK = (1−
∑

ν∈ΞK∩Vint

αK,ν)

∫
K

φm(x)dx,

φK,ν = αK,ν

∫
K

φm(x)dx

Similarly, for all σ ∈ FΓ we set

φσ = (1−
∑

s∈Vσ∩Vint

ασ,s)

∫
σ

φf (x)df (x)dτ(x),

φσ,s = ασ,s

∫
σ

φf (x)df (x)dτ(x),

where we denote by dτ(x) the d−1 dimensional Lebesgue

measure on Γ , and where the volume fractions (ασ,s)s∈Vσ∩Vint
are non-negative and satisfy

∑
s∈Vσ∩Vint

ασ,s ≤ 1.
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As it has been shown in [5], the flexibility in the

choice of αK,s and ασ,s is a crucial asset, compared with

usual CVFE approaches and allows to significantly im-

prove the accuracy of the scheme when the permeability

field is highly heterogeneous. As exhibited in Figure 4,

as opposed to usual CVFE approaches, this flexibility

allows to define the control volumes in the fractures

with no contribution from the matrix in order to avoid

to enlarge artificially the flow path in the fractures.

Fig. 4: Example of control volumes at cells, fracture face,
and nodes, in the case of two cells K and L splitted by one
fracture face σ (the width of the fracture has been enlarged
in this figure).

For N ∈ N∗, let us consider the time discretization

t0 = 0 < t1 < · · · < tn−1 < tn · · · < tN = T of the

time interval [0, T ]. We denote the time steps by ∆tn =

tn − tn−1 for all n = 1, · · · , N .

Considering homogeneous Dirichlet boundary con-

ditions for convenience, the VAG discretization intro-

duced in [5] of the hybrid dimensional two phase Darcy

flow model (1) - (4) looks for ug,n, uw,n ∈ X0
D, n =

1, · · · , N , such that one has for all vα ∈ X0
D and for

α = g, w:

∑
K∈M

(
φK
∆tn

(Sα,nK − Sα,n−1K )

+
∑
ν∈ΞK

kαm,jK (Sα,nK,ν,up)F
α,n
K,ν

)
vαK

+
∑
K∈M

∑
ν∈ΞK\Vext

(
φK,ν
∆tn

(Sα,nK,ν − S
α,n−1
K,ν )

−kαm,jK (Sα,nK,ν,up)F
α,n
K,ν

)
vαν

+
∑
σ∈FΓ

(
φσ
∆tn

(Sα,nσ − Sα,n−1σ )

+
∑
s∈Vσ

kαf,jσ (Sα,nσ,s,up)F
α,n
σ,s

)
vασ

+
∑
σ∈FΓ

∑
s∈Vσ\Vext

(
φσ,s
∆tn

(Sα,nσ,s − Sα,n−1σ,s )

−kαf,jσ (Sα,nσ,s,up)F
α,n
σ,s

)
vαs = 0.

(7)

In (7), the phase fluxes are defined by{
Fα,nK,ν (u) = FK,ν(uα,n) + ραgFK,ν(Z),

Fα,nσ,s (u) = Fσ,s(u
α,n) + ραgFσ,s(Z),

(8)

with Z denoting the vector (zK , zs, zσ)K∈M,s∈V,σ∈FΓ .

The upstream values of the saturations Sα,nK,ν,up and

Sα,nσ,s,up are defined by

{
Sα,nK,ν,up = Sα,nK if FαK,ν(uα,n) ≥ 0,

Sα,nK,ν,up = Sα,nK,ν if FαK,ν(uα,n) < 0,

and{
Sα,nσ,s,up = Sα,nσ if Fασ,s(u

α,n) ≥ 0,

Sα,nσ,s,up = Sα,nσ,s if Fασ,s(u
α,n) < 0.

(9)

As exhibited in Figure 5, the definition of the satura-

tions at the matrix fracture interfaces takes into ac-

count the jump of the saturations induced by the dif-

ferent rocktypes. More precisely, for all K ∈ M and

ν ∈ ΞK \ Vext we set

Sg,nK = Sgm,jK (ug,nK − uw,nK ), Sw,nK = 1− Sg,nK ,

Sg,nK,ν = Sgm,jK (ug,nν − uw,nν ), Sw,nK,ν = 1− Sg,nK,ν ,
(10)

and for all σ ∈ FΓ and s ∈ Vσ \ Vext we set

Sg,nσ = Sgf,jσ (ug,nσ − uw,nσ ), Sw,nσ = 1− Sg,nσ ,

Sg,nσ,s = Sgf,jσ (ug,ns − uw,ns ), Sw,nσ,s = 1− Sg,nσ,s .
(11)
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Fig. 5: Saturations inside the cells K and L, the fracture face
σ and at the matrix fracture interfaces taking into account
the saturation jumps induced by the different rocktypes.

3 Parametrization of Saturation Curves at the

Rocktype Interfaces

Now let us demonstrate how the discretization (7)-(11)

can be extended to the case of the inverse capillary

pressure graphs satisfying (A2) but not (A2a).

Let J = Jm ∪Jf , for all K ∈M we set χK = {jK}.
For all σ ∈ FΓ we set χσ = {jσ}∪

(⋃
{K |σ∈FK}{jK}

)
.

For all s ∈ V we set

χs =

 ⋃
{K | s∈VK}

{jK}

 ∪
 ⋃
{σ | s∈Vσ}

{jσ}

 .

Roughly speaking, for each ν ∈ M ∪ FΓ ∪ V the set

χν ∈ 2J denotes the collection of rocktypes intersecting

at the degree of freedom ν. We finally define

χD =
⋃

K∈M
{χK}

⋃
σ∈FΓ

{χσ}
⋃
s∈V
{χs},

where χD is seen as a subset of 2J .

The following proposition justifies the fact that a

pair of unknowns is sufficient at any degrees of freedom

located on the rocktype intersection.

Proposition 1 Let χ ∈ χD and
(
Sgj
)
j∈χ be a finite

family of maximal monotone graphs satisfying assump-

tion A2 (the second index, m or f , is omitted). Then,

there exists a family of non decreasing continuous piece-

wise C1 functions Pχ and
(
Sgχ,j

)
j∈χ defined on an open

convex set I ⊂ R such that Pχ(I) = R and such that

for τ ∈ I and j ∈ χ

Sgχ,j(τ) ∈ Sgj (Pχ(τ)); (12)

moreover they can be chosen such that the following

non-degeneracy condition∑
j∈χ

d

dτ

(
Sgχ,j(τ),Pχ(τ)

)
6= (0, 0) (13)

is satisfied for a.e. τ ∈ I.

Proof : In addition to A2 and without loss of generality

we may assume that there exist a finite family of real

p1 < p2 < . . . < prχ and a family of non negative

(bj,k)k=1,...,rχ,j∈χ such that

Sgj (p) = aj(p) +

rχ∑
k=1

bj,kH(p− pk)

for all p ∈ R and all j ∈ χ. Let (ζk)k∈rχ be a family of

non negative real values satisfying ζk = 0 if and only if∑
j∈χ bj,k = 0 for all k = 1, . . . , rχ. We set I = R and

we construct the functions Pχ and
(
Sgχ,j

)
j∈χ as follows.

Let π1 = p1, πk = pk +
∑k−1
i=1 ζi for k = 2, . . . , rχ and

πrχ+1 = +∞. We set

Pχ(τ) =


τ, τ ≤ π1
pk, πk < τ ≤ πk + ζk, k = 1, . . . , rχ
pk + τ− πk − ζk,

πk + ζk < τ ≤ πk+1, k = 1, . . . , rχ

It is easy to verify that Pχ is continuous and piecewise

C1 on I with Pχ(I) = R.

For all k = 1, . . . , rχ and j ∈ χ let us denote by

sj,k(p) a single valued restriction of Sgj on (pk, pk+1),

that is sj,k(p) = aj(p)+
∑k
i=1 bj,i. The restriction of Sgj

on (−∞, p1) will be denoted by sj,0(p) = aj(p). For any

j ∈ χ the function Sgχ,j is defined by

Sgχ,j(τ) =



sj,0(Pχ(τ)), τ ≤ π1
sj,k−1(pk) +

bj,k
ζk

(τ − πk),

πk < τ ≤ πk + ζk, k = 1, . . . , rχ
sj,k(Pχ(τ)),

πk + ζk < τ ≤ πk+1, k = 1, . . . , rχ.

By direct computation one can verify that Sgχ,j(τ) is

continuous, and that (12) holds. Since each of sj,k is

piecewise C1 on I the function Sgχ,j(τ) is piecewise C1

on I too. Finally the property (13) is recovered since

sj,k and Pχ are non decreasing and in view of the fact

that
∑
j∈χ bj,k > 0 as soon as the set {τ | πk < τ ≤

πk + ζk} is not empty. �

For all χ ∈ χD let Pχ and
(
Sgχ,j

)
j∈χ be some family

of non decreasing functions associated with the family

of graphs
(
Sgj
)
j∈χ and satisfying (12) and (13). The
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saturations are defined by

Sg,nK = SgχK ,jK (τnK)

Sw,nK = 1− Sg,nK for all K ∈M,

Sg,nσ = Sgχσ,jσ (τnσ ),

Sw,nσ = 1− Sg,nσ for all σ ∈ FΓ ,
Sg,nK,ν = Sgχν ,jK (τnν ),

Sw,nK,ν = 1− Sg,nK,ν for all K ∈M, ν ∈ ΞK ,
Sg,nσ,s = Sgχs,jσ

(τns ),

Sw,nσ,s = 1− Sg,nσ,s for all σ ∈ FΓ , s ∈ Vσ,
(14)

and the water pressures by
uw,nK = ug,nK + PχK (τnK) for all K ∈M,

uw,nσ = ug,nσ + Pχσ (τnσ ) for all σ ∈ FΓ ,
uw,ns = ug,ns + Pχs(τns ) for all s ∈ V.

(15)

The new scheme consist in finding ug,n, τw,n ∈ X0
D,

n = 1, · · · , N , satisfying (7), (8), (9) along with (14)-

(15).

4 Implementation and Numerical Experiments

In this section we present numerical experiments which

aims to compare the robustness and efficiency of the

classical pressure-saturation formulation with more ad-

vanced choices of primary unknowns which are imple-

mented using the graph parametrization approach pre-

sented above. The pressure-pressure formulation is ex-

cluded from the comparison since is has a very poor

efficiency when dealing with dry (sg close to 1) media.

In practice, the pressure-pressure formulation has also

been tested and it failed to converge for matrix frac-

ture capillarity ratio bm
bf

larger than 10 (see below for

the definition of this ratio).

We consider only two rocktypes, the matrix rock-

type denoted by j = m and the fracture (or fault)

rocktype denoted by j = f . The phase mobilities are

defined for both rocktypes j = m, f and for α = g, w

by the following Corey law

kαj (sα,x) =
kαj,max(s̄α)n

α
j

µα
, (16)

where s̄w =
sw−swr,j

1−swr,j−s
g
r,j

, and s̄g =
sg−sgr,j

1−sgr,j−swr,j
are the

reduced saturations and µα is the phase viscosity.

The capillary pressure/saturation relation are also

given for the matrix (j = m) and fracture (j = f)

rocktypes by the following Corey law

Sgj (p) =

{
0 if p− pent,j < 0,

1− e−
p−pent,j

bj if p− pent,j ≥ 0,
(17)

where the parameter pent,j > 0 stands for the entry

pressure. Both bj and pent,j depend on the rocktype

j = m, f . Figure 6 exhibits, the typical shape of the

matrix and fracture capillary pressure graphs Pcm and

Pcf , which are the multi-valued inverses of Sgm and Sgf
respectively. Remark that, when bj tends to 0, the graph

of Sgj tends to the graph of the multi-valued Heaviside

function centered at p = pent,j .

Fig. 6: The graphs of the capillary pressures Pcm in the ma-
trix, and Pcf in the fractures for bm = 105 Pa, bf = 104 Pa,
pent,m = 105 Pa, pent,f = 0 (left) and bm = 105 Pa, bf = 0,
pent,m = 105 Pa, pent,f = 0 (right).

Let us remark that the choice of capillary pressure

law (17) is mainly motivated by an ease of its imple-

mentation and the small number of required parame-

ters. Our method may be extended to other analyti-

cal capillary pressure versus saturation relations, such

as Van Genuchten law. From the theoretical point of

view, the parametrization approach applies as well also

to the case of tabulated capillary pressure functions (see

Proposition 1). However its practical implementation in

that case may be less straightforward, mainly because

the choice of the primary unknowns have to be made au-

tomatically. The same difficulty arises when more than

two rocktypes intersect at the degrees of freedom, which

for VAG scheme may happen at the nodal d.o.f.
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The following numerical experiments compare, for

different values of the parameters bj and pent,j , j =

m, f , the pressure-saturation formulation using gas pres-

sure and gas saturation as the primary unknowns with

some more advanced parametrizations inspired by vari-

able switch techniques. Since only one fracture and one

matrix rocktypes are considered, the set χD is equal to

χD = {{m}, {m, f}},

where χ = {m} corresponds to degrees of freedom lo-

cated in the matrix only and χ = {m, f} corresponds

to degrees of freedom located at the matrix fracture

interfaces. In the following, the primary unknowns for

χ = {m} are fixed for both formulations to (ug, sgm)

since this is an efficient and simple choice for a single

rocktype. The choices of parametrization at the ma-

trix fracture interfaces i.e. for χ = {m, f} will result in

functions Sgm, Sgf , P, which we define below for several

types of capillary pressures curves given by Corey law.

We will distinguish the following five cases ordered with

increasing complexity.

The first two cases, denoted C1 and C2 assume a

zero entry pressure in matrix and fracture network rock-

types and a strictly increasing capillary pressure curve

in matrix domain; more precisely we will assume that

bm > 0, pent,m = pent,f = 0 for both cases, and that

0 < bf < bm for C1, while bf = 0 in the case C2.

Then we will address the problem (cases C3 and C4)

with a positive entry pressure in the matrix, assuming

for both cases that bm > 0, pent,f = 0 and that again

0 < bf < bm for C3 and bf = 0 for C4. In addition, as

we are interested in large capillary barriers for both C3

and C4, we will assume that bf < pent,m.

Finally, the case C5 will defined by pent,m > 0,

pent,f = 0 and bm = 0 = bf = 0.

The choices of the primary unknowns will be com-

pared in terms numerical behavior of the simulations

based on the number of linear and nonlinear iterations

and on the CPU time.

4.1 Parametrizations for the pressure-saturation and

variable-switch formulations

4.1.1 C1 and C2 cases

In this case, the entry pressures are both set to zero i.e.

pent,j = 0, j = m, f leading to the following Corey laws

Sgj (p) =

{
0 if p < 0,

1− e−
p
bj if p ≥ 0,

(18)

Figure 7 exhibits the capillary pressure graphs Pcm and

Pcf for bm = 105 Pa and the ratio bm
bf

= 10.

Fig. 7: Pcm in the matrix, and Pcf in the fractures for bm =
105 Pa, bf = 104 Pa, pent,m = pent,f = 0.

Pressure-saturation formulation: The formulation

is defined by the following set of functions (see the

curves on the top of Figure 8)
Sgm(τ) = τ

Sgf (τ) = Pc
−1
f (Pcm(τ)) = 1− (1− τ)

bm
bf

P(τ) = Pcm(τ) = −bm ln(1− τ)

(19)

with τ ∈ [0, 1).

This formulation can not be applied in the case C2,

at fact, when bm
bf

goes to infinity (i.e. when bm > 0

while the capillary pressure in the fracture network

goes to zero), the function Sgf (τ) tends to the graph,

which is multi-valued at τ = 0. Numerically, this would

lead to the loss of robustness for large values of bm
bf

.

This pressure-saturation formulation is compared to the

variable switch (ug, sgf )/(ug, sgm) formulation picking the

“steepest” saturation unknown, that is to say the one

which has a largest derivative with respect to the capil-

lary pressure. Figure 8 present the curves resulting from

both parametrizations for some values of the parame-

ters.

Variable-switch formulation: This formulation is ob-

tained using the relation (12) together with conditions

max

(
dSgm
dτ

,
dSgf
dτ

)
= 1

and

Sgm(0) = Sgf (0) = 0.

The computations give

Sgf (τ) =



τ, τ ∈ [0, τ1),

Pc
−1
f (Pcm(τ − τ1
+Pc

−1
m (Pcf (τ1))))

= 1− (τ1 + (1− τ1)
bf
bm − τ)

bm
bf , τ ∈ [τ1, τ2),

(20)
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Sgm(τ) =



Pc
−1
m (Pcf (τ))

= 1− (1− τ)
bf
bm , τ ∈ [0, τ1),

τ − τ1 + Pc
−1
m (Pcf (τ1))

= τ − τ1 + 1− (1− τ1)
bf
bm , τ ∈ [τ1, τ2),

(21)

and

P(τ) =


Pcf (Sgf (τ)) = −bf ln(1− τ), τ ∈ [0, τ1),

Pcm(Sgm(τ))

= −bm ln(τ1 + (1− τ1)
bf
bm − τ), τ ∈ [τ1, τ2),

(22)

where τ1 = 1− (
bf
bm

)
bm

bm−bf and τ2 = τ1 + (1− τ1)
bf
bm . It

is worth noticing that, by construction, the derivatives

of the functions Sgf (τ), Sgm(τ) and P(τ) are continuous

at τ = τ1 and that
dSgm
dτ

(τ1) =
dSgf
dτ

(τ1) = 1. When, for

a fixed bm, the ratio bm
bf

goes to infinity, the variable

switch parametrization tends to the following formula-

tion (see Figure 9):

Sgf (τ) =

{
τ, τ ∈ [0, τ1),

1, τ ∈ [τ1, τ2),
(23)

Sgm(τ) =

{
0, τ ∈ [0, τ1),

τ − τ1, τ ∈ [τ1, τ2),
(24)

and

P(τ) =


0, τ ∈ [0, τ1),

Pcm(Sgm(τ)

= −bm ln(1− (τ − τ1)), τ ∈ [τ1, τ2),

(25)

with τ1 = 1, τ2 = 2. Note that this limit case of a

vanishing capillary pressure in the fractures cannot be

accounted for by the pressure-saturation formulation.

4.1.2 C3 and C4 cases

Next we consider the test cases with non zero entry

pressure in the matrix pent,m > 0 and with zero entry

pressure in the fractures pent,f = 0. The graphs of Pcj ,

j = m, f are represented in Figure 6 for pent,m = 105

Pa, bm = 105 Pa, and bf = 104 Pa.

Pressure-saturation formulation: At the matrix frac-

ture interfaces the capillary pressure (see Figure 6) can

not be expressed as a function of sgm for p < pent,m,

but it is however a function of sgf as long as bf > 0.

Hence we choose sgf as primary unknown at the matrix

fracture interfaces, which leads to

Sgf (τ) = τ, Pm(τ) = (Sgf )−1(τ) = −bf ln(1− τ),

and

Sgm(τ) =



0, τ < Sgf (pent,m) = 1− e
−pent,m

bf ,

Pc
−1
m (Pcf (τ))

= 1− e
pent,m
bm (1− τ)

bf
bm ,

τ ≥ 1− e
−pent,m

bf .

As in the previous case the pressure-saturation formu-

lation can not be extended to the degenerate case C4.

Remark that when bm
bf

goes to infinity the function

Pc
−1
m (Pcf (τ)) becomes multi-valued at τ = 1 (see Fig-

ure 10), which results in severe numerical instabilities.

As a result, we were unable to obtain the convergence

of the nonlinear solver for bm
bf

> 10.

Variable-switch formulation: When bf = 0 it is

clear that the capillary pressure is no longer a function

of the saturation for its values in the interval (0, pent,m).

At fact, for those values of capillary pressure the rele-

vant pair of unknowns is (uw, ug) or (uw, ug − uw). As

we are interested in treating the limit case bf = 0 we

investigate the following formulation (see Figure 10),

which roughly speaking switches between the primary

variables (ug, sgf ), (ug, ug − uw), and (ug, sgm)

Sgf (τ) =



τ, τ ∈ [0, τ1),

Pc
−1
f (pent,m(τ − τ1) + Pcf (τ1))

= 1− (1− τ1)e
− pent,mbf

(τ−τ1)
,

τ ∈ [τ1, τ2),

Pc
−1
f (Pcm(τ − τ2))

= 1− (1− (τ − τ2))
bm
bf e

−pent,m
bf ,

τ ∈ [τ2, τ3),

(26)

Sgm(τ) =

{
0, τ ∈ [0, τ2),

τ − τ2, τ ∈ [τ2, τ3],
(27)

and

P(τ) =



Pcf (τ) = −bf ln(1− τ), τ ∈ [0, τ1),

pent,m(τ − τ1) + Pcf (τ1)

= pent,m(τ − τ1)− bf ln(1− τ1),

τ ∈ [τ1, τ2),

Pcm(τ − τ2)

= pent,m − bm ln(1− (τ − τ2)),

τ ∈ [τ2, τ3).

(28)

The value τ1 = 1 − bf
pent,m

used for the switch be-

tween (ug, sgf ) and (ug, ug−uw), and the value τ2 = τ1+

1− Pcf (τ1)

pent,m
used for the switch between (ug, ug−uw) and
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Fig. 8: Sgm, Sgf , and P curves for the pressure-saturation (on the top) and variable switch formulation (at the bottom) for

bm = 105 Pa, bf = 104 Pa, and pent,m = pent,f = 0.

Fig. 9: Sgm, Sgf , and P curves for the variable switch formulation and bm = 105 Pa, bf = 0, and pent,m = pent,f = 0.

(ug, sgm) are chosen such that the derivatives of the func-

tions Sgf (τ), Sgm(τ), P(τ) remain continuous on [0, τ3),

with τ3 = τ2 + 1. Remark that Pcf (τ1) < pent,m thanks

to the assumption bf < pent,m and that P(τ2) = pent,m.

When the ratio bm
bf

goes to infinity the following formu-

las are recovered

Sgf (τ) =

{
τ, τ ∈ [0, τ1),

1, τ ∈ [τ1, τ3),
(29)

Sgm(τ) =

{
0, τ ∈ [0, τ2),

τ − τ2, τ ∈ [τ2, τ3),
(30)

and

P(τ) =


0, τ ∈ [0, τ1),

pent,m(τ − τ1), τ ∈ [τ1, τ2),

Pcm(Sgm(τ)

= −bm ln(1− (τ − τ2)) + pent,m,

τ ∈ [τ2, τ3),

(31)

where τ1 = 1, τ2 = 2, and τ3 = 3. Remark that for bf =

0 and τ ∈ [τ1, τ2] the matrix rocktype acts as a barrier

for both phases so that none of them can penetrate it

unless the capillary pressure rises or drops enough.
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Fig. 10: Sgm, Sgf , and P curves for the pressure-saturation formulation (on the top) and variable switch formulation (at the

bottom) for bm = 105 Pa, bf = 104 Pa, pent,m = 105 Pa, pent,f = 0.

4.1.3 C5 case

Finally we consider the case bm = bf = 0, and pent,m >

0, and pent,f = 0 (see Figure 11). This test case can

only be treated using the formulation involving multiple

primary variable switches.

Fig. 11: The capillary pressure curves Pcm in the matrix and
Pcf in the fractures for bm = bf = 0, pent,m = 105 Pa, and
pent,f = 0.

In the spirit of the previous case we define the fol-

lowing parametrization:

Sgf (τ) =

{
τ, τ ∈ [0, τ1),

1, τ ∈ [τ1, τ3),
(32)

Sgm(τ) =

{
0, τ ∈ [0, τ2),

τ − τ2, τ ∈ [τ2, τ3],
(33)

and

P(τ) =


0, τ ∈ [0, τ1),

pent,m(τ − τ1), τ ∈ [τ1, τ2),

pent,m, τ ∈ [τ2, τ3],

(34)

with τ1 = 1, τ2 = 2, and τ3 = 3.

4.2 Tight gas test case

The family of test cases presented here simulates the

liquid gas two phase Darcy flow in a tight gas reser-

voir. The data set is similar to Example 2 of [9] ex-

cept for the choice of the capillary pressure curves. The

reservoir is defined by the domain Ω = (−500, 500) ×
(−250, 250)× (−100, 100) (in meters). Three transverse
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Fig. 12: The prismatic meshes with their layer of pyramids for
each refined box around each fracture located at the center of
each box (the thickness of the prisms and pyramids has been
enlarged for the sake of clarity).

fractures Γi, i = 1, 2, 3 of width df = 0.02 m are ini-

tiated by hydraulic fracturing from a horizontal well.

They are defined by the squares {xi} × (−50, 50) ×
(−50 × 50) with x1 = −250, x2 = 0, x3 = +250. An

horizontal well of radius rw = 0.1 m is located along

y = z = 0 and perforates each fracture Γi, i = 1, 2, 3

in a triangular equilateral face of center xi, y = z = 0
and of edge size 1 m. During the water injection phase,

the water penetrates only a few tens of centimeters in

the matrix due to the low permeability of the reser-

voir. Therefore in order to obtain an accurate water

saturation in the neighbourhood of the fractures with a

reasonable number of cells, a strong anisotropic refine-

ment is needed in the normal direction in the neihbour-

hood of each fracture. As exhibited in Figures 12 and

13 this anisotropic refinement is obtained using pris-

matic meshes with triangular base. In order to match

the boundaries of these refined boxes with the surround-

ing tetrahedral mesh of the reservoir, a layer of pyra-

mids is added around each fracture box as exhibited in

Figure 12. The tetrahedral mesh matching the triangu-

lation of the fracture box boundaries has been obtained

using TetGen [19]. Table 1 summarizes the character-

istics of the resulting hybrid mesh that will be used in

the following numerical test cases. This mesh includes

ten layers of prisms of thickness 0.1 m on both sides of

each fracture.

Fig. 13: Connection of the prismatic mesh around one frac-
ture with the surrounding tetrahedral mesh using a layer of
pyramids (the thickness of the prisms and pyramids has been
enlarged for the sake of clarity).

Ncells Nnodes NFracF Linear system d.o.f.
232 920 45 193 1 634 46 827

Table 1: Number Ncells of cells, number Nnodes of nodes,
number NFracF of fracture faces and number of d.o.f. in the
linear system after elimination of the cell d.o.f. (2 physical
unknowns per d.o.f.).

In this test case the mobilities are defined by swr,m =

0.2, sgr,m = 0, kwm,max = 0.3, kgm,max = 0.6, nwm =

1.5, ngm = 3 in the matrix, and by swr,f = sgr,f = 0,

kwf,max = kgf,max = 1, nwf = ngf = 1 in the fractures.

The parameters of the Corey capillary pressures are

fixed to bm = 105 Pa for cases C1, C2, C3 and C4,

and to pent,m = 105 Pa for cases C3, C4, and C5. For

cases C1 and C3 we will investigate the set of values

bf = 1, 10, 102, 103, 104 Pa in the fractures.

The viscosities of the two phases are set to µw =

10−3 µg = 2.35 10−5 Pa·s, and their densities are fixed

to the constant value ρw = 1000 kg/m3 for the water

phase, and to the perfect gas density ρg(ug) = M
RT u

g

kg/m3 for the gas phase with M = 0.016 Kg corre-

sponding to methane and R = 8.32 J·mol−1 ·K−1.The

reservoir is initially at the liquid pressure uw = 400 105

Pa, at the residual water saturation in the matrix and at

water saturation close to 0 in the fractures obtained by
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the continuity of the capillary pressure at the matrix

fracture interfaces. The permeability of the matrix is

isotropic and given by Λm = λmId with λm = 2 10−17

m2, very low compared with the permeability of the

fractures Λf = λf Id with λf = 2 10−12 m2. The poros-

ity is equal to φm = 0.1 in the matrix and to φf = 0.3

in the fractures.

The liquid is first injected at high hydraulic frac-

turing pressure 1000 105 Pa fixed at each perforation

during 1 day. This high pressure water injection phase

mimics indeed the invasion of the matrix by fracturing

fluid during hydraulic fracturing operations. After in-

jection, the well is closed during the next three days.

The well is then put in production at a constant bot-

tom pressure of 300 105 Pa during the next 296 days.

Only a part of the invaded water will be back-produced

in this early phase of production. The simulation runs

over a period of 300 days and the nonlinear systems

obtained at each time step are solved by a Newton-

Raphson method. The time stepping is defined by an

initial time step of 0.001 hour and a maximum time

step of 0.05 days during the water injection period, of

0.1 days during the well closure, and of 5 days during

the production period. If the Newton method does not

converge after 35 iterations, the time step is chopped by

a factor 2 and recomputed. The time step is increased

by a factor 1.2 after each successful time step until it

reaches the maximum time step. The stopping criteria

on the relative residuals are fixed to 10−6 for the GM-

Res solver preconditioned by ILU0 and to 10−5 for the

Newton method.

Finally, let us remark that the variable switch for-

mulations introduced in Section 4.1 result in Lipschitz
continuous saturation functions Sgm and Sgf (with Lip-

schitz constant less or equal to 1). This is an advan-

tage compare to classical pressure-saturation formula-

tion. However, the second derivative of the functions

Sgm and Sgf may become arbitrarily large depending on

the values of the capillary curve parameters bm and bf .

Indeed, the lack of smoothness occurs at the switching

values of the parameter τ , namely at τ1 for the cases

C1 and C2, and at τ1, τ2 for the cases C3 − C5. In or-

der to deal with this issue the Newton iterations are

damped using the following rule: if the Newton iterate

for τ variable tries to jump from below to above the

value τi = τ1, τ2 (or from above to below), it is pro-

jected onto τ = τi − ε
2 (τ = τi + ε

2 correspondingly).

More precisely, let ε > 0, and let τkν , ∆τkν denote the

value of the unknown and its increment at the degree

of freedom ν, at the iteration k of nonlinear solver. If

τkν < τi − ε and τkν +∆τkν > τi

we set τk+1
ν = τi − ε

2 , otherwise we set τk+1
ν = τkν +

∆τkν . Similarly the Newton iteration is damped as soon

as τkν > τi + ε and τkν + ∆τkν < τi. Compare to the

straightforward Newton’s method, this procedure may

result in a slightly larger number of iterations. In return

it increases the robustness of the nonlinear solver. In

the following numerical experiments we have taken ε =

10−5.

The numerical behaviour of the simulations for both

variable switch and pressure-saturation formulations (cases

C1 and C3), and for the variable switch formulation only

(cases C2, C4 and C5), is exhibited in Tables 2, 3 and

4. These tables present the number of successful time

steps, the number of time step chops, the number of

Newton iterations by successful time steps, the num-

ber of GMRes iterations by Newton iteration, and the

CPU time. Figure 14 exhibits in case C1 for bm
bf

= 1000

the cumulated number of Newton iterations as a func-

tion of time for the pressure-saturation and variable

switch formulations. It is clear that most of the time

step failures occur for the pressure-saturation formula-

tion during the water injection period. Figure 14 also

plots, for the same test case, CFL numbers in the ma-

trix and in the fractures as a function of time obtained

with the variable switch formulation. These CFL num-

bers correspond to the one obtained by an explicit Eu-

ler integration of the scalar hyperbolic equation for the

saturation unknown using the total velocity and the

fractional flow. It illustrates that the time steps used

in this simulation are many orders of magnitude larger

than the ones obtained using an IMPES scheme both

in the fractures and in the matrix.

The variable switch formulation turns out to be

more efficient and more robust w.r.t. the value of bm
bf

both in terms of number of Newton iterations and the

number of time step chops. Note that, as it can be ex-

pected, for bm
bf

= ∞ the variable switch formulation

performs similarly as for the case bm
bf

= 105. As shown

in Table 3, in the case of the entry pressure pent,m = 105

Pa, the pressure-saturation formulation fails to con-

verge except for small ratio bm
bf

. Table 4 shows that the

variable switch formulation still performs efficiently in

the degenerate case C5.

Figures 15 and 16 exhibit, at the end of each simu-

lation period at t = 1 day, t = 4 days and t = 300 days,

the water saturation in the perforated face in the frac-

ture and the cut of the water saturation in the matrix

along the line y = z = 0 as a function of the distance

to the fracture. One clearly sees that the water phase

fills the fractures during the water injection period and

penetrates the matrix less than one meter from the frac-

tures. At the end of the well closure period, water has

been sucked by imbibition from the fractures to the
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pressure-saturation variable switch
bm
bf

N∆t NChop NNewton NGMRes CPU(s) N∆t NChop NNewton NGMRes CPU(s)

10 226 2 4.2 25.9 4 638 226 2 4.3 26.2 5 523
102 294 21 10.7 20.1 14 557 246 8 7.5 22.2 9 016
103 297 22 11.7 19.7 16 183 225 1 5.5 24.2 6 245
104 304 24 12.9 19.8 17 742 225 1 4.8 25.1 5 492
105 313 26 12.8 19.6 18 346 235 4 5.4 23.9 6 260
∞ n/a n/a n/a n/a n/a 235 4 5.3 23.9 6 448

Table 2: Numerical results for the pressure-saturation and variable switch formulations for bm = 105 Pa, pent,m = pent,f = 0,

and different values of the ratio bm
bf

(cases C1 and C2): number N∆t of successful time steps, number NChop of time step

chops, number NNewton of Newton iterations per successful time step, number NGMRes of GMRes iterations by Newton
iteration, and CPU time in seconds.

pressure-saturation variable switch
bm
bf

N∆t NChop NNewton NGMRes CPU(s) N∆t NChop NNewton NGMRes CPU(s)

2 221 0 3 29.2 3 937 221 0 3.1 28.9 4 479
10 398 52 9.9 20.2 23 400 262 13 6.8 22.7 10 378
102 n/c n/c n/c n/c n/c 269 14 9.9 20.8 14 185
103 n/c n/c n/c n/c n/c 285 18 8.9 20.1 13 740
104 n/c n/c n/c n/c n/c 242 6 6.9 22.8 9 067
105 n/c n/c n/c n/c n/c 276 16 7.5 21.3 11 516
∞ n/a n/a n/a n/a n/a 299 22 8.1 19.1 10 770

Table 3: Numerical results for the pressure-saturation and variable switch formulations for bm = 105 Pa, pent,m = 105 Pa,

pent,f = 0 and different values of the ratio bm
bf

(cases C3 and C4): number N∆t of successful time steps, number NChop of

time step chops, number NNewton of Newton iterations per successful time step, number NGMRes of GMRes iterations by
Newton iteration, and CPU time in seconds.

variable switch
N∆t NChop NNewton NGMRes CPU(s)
221 0 5.8 26.3 5 948

Table 4: Numerical results for the pressure-saturation and
variable switch formulations for bm = bf = 0, pent,m = 105

Pa, and pent,f = 0 (case C5): number N∆t of successful time
steps, number NChop of time step chops, number NNewton of
Newton iterations per successful time step, number NGMRes
of GMRes iterations by Newton iteration, and CPU time in
seconds.

matrix. At the end of the simulation, the fractures are

again fully filled with the gas phase and the water phase

above the residual saturation is only partially removed

during the production period due to the water reten-

tion by capillary effect. Figures 17 and 18 exhibit the

instantaneous and cumulated flow rates of water and

gas at the well with a positive value for production and

a negative value for injection. Figures 15, 16, 17 and 18

show that the larger the difference between the capil-

lary pressure in the matrix and in the fractures, leads

to a larger amount of water which is retained in the

matrix.

4.3 Oil migration in a 2D basin

In this section we consider the oil migration in a faulted

2D basin exhibited in Figure 19 initially saturated with

water. Note that, according to our previous notations,

the oil phase stands for the phase α = g in this test case.

The domain Ω is of extension (0, 400)m×(0, 800)m and

the fault width is assumed to be constantly df = 4m.

The 2D triangular mesh of the domain Ω (see Figure

19) is extended to 3D by one layer of prisms since our

code deals with 3D meshes. The characteristics of the

resulting mesh are presented in table below

Nbcells Nbnodes NbFracF linear system d.o.f.
16 889 17 226 176 17 284

Initially, the reservoir is saturated with the water

phase (of constant density 1000 kg/m3 and viscosity

10−3 Pa·s), and the oil phase (of constant density 700

kg/m3 and viscosity 5 10−3 Pa·s) is injected at the bot-

tom boundary of the bottom fault, which is managed

by imposing non-homogeneous Neumann conditions at

the injection location. The oil then rises by gravity,

thanks to its lower density compared to water and by

the overpressure induced by the imposed injection rate.

Dirichlet boundary conditions are imposed at the upper
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Fig. 14: For test case C1 with bm = 105 Pa, pent,m =

pent,f = 0, bm
bf

= 1000: cumulated number of Newton it-

erations as a function of time for the pressure-saturation and
variable switch formulations (left), CFL numbers in the ma-
trix and in the fractures as a function of time obtained with
the variable switch formulation (right).

boundary of the domain, while the homogeneous Neu-

mann boundary conditions are prescribed elsewhere.

The permeability field is isotropic and given by Λm =

λmId with λm = 10−13 m2, and Λf = λf Id with λf =

10−10 m2. The parameters of the Corey capillary pres-

sures are fixed to bm = 106 Pa for cases C1, C2, C3

and C4, and to pent,m = 106 Pa for cases C3, C4, and

C5. For cases C1 and C3 we will investigate the set of

values bf = 1, 10, 104, 105 Pa in the faults. The porosity

is equal to φm = 0.2 in the matrix and to φf = 0.4 in

the faults. The mobilities are given for both the ma-

trix and fault rocktypes j = m, f by the Corey laws

(17) with swr,m = sgr,m = 0, kwm,max = kgm,max = 1,

nwm = ngm = 2 in the matrix, and by swr,f = sgr,f = 0,

kwf,max = kgf,max = 1, nwf = ngf = 1 in the faults. The

simulation is run over a period of 5400 days with an

initial time step of 1 day and a maximum time step

fixed to 180 days.

The numerical behaviour of the simulations for both

variable switch and pressure-saturation formulations (for

the cases C1 and C3), and for the variable switch for-

mulation only (cases C2, C4 and C5), is exhibited in

Tables 5, 6 and 7. These tables exhibit the number of

successful time steps, the number of time step chops,

the number of Newton iterations by successful time

steps, the number of GMRes iterations by Newton it-

eration, and the CPU time. Table 5 shows that, for the

small values of bmbf , the pressure-saturation formulation

performs slightly better than the variable switch for-

mulation. However the latter one turns out to be more

robust w.r.t. the value of the ratio bm
bf both in terms of

number of Newton iterations and number of time step

chops. The difference in the numerical behaviour be-

tween both is more striking in the case of the nonzero

entry pressure pent,m = 106 Pa (see Table 6). Again, in

that case, the pressure-saturation formulation fails ex-

cept for very small ratios bm
bf . Table 7 shows the good

performance of the variable switch formulation even for

the degenerate case C5 both in terms of time step chops

and Newton iterations.

Figure ?? exhibits in case C1 for bm
bf

= 105 the cu-

mulated number of Newton iterations as a function of

time for the pressure-saturation and variable switch for-

mulations. Most of the time step failures occur for the

pressure-saturation formulation during the infill of the

bottom fractures. Figure ?? also plots, on the same test

case, the CFL numbers in the matrix and in the frac-

tures as a function of time defined as in the previous test

case and obtained with the variable switch formulation.

It shows that the time steps used in this simulation are

from 1 to 3 orders of magnitude larger than the ones

obtained with an IMPES scheme in the fractures.

Fig. 20: Amount of oil in the faults in m3 as a function of time
for the following four test cases. C1: bm = 106 Pa, bf = 105

Pa, pent,m = pent,f = 0, C2: bm = 106 Pa, bf = 0, pent,m =
pent,f = 0, C4: bm = 106 Pa, bf = 0, pent,m = 106 Pa,
pent,f = 0, C5: bm = bf = 0, pent,m = 106 Pa, pent,f = 0.
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Fig. 15: Water saturation in the perforated face in the fracture at x = 0 (blue) and cut of the water saturation in the matrix
(red) along the line y = z = 0 as a function of the distance to the fracture at the end of each simulation period t = 1
day (top), t = 4 days (middle) and t = 300 days (bottom). The left column correspond to bm = 105 Pa, bf = 104 Pa,
pent,m = pent,f = 0, and the right column to bm = 105 Pa, bf = 0, pent,m = pent,f = 0

Figure 20 exhibits the volume of oil in the faults

as a function of time for C1, C2, C4 and C5 test case

solutions obtained with the variable switch formula-

tion. As expected, larger constrasts of capillary pres-

sures between the matrix and the faults result in a

larger amount of oil in the fault up to the total pore

volume and a quicker infill. Figure 22 shows the prop-

agation of the oil saturation in the basin at times t =

360, 2880, 5400 days for the C1 case with bm
bf = 10 ob-

tained with the variable switch formulation.
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(a) (b)

Fig. 16: Water saturation in the perforated face in the fracture at x = 0 (blue) and cut of the water saturation in the matrix
(red) along the line y = z = 0 as a function of the distance to the fracture at the end of each simulation period t = 1 day
(top), t = 4 days (middle) and t = 300 days (bottom). The left column correspond to bm = 105 Pa, bf = 0, pent,m = 105 Pa,
pent,f = 0, and the right column to bm = bf = 0, pent,m = 105 Pa, pent,f = 0.

pressure-saturation variable switch
bm
bf

N∆t NChop NNewton NGMRes CPU(s) N∆t NChop NNewton NGMRes CPU(s)

10 95 0 4.99 38.96 554 95 0 5.23 37.12 602
100 95 0 5.78 23.15 524 95 0 7.29 22.89 693
105 364 72 15.72 14.52 3791 110 4 13.47 19.26 1565
106 304 57 15.52 13.47 3311 110 4 13.41 19.23 1397
∞ n/a n/a n/a n/a n/a 102 2 12.74 20.79 1188

Table 5: Numerical results for the pressure-saturation, and variable switch formulations for bm = 106 Pa, pent,m = pent,f = 0,

and different values of the ratio bm
bf

(cases C1 and C2): number N∆t of successful time steps, number NChop of time step

chops, number NNewton of Newton iterations per successful time step, number NGMRes of GMRes iterations by Newton
iteration, and CPU time in seconds.
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pressure-saturation variable switch
bm
bf

N∆t NChop NNewton NGMRes CPU(s) N∆t NChop NNewton NGMRes CPU(s)

10 102 2 6.07 30.67 707 95 0 5.62 28.49 572
100 n/c n/c n/c n/c n/c 95 0 7.38 26.37 727
105 n/c n/c n/c n/c n/c 121 7 12.76 23.89 1633
106 n/c n/c n/c n/c n/c 106 3 11.81 26.31 1277
∞ n/a n/a n/a n/a n/a 114 5 12.46 22.65 1321

Table 6: Numerical results for the pressure-saturation and variable switch formulations for bm = 106 Pa, pent,m = 106 Pa,

pent,f = 0 and different values of the ratio bm
bf

(cases C3 and C4): number N∆t of successful time steps, number NChop of

time step chops, number NNewton of Newton iterations per successful time step, number NGMRes of GMRes iterations by
Newton iteration, and CPU time in seconds.
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Fig. 17: Instantaneous flow rates of water (top) and of gas
(bottom) in m3/day as a function of time.

variable switch
N∆t NChop NNewton NGMRes CPU(s)
185 17 14.28 25.92 2147

Table 7: Numerical results for the pressure-saturation and
variable switch formulations for bm = bf = 0, pent,m = 106

Pa, and pent,f = 0 (case C5): number N∆t of successful time
steps, number NChop of time step chops, number NNewton of
Newton iterations per successful time step, number NGMRes
of GMRes iterations by Newton iteration, and CPU time in
seconds.

Fig. 18: Cumulated flow rates in m3 of water (top) and gas
(bottom) as a function of time.

Fig. 19: On the left: geometry of the basin Ω = (0, 400)m ×
(0, 800)m with the fault network in red and the matrix do-
main in blue. On the right: coarse triangular mesh (with 2441
cells) of the 2D basin conforming to the fault network.
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Fig. 21: For test case C1 with bm = 106 Pa, pent,m = pent,f = 0, bm
bf

= 105: cumulated number of Newton iterations as a

function of time for the pressure-saturation and variable switch formulations (left), CFL in the matrix and in the fractures as
a function of time obtained with the variable switch formulation (right).

Fig. 22: Oil saturation at t = 360 days (left), t = 2880 days (middle) and t = 5400 at the end (right) of simulation obtained
for the C1 case with bm

bf
= 10 and the variable switch formulation.
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