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Abstract

Fully implicit time-space discretizations applied to the two-phase Darcy flow problem lead to
the systems of nonlinear equations, which are traditionally solved by some variant of Newton’s
method. The efficiency of the resulting algorithms heavily depends on the choice of the primary
unknowns since Newton’s method is not invariant with respect to a nonlinear change of variable.
In this regard the role of capillary pressure/saturation relation is paramount because the choice of
primary unknowns is restricted by its shape. We propose an elegant mathematical framework for
two-phase flow in heterogeneous porous media resulting in a family of formulations, which apply
to general monotone capillary pressure/saturation relations and handle the saturation jumps at
rocktype interfaces. The presented approach is applied to the hybrid dimensional model of two phase
water-gas Darcy flow in fractured porous media for which the fractures are modeled as interfaces of
co-dimension one. The problem is discretized using an extension of Vertex Approximate Gradient
scheme. As for the phase pressure formulation, the discrete model requires only two unknowns by
degree of freedom.

1 Introduction

We consider a hybrid dimensional model of two-phase gas-water Darcy flow in fractured porous
media. This type of models, introduced in [1], [2] for single phase Darcy flows and in [3], [4], [5],
[6] for two-phase Darcy flows, treats fractures as interfaces of co-dimension 1. We will also assume
that the pressure of the phases is continuous at the interfaces between the fractures and the matrix
domain, which corresponds physically to pervious fractures for which the ratio of the transversal
permeability of the fracture to the width of the fracture is large compared with the ratio of the
permeability of the matrix to the size of the domain. Note that it does not cover the case of
fractures acting as barriers for which the pressure is discontinuous at the matrix fracture interfaces
and which are considered in [7], [8], [9], [10], [11] , [12], [13] for single phase flows.

In the framework of two-phase Darcy flows in fractured porous media, highly contrasted capillary
pressure curves are expected in particular between the matrix and the fractures. Hence, it is crucial
to take into account in the model formulation the saturation jumps at the matrix fracture interfaces.
In order to do so, as it has been stressed out in [14], the capillary pressure curves have to be extended
into the monotone graphs (see e.g. Figures 2).

In several recent works [15], [6], the Vertex Approximate Gradient (VAG) discretization, em-
ploying phase pressures formulation, was applied to model two-phase Darcy flows in heterogeneous
porous media. In the context of vertex-centered schemes the phase pressures formulation allows to
capture the saturation jump condition at the interface between different rocktypes without intro-
ducing any additional unknowns at these interfaces. It is, however, limited to strictly increasing
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capillary pressure curves and lacks robustness compared to pressure-saturation formulation. In this
article we extend the scheme introduced in [6] to the case of general increasing capillary pressure
curves.

Let Ω be a bounded domain of Rd, d = 2, 3 assumed to be polyhedral for d = 3 and polygonal
for d = 2. To fix ideas the dimension will be fixed to d = 3 when it needs to be specified, for
instance in the naming of the geometrical objects or for the space discretization in the next section.
The adaptations to the case d = 2 are straightforward. Let Γ =

⋃
i∈I Γi denotes the network of

fractures Γi ⊂ Ω, i ∈ J , such that each Γi is a planar polygonal simply connected open domain
included in some plane of Rd (see Figure 1).

Figure 1: Example of a 2D domain Ω with 3 intersecting fractures Γi, i = 1, 2, 3.

In the matrix domain Ω (resp. in the fracture network Γ), we denote by φm(x) (resp. φf (x))
the porosity and by Λm(x) (resp. Λf (x)) the permeability (resp. tangential permeability) tensor.
For each phase α = w, g (where w stands for “water” and g for “gas”) we denote by kαr,m(s,x)
(resp. kαr,f (s,x)), the phase relative permeabilities and by Sgm(p,x) (resp. Sgf (p,x)) the possibly
set-valued inverses of the monotone graph extension of the capillary pressure curves. For α = w, g,
we will also denote by ρα the phase densities and by µα the phase viscosities which for the sake of
clarity are assumed constant.

We denote by uα the pressure of phase α = w, g and by sgm (resp. sαf ) the saturation of gas
phase in matrix (resp. fracture network) domain. For i = m, f we define the water saturation by

swi = 1− sgi .

The Darcy flux of phase α = w, g in the matrix domain is defined by

qαm = −
kαr,m(sαm,x)

µα
Λm(∇uα − ραg),

where g = g∇z stands for the gravity vector. The flow in matrix domain is described by the mass
balance equation

φm∂ts
α
m + div(qαm) = 0 (1)

and the macroscopic capillary pressure law

sgm ∈ Sgm(ug − uw,x). (2)

On each fracture Γi, i ∈ I, we denote formally by γi the trace operator, by ∇τi the tangential
gradient and by divτi the tangential divergence. In addition, for all i ∈ I, we can define the two
sides ± of the fracture Γi in Ω \ Γ and the corresponding unit normal vectors n±i at Γi outward to
the sides ±. Let qα,±m · n±i formally denote the two normal traces of matrix fluxes at the fracture
Γi. The Darcy flux of phase α = w, g in the fracture Γi integrated other the width of the fracture
is defined by

qαf,i = −df
kαf (sαf ,x)

µα
Λf (∇τiγiuα − ραgτi),

with gτi = g − (g · n+
i )n+

i . The flow in each fracture Γi is described by

dfφf∂ts
α
f + divτi(q

α
f,i)− qα,+m · n+

i − qα,−m · n−i = 0 (3)
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and
sgf ∈ S

g
f (γiu

g − γiuw,x). (4)

The hybrid dimensional two-phase flow model looks for sgm, sgf , and (uα)α=g,w satisfying (1)-(4).
In addition to (1)-(4) we prescribe a no-flux boundary conditions at the tips of the immersed
fractures, that is to say on ∂Γ \ ∂Ω, and the mass conservation and pressure continuity conditions
at the fracture intersections. We refer to [6] for more details on those conditions. Finally, one
should provide some appropriate initial and boundary data.

Remark that for a fixed x ∈ Ω (resp. x ∈ Γ) the functions Sgm and Sgf are, generally speaking,
set-valued, this is the case e.g. when the capillary pressure is neglected. Indeed, in such situation
the gas saturation takes any value in [0, 1] as long as ug − uw = 0. In addition, Sgm and Sgf depend
on space variable x and we will assume that Sgm(·,x) is piecewise constant and is defined with
respect to a set of so-called rocktypes. The following assumptions hold on Sgm and Sgf

(A1) Ω can be decomposed into a set of disjoint connected open polyhedral sets (Ωj)j∈Jm with⋃
j∈Jm Ωj = Ω, such that Sgm(p,x) = Sgm,j(p,x) for a.e. x ∈ Ωj and all p ∈ R. Similarly, we

suppose that there exists a family of disjoint connected polygonal open sets (Υj)j∈Jf such

that
⋃
j∈Jf Υj = Γ and such that Sgf (p,x) = Sgf,j(p) for a.e. x ∈ Υj and all p ∈ R.

(A2)
(
Sgm,j

)
j∈Jm

and
(
Sgf,j

)
j∈Jf

are maximal monotone graphs with domain R and satisfying

Sgi,j(p) ⊂ [0, 1] for all p ∈ R and i = m, f , j ∈ Ji.
The matrix and fracture relative permeabilities are piecewise constant w.r.t. x on the same parti-
tions of the matrix and fracture network domains as the capillary pressure curves. In the following,
we will denote the mobilities (ratio of the phase relative permeability to the phase viscosity) by
kαm,j(s) in the matrix for each rocktype j ∈ Jm and by kαf,j(s) in the fracture network for each
rocktype j ∈ Jf .

In order to illustrate the difficulty of dealing with both heterogeneous and multi-valued satura-
tion curves Sgm and Sgf , let us admit for the moment that Sgm are Sgf do not depend on x and that

Sgm(p), Sgf (p) are single-valued continuous increasing functions satisfying for i = m, f

Sgi (p ≤ pent,i) = 0 and lim
p→+∞

Sgi (p) = 1

with pent,i ∈ R, i = m, f been an entry pressure. The figure 2a exhibits a typical form of multi-
valued capillary pressure curves corresponding to Sgm(p) are Sgf (p).

When the system (1) - (4) is solved numerically it is desirable to reduce the number of unknown
by eliminating the algebraic equations (2) and (4), in particular one may expect to have as much
as two unknowns by degree of freedom. Note that as long as the functions Sgi , i = m, f , are single
valued (which is the case when the capillary pressure graphs do not have “horizontal” parts) it is
possible to express sgm and sgf in terms of ug and uw. In other words (uw, ug) is an admissible couple

of primary unknowns. The other admissible couple is (uw, sgf ) since ug and sgm can be expressed as

ug = uw + (Sgf )−1(sgf ) and sgm = Sgm ◦ (Sgf )−1(sgf ).

In contrast, unless pent,m is less or equal to pent,f , it is not possible to describe any possible values
of ug and sgf at the matrix fracture interface using the pair (ug, sgm). However this formulation still
can be applied “away” from Γ.

Let us remark that both (uw, ug) and (uw, sgf ) formulations lead, after a space-time discretization
of (1) and (3), to the equivalent systems of nonlinear algebraic equations. Nevertheless, in practice,
the performance of numerical algorithm would heavily depend on the choice of primary variables.
In particular it is well known that the use of the formulation based on ug and uw has to be avoided
when modeling imbibition in very dry soil. This is explained by the the fact that applying Newton-
Raphson method (or some other linearization scheme) for solving nonlinear problems resulting from
both formulation brakes the equivalence.

Next, let’s assume that the capillary pressure is neglected in fracture network domain (see
Figure 2b). In that case both Sgf and its inverse are set-valued, which in particular implies that

neither (uw, sgf ) nor (uw, ug) can be used as a pair of primary variables for the whole range of
values of saturation and capillary pressure. Instead one may switch, as capillary pressure grows,
from (uw, sgf ) to (uw, ug), and even possibly from (uw, ug) to (uw, sgm) for ug − uw ≥ pent,m. Note
that if the capillary pressure in fracture domain is very small, but not strictly zero one can not
expect the numerical scheme based on (uw, sgf ) formulation to be computationally efficient.
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(a) Sgm and Sgf are single-valued (b) Sgm is single-valued, Sgf is set-valued

Figure 2: Typical form of capillary pressure curves in matrix and fracture domains.

Finally, let us remark that there is no reason to restrict the choice of primary variables to the
set of natural variables, that is to say, to uw, ug, sgm and sgf . Consider continuous functions

P and (Sgi )i=m,f (5)

defined on an open convex set I ⊂ R such that P(I) = R and such that for τ ∈ I

Sgi (τ) ∈ Sgi (P(τ)) for all i = m, f. (6)

Then the couple (uw, τ) is an admissible couple of primary unknowns with

ug = uw + P(τ) and sgi = Sgi (τ), i = m, f.

The map τ 7→ (P(τ),Sgi (τ)), i = m, f , can be seen as the parametrization of curve Sgi . The
parametrization (5) is not uniquely defined by (6) even under some additional regularity assump-
tions (see Proposition 3.1) and hence one can try to choose the functions P(τ) and Sgi (τ), i = m, f ,
in order to improve the convergence of the nonlinear solver.

The remaining of this article is organized as follows. In the next section we briefly recall
the VAG scheme introduced in [6] using ug and uw as primary unknowns. Then we detail the
parametrization approach presented above and provide the extension of the VAG discretization
accounting for general monotone capillary pressure graphs related to multiple rocktypes, and finally
we present numerical experiments, which aims to compare classical pressure-saturation formulations
with more advanced parametrizations using ideas presented above.

2 Vertex Approximate Gradient (VAG) Discretization

In this section, assuming that Sgm(·,x) and Sgf (·,x) are single valued, we will recall the construc-
tion of the numerical scheme presented in [6]. More precisely, in addition to (A2) the following
assumption holds

(A2a)
(
Sgm,j

)
j∈Jm

and
(
Sgf,j

)
j∈Jf

are non decreasing continuous functions from R to [0, 1].

The VAG discretization of hybrid dimensional two-phase Darcy flows introduced in [6] considers
a generalised polyhedral meshes of Ω in the spirit of [16]. LetM be the set of cells that are disjoint
open polyhedral subsets of Ω such that

⋃
K∈MK = Ω, for all K ∈ M, xK denotes the so-called

“centre” of the cell K under the assumption that K is star-shaped with respect to xK . We then
denote by FK the set of interfaces of non zero d− 1 dimensional measure among the interior faces
K∩L, L ∈M, and the boundary interface K∩∂Ω, which possibly splits in several boundary faces.
Let us denote by

F =
⋃

K∈M
FK
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the set of all faces of the mesh. Remark that the faces are not assumed to be planar, hence the
term “generalised polyhedral mesh”. For σ ∈ F , let Eσ be the set of interfaces of non zero d − 2
dimensional measure among the interfaces σ ∩ σ′, σ′ ∈ F . Then, we denote by

E =
⋃
σ∈F
Eσ

the set of all edges of the mesh. Let Vσ =
⋃
e,e′∈Eσ,e6=e′

(
e∩ e′

)
be the set of vertices of σ. For each

K ∈M we define VK =
⋃
σ∈FK Vσ, and we also denote by

V =
⋃

K∈M
VK

the set of all vertices of the mesh. It is then assumed that for each face σ ∈ F , there exists a so-
called “centre” of the face xσ ∈ σ \

⋃
e∈Eσ e such that xσ =

∑
s∈Vσ βσ,s xs, with

∑
s∈Vσ βσ,s = 1,

and βσ,s ≥ 0 for all s ∈ Vσ; moreover the face σ is assumed to be defined by the union of the
triangles Tσ,e defined by the face centre xσ and each edge e ∈ Eσ. The mesh is also supposed to
be conforming w.r.t. the fracture network Γ in the sense that for all i ∈ I there exist the subsets
FΓiof F such that Γi =

⋃
σ∈FΓi

σ. We will denote by FΓ the set of fracture faces
⋃
i∈I FΓi . This

geometrical discretization of Ω and Γ is denoted in the following by D.
The space discretization is assumed to be compatible with the sets (Ωj)j∈Jm and (Υj)j∈Jf , that

is to say, for all K ∈ M there exists jK ∈ Jm such that K ⊂ ΩjK and for all σ ∈ FΓ there exists
jσ ∈ Jf such that σ ⊂ Υjσ . In other words, jK is the rocktype of cell K and jσ is the rocktype of
the fracture face σ.

The VAG discretization has been introduced in [16] for diffusive problems on heterogeneous
anisotropic media. Its extension to the hybrid dimensional Darcy flow model is proposed in [6]
based upon the following vector space of degrees of freedom:

XD = {vK , vs, vσ ∈ R,K ∈M, s ∈ V, σ ∈ FΓ},

and its subspace with homogeneous Dirichlet boundary conditions on ∂Ω:

X0
D = {v ∈ XD | vs = 0 for s ∈ Vext},

where Vext = V ∩ ∂Ω denotes the set of boundary vertices, and Vint = V \ ∂Ω denotes the set
of interior vertices. The degrees of freedom are exhibited in Figure 3 for a given cell K with one
fracture face σ in bold.

The VAG scheme is a control volume scheme in the sense that it results, for each interior degree
of freedom and each phase, in a mass balance equation. The two main ingredients are therefore the
conservative fluxes and the control volumes. The VAG matrix and fracture fluxes are exhibited in
Figure 3. For u ∈ XD, the matrix fluxes FK,ν(u) connect the cell K ∈M to the degrees of freedom
located at the boundary of K, namely ν ∈ ΞK = VK ∪ (FK ∩ FΓ). The fracture fluxes Fσ,s(u)
connect each fracture face σ ∈ FΓ to its nodes s ∈ Vσ. Note also that the expression of the matrix
(resp. the fracture) fluxes is local to the cell (resp. fracture face) and let us refer to [6] for a more
detailed presentation.

Figure 3: For a cell K and a fracture face σ (in bold), examples of VAG degrees of freedom
uK , us, uσ, us′ and VAG fluxes FK,σ, FK,s, FK,s′ , Fσ,s.
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The construction of the control volumes at each degree of freedom is based on partitionings of
the cells and of the fracture faces. These partitions are respectively denoted, for all K ∈M, by

K = ωK
⋃ ( ⋃

s∈VK∩Vint

ωK,s

) ⋃ ( ⋃
σ∈FK∩FΓ

ωK,σ

)
,

and, for all σ ∈ FΓ, by

σ = Σσ
⋃ ( ⋃

s∈Vσ∩Vint

Σσ,s

)
.

It is important to notice that in the usual case of cellwise constant rocktypes in the matrix and
facewise constant rocktypes in the fracture network, the implementation of the scheme does not
require to build explicitly the geometry ofthese partitions. In that case, it is sufficient to define the
matrix volume fractions

αK,s =

∫
ωK,s

dx∫
K
dx

, s ∈ VK ∩ Vint,K ∈M, αK,σ =

∫
ωK,σ

dx∫
K
dx

, σ ∈ FK ∩ FΓ,K ∈M,

constrained to satisfy αK,s ≥ 0, αK,σ ≥ 0, and
∑

s∈VK∩Vint αK,s +
∑
σ∈FK∩FΓ

αK,σ ≤ 1, as well as
the fracture volume fractions

ασ,s =

∫
Σσ,s

df (x)dτ(x)∫
σ
df (x)dτ(x)

, s ∈ Vσ ∩ Vint, σ ∈ FΓ,

constrained to satisfy ασ,s ≥ 0, and
∑

s∈Vσ∩Vint ασ,s ≤ 1, where we denote by dτ(x) the d − 1
dimensional Lebesgue measure on Γ. Let us also set

φK = (1−
∑

ν∈ΞK∩Vint

αK,ν)

∫
K

φm(x)dx

and

φσ = (1−
∑

s∈Vσ∩Vint

ασ,s)

∫
σ

φf (x)df (x)dτ(x),

as well as φK,ν = αK,ν
∫
K
φm(x)dx and φσ,s = ασ,s

∫
σ
φf (x)df (x)dτ(x), which correspond to the

porous volume distributed to the degrees of freedom.
As it has been shown in [6], the flexibility in the choice of αK,s and ασ,s is a crucial asset,

compared with usual CVFE approaches and allows to significantly improve the accuracy of the
scheme when the permeability field is highly heterogeneous. As exhibited in Figure 4, as opposed
with usual CVFE approaches, this flexibility allows to define the control volumes in the fractures
with no contribution from the matrix in order to avoid to enlarge artificially the flow path in the
fractures.

Figure 4: Example of control volumes at cells, fracture face, and nodes, in the case of two
cells K and L splitted by one fracture face σ (the width of the fracture has been enlarged
in this figure).

For N ∈ N∗, let us consider the time discretization t0 = 0 < t1 < · · · < tn−1 < tn · · · < tN = T
of the time interval [0, T ]. We denote the time steps by ∆tn = tn − tn−1 for all n = 1, · · · , N .
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Considering homogeneous Dirichlet boundary conditions for convenience, the VAG discretiza-
tion introduced in [6] of the hybrid dimensional two phase Darcy flow model (1) - (4) looks for
ug,n, uw,n ∈ X0

D, n = 1, · · · , N , such that one has for all vα ∈ X0
D and for α = g, w:

∑
K∈M

(
φK
∆tn

(Sα,nK − Sα,n−1
K ) +

∑
ν∈ΞK

kαm,jK (Sα,nK,ν,up)F
α
K,ν(uα,n)

)
vαK

+
∑
K∈M

∑
ν∈ΞK\Vext

(
φK,ν
∆tn

(Sα,nK,ν − S
α,n−1
K,ν )− kαm,jK (Sα,nK,ν,up)F

α
K,ν(uα,n)

)
vαν

+
∑
σ∈FΓ

(
φσ

∆tn
(Sα,nσ − Sα,n−1

σ ) +
∑
s∈Vσ

kαf,jσ (Sα,nσ,s,up)F
α
σ,s(u

α,n)

)
vασ

+
∑
σ∈FΓ

∑
s∈Vσ\Vext

(
φσ,s
∆tn

(Sα,nσ,s − Sα,n−1
σ,s )− kαf,jσ (Sα,nσ,s,up)F

α
σ,s(u

α,n)

)
vαs = 0.

(7)

In (7), the phase fluxes are defined by{
FαK,ν(u) = FK,ν(u) + ραgFK,ν(Z),

Fασ,s(u) = Fσ,s(u) + ραgFσ,s(Z),
(8)

with Z denoting the vector (zK , zs, zσ)K∈M,s∈V,σ∈FΓ . The upstream values of the saturations
Sα,nK,ν,up and Sα,nσ,s,up are defined by{

Sα,nK,ν,up = Sα,nK if FαK,ν(uα,n) ≥ 0,

Sα,nK,ν,up = Sα,nK,ν if FαK,ν(uα,n) < 0,

{
Sα,nσ,s,up = Sα,nσ if Fασ,s(u

α,n) ≥ 0,
Sα,nσ,s,up = Sα,nσ,s if Fασ,s(u

α,n) < 0.
(9)

As exhibited in Figure 5, the definition of the saturations at the matrix fracture interfaces takes
into account the jump of the saturations induced by the different rocktypes. More precisely, for all
K ∈M and ν ∈ ΞK \ Vext we set

Sg,nK = Sgm,jK (ug,nK − uw,nK ), Sw,nK = 1− Sg,nK ,

Sg,nK,ν = Sgm,jK (ug,nν − uw,nν ), Sw,nK,ν = 1− Sg,nK,ν ,
(10)

and for all σ ∈ FΓ and s ∈ Vσ \ Vext we set

Sg,nσ = Sgf,jσ (ug,nσ − uw,nσ ), Sw,nσ = 1− Sg,nσ ,

Sg,nσ,s = Sgf,jσ (ug,ns − uw,ns ), Sw,nσ,s = 1− Sg,nσ,s .
(11)

Figure 5: Saturations inside the cells K and L, the fracture face σ and at the matrix
fracture interfaces taking into account the saturation jumps induced by the different rock-
types.

3 Solving the System of Nonlinear Equations

Now let us demonstrate how the discretization (7)-(11) can be extended to the case of the inverse
capillary pressure graphs satisfying (A2) but not (A2a).
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Let J = Jm ∪ Jf , for all K ∈ M we set χK = {jK} ∈ 2J . For all σ ∈ FΓ we set χσ =
{jσ} ∪

⋃
K |σ∈FK{jK}. For all s ∈ V we set χV =

⋃
K | s∈VK{jK} ∪

⋃
σ | s∈Vσ{jσ}. Then, we define

χD =
⋃

K∈M
χK

⋃
σ∈FΓ

χσ
⋃
s∈V

χs.

The following proposition justifies the fact that a pair of unknowns is sufficient at any degrees
of freedom located on the rocktype intersection.

Proposition 3.1 Let χ ∈ χD and
(
Sgj
)
j∈χ be a finite family of maximal monotone graphs with

domain R and such that Sgj (p) ⊂ [0, 1] for all p ∈ R and j ∈ χ. Then there exist a family

of continuous piecewise differentiable functions Pχ and
(
Sgχ,j

)
j∈χ defined on an open convex set

I ⊂ R such that Pχ(I) = R and such that for τ ∈ I and j ∈ χ

Sgχ,j(τ) ∈ Sgj (Pχ(τ)); (12)

moreover they can be chosen such that the following non-degeneracy condition∑
j∈χ

d

dτ

(
Sgχ,j(τ),Pχ(τ)

)
6= (0, 0) (13)

is satisfied for a.e. τ ∈ I. In addition, without loss of generality on can assume that Sgχ,j
′
(τ),P ′χ(τ) ≥

0 for a.e. τ ∈ I.

For all χ ∈ χD let Pχ and
(
Sgχ,j

)
j∈χ be some family of non decreasing functions associated with

the family of graphs
(
Sgj
)
j∈χ and satisfying (12) and (13).

The saturations are defined by
Sg,nK = SgχK ,jK (τnK), Sw,nK = 1− Sg,nK for all K ∈M,

Sg,nσ = Sgχσ,jσ (τnK), Sw,nσ = 1− Sg,nσ for all σ ∈ FΓ,

Sg,nK,ν = Sgχν ,jK (τnν ), Sw,nK,ν = 1− Sg,nK,ν for all K ∈M, ν ∈ ΞK ,

Sg,nσ,s = Sgχs,jσ
(τns ), Sw,nσ,s = 1− Sg,nσ,s for all σ ∈ FΓ, s ∈ Vσ,

(14)

and the water pressures by uw,nK = ug,nK + PχK (τnK) for all K ∈M,
uw,nσ = ug,nσ + Pχσ (τnσ ) for all σ ∈ FΓ,
uw,ns = ug,ns + Pχs(τ

n
s ) for all s ∈ V.

(15)

The new scheme consist in finding ug,n, τw,n ∈ X0
D, n = 1, · · · , N , satisfying (7), (8), (9) along

with (14)-(15).

4 Implementation and Numerical Experiments

In this section we present numerical experiments which aims to compare the robustness and ef-
ficiency of the classical pressure-saturation formulation with more advanced choices of primary
unknowns which are implemented using the graph parametrization approach presented above. The
pressure-pressure formulation is excluded from the comparison since is has a very poor efficiency
when dealing with dry (sg close to 1) media. In practice, the pressure-pressure formulation has
also been tested and it failed to converge for matrix fracture capillarity ratio bm

bf
larger than 10 (see

below for the definition of this ratio).
The family of test cases presented here simulates the liquid gas two phase Darcy flow in a tight

gas reservoir. The data set is similar to Example 2 of [17] except for the choice of the capillary
pressure curves. The reservoir is defined by the domain Ω = (−500, 500)×(−250, 250)×(−100, 100)
(in meters). Three transverse fractures Γi, i = 1, 2, 3 of width df = 0.02 m are initiated by hydraulic
fracturing from a horizontal well. They are defined by the squares {xi} × (−50, 50) × (−50 × 50)
with x1 = −250, x2 = 0, x3 = +250. An horizontal well of radius rw = 0.1 m is located along
y = z = 0 and perforates each fracture Γi, i = 1, 2, 3 in a triangular equilateral face of center
xi, y = z = 0 and of edge size 1m. During the water injection phase, the water penetrates only a
few tens of centimeters in the matrix due to the low permeability of the reservoir. Therefore in order
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to obtain an accurate water saturation in the neighbourhood of the fractures with a reasonnable
number of cells, a strong anisotropic refinement is needed in the normal direction of the fractures
in the neihbourhood of each fracture. As exhibited in Figures 6 and 7 this anisotropic refinement
is obtained using prismatic meshes with triangular base. In order to match the boundaries of
these refined boxes with the surrounding tetrahedral mesh of the reservoir, a layer of pyramids
is added arround each fracture box as exhibited in Figures 6. The tetrahedral mesh matching
the triangulation of the fracture box boundaries has been obtained using TetGen [18]. Table 1
summarizes the characteristics of the resulting hybrid mesh that will be used in the following
numerical test cases.

Figure 6: The prismatic meshes with their layer of pyramids for each refined box around
each fracture located at the center of each box.

Figure 7: Connection of the prismatic mesh around one fracture with the surrounding
tetrahedral mesh using a layer of pyramids.

Ncells Nnodes NFracF Linear system d.o.f.

232 920 45 193 1 634 46 827

Table 1: Number Ncells of cells, number Nnodes of nodes, number NFracF of fracture faces
and number of unknown in the linear system after the elimination of the cell unknowns (2
unknowns per d.o.f).

We consider only two rocktypes in this test case, the matrix rocktype denoted by j = m and

9



the fracture rocktype denoted by j = f . The mobilities are defined for j = m, f by the following
Corey law

kαj (sα,x) =
kαj,max(s̄α)n

α
j

µα
, (16)

where s̄w =
sw−swr,j

1−swr,j−s
g
r,j

, and s̄g =
sg−sgr,j

1−sgr,j−swr,j
are the reduced saturations such that swr,m = 0.2,

swr,f = sgr,m = sgr,f = 0. In the following numerical experiments we have set kwm,max = 0.3,

kgm,max = 0.6, nwm = 1.5, ngm = 3 in the matrix, and kwf,max = kgf,max = 1, nwf = ngf = 1 in the
fractures.

The capillary pressure/saturation relation are also given for the matrix (j = m) and fracture
(j = f) rocktypes by the following Corey law

Sgj (p) =

{
0 if p− pent,j < 0,

1− e−
p−pent,j

bj if p− pent,j ≥ 0,
(17)

where the parameter pent,j > 0 stands for the entry pressure. Both bj and pent,j depends on
the rocktype j = m, f . Figure 8 exhibits, the typical shape of the matrix and fracture capillary
pressure graphs Pcm and Pcf , which are the multi-valued inverses of Sgm and Sgf respectively.

Remark that, when bj tends to 0, the graph of Sgj tends to the graph of the multi-valued Heaviside
function centered at p = pent,j . The following numerical experiments will assess the efficiency of the
different choices of primary unknowns for different values of the parameters bj and pent,j , j = m, f .

Figure 8: The graphs of the capillary pressures Pcm in the matrix, and Pcf in the fractures for
bm = 105 Pa, bf = 104 Pa, pent,m = 105 Pa, pent,f = 0 (left) and bm = 105 Pa, bf = 0, pent,m = 105

Pa, pent,f = 0 (right).

The viscosities of the two phases are set to µw = 10−3 µg = 2.35 10−5 Pa·s, and their densities
are fixed to the constant value ρw = 1000 Kg/m3 for the water phase, and to the perfect gas
density ρg(ug) = M

RT u
g Kg/m3 for the gas phase with M = 0.016 Kg corresponding to methane,

R = 8.32 J·mol−1 ·K−1, and T = 300 K. The reservoir is initially at the liquid pressure uw =
400 105 Pa, at the residual water saturation in the matrix and at water saturation close to 0 in
the fractures obtained by the continuity of the capillary pressure at the matrix fracture interface.
The permeability of the matrix is isotropic and set to Λm = λmId with λm = 2 10−17 m2, very low
compared with the permeability of the fractures Λf = λf Id with λf = 2 10−12 m2. The porosity is
equal to φm = 0.1 in the matrix and to φf = 0.3 in the fractures.

The liquid is first injected at high hydraulic fracturing pressure 1000 105 Pa fixed at each perfo-
ration during 1 day. Then, the perforations are closed during the next 3 days before the production
of gas starts and goes on during the next 296 days at the fixed pressure 300 105 Pa in each perfo-
ration. The simulation runs over a period of 300 days and the nonlinear systems obtained at each
time step are solved by a Newton-Raphson method. The time stepping is defined by an initial time
step of 0.001 hour and a maximum time step of 0.05 days during the water injection period, of 0.1
days during the well closure, and of 5 days during the production period. If the Newton method
does not converge after 35 iterations, the time step is chopped by a factor 2 and recomputed. The
time step is increased by a factor 1.2 after each successful time step until it reaches the maximum

10



time step. The stopping criteria on the relative residuals are fixed to 10−6 for the GMRes solver
preconditioned by ILU0 and to 10−5 for the Newton method.

The following numerical experiments compare the pressure saturation formulation using gas
pressure and gas saturation as the primary unknowns with some more advanced parametrizations
inspired by variable switch techniques. Since only one fracture and one matrix rocktypes are
considered, the set χD is equal to

χD = {{m}, {m, f}},
where χ = {m} corresponds to degrees of freedom located in the matrix only and χ = {m, f} cor-
responds to degrees of freedom located at the matrix fracture interfaces. In the following numerical
experiments, the primary unknowns for χ = {m} are fixed for both formulations to (ug, sgm) since
this is an efficient and simple choice for a single rocktype. The choices of parametrization at the
matrix fracture interface i.e. for χ = {m, f} will result in functions Sgm(τ), Sgf (τ), P(τ), which we
define below for several types of capillary pressures curves given by Corey law. We will distinguish
the following five cases ordered with increasing complexity:

(C1) bm > 0, 0 < bf < bm, pent,m = pent,f = 0;

(C2) bm > 0, bf = 0, pent,m = pent,f = 0;

(C3) bm > 0, 0 < bf < bm, pent,m > 0, pent,f = 0;

(C4) bm > 0, bf = 0, pent,m > 0, pent,f = 0;

(C5) bm = 0, bf = 0, pent,m > 0, pent,f = 0.

The choices of the primary unknowns will be compared in terms numerical behavior of the simula-
tions based on the number of linear and nonlinear iterations and on the CPU time.

4.1 Zero entry pressures both in the matrix and in the fractures

In this first case, the entry pressures are set to pent,j = 0, j = m, f leading to the following Corey
laws

Sgj (p) =

{
0 if p < 0,

1− e−
p
bj if p ≥ 0.

(18)

In the matrix we fix bm = 105 Pa, and we consider a family of values bf = 1, 10, 102, 103, 104 Pa
in the fractures. Figure 9 exhibits, for the ratio bm

bf
= 10, the capillary pressure graphs Pcm and

Pcf . For this test cases, the pressure-saturation formulation is compared to the variable switch
(ug, sgf )/(ug, sgm) formulation picking the “steepest” saturation unknown, that is to say the one
which has a largest derivative with respect to the capillary pressure.

Figure 9: Pcm in the matrix and Pcf in the fractures.

Pressure-saturation formulation: The formulation is defined by the following set of functions
Sgm(τ) = τ

Sgf (τ) = Pc
−1
f (Pcm(τ)) = 1− (1− τ)

bm
bf

P(τ) = Pcm(τ) = −bm ln(1− τ)

(19)
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with τ ∈ [0, 1).
When bm

bf
goes to infinity (i.e. when the capillary pressure in the fracture network goes to zero),

the function Sgf (τ) tends to the graph, which is multi-valued at τ = 0. Numerically, this would

lead to the lost of robustness for large values bm
bf

.

Variable-switch formulation: this formulation is obtained using the conditions (12) in the
framework of Proposition 3.1 to which we add the following conditions

max

(
dSgm
dτ

,
dSgf
dτ

)
= 1

and
Sgm(0) = Sgf (0) = 0.

The computations give (see Figure 10):

Sgf (τ) =

{
τ, τ ∈ [0, τ1),

Pc
−1
f (Pcm(τ − τ1 + Pc

−1
m (Pcf (τ1)))) = 1− (τ1 + (1− τ1)

bm
bf − τ)

bf
bm , τ ∈ [τ1, τ2],

(20)

Sgm(τ) =

{
Pc
−1
m (Pcf (τ)) = 1− (1− τ)

bf
bm , τ ∈ [0, τ1),

τ − τ1 + Pc
−1
m (Pcf (τ1)) = τ − τ1 + 1− (1− τ1)

bf
bm , τ ∈ [τ1, τ2],

(21)

P(τ) =

{
Pcf (Sgf (τ)) = −bf ln(1− τ), τ ∈ [0, τ1),

Pcm(Sgm(τ)) = −bm ln(τ1 + (1− τ1)
bf
bm − τ), τ ∈ [τ1, τ2],

(22)

where τ1 = 1− (
bf
bm

)
bm

bm−bf and τ2 = 1 + (1− τ1)
bf
bm . It is worth to notice that by construction, the

derivatives of the functions Sgf (τ), Sgm(τ) and P(τ) are continuous at τ = τ1.

Figure 10: Sgm(τ), Sgf (τ), and P(τ) curves for the pressure-saturation formulation (on

the top) and for variable switch formulation (at the bottom), obtained for bm = 105 Pa,
bf = 104 Pa, and pent,m = pent,f = 0.
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When, for a fixed bm, the ratio bm
bf

goes to infinity, the variable switch parametrization tends

to the following formulation (see Figure 11):

Sgf (τ) =

{
τ, τ ∈ [0, τ1),
1, τ ∈ [τ1, τ2],

(23)

Sgm(τ) =

{
0, τ ∈ [0, τ1),
τ − τ1, τ ∈ [τ1, τ2],

(24)

P(τ) =

{
0, τ ∈ [0, τ1),
(Pcm(Sgm(τ)) = −bm ln(1− (τ − τ1)), τ ∈ [τ1, τ2],

(25)

with τ1 = 1, τ2 = 2. Note that this limit case of a vanishing capillary pressure in the fractures
cannot be accounted for by the pressure-saturation formulation.

Figure 11: Sgm(τ), Sgf (τ), and P(τ) curves for the variable switch formulation obtained for

bm = 105 Pa, bf = 0, and pent,m = pent,f = 0.

The numerical behavior of the scheme for both formulations is exhibited in Table 2 showing,
for different values of the ratio bm

bf
, the number of successful time steps, the number of time step

chops, the number of Newton iterations by successful time steps, the number of GMRes iterations
by Newton iteration, and the CPU time. The variable switch formulation turns out to be more
efficient and more robust w.r.t. the value of bm

bf
both in terms of number of Newton iterations and

the number of time step chops. Note that, as it can be expected, for bm
bf

= ∞ the variable switch

formulation performs similarly that for the case bm
bf

= 105.

pressure-saturation variable switch
bm
bf

Ndt NChop NNewton NGMRes CPU(s) Ndt NChop NNewton NGMRes CPU(s)

10 226 2 4.2 25.9 4 638 226 2 4.3 26.2 5 523

102 294 21 10.7 20.1 14 557 246 8 7.5 22.2 9 016

103 297 22 11.7 19.7 16 183 225 1 5.5 24.2 6 245

104 304 24 12.9 19.8 17 742 225 1 4.8 25.1 5 492

105 313 26 12.8 19.6 18 346 235 4 5.4 23.9 6 260

∞ n/a n/a n/a n/a n/a 235 4 5.3 23.9 6 448

Table 2: Numerical results for the pressure-saturation and variable switch formulations
for bm = 105 Pa, pent,m = pent,f = 0, and different values of the ratio bm

bf
: number Ndt of

successful time steps, number NChop of time step chops, number NNewton of Newton itera-
tions per successful time step, number NGMRes of GMRes iterations by Newton iteration,
and CPU time in seconds.
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4.2 Nonzero Entry Pressure in the matrix

Next we consider the test cases with non zero entry pressure in the matrix setting pent,m = 105 Pa
and pent,f = 0. The graphs of Pcj , j = m, f are represented in Figure 8.
Pressure-saturation formulation: At the matrix fracture interface the capillary pressure (see
Figure 8) can not be expressed as a function of sgm for p < pent,m, but it is however a function of
sgf . At the matrix fracture interfaces we choose sgf as primary unknown, which leads to

Sgf (τ) = τ, Pm(τ) = (Sgf )−1(τ) = −bf ln(1− τ),

and

Sgm(τ) =

 0, τ < Sgf (pent,m) = 1− e
−pent,m

bf ,

Pc
−1
m (Pcf (τ)) = 1− e

pent,m
bm (1− τ)

bf
bm , τ ≥ 1− e

−pent,m
bf .

Remark that when bm
bf

goes to infinity the function Pc
−1
m (Pcf (τ)) becomes multi-valued at τ = 1

which results in severe numerical instabilities. As a result, we were unable to obtain the conver-
gence of the nonlinear solver for bm

bf
> 10.

Variable-switch formulation: When bf = 0 it is clear that the capillary pressure is no longer
a function of the saturation for its values in the interval (0, pent,m). Actually, for those values of
capillary pressure the relevant pair of unknowns is (uw, ug). This leads to the following formulation,
which roughly speaking switches between the three unknowns sgf , Pc, and sgm

Sgf (τ) =


τ, τ ∈ [0, τ1),

Pc
−1
f (pent,m(τ − τ1) + Pcf (τ1)) = 1− (1− τ1)e

− pent,mbf
(τ−τ1)

, τ ∈ [τ1, τ2),

Pc
−1
f (Pcm(τ − τ2)) = 1− (1− (τ − τ2))

bm
bf e

−pent,m
bf , τ ∈ [τ2, τ3],

(26)

Sgm(τ) =

{
0, τ ∈ [0, τ2),
τ − τ2, τ ∈ [τ2, τ3],

(27)

P(τ) =

 Pcf (τ) = −bf ln(1− τ), τ ∈ [0, τ1),
pent,m(τ − τ1) + Pcf (τ1) = pent,m(τ − τ1)− bf ln(1− τ1), τ ∈ [τ1, τ2),
Pcm(τ − τ2) = pent,m − bm ln(1− (τ − τ2)), τ ∈ [τ2, τ3].

(28)

One can see that Pcf (τ1) < pent,m and the derivatives of the functions Sgf (τ), Sgm(τ), P(τ) are

continuous at τ = τ1, where τ1 = 1− bf
pent,m

. Also we define τ2 = τ1 + 1− Pcf (τ1)

pent,m
and τ3 = τ2 + 1

such that P(τ2) = pent,m and Sgm(τ3) = 1. When the ratio bm
bf

goes to infinity (see Figure 13) the

following formulas are recovered

Sgf (τ) =

{
τ, τ ∈ [0, τ1),
1, τ ∈ [τ1, τ3],

(29)

Sgm(τ) =

{
0, τ ∈ [0, τ2),
τ − τ2, τ ∈ [τ2, τ3],

(30)

P(τ) =

 0, τ ∈ [0, τ1),
pent,m(τ − τ1), τ ∈ [τ1, τ2),
Pcm(Sgm(τ) = −bm ln(1− (τ − τ2)) + pent,m, τ ∈ [τ2, τ3],

(31)

where τ1 = 1, τ2 = 2, and τ3 = 3.

14



Figure 12: Sgm(τ), Sgf (τ), and P(τ) curves for the pressure-saturation formulation (on

the top) and variable switch formulation (at the bottom) for bm = 105 Pa, bf = 104 Pa,
pent,m = 105 Pa, pent,f = 0.

Figure 13: Sgm(τ), Sgf (τ), and P(τ) curves for variable switch formulation for bm = 105

Pa, bf = 0, pent,m = 105 Pa, pent,f = 0.
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pressure-saturation variable switch
bm
bf

Ndt NChop NNewton NGMRes CPU(s) Ndt NChop NNewton NGMRes CPU(s)

2 221 0 3 29.2 3 937 221 0 3.1 28.9 4 479

10 398 52 9.9 20.2 23 400 262 13 6.8 22.7 10 378

102 n/c n/c n/c n/c n/c 269 14 9.9 20.8 14 185

103 n/c n/c n/c n/c n/c 285 18 8.9 20.1 13 740

104 n/c n/c n/c n/c n/c 242 6 6.9 22.8 9 067

105 n/c n/c n/c n/c n/c 276 16 7.5 21.3 11 516

∞ n/a n/a n/a n/a n/a 299 22 8.1 19.1 10 770

Table 3: Numerical results for the pressure-saturation and variable switch formulations
for bm = 105 Pa, pent,m = 105 Pa, pent,f = 0 and different values of the ratio bm

bf
: number

Ndt of successful time steps, number NChop of time step chops, number NNewton of New-
ton iterations per successful time step, number NGMRes of GMRes iterations by Newton
iteration, and CPU time in seconds.

As in the previous case the variable switch formulation is robust w.r.t. the value of bm
bf

both in

terms of number of Newton iterations and the number of time step chops (see Table 3), and allows
to deal with full range of the ratio bm

bf
. On the other hand, the pressure-saturation formulation fails

to converge except for very small ratios.

4.3 Nonzero Entry Pressure Curves - Other Extensions

We conclude by the case bm = bf = 0, pent,m = 105 Pa, and pent,f = 0 (see Figure 14). This test
case can only be treated using the formulation involving multiple primary variable switches.

Figure 14: The capillary pressure curves Pcm in the matrix and Pcf in the fractures for
bm = bf = 0, pent,m = 105 Pa, and pent,f = 0.

In the spirit of the previous case we define the following parametrization:

Sgf (τ) =

{
τ, τ ∈ [0, τ1),
1, τ ∈ [τ1, τ3),

(32)

Sgm(τ) =

{
0, τ ∈ [0, τ2),
τ − τ2, τ ∈ [τ2, τ3],

(33)

P(τ) =

 0, τ ∈ [0, τ1),
pent,m(τ − τ1), τ ∈ [τ1, τ2),
pent,m, τ ∈ [τ2, τ3],

(34)

with τ1 = 1, τ2 = 2, and τ3 = 3.
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The curves Sgm, Sgf and P are exhibited in Figure 15. Table 4 shows the good performance of
the proposed formulation in terms of time step chops and Newton iterations which confirms the
efficiency of the proposed method. Note that, for this test case, we have adapted the Newton solver
such that if the Newton iterate for the τ variable tries to jump from above to below the value
τi = τ1, τ2 (or from below to above), it is projected onto τ = τi + ε (τ = τi − ε correspondingly).

Figure 15: Sgm(τ), Sgf (τ), and P(τ) curves for variable switch formulation for bm = bf = 0,

pent,m = 105 Pa, and pent,f = 0.

variable switch

Ndt NChop NNewton NGMRes CPU(s)

221 0 5.8 26.3 5 948

Table 4: Numerical results for the pressure-saturation and variable switch formulations
for bm = bf = 0, pent,m = 105 Pa, and pent,f = 0: number Ndt of successful time steps,
number NChop of time step chops, number NNewton of Newton iterations per successful
time step, number NGMRes of GMRes iterations by Newton iteration, and CPU time in
seconds.
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4.4 Physical discussion

Figure 16: Water saturation in the perforated face in the fracture at x = 0 (blue) and
cut of the water saturation in the matrix (red) along the line y = z = 0 as a function of
the distance to the fracture at the end of each simulation period t = 1 day (top), t = 4
days (middle) and t = 300 days (bottom). The left plots (a) correspond to bm = 105

Pa, bf = 104 Pa, pent,m = pent,f = 0, and the right plots (b) to bm = 105 Pa, bf = 0,
pent,m = pent,f = 0
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(a) (b)

Figure 17: Water saturation in the perforated face in the fracture at x = 0 (blue) and
cut of the water saturation in the matrix (red) along the line y = z = 0 as a function of
the distance to the fracture at the end of each simulation period t = 1 day (top), t = 4
days (middle) and t = 300 days (bottom). The left plots (a) correspond to bm = 105 Pa,
bf = 0, pent,m = 105 Pa, pent,f = 0, and the right plots (b) to bm = bf = 0, pent,m = 105

Pa, pent,f = 0.
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Figure 18: On the top: instantaneous flow rates of water (left) and of gas (right) in m3/day
at the bottom: cumulated flow rates of water (left) and gas (right) in m3 as a function of
time, for the following four test cases. CC: bm = 105 Pa, bf = 104 Pa, pent,m = pent,f = 0,
CF: bm = 105 Pa, bf = 0, pent,m = pent,f = 0, CFPE: bm = 105 Pa, bf = 0, pent,m = 105

Pa, pent,f = 0, FFPE: bm = bf = 0, pent,m = 105 Pa, pent,f = 0.

Figures 16 and 17 exhibit, at the end of each simulation period at t = 1 day, t = 4 days and t = 300
days, the water saturation in the perforated face in the fracture and the cut of the water saturation
in the matrix along the line y = z = 0 as a function of the distance to the fracture. One clearly sees
that the water phase fills the fractures during the water injection period and penetrates the matrix
less than one meter from the fractures. At the end of the well closure period, water has been sucked
by imbibition from the fractures to the matrix. At the end of the simulation, the fractures are again
fully filled with the gas phase and the water phase above the residual saturation is only partially
removed during the production period due to the water retention by capillary effect. Figure 18
exhibits the instantaneous and cumulated flow rates of water and gas at the well with a positive
value for production and a negative value for injection. It can be checked in Figures 16, 17 and 18
that the larger the difference between the capillary pressure in the matrix and in the fractures, the
more water is retained by the capillary effect into the matrix and at the same time the less water
and the more gas are produced.

5 Conclusions

This paper has introduced a general framework for the formulation of two phase Darcy flows with
discontinuous capillary pressure curves at rocktype interfaces. This framework is based on the
parametrization of the capillary pressure monotone graphs and allow to (1) capture the jumps of
the saturations at the different rocktype interfaces, (2) maintain the minimal number of primary
unknowns per degree of freedom, (3) deal with arbitrary capillary functions including multi-valued
saturation curves. This framework has been tested on a family of tight gas recovery test cases
and compared with the classical pressure-saturation formulation using the Vertex Approximate
Gradient scheme for gas liquid hybrid dimensional Darcy flows in fractured porous media. The
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numerical results show clearly the robustness and efficiency of our approach for a wide range of
capillary functions with highly constrasted matrix and fracture rocktypes.
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855, 2003.
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